EP1141669B1 - Infrarotempfindliches bolometer und verfahren zu dessen herstellung - Google Patents

Infrarotempfindliches bolometer und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP1141669B1
EP1141669B1 EP98959258A EP98959258A EP1141669B1 EP 1141669 B1 EP1141669 B1 EP 1141669B1 EP 98959258 A EP98959258 A EP 98959258A EP 98959258 A EP98959258 A EP 98959258A EP 1141669 B1 EP1141669 B1 EP 1141669B1
Authority
EP
European Patent Office
Prior art keywords
bolometer
level
pair
bridges
conduction line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98959258A
Other languages
English (en)
French (fr)
Other versions
EP1141669A1 (de
Inventor
Yoon Joong Video Research Center YONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WiniaDaewoo Co Ltd
Original Assignee
Daewoo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daewoo Electronics Co Ltd filed Critical Daewoo Electronics Co Ltd
Priority claimed from PCT/KR1998/000405 external-priority patent/WO2000034751A1/en
Publication of EP1141669A1 publication Critical patent/EP1141669A1/de
Application granted granted Critical
Publication of EP1141669B1 publication Critical patent/EP1141669B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Definitions

  • the present invention relates to an infrared bolometer; and, more particularly, to a three-level infrared bolometer and a manufacturing method thereof.
  • Bolometers are energy detectors based upon a change in the resistance of materials (called bolometer elements) that are exposed to a radiation flux.
  • the bolometer elements have been made from metals or semiconductors. In metals, the resistance change is essentially due to variations in the carrier mobility, which typically decreases with temperature. Greater sensitivity can be obtained in high-resistivity semiconductor bolometer elements in which the free-carrier density is an exponential function of temperature, but thin film fabrication of semiconductor for bolometers is a difficult problem.
  • Figs. 1 and 2 are a cross sectional and a perspective views illustrating a two-level bolometer 10, disclosed in U.S. Patent No. 5,300,915 entitled "THERMAL SENSOR", the bolometer 10 including an elevated microbridge detector level 11 and a lower level 12.
  • the lower level 12 has a flat surfaced semiconductor substrate 13, such as a single crystal silicon substrate.
  • the surface 14 of the silicon substrate 13 has fabricated thereon-several components of an integrated circuit 15 including diodes, x and y bus lines, connections, and contact pads at the ends of the x and y bus lines, the fabrication following conventional silicon IC technology.
  • the integrated circuit 15 is coated with a protective layer of silicon nitride 16.
  • the valley strip 17 is the area not covered by the elevated detector.
  • the elevated detector level 11 includes a silicon nitride layer 20, a serpentine metallic resistive path 21, a silicon nitride layer 22 over the layers 20 and 21, and an infrared absorber coating 23 (hereinafter, "IR absorber coating") over the silicon nitride layer 22.
  • IR absorber coating an infrared absorber coating 23
  • Downwardly extending silicon nitride layers 20' and 22' deposited at the same time during the fabrication make up the four sloping support legs for the elevated detector level 11. The number of support legs may be greater or less than four.
  • the cavity 26 between the two levels is ambient atmosphere. During the fabrication process, however, the cavity 26 was originally filled with a previously deposited layer of easily dissolvable glass or other dissolvable material until the layers 20, 20' and 22, 22' were deposited. Subsequently in the process the glass was dissolved out to leave the cavity.
  • FIG. 3 there is a top view depicting the elevated detector level 11 shown in Fig. 1.
  • This drawing is made as though the overlying absorber coating 23 and the upper silicon nitride layer 22 are transparent so the serpentine resistive layer path 21 can be shown.
  • the ends 21a, 21b of the resistive path 21 are continued down the slope area 30. to make electrical contact with pads 31 and 32 on the lower level 12.
  • Fig. 3 shows the nitride window cuts 35, 36 and 37 which are opened through the silicon nitride layers 20 and 22 to provide access to the phosphor-glass beneath for dissolving it from beneath the detector plane.
  • the nitride window cuts 35, 36, 37 to provide this access are narrow and are shared with adjacent pixels on the sides, thus maximizing the area available to the detector and thus maximizing the fill-factor.
  • the four supporting bridges may be short or as long as necessary to provide adequate support and thermal isolation.
  • One of the shortcomings of the above described bolometer is its less than optimum fill factor resulting from the presence of the bridges on same level as the elevated microbridge detector level, which, in turn, reduces the total area for IR absorbing, i.e., the fill factor.
  • an object of the present invention to provide a three-level infrared bolometer having an increased fill factor and an improved absorbance and a manufacturing method thereof.
  • a three-level infrared bolometer comprising: an active matrix level, the active matrix level including a substrate and at least a pair of connecting terminals, wherein the pair of connecting terminals are formed on top of the substrate, a support level provided with at least a pair of bridges, each of the bridges including an conduction line, one end of the conduction line being electrically connected to the respective-connecting terminal, an absorption level, the absorption level including an absorber, a bolometer element surrounded by the absorber, and an infrared absorber coating formed on top of the absorber and having a rough surface, and at least a pair of posts, each of the posts being placed between the absorption level and the support level and including an electrical conduit surrounded by an insulating material, each end of the bolometer element of the absorption level being electrically connected to the respective connecting terminal through the respective electrical conduit and the respective conduction line.
  • a method for the manufacture of a three-level- infrared bolometer comprising the step of preparing an active matrix level including a substrate and a pair of connecting terminals, forming a first sacrificial layer including a pair of cavities on top of the active matrix level, forming a support level including a pair of bridges, wherein each of the bridges includes a conduction line formed thereon, forming a second sacrificial layer including a pair of holes on top of the bridges and the first sacrificial layer, forming an absorption level including a bolometer element surrounded by an absorber, depositing an infrared absorber coating on top of the absorber, etching the infrared absorber coating so as to have a rough top surface, and removing the second and the first sacrificial layers, respectively, to thereby form said three-level infrared bolometer.
  • FIGs. 4 and 5 a perspective view illustrating a three-level infrared bolometer 201 in accordance with the present invention and a schematic cross sectional view taken along I-I in Fig. 4, respectively. It should be noted that like parts appearing in Figs. 4 and 5 are represented by like reference numerals.
  • the inventive bolometer 201 shown in Figs. 4 and 5 comprises an active matrix level 210, a support level 220, at least a pair of posts 270 and an absorption level 230.
  • the active matrix level 210 has a substrate 212 including an integrated circuit (not shown), a pair of connecting terminals 214 and a protective layer 216.
  • Each of the connecting terminals 214 made of a metal is located on top of the substrate 212.
  • the pair of connecting terminals 214 are electrically connected to the integrated circuit.
  • the support level 220 includes a pair of bridges 240 made of silicon nitride (SiN x ), each of the bridges 240 having a conduction line 265 formed on top thereof.
  • Each of the bridges 240 is provided with an anchor portion 242, a leg portion 244 and an elevated portion 246, the anchor portion 242 including a via hole 252 through which one end of the conduction line 265 is electrically connected to the connecting terminal 214 and the leg portion 244 supporting the elevated portion 246.
  • the absorption level 230 is provided with an absorber 295 made of a heat absorbing material, e.g., silicon oxide (SiO 2 ), a serpentine bolometer element 285 made of, e.g., titanium (Ti) and surrounded by the absorber 295, and an IR absorber coating 297 formed on top of the absorber 295.
  • a heat absorbing material e.g., silicon oxide (SiO 2 )
  • a serpentine bolometer element 285 made of, e.g., titanium (Ti) and surrounded by the absorber 295
  • an IR absorber coating 297 formed on top of the absorber 295.
  • Each of the posts 270 is placed between the absorption level 230 and the support level 220.
  • Each of the post 270 includes an electrical conduit 272 made of a metal, e.g., titanium (Ti) and surrounded by an insulating material.
  • Top end of the electrical conduit 272 is electrically connected to one end of the serpentine bolometer element 285 and bottom end thereof is electrically connected to the conduction line 265 on the bridge 240, in such a way that both ends of the serpentine bolometer element 285 in the absorption level 230 is electrically connected to the integrated circuit of the active matrix level 210 through the electrical conduits 272, the conduction lines 265 and the connecting terminals 214.
  • the resistivity of the serpentine bolometer element 285 is changed, wherein the changed resistivity causes a current and a voltage to vary.
  • the varied current or voltage is amplified by the integrated circuit in such a way that the amplified current or voltage is read out by a detective circuit (not shown).
  • the process for the manufacture of the bolometer 201 begins with the preparation of the substrate 212 including the integrate circuit and the pair of connecting terminals 214.
  • the protective layer 216 made of, e.g., silicon nitride (Si 3 N 4 ), is deposited on top of the substrate 212 by using a plasma enhanced chemical vapor deposition (PECVD) method to thereby form an active matrix level 210, as shown in Fig. 6A.
  • PECVD plasma enhanced chemical vapor deposition
  • a first sacrificial material (not shown) comprising, e.g., poly-Si, is deposited on top of the protective layer 216 by using a low pressure chemical vapor deposition (LPCVD) method so as to have a flat top surface.
  • LPCVD low pressure chemical vapor deposition
  • the first sacrificial material is then removed, selectively, to form a first sacrificial layer 300 including a pair of cavities 305 by using an etching method, as shown in Fig. 6B.
  • SiN x silicon nitride
  • a pair of via holes 252 are formed in the support layer 250 to expose the connecting terminals 214, as shown in Fig. 6C.
  • a metal e.g., Ti
  • the conductive layer 260 and the support layer 250 are patterned into the pair of conduction lines 265 and the pair of bridges 240 by using a metal etching method and a nitride etching method, respectively, to thereby form the support level 220, as shown in Fig. 6E.
  • a second sacrificial material (not shown) comprising, e.g., a poly-Si, is deposited on top of the bridges 240 and the first sacrificial layer 300 by using the LPCVD method so as to have a flat top surface.
  • the second sacrificial material is then removed, selectively, to form a second sacrificial layer 310 including a pair of holes 315 by using the etching method, as shown in Fig. 6F.
  • the first absorption material 292 e.g., SiO 2
  • the first absorption material 292 is deposited on top of the second sacrificial layer 310 including the holes 315 by using a PECVD method.
  • a pair of apertures 296 are formed in the first absorption material 292 to expose the conduction lines 265 of the bridges 240, as shown in Fig. 6G.
  • a bolometer element layer (not shown) made of, e.g., titanium (Ti), is deposited on top of the first absorption material 292 including the apertures 296 by using the sputtering method, wherein the apertures 296 are filled with the bolometer element layer, thereby forming a pair of electrical conduits 272.
  • the bolometer element layer is then patterned into a serpentine bolometer element 285 by using the metal etching method, as shown in Fig. 6H.
  • a second absorption material 2-94 made of the same material as the first absorption material 292 is deposited on top of the serpentine bolometer element 285 to thereby form an absorber 295, as shown in Fig. 6I, wherein the absorber 295 surrounds the serpentine bolometer element 285.
  • the IR absorber coating 297 made of, e.g., titanium (Ti) is deposited on top of the absorber 295 by using the sputtering method so as to have a thickness of the range, e.g., 10-10000nm.
  • the IR absorber coating 297 is etched by a blanket etching method using Cl 2 +O 2 so as to have a predetermined thickness, e.g., 5-9995nm, which, in turn, oxidizes the top surface of the IR absorber coating 297, allowing the IR absorber coating 297 to have a rough top surface. It should be noted that the rough top surface of the IR absorber coating 297 allows the IR absorber coating 297 to efficiently absorb the infrared energy.
  • the IR absorber coating 297 having the rough top surface absorbs more infrared energy than that having a flat top surface, because the rough top surface allows the IR absorber coating 297 to reabsorb a part of the reflected infrared energy.
  • the IR absorber coating 297 is patterned using a partial etching method to expose a part of the second absorption material 294, as shown in Fig. 6K.
  • the absorber 295 having the first and the second absorption materials 292, 294 is cellularized into the absorber 295 by using the nitride etching method to thereby form an absorption level 230, as shown in Fig. 6L.
  • the second and the first sacrificial layers 310, 300 are removed by using an etching method to thereby form a three-level infrared bolometer 201, as shown in Fig. 6M.
  • the bridges are positioned under the absorption level allowing the absorption level to be fully utilized for IR absorption, which will, in turn, increase the fill factor thereof, and the infrared absorber coating has the rough surface on the absorber, improving the absorbing efficiency for infrared energy.

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Claims (14)

  1. Ein Infrarotbolometer (201) mit drei Niveaus, wobei das Bolometer umfaßt:
    ein Aktivmatrixniveau (210), wobei das Aktivmatrixniveau ein Substrat (212) und wenigstens ein Paar Verbindungsanschlüsse (214) aufweist;
    ein Trägerniveau (220), das mit wenigstens einem Paar Brücken (240) versehen ist, wobei jede der Brücken eine Leitung (265) aufweist, wobei ein Ende der Leitung elektrisch verbunden ist mit dem jeweiligen Verbindungsanschluß,
    ein Absorptionsniveau (230), wobei das Absorptionsniveau einen Absorber (295) aufweist, ein bolometrisches Element (285), das von dem Absorber umgeben ist und eine Infrarotabsorptionsschicht (297), die auf dem Absorber ausgebildet ist und eine rauhe Oberfläche hat; und
    wenigstens ein Paar Stützen (270), wobei jede der Stützen zwischen dem Absorptionsniveau (230) und dem Trägerniveau (220) angeordnet ist und einen elektrischen Leiter (272) aufweist, der von einem isolierenden Material umgeben ist, wobei jedes Ende des bolometrischen Elements (285) des Absorptionsniveaus elektrisch mit dem jeweiligen Verbindungsanschluß über den entsprechenden elektrischen Leiter und die entsprechende Leitung verbunden ist.
  2. Bolometer nach Anspruch 1, bei welchem jede der Brücken mit einem Verankerungsabschnitt (242), einem Schenkelabschnitt (244) und einem erhabenen Abschnitt (246) versehen ist, wobei der Verankerungsabschnitt ein Durchgangsloch aufweist, durch das ein Ende der Leitung elektrisch mit dem Verbindungsanschluß verbunden ist.
  3. Bolometer nach Anspruch 1, bei welchem die Leitung oben auf den Brücken angeordnet ist.
  4. Bolometer nach Anspruch 1, bei welchem die Infrarotabsorberschicht aus Titan hergestellt ist.
  5. Bolometer nach Anspruch 1, bei welchem das obere Ende des elektrischen Leiters elektrisch mit einem Ende des bolometrischen Elements verbunden ist und das untere Ende des elektrischen Leiters elektrisch mit dem anderen Ende der Leitung verbunden ist.
  6. Bolometer nach Anspruch 1, bei welchem die Leitung, der elektrische Leiter und das bolometrische Element aus demselben Metall hergestellt sind.
  7. Bolometer nach Anspruch 6, bei welchem die Leitung, der elektrische Leiter und das bolometrische Element aus Titan hergestellt sind.
  8. Verfahren zur Herstellung eines Infrarotbolometers mit drei Niveaus, wobei das Verfahren den Schritt aufweist:
    Zubereiten eines Aktivmatrixniveaus, einschließlich eines Substrats und eines Paars Verbindungsanschlüsse;
    Ausbilden einer ersten Opferschicht einschließlich eines Paars Kavitäten, oben auf dem Aktivmatrixniveau;
    Ausbilden eines Trägerniveaus, einschließlich eines Paars Brücken, wobei jede der Brücken eine daran ausgebildete Leitung aufweist;
    Ausbilden einer zweiten Opferschicht einschließlich eines Paars Löcher oben auf den Brücken und die erste Opferschicht;
    Abscheiden eines ersten Absorptionsmaterials oben auf der zweiten Opferschicht, einschließlich der Löcher;
    Ausbilden eines Paares von Öffnungen in dem ersten Absorptionsmaterial zum Freilegen der Leitungen der Brücken;
    Abscheiden einer Schicht eines bolometrischen Elements oben auf dem ersten Absorptionsmaterial, einschließlich die Öffnungen, wobei die Öffnungen von der Schicht des bolometrischen Elements gefüllt werden;
    Abscheiden eines zweiten Absorptionsmaterials, um einen Absorber zum Umgeben des Bolometers auszubilden;
    Abscheiden einer Infrarotabsorberschicht oben auf dem Absorber;
    Ätzen der Infrarotabsorberschicht, um eine rauhe obere Oberfläche zu erlangen; und
    Entfernen der zweiten bzw. der ersten Opferschicht, um dabei das Infrarotbolometer mit drei Niveaus auszubilden.
  9. Verfahren nach Anspruch 8, bei welchem der Ätzprozeß für die Infrarotabsorberschicht durchgeführt wird durch ein Schutzgasätzverfahren unter Verwendung von Cl2 + O2.
  10. Verfahren nach Anspruch 8, bei welchem die Infrarotabsorberschicht abgeschieden wird über ein Sputterverfahren, um eine vorbestimmte Dicke zu haben.
  11. Verfahren nach Anspruch 10, bei welchem die Infrarotabsorberschicht teilweise geätzt wird, um eine vorbestimmte Dicke zu haben.
  12. Verfahren nach Anspruch 8, bei welchem die erste Opferschicht ausgebildet wird durch: Abscheiden eines ersten Opfermaterials oben auf dem Aktivmatrixniveau; und selektives Entfernen des ersten Opfermaterials, um die erste Opferschicht, einschließlich des Paares an Kavitäten, auszubilden.
  13. Verfahren nach Anspruch 8, bei welchem das Trägerniveau ausgebildet wird durch: Abscheiden einer Trägerschicht oben auf der ersten Opferschicht, einschließlich den Kavitäten; Ausbilden eines Paares Durchgangslöcher in der Trägerschicht, um die Verbindungsanschlüsse freizulegen; Ausbilden des Paares an Leitungen oben auf der Trägerschicht, einschließlich der Durchgangslöcher; und Strukturieren der Trägerschicht zu einem jeweiligen Paar Brücken, wobei jede der Leitungen oben auf den Brücken angeordnet ist.
  14. Verfahren nach Anspruch 8, bei welchem die zweite Opferschicht ausgebildet wird durch: Abscheiden eines zweiten Opfermaterials oben auf den Brücken und der ersten Opferschicht; und ein selektives Entfernen des zweiten Opfermaterials.
EP98959258A 1998-12-04 1998-12-04 Infrarotempfindliches bolometer und verfahren zu dessen herstellung Expired - Lifetime EP1141669B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR1998/000405 WO2000034751A1 (en) 1998-12-04 1998-12-04 Infrared bolometer and method for manufacturing same

Publications (2)

Publication Number Publication Date
EP1141669A1 EP1141669A1 (de) 2001-10-10
EP1141669B1 true EP1141669B1 (de) 2007-02-28

Family

ID=19531184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98959258A Expired - Lifetime EP1141669B1 (de) 1998-12-04 1998-12-04 Infrarotempfindliches bolometer und verfahren zu dessen herstellung

Country Status (3)

Country Link
EP (1) EP1141669B1 (de)
JP (1) JP3538383B2 (de)
DE (1) DE69837223T2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667479B2 (en) * 2001-06-01 2003-12-23 Raytheon Company Advanced high speed, multi-level uncooled bolometer and method for fabricating same
EP3633332B1 (de) * 2017-05-22 2023-10-25 Mitsubishi Electric Corporation Infrarotbildgebungselement, infrarotbildgebungsarray und verfahren zur herstellung des infrarotbildgebungselements

Also Published As

Publication number Publication date
JP2002531860A (ja) 2002-09-24
DE69837223T2 (de) 2007-06-14
DE69837223D1 (de) 2007-04-12
EP1141669A1 (de) 2001-10-10
JP3538383B2 (ja) 2004-06-14

Similar Documents

Publication Publication Date Title
US5939971A (en) Infrared bolometer
US6094127A (en) Infrared bolometer and method for manufacturing same
USRE36136E (en) Thermal sensor
CA2163731C (en) Infrared-rays sensor and manufacturing method therefor
EP1137918B1 (de) Infrarotempfindliches bolometer
WO1993026050A1 (en) Two-level microbridge bolometer imaging array and method of making same
EP1141669B1 (de) Infrarotempfindliches bolometer und verfahren zu dessen herstellung
EP1147388A1 (de) Infarotempfindliches bolometer und verfahren zu dessen herstellung
JP2811709B2 (ja) 赤外線センサ
KR100299642B1 (ko) 3층구조의적외선흡수볼로메터
EP1117978B1 (de) Mit einem schlangenartigen spannungsausgleichenden element versehenes bolometer
WO2000012985A1 (en) Bolometer including an absorber made of a material having a low deposition-temperature and a low heat-conductivity
KR100299643B1 (ko) 3층구조의적외선흡수볼로메터의제조방법
WO2000003214A1 (en) Bolometer having an increased fill factor
KR100529132B1 (ko) 적외선 볼로메터의 제조방법_
JP2000019011A (ja) 3層構造の赤外線ボロメータの製造方法
EP0645054B1 (de) Abbildende bolometer matrix auf zwei niveaus aus mikrobrücken und verfahren zu dessen herstellung.
EP1131612B1 (de) Bolometer mit einer absorptionsschicht aus einem material mit einer niedrigen ablagerungstemperatur und einer geringen wärmeleitfähigkeit
KR100313043B1 (ko) 적외선볼로메터의제조방법
KR100472539B1 (ko) 적외선 흡수 볼로메터 제조 방법
KR20000007216A (ko) 적외선 흡수 볼로메터 및 그 제조방법
KR20000044814A (ko) 적외선 볼로메터
KR20000044813A (ko) 적외선 볼로메터
KR20000004154A (ko) 적외선 흡수 볼로메터 및 그 제조방법
KR20000032556A (ko) 적외선 볼로메터의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAEWOO ELECTRONICS CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAEWOO ELECTRONICS CORPORATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69837223

Country of ref document: DE

Date of ref document: 20070412

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69837223

Country of ref document: DE

Representative=s name: SAMSON & PARTNER, PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130404 AND 20130410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69837223

Country of ref document: DE

Representative=s name: SAMSON & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20130313

Ref country code: DE

Ref legal event code: R082

Ref document number: 69837223

Country of ref document: DE

Representative=s name: SAMSON & PARTNER, PATENTANWAELTE, DE

Effective date: 20130313

Ref country code: DE

Ref legal event code: R081

Ref document number: 69837223

Country of ref document: DE

Owner name: MAPLE VISION TECHNOLOGIES INC., CA

Free format text: FORMER OWNER: DAEWOO ELECTRONICS CORP., SEOUL/SOUL, KR

Effective date: 20130313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131204

Year of fee payment: 16

Ref country code: DE

Payment date: 20131127

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69837223

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141204