EP1144654A2 - Serine protease - Google Patents

Serine protease

Info

Publication number
EP1144654A2
EP1144654A2 EP00962730A EP00962730A EP1144654A2 EP 1144654 A2 EP1144654 A2 EP 1144654A2 EP 00962730 A EP00962730 A EP 00962730A EP 00962730 A EP00962730 A EP 00962730A EP 1144654 A2 EP1144654 A2 EP 1144654A2
Authority
EP
European Patent Office
Prior art keywords
polypeptide
hetaa37
polynucleotide
nucleotide sequence
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00962730A
Other languages
German (de)
French (fr)
Other versions
EP1144654A3 (en
Inventor
Christopher D. SmithKline Beecham Pharm SOUTHAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Ltd
Original Assignee
SmithKline Beecham Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SmithKline Beecham Ltd filed Critical SmithKline Beecham Ltd
Publication of EP1144654A2 publication Critical patent/EP1144654A2/en
Publication of EP1144654A3 publication Critical patent/EP1144654A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

HETAA37 polypeptides and polynucleotides and methods for producing such polypeptides by recombinant techniques are disclosed. Also disclosed are methods for utilizing HETAA37 polypeptides and polynucleotides in the design of protocols for the treatment of cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders, among others, and diagnostic assays for such conditions.

Description

Novel Compound
FIELD OF INVENTION
This invention relates to newly identified polynucleotides, polypeptides encoded by them and to the use of such polynucleotides and polypeptides, and to their production. More particularly, the polynucleotides and polypeptides of the present invention relate to the serine protease family, hereinafter referred to as HETAA37. The invention also relates to inhibiting or activating the action of such polynucleotides and polypeptides.
BACKGROUND OF THE INVENTION
Proteases perform a variety of important functions in human physiology. Increasingly diseases are being identified where proteases are critical for the pathology of a particular disease. For these key proteases designing or screening for selective antagonists or agonists can lead to the development of new drugs. The serine proteases are a major family of proteases for which a large number are known, for example; human stratum corneum chymotryptic enzyme ( Hansson et al. J Biol Chem 269, 19420-19426. 1994) mouse neuropsin, (Chen et al. JNeurosci 15:5088-5097, 1995) and human neurosin (Yamashiro et al. Biochim Biophys Acta 1350 :1 1-14, 1997)This indicates that the serine proteases family has an established, proven history as therapeutic targets. Clearly there is a need for identification and characterization of further membersof the serine proteases family which can play a role in preventing, ameliorating or correcting dysfunctions or diseases, including, but not limited to, cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders.
SUMMARY OF THE INVENTION
In one aspect, the invention relates to HETAA37 polypeptides and recombinant materials and methods for their production. Another aspect of the invention relates to methods for using such HETAA37 polypeptides and polynucleotides. Such uses include the treatment of cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders, among others. In still another aspect, the invention relates to methods to identify agonists and antagonists using the materials provided by the invention, and treating conditions associated with HETAA37 imbalance with the identified compounds. Yet another aspect of the invention relates to diagnostic assays for detecting diseases associated with inappropriate HETAA37 activity or levels.
DESCRIPTION OF THE INVENTION Definitions
The following definitions are provided to facilitate understanding of certain terms used frequently herein.
"HETAA37" refers, among others, generally to a polypeptide comprising any the amino acid sequences designated by the symbols "Qt" set forth in Table 2, or an allelic variant thereof.
"HETAA37 activity or HETAA37 polypeptide activity" or "biological activity of the HETAA37 or HETAA37 polypeptide" refers to the metabolic or physiologic function of said HETAA37 including similar activities or improved activities or these activities with decreased undesirable side-effects. Also included are antigenic and immunogenic activities of said HETAA37.
"HETAA37 gene" refers to a polynucleotide having the nucleotide sequence set forth in SEQ ID NO: 1 or allelic variants thereof and/or their complements. "Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library.
"Isolated" means altered "by the hand of man" from the natural state. If an "isolated" composition or substance occurs in nature, it has been changed or removed from its original environment, or both. For example, a polynucleotide or a polypeptide naturally present in a living animal is not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein.
"Polynucleotide" generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotides" include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single- stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications has been made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.
"Polypeptide" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres. "Polypeptide" refers to both short chains, commonly referred to as peptides, oligopeptides or oligomers, and to longer chains, generally referred to as proteins. Polypeptides may contain amino acids other than the 20 gene-encoded amino acids. "Polypeptides" include amino acid sequences modified either by natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York, 1993 and Wold, F., Posttranslational Protein Modifications: Perspectives and Prospects, pgs. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, 1983; Seifter et al., "Analysis for protein modifications and nonprotein cofactors", Meth Enzymol (1990) 182:626-646 and Rattan et al., "Protein Synthesis: Posttranslational Modifications and Aging", Ann NY Acad Sci (1992) 663 :48-62. "Variant" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below. A typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical. A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination. A substituted or inserted amino acid residue may or may not be one encoded by the genetic code. A variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. "Identity" is a measure of the identity of nucleotide sequences or amino acid sequences.
In general, the sequences are aligned so that the highest order match is obtained. "Identity" per se has an art-recognized meaning and can be calculated using published techniques. See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, A.M., ed., Oxford University Press, New York, 1988; BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, 1993; COMPUTER ANALYSIS OF SEQUENCE DATA, PART I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, von Heinje, G., Academic Press, 1987; and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). While there exist a number of methods to measure identity between two polynucleotide or polypeptide sequences, the term "identity" is well known to skilled artisans (Carillo, H., and Lipton, D., SIAM J Applied Math (1988) 48: 1073). Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994, and Carillo, H., and Lipton, D., SIAM J Applied Math (1988) 48: 1073. Methods to determine identity and similarity are codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, GCS program package (Devereux, J., et al., Nucleic Acids Research (1984) 12( 1 ):387), BLASTP, BLASTN, FASTA (Atschul, S.F. et al, JMolec Biol ( 1990) 215 :403). As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence of SEQ ID NO: 1 is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence of SEQ ID NO: 1. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5 or 3 terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% "identity" to a reference amino acid sequence Qt of Table 2 is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of a reference amino acid of Table 2. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. Polypeptides of the Invention
In one aspect, the present invention relates to HETAA37 polypeptides (or HETAA37 proteins). The HETAA37 polypeptides include any of the polypeptides designated by symbols "Qt" of Table 2; as well as polypeptides comprising an amino acid sequence Qt of Table 2; and polypeptides comprising the amino acid sequence which have at least 80% identity to any of the amino acid sequences Qt of Table 2 over its entire length, and still more preferably at least 90% identity, and even still more preferably at least 95% identity to any of those in Table 2. Furthermore, those with at least 97-99% are highly preferred. Also included within HETAA37 polypeptides are polypeptides having the amino acid sequence which have at least 80% identity to the polypeptide having any of the amino acid sequences Qt of Table 2 over its entire length, and still more preferably at least 90% identity, and still more preferably at least 95% identity to any of those in Table 2. Furthermore, those with at least 97-99% are highly preferred. Preferably HETAA37 polypeptides exhibit at least one biological activity of HETAA37. The HETAA37 polypeptides of the present invention also include a polypeptide comprising an amino acid sequence encoded by a polynucleotide that have at least 80% identity to that of SEQ ID NO: 1 over its entire length.
The HETAA37 polypeptides may be in the form of the "mature" protein or may be a part of a larger protein such as a fusion protein. It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification such as multiple histidine residues, or an additional sequence for stability during recombinant production.
Fragments of the HETAA37 polypeptides are also included in the invention. A fragment is a polypeptide having an amino acid sequence that entirely is the same as part, but not all, of the amino acid sequence of the aforementioned HETAA37 polypeptides. As with HETAA37 polypeptides, fragments may be "free-standing," or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, and 101 to the end of HETAA37 polypeptide. In this context "about" includes the particularly recited ranges larger or smaller by several, 5, 4, 3, 2 or 1 amino acid at either extreme or at both extremes.
Preferred fragments include, for example, truncation polypeptides having the amino acid sequence of HETAA37 polypeptides, except for deletion of a continuous series of residues that includes the amino terminus, or a continuous series of residues that includes the carboxyl terminus or deletion of two continuous series of residues, one including the amino terminus and one including the carboxyl terminus. Also preferred are fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Other preferred fragments are biologically active fragments. Biologically active fragments are those that mediate HETAA37 activity, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Also included are those that are antigenic or immunogenic in an animal, especially in a human. Preferably, all of these polypeptide fragments retain the biological activity of the
HETAA37, including antigenic activity. Variants of the defined sequence and fragments also form part of the present invention. Preferred variants are those that vary from the referents by conservative amino acid substitutions— i.e., those that substitute a residue with another of like characteristics. Typical such substitutions are among Ala, Val, Leu and He; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gin; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5- 10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination.
The HETAA37 polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.
Polynucleotides of the Invention
Another aspect of the invention relates toHETAA37 polynucleotides. HETAA37 polynucleotides include isolated polynucleotides which encode theHETAA37 polypeptides and fragments, and polynucleotides closely related thereto. More specifically,HETAA37 polynucleotide of the invention include a polynucleotide comprising the nucleotide sequence contained in SEQ ID NO: l encoding a HETAA37 polypeptide Qt of Table 2, and polynucleotide having the particular sequence of SEQ ID NO: 1. HETAA37 polynucleotides further include a polynucleotide comprising a nucleotide sequence that has at least 80% identity over its entire length to a nucleotide sequence encoding a HETAA37 polypeptide Qt of Table 2, and a polynucleotide comprising a nucleotide sequence that is at least 80% identical to that of SEQ ID NO: 1 over its entire length. In this regard, polynucleotides at least 90% identical are particularly preferred, and those with at least 95% are especially preferred. Furthermore, those with at least 97% are highly preferred and those with at least 98-99% are most highly preferred, with at least 99% being the most preferred. Also included under HETAA37 polynucleotides are a nucleotide sequence which has sufficient identity to a nucleotide sequence contained in SEQ ID NO: 1 to hybridize under conditions useable for amplification or for use as a probe or marker. The invention also provides polynucleotides which are complementary to all of the above HETAA37 polynucleotides.
HETAA37 of the invention is structurally related to other proteins of theserine protease family, as shown by the results of sequencing the cDNA of Table 1 (SEQ ID NO: 1) encoding human HETAA37. The cDNA sequence of SEQ IDNO:l encodes polypeptides designated by symbols "Qt" of Table 2 that have homology to human stratum corneum chymotryptic enzyme ( Hansson et al. J Biol Chem 269, 19420-19426. 1994). Table 2 includes comparison between
HETAA37 and its closest homologous protein. Nucleotide sequence of Table 1 (SEQ ID NO: l) has about 57% identity (using BLASTN) in 386 nucleotide residues with human neurosin (Yamashiro et al. Biochim Biophys Acta 1350 : 11-14, 1997) Thus HETAA37 polypeptides and polynucleotides of the present invention are expected to have, inter alia, similar biological functions/properties to their homologous polypeptides and polynucleotides, and their utility is obvious to anyone skilled in the art.
Table 1*
GGACACGAGTTCGGCAGCTGCAGCCAAATCATAAACGGCGAGGACTGCAGCCCGCACTCGCAGCCCTGGC AGGCGGCACTGGTCATGGAAAACGAATTGTTCTGCTCGGGCGTCCTGGTGCATCCGCAGTGGGTGCTGTC AGCCGCACACTGTTTCCAGAACTCCTACACCATCGGGCTGGGCCTGCACAGTCTTGAGGCCGACCAAGAG CCAGGGAGCCAGATGGTGGAGGCCAGCCTCTCCGTACGGCACCCAGAGTACAACAGACCCTTGCTCGCTA ACGACCTCATGCTCATCAAGTTGGACGAATCCGTGTCCGAGTCTGACACCATCCGGAGCATCAGCATTGC TTCGCAGTGCCCTACCGCGGGGAACTCTTGCCTCGTTTCTGGCTGGGGTCTGCTGGCGAACGGCAGAATG CCTACCGTGCTGCAGTGCGTGAACGTGTCGGTGGTGTCTGAGGANGTCTGCAGTAAGCTCTATGACCCGC TGTACCACCCCAGCATGTTCTGCGCCGGCGGAGGGCAAGACCAGAAGGACTCCTGTAA.CGGTGACTCTGG GGGGCCCCTGATCTGCAACGGGTACTTGCAGGGCCTTGTGTCTTTCGGAAAAGCCCCGTGTGGNCAAGTT GGCGTGCCAGGTGTCTACACCAACCTCTGCAAATTCACTGAGTGGATAGAGAAAACCGTCCAGGCCANTT AACTCTGGGGACTGGGAACCCATGAAATTGACCCCCAAATACATCCTG
A nucleotide sequence of a human HETAA37. SEQ ID NO: 1.
Table 2b 74E
Db I I D G A P C A R G S H P W Q V A L L S
Dt 86 ARA^HATHGAYGGNGCMCCNT-GYGCNMGNGGN SNCAYCCNTGGCARGTNGCNYTNYTNW 145
I I I I I I I I I 1 I I I I I I I 1 I I
Qv 2D AAATCAmAAACGGCGAGGACTGCAGCCCGCACTCGCAGCCCTGGCAGGCGGCACTGGTCA 85
Qt I I N G E D C S P h S Q P Q A A L V M
Db G N Q L H C G G V L V N E R W V L T A A
Dt 146 SNGGNAAiCA YTNCAYTGYGGNGGNGTNYTNGTNAAYGARMGNTGGGTNYTNACNGC G 205
I I I 1 I I ' I I I I I I I I I I I I I I I I I
Qy 86 ^GGAAAACGAATTGTTCTGCTCGGGCGTCCTGGTGCATCCGCAGTGGGTGCTGTCAGCCG 145
Qt E N E L F C S G V L V H P Q W V L S A A
Db -I C Λ M N E Y T V H L G S D T G D R R
Dt 206 CNCAY^CiAAPATGAAYGARTAYACNGTNCAYYTNGGNWSNGAYACNYTNGGNGAYMGNM 265
I I I I I I I I I I I I ' I I I I I I I
Cy 146 CACACTGTTTCCAGAACTCCTACACCATCGGGCTGGGCCTGCACAGTCTTGAGGCCGACC 205
Qt H C F Q N S f T I G L G H Ξ L E A D Q
Db A Q R I K A Ξ K S F R H P G Y S T
Dt 2oo GNGCNCARMGNA THAARGCN SNAAR ΞNTTYMGNCAYCCNGGNTAYWSNA 31o
I I I I I I I I I I I I I I I I I
Qy 20o PAGAGCC GGGAGCCAGATGGTGGAGGCCAGCCTCTCCGTACGGCACCCAGAGTACAACA 26D
Qt E P G Ξ E A S L S V R H P E Y N R
Do Q T H V N D ^ M V K L N S Q A R L S S
Dt 317 CNCARACHCAYGTNAAYGAYYTNATGYTNGTNAARYTNAAYWSNCARGCNMGNYTNWSNW 376
I I I I I I I I I I I I I I I I I
Qy 266 GACCCTTGCTCGCTAACGACCTCATGCTCATCAAGTTGGACGAATCCGTGTCCGAGTCTG 325
Qt P L L A N D L M I K D E S V S E S D
Db M V Λ K V R L P S R C E P P G T T C T V
Dt 377 SNATGGTNAARAARGTN GNYTNCCNWSNMGNTGYGARCCNCCNGGNACNACNTGYACNG 436
I I I i I I I I I I I I I I I I i
Qv 32o ACACCATCCGGAGCATCAGCATTGCTTCGCAGTGCCCTACCGCGGGGAACTCTTGCCTCG 385
Qt ^ I R Ξ I S I A S Q C P T A G N S C V
Db S G /J G T T T S P D V T F P S D L M C V
D 43^ TNWΞNGGNTGGGGNACNACNACNWSNCGNGAYGTNACNTTYCCNWΞNGAYYTNATGTGYG 496
I I I I I i I I I I I I I I I I I I I I
Qy 38 o TTCTGGCTGGGGTCTGCTGGCGA ACGGCAGAATGCCTACCGTGCTGCAGTGCG 439
Qt S G Λ G L L A X -. G R M P T V L Q C
Do D V K L I S D Q D C T K V Y K D E N
D 497 TNGAYGTNAAPYTNATHWSNCCNCARGAYTGYACNAARGTNTAjΑARGAYYTNYTNGARA 556
I N I I I I I I I I I I I I I I I
Qv 440 TGAACGTGTCGGTGGTGTCTGAGGANGTCTGCAGTAAGCTCTATGACCCGCTGTACCACC 499
Q1- ^ S v V S E ^ V C S K L Y D P L Y H P
Db S ' L C A G I P D S K K N A C N G D S G
D 557 AYWΞNAtGiTT TGYGCNGG ATHCCNGAYWΞNAARAARAAYGCNTGYAAYGGNGAY ΞNG 616
I I I I I I I 1 I I I I I I I I I I I I I I I I I
Qv 500 CCAGCATGTTCTGCGCCGCCGGAGGGCAAGACCAGAAGGACTCCTGTAACGGTGACTCTG 559
Qt S M F C A G G G Q D Q K D Ξ C N G D S G
Db G P ^ V C R G T Q G L V S W G T F P C
Dt D.7 GNGGNCCNvTNGTt,TGvriGNGGNACNYTNCARGGNYTNGTNWΞNTGGGGNACNTTYCCNT 676
I I I I I I I 1 I I I I I I I I I I I I I
Q 5o0 GGGGGC^CCTGA'T'CTGCAACGGGTACTTGCAGGGCCTTGTGTCTTTCGGAAAAGCCCCGT 619 ^ G P ^ I C G Y Q G V S F G A P C
DD G Q D ^1 D P G V Y T Q V C F T K W I N
Dt 677 GYGGNCήPCCNAAYGAYCCNGGNGTNTAYACNCARGTNTGYAARTTYACNAARTGGATHA 736
I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
Qy 620 GTGGNCAAGTTGGCGTGCCAGGTGTCTACACCAACCTCTGCAAATTCACTGAGTGGATAG 679
Qt G Q V G V P G V Y T N L C K F T E W I E
SUBSTITUTE SHFET (RULE 2C) b
The symbols "Qy" refer to human HETAA37.
The symbols "Qt" refer to the protein translation of human HETAA37 The symbols "Db" refer to the closest homologous protein. The symbols "Dt" refer to the nuclotide translation of the closest homologous protein.
One polynucleotide of the present invention encoding HETAA37 may be obtained using standard cloning and screening, from a cDNA library derived from mRNA in cells of human endometrial tumor and prostate carcinoma using the expressed sequence tag (EST) analysis (Adams, M.D., et al. Science ( 1991) 252: 1651-1656; Adams, M.D. et al, Nature, ( 1992) 555:632-634; Adams, M.D., et al, Nature (1995) 377 Supp:3- 174). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.
The nucleotide sequence encoding a HETAA37 polypeptide of Table 2 may be identical to the polypeptide encoding sequence contained in Table 1 or it may be a sequence, which as a result of the redundancy (degeneracy) of the genetic code, also encodes a HETAA37 polypeptide of Table 2.
When the polynucleotides of the invention are used for the recombinant production of HETAA37 polypeptide, the polynucleotide may include the coding sequence for the mature polypeptide or a fragment thereof, by itself; the coding sequence for the mature polypeptide or fragment in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions. For example, a marker sequence which facilitates purification of the fused polypeptide can be encoded. In certain preferred embodiments of this aspect of the invention, the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentzet al, Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag. The polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non-translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.
Further preferred embodiments are polynucleotides encoding HETAA37 variants that comprise an amino acid sequence HETAA37 polypeptide of Table 2 in which several, 5-10, 1-5. 1-3, 1-2 or 1 amino acid residues are substituted, deleted or added, in any combination.
The present invention further relates to polynucleotides that hybridize to the herein above- described sequences. In this regard, the present invention especially relates to polynucleotides which hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 80%, and preferably at least 90%, and more preferably at least 95%, yet even more preferably 97-99% identity between the sequences.
Polynucleotides of the invention, which are identical or sufficiently identical to a nucleotide sequence contained in SEQ ID NO: 1 or a fragment thereof, may be used as hybridization probes for cDNA and genomic DNA, to isolate full-length cDNAs and genomic clones encoding HETAA37 polypeptide and to isolate cDNA and genomic clones of other genes (including genes encoding homologs and orthologs from species other than human) that have a high sequence similarity to the HETAA37 gene. Such hybridization techniques are known to those of skill in the art. Typically these nucleotide sequences are 80% identical, preferably 90% identical, more preferably 95% identical to that of the referent. The probes generally will comprise at least 15 nucleotides.
Preferably, such probes will have at least 30 nucleotides and may have at least 50 nucleotides. Particularly preferred probes will range between 30 and 50 nucleotides.
In one embodiment, to obtain a polynucleotide encoding HETAA37 polypeptide, including homologs and orthologs from species other than human, comprises the steps of screening an appropriate library under stingent hybridization conditions with a labeled probe having the SEQ ID NO: 1 or a fragment thereof; and isolating full-length cDNA and genomic clones containing said polynucleotide sequence. Thus in another aspect, HETAA37 polynucleotides of the present invention further include a nucleotide sequence comprising a nucleotide sequence that hybridize under stringent condition to a nucleotide sequence having SEQ ID NO: 1 or a fragment thereof. Also included with HETAA37 polypeptides are polypeptide comprising amino acid sequence encoded by nucleotide sequence obtained by the above hybridization condition. Such hybridization techniques are well known to those of skill in the art. Stringent hybridization conditions are as defined above or, alternatively, conditions under overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0. lx SSC at about 65°C.
The polynucleotides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diagnostics to animal and human disease.
Vectors, Host Cells, Expression
The present invention also relates to vectors which comprise a polynucleotide or polynucleotides of the present invention, and host cells which are genetically engineered with vectors of the invention and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.
For recombinant production, host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides of the present invention. Introduction of polynucleotides into host cells can be effected by methods described in many standard laboratory manuals, such as Davis et al , BASIC METHODS IN MOLECULAR BIOLOGY ( 1986) and Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) such as calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.
Representative examples of appropriate hosts include bacterial cells, such as streptococci, staphylococci, E. coli, Streptomyces and Bacillus subtilis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells; and plant cells. A great variety of expression systems can be used. Such systems include, among others, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids. The expression systems may contain control regions that regulate as well as engender expression. Generally, any system or vector suitable to maintain, propagate or express polynucleotides to produce a polypeptide in a host may be used. The appropriate nucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrooket al., MOLECULAR CLONING A LABORATORY MANUAL (supra).
For secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the desired polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
If the HETAA37 polypeptide is to be expressed for use in screening assays, generally, it is preferred that the polypeptide be produced at the surface of the cell. In this event, the cells may be harvested prior to use in the screening assay. If HETAA37 polypeptide is secreted into the medium, the medium can be recovered in order to recover and purify the polypeptide; if produced intracellularly, the cells must first be lysed before the polypeptide is recovered. HETAA37 polypeptides can be recovered and purified from recombinant cell cultures by well- known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography. affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.
Diagnostic Assays
This invention also relates to the use ofHETAA37 polynucleotides for use as diagnostic reagents. Detection of a mutated form ofHETAA37 gene associated with a dysfunction will provide a diagnostic tool that can add to or define a diagnosis of a disease or susceptibility to a disease which results from under-expression, over-expression or altered expression ofHETAA37.
Individuals carrying mutations in theHETAA37 gene may be detected at the DNA level by a variety of techniques.
Nucleic acids for diagnosis may be obtained from a subject's cells, such as from blood, urine, saliva, tissue biopsy or autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification techniques prior to analysis. RNA or cDNA may also be used in similar fashion. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to labeledHETAA37 nucleotide sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in electrophoretic mobility of DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al, Science (1985) 230: 1242. Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S 1 protection or the chemical cleavage method. See Cotton et al.. Proc Natl Acad Set USA (1985) 85: 4397-4401. In another embodiment, an array of oligonucleotides probes comprising HETAA37 nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations. Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability. (See for example: M.Chee et al., Science, Vol 274, pp 610-613 (1996)).
The diagnostic assays offer a process for diagnosing or determining a susceptibility to cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders through detection of mutation in theHETAA37 gene by the methods described.
In addition, cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders, can be diagnosed by methods comprising determining from a sample derived from a subject an abnormally decreased or increased level of HETAA37 polypeptide or HETAA37 mRNA. Decreased or increased expression can be measured at the RNA level using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods. Assay techniques that can be used to determine levels of a protein, such as anHETAA37 polypeptide, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.
Thus in another aspect, the present invention relates to a diagonostic kit for a disease or suspectability to a disease, particularly cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders, which comprises:
(a) a HETAA37 polynucleotide, preferably the nucleotide sequence of SEQ ID NO: 1 , or a fragment thereof ;
(b) a nucleotide sequence complementary to that of (a);
(c) a HETAA37 polypeptide, or a fragment thereof; or (d) an antibody to a HETAA37 polypeptide.
It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.
Chromosome Assays The nucleotide sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. The mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).
The differences in the cDNA or genomic sequence between affected and unaffected individuals can also be determined. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.
Antibodies
The polypeptides of the invention or their fragments or analogs thereof, or cells expressing them can also be used as immunogens to produce antibodies immunospecific for theHETAA37 polypeptides. The term "immunospecific" means that the antibodies have substantiall greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.
Antibodies generated against the HETAA37 polypeptides can be obtained by administering the polypeptides or epitope-bearing fragments, analogs or cells to an animal, preferably a nonhuman, using routine protocols. For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C, Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozboret al, Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole et al, MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp. 77-96, Alan R. Liss, Inc., 1985). Techniques for the production of single chain antibodies (U.S. Patent No. 4,946,778"* can also be adapted to produce single chain antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms including other mammals, may be used to express humanized antibodies.
The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography.
Antibodies against HETAA37 polypeptides may also be employed to treat cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders, among others. Vaccines
Another aspect of the invention relates to a method for inducing an immunological response in a mammal which comprises inoculating the mammal with HETAA37 polypeptide, or a fragment thereof, adequate to produce antibody and/or T cell immune response to protect said animal from cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders, among others. Yet another aspect of the invention relates to a method of inducing immunological response in a mammal which comprises, delivering HETAA37 polypeptide via a vector directing expression of HETAA37 polynucleotide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases.
Further aspect of the invention relates to an immunological/vaccine formulation (composition) which, when introduced into a mammalian host, induces an immunological response in that mammal to a HETAA37 polypeptide wherein the composition comprises a HETAA37 polypeptide or HETAA37 gene. The vaccine formulation may further comprise a suitable carrier. Since HETAA37 polypeptide may be broken down in the stomach, it is preferably administered parenterally (including subcutaneous, intramuscular, intravenous, intradermal etc. injection). Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation instonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil- in water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.
Screening Assays
The HETAA37 polypeptide of the present invention may be employed in a screening process for compounds which activate (agonists) or inhibit activation of (antagonists, or otherwise called inhibitors) the HETAA37 polypeptide of the present invention. Thus, polypeptides of the invention may also be used to assess identify agonist or antagonists from, for example, cells, cell- free preparations, chemical libraries, and natural product mixtures. These agonists or antagonists may be natural or modified substrates, ligands, enzymes, receptors, etc., as the case may be, of the polypeptide of the present invention; or may be structural or functional mimetics of the polypeptide of the present invention. See Coligan et al, Current Protocols in Immunology l(2):Chapter 5 (1991).
HETAA37 polypeptides are responsible for many biological functions, including many pathologies. Accordingly, it is desirous to find compounds and drugs which stimulateHETAA37 polypeptide on the one hand and which can inhibit the function ofHETAA37 polypeptide on the other hand. In general, agonists are employed for therapeutic and prophylactic purposes for such conditions as cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders Antagonists may be employed for a variety of therapeutic and prophylactic purposes for such conditions as cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders
In general, such screening procedures may involve using appropriate cells which express the HETAA37 polypeptide or respond to HETAA37 polypeptide of the present invention. Such cells include cells from mammals, yeast, Drosophila or E. coli. Cells which express the HETAA37 polypeptide (or cell membrane containing the expressed polypeptide) or respond toHETAA37 polypeptide are then contacted with a test compound to observe binding, or stimulation or inhibition of a functional response. The ability of the cells which were contacted with the candidate compounds is compared with the same cells which were not contacted forHETAA37 activity. The assays may simply test binding of a candidate compound wherein adherence to the cells bearing the HETAA37 polypeptide is detected by means of a label directly or indirectly associated with the candidate compound or in an assay involving competition with a labeled competitor. Further, these assays may test whether the candidate compound results in a signal generated by activation of the HETAA37 polypeptide, using detection systems appropriate to the cells bearing the HETAA37 polypeptide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed.
Further, the assays may simply comprise the steps of mixing a candidate compound with a solution containing a HETAA37 polypeptide to form a mixture, measuring HETAA37 activity in the mixture, and comparing the HETAA37 activity of the mixture to a standard.
The HETAA37 cDNA, protein and antibodies to the protein may also be used to configure assays for detecting the effect of added compounds on the production of HETAA37 mRNA and protein in cells. For example, an ELISA may be constructed for measuring secreted or cell associated levels of HETAA37 protein using monoclonal and polyclonal antibodies by standard methods known in the art, and this can be used to discover agents which may inhibit or enhance the production of HETAA37 (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.
The HETAA37 protein may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art. These include, but are not limited to, ligand binding and crosslinking assays in which the HETAA37is labeled with a radioactive isotope (eg 1251), chemically modified (eg biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (cells, cell membranes, cell supernatants, tissue extracts, bodily fluids). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. In addition to being used for purification and cloning of the receptor, these binding assays can be used to identify agonists and antagonists of HETAA37which compete with the binding of HETAA37to its receptors, if any. Standard methods for conducting screening assays are well understood in the art. Examples of potential HETAA37 polypeptide antagonists include antibodies or. in some cases, oligonucleotides or proteins which are closely related to the ligands, substrates, enzymes, receptors, etc., as the case may be, of the HETAA37 polypeptide, e.g., a fragment of the ligands, substrates, enzymes, receptors, etc.; or small molecules which bind to the polypetide of the present invention but do not elicit a response, so that the activity of the polypeptide is prevented. Thus in another aspect, the present invention relates to a screening kit for identifying agonists, antagonists, ligands, receptors, substrates, enzymes, etc. for HETAA37 polypeptides; or compounds which decrease or enhance the production of HETAA37 polypeptides, which comprises:
(a) a HETAA37 polypeptide; (b) a recombinant cell expressing a HETAA37 polypeptide;
(c) a cell membrane expressing a HETAA37 polypeptide; or
(d) antibody to a HETAA37 polypeptide.
It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.
Prophylactic and Therapeutic Methods
This invention provides methods of treating abnormal conditions such as, cancer, inflammation, asthma, wasting diseases, atherosclerosis, stroke, diabetes, arthritis, Alzheimer's and other neurodegenerative diseases, and other neurological disorders, related to both an excess of and insufficient amounts of HETAA37 polypeptide activity
If the activity of HETAA37 polypeptide is in excess, several approaches are available One approach comprises administering to a subject an inhibitor compound (antagonist) as heremabove described along with a pharmaceutically acceptable carrier in an amount effective to inhibit the function of the HETAA37 polypeptide, such as, for example, by blocking the binding of ligands, substrates, enzymes, receptors, etc , or by inhibiting a second signal, and thereby alleviating the abnormal condition In another approach, soluble forms of HETAA37 polypeptides still capable of binding the ligand, substrate, enzymes, receptors, etc in competition with endogenous HETAA37 polypeptide may be administered Typical embodiments of such competitors comprise fragments of the HETAA37 polypeptide
In still another approach, expression of the gene encoding endogenous HETAA37 polypeptide can be inhibited using expression blocking techniques Known such techniques involve the use of antisense sequences, either internally generated or separately administered See, for example, O'Connor, J Neurochem (1991) 56 560 in Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988) Alternatively, oligonucleotides which form triple helices with the gene can be supplied See, for example, Lee et al Nucleic Acids Res (1979) 6 3073, Cooney et al , Science (1988) 241 456, Dervan et al , Science (1991) 251 1360 These oligomers can be administered per se or the relevant ohgomers can be expressed in vivo
For treating abnormal conditions related to an under-expression ofHETAA37 and its activity, several approaches are also available One approach comprises administering to a subject a therapeutical ly effective amount of a compound which activates HETAA37 polypeptide, l e , an agonist as described above, in combination with a pharmaceutically acceptable carrier, to thereby alleviate the abnormal condition Alternatively, gene therapy may be employed to effect the endogenous production of HETAA37 by the relevant cells in the subject For example, a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discussed above The retroviral expression construct may then be isolated and introduced into a packaging cell transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest These producer cells may be administered to a subject for engineering cells in vivo and expression of the polypeptide in vivo For overview of gene therapy, see Chapter 20 Gene Therapy and other Molecular Genetic-based Therapeutic Approaches, (and references cited therein) in Human Molecular Genetics, T Strachan and A P Read, BIOS Scientific Publishers Ltd (1996). Another approach is to administer a therapeutic amount of HETAA37 polypeptides in combination with a suitable pharmaceutical carrier.
Formulation and Administration Peptides, such as the soluble form ofHETAA37 polypeptides, and agonists and antagonist peptides or small molecules, may be formulated in combination with a suitable pharmaceutical carrier. Such formulations comprise a therapeutically effective amount of the polypeptide or compound, and a pharmaceutically acceptable carrier or excipient. Such carriers include but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. Formulation should suit the mode of administration, and is well within the skill of the art. The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.
Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds. Preferred forms of systemic administration of the pharmaceutical compositions include injection, typically by intravenous injection. Other injection routes, such as subcutaneous, intramuscular, or intraperitoneal, can be used. Alternative means for systemic administration include transmucosal and transdermal administration using penetrants such as bile salts or fusidic acids or other detergents. In addition, if properly formulated in enteric or encapsulated formulations, oral administration may also be possible. Administration of these compounds may also be topical and/or localized, in the form of salves, pastes, gels and the like.
The dosage range required depends on the choice of peptide, the route of administration, the nature of the formulation, the nature of the subject's condition, and the judgment of the attending practitioner. Suitable dosages, however, are in the range of 0.1-100 μg/kg of subject. Wide variations in the needed dosage, however, are to be expected in view of the variety of compounds available and the differing efficiencies of various routes of administration. For example, oral administration would be expected to require higher dosages than administration by intravenous injection. Variations in these dosage levels can be adjusted using standard empirical routines for optimization, as is well understood in the art. Polypeptides used in treatment can also be generated endogenously in the subject, in treatment modalities often referred to as "gene therapy" as described above. Thus, for example, cells from a subject may be engineered with a polynucleotide, such as a DNA or RNA, to encode a polypeptide ex vivo, and for example, by the use of a retroviral plasmid vector. The cells are then introduced into the subject. All publications, including but not limited to patents and patent applications, cited in this specification are herein incoφorated by reference as if each individual publication were specifically and individually indicated to be incoφorated by reference herein as though fully set forth.

Claims

What is claimed is:
1. An isolated polynucleotide comprising a nucleotide sequence that has at least80% identity over its entire length to a nucleotide sequence encoding theHETAA37 polypeptide Qt of Table 2; or a nucleotide sequence complementary to said isolated polynucleotide.
2. The polynucleotide of claim 1 wherein said polynucleotide comprises the nucleotide sequence contained in SEQ ID NO: 1 encoding a HETAA37 polypeptide Qt of Table 2.
3. The polynucleotide of claim 1 wherein said polynucleotide comprises a nucleotide sequence that is at least 80% identical to that of SEQ ID NO: 1 over its entire length.
4. The polynucleotide of claim 3 which is polynucleotide of SEQ ID NO: 1.
5. The polynucleotide of claim 1 which is DNA or RNA.
6. A DNA or RNA molecule comprising an expression system, wherein said expression system is capable of producing a HETAA37 polypeptide comprising an amino acid sequence which has at least 80% identity to a polypeptide Qt of Table 2 when said expression system is present in a compatible host cell.
7. A host cell comprising the expression system of claim 6.
8. A process for producing a HETAA37 polypeptide comprising culturing a host of claim 7 under conditions sufficient for the production of said polypeptide and recovering the polypeptide from the culture.
9. A process for producing a cell which produces a HETAA37 polypeptide thereof comprising transforming or transfecting a host cell with the expression system of claim 6 such that the host cell, under appropriate culture conditions, produces a HETAA37 polypeptide.
10. A HETAA37 polypeptide comprising an amino acid sequence which is at least 80% identical to any of the amino acid sequence Qt of Table 2 over its entire length.
X
1 1. The polypeptide of claim 10 which comprises any one or more of the amino acid sequences Qt of Table 2.
12. An antibody immunospecific for the HETAA37 polypeptide of claim 10.
13. A method for the treatment of a subject in need of enhanced activity or expression of HETAA37 polypeptide of claim 10 comprising:
(a) administering to the subject a therapeutically effective amount of an agonist to said polypeptide; and/or (b) providing to the subject an isolated polynucleotide comprising a nucleotide sequence that has at least 80% identity to a nucleotide sequence encoding any of the polypeptides Qt of Table 2 over its entire length; or a nucleotide sequence complementary to said isolated polynucleotide in a form so as to effect production of said polypeptide activity in vivo.
14. A method for the treatment of a subject having need to inhibit activity or expression of HETAA37 polypeptide of claim 10 comprising:
(a) administering to the subject a therapeutically effective amount of an antagonist to said polypeptide; and/or
(b) administering to the subject a nucleic acid molecule that inhibits the expression of the nucleotide sequence encoding said polypeptide; and/or
(c) administering to the subject a therapeutically effective amount of a polypeptide that competes with said polypeptide for its ligand, substrate , or receptor.
15. A process for diagnosing a disease or a susceptibility to a disease in a subject related to expression or activity of HETAA37 polypeptide of claim 10 in a subject comprising:
(a) determining the presence or absence of a mutation in the nucleotide sequence encoding said HETAA37 polypeptide in the genome of said subject; and/or
(b) analyzing for the presence or amount of the HETAA37 polypeptide expression in a sample derived from said subject.
16. A method for identifying compounds which inhibit (antagonize) or agonize the HETAA37 polypeptide of claim 10 which comprises: (a) contacting a candidate compound with cells which express theHETAA37 polypeptide (or cell membrane expressing HETAA37 polypeptide) or respond to HETAA37 polypeptide; and
(b) observing the binding, or stimulation or inhibition of a functional response; or comparing the ability of the cells (or cell membrane) which were contacted with the candidate compounds with the same cells which were not contacted forHETAA37 polypeptide activity.
17. An agonist identified by the method of claim 16.
18. An antagonist identified by the method of claim 16.
19. A recombinant host cell produced by a method of Claim 9 or a membrane thereof expressing a HETAA37 polypeptide.
EP00962730A 1999-09-25 2000-09-25 Serine protease Withdrawn EP1144654A3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9922835 1999-09-25
GBGB9922835.5A GB9922835D0 (en) 1999-09-25 1999-09-25 Novel compounds
PCT/GB2000/003680 WO2001023587A2 (en) 1999-09-25 2000-09-25 Serine protease

Publications (2)

Publication Number Publication Date
EP1144654A2 true EP1144654A2 (en) 2001-10-17
EP1144654A3 EP1144654A3 (en) 2002-02-27

Family

ID=10861681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00962730A Withdrawn EP1144654A3 (en) 1999-09-25 2000-09-25 Serine protease

Country Status (3)

Country Link
EP (1) EP1144654A3 (en)
GB (1) GB9922835D0 (en)
WO (1) WO2001023587A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943236B2 (en) 1997-02-25 2005-09-13 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955306A (en) * 1996-09-17 1999-09-21 Millenium Pharmaceuticals, Inc. Genes encoding proteins that interact with the tub protein
ATE302414T1 (en) * 1997-02-25 2005-09-15 Corixa Corp COMPOUNDS FOR IMMUNE DIAGNOSIS OF PROSTATE CANCER AND THEIR USE
DE19805633A1 (en) * 1998-02-12 1999-08-19 Basf Ag New prostate serine protease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0123587A3 *

Also Published As

Publication number Publication date
GB9922835D0 (en) 1999-11-24
EP1144654A3 (en) 2002-02-27
WO2001023587A2 (en) 2001-04-05
WO2001023587A3 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
US6319688B1 (en) Polynucleotide encoding human sodium dependent phosphate transporter (IPT-1)
US6870030B2 (en) Asp2
EP0848062A2 (en) Aspartic protease ASP1
EP0887414A2 (en) Human serine proteases HGBAB90
US5922546A (en) Human disintegrin metalloprotease KUZ gene
US5948669A (en) Rat cathepsin K polynucleotide and polypeptide sequence
EP0854191A2 (en) Human cardiac/brain tolloid-like protein
US6245550B1 (en) Cytokine family member EF-7
US5837508A (en) Membrane-type matrix metalloproteinase-5 gene
EP0894855A2 (en) Human I kappa B-beta transcription factor
WO2000026374A2 (en) Adipose specific protein
US5932446A (en) Hmvab41
US6657047B2 (en) Human Pelota homolog
EP0881294A2 (en) HOEFCC11, a HAS2 splicing variant
EP1064364A1 (en) The cytokine family member 2-21
EP0897982A2 (en) Sodium bicarbonate co-transporter
EP0894856A1 (en) A human sMAD3 splice variant
WO1999021885A1 (en) A human abc transporter-7 (habc7) gene
US20020019520A1 (en) CBFBGA09: a human SL15 homolog
WO1999021988A1 (en) THE HUMAN VESICLE TRAFFICKING PROTEIN SEC22b GENE OF CBFBBA01
WO2001023587A2 (en) Serine protease
EP0879886A2 (en) Signal transduction protein HLDAT86, the human Wnt-4 homolog
WO1999022006A1 (en) CBLAFC02: A SUBUNIT OF VACUOLAR H(+)-ATPase
EP0892050A2 (en) Human HFIZG53
EP0897979A2 (en) Human sdr2 cdna clone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20020411

17Q First examination report despatched

Effective date: 20030509

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

18W Application withdrawn

Effective date: 20030620

RBV Designated contracting states (corrected)

Designated state(s): GB