EP1135326A1 - Reformer with dynamically adjustable reaction surface - Google Patents

Reformer with dynamically adjustable reaction surface

Info

Publication number
EP1135326A1
EP1135326A1 EP99957948A EP99957948A EP1135326A1 EP 1135326 A1 EP1135326 A1 EP 1135326A1 EP 99957948 A EP99957948 A EP 99957948A EP 99957948 A EP99957948 A EP 99957948A EP 1135326 A1 EP1135326 A1 EP 1135326A1
Authority
EP
European Patent Office
Prior art keywords
reformer
reaction surface
gas
chamber
reformer chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99957948A
Other languages
German (de)
French (fr)
Inventor
Roland Kircher
Arno Castner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1135326A1 publication Critical patent/EP1135326A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/007Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane

Definitions

  • the invention relates to a reformer for reforming methanol and / or natural gas, in particular one for generating hydrogen for fuel cell systems for stationary and mobile use.
  • the object of the present invention is therefore to create a reformer which has a high degree of efficiency down to the extreme part-load range.
  • a reformer can be used for both stationary and mobile applications.
  • This object is achieved in that a reformer with a modular structure and thus a dynamically adaptable reaction surface of the reformer chambers is created, so that even with de facto small (to be reformed) gas volume, the reformer chamber can be brought down to such a small surface that the Reformer works with high partial load and thus high efficiency.
  • the invention relates to a reformer for natural gas and / or methanol refor ization, comprising a catalyst on a support, a heater, at least one gas inlet and a gas outlet and a reformer chamber, the reformer chamber having a dynamically adaptable reaction surface.
  • the invention further relates to a method for operating a reformer, in which the gas volume flow and / or the gas pressure of the incoming gas has a direct influence on the reaction surface of the reformer chamber used and thus the reaction surface can be dynamically adapted to the current demand and a predetermined partial load of the reformer is not undercut.
  • the reformer chamber is divided into a plurality of subchambers which are gradually filled with gas and made ready for operation as the load increases and thus the gas volume flow increases.
  • the reformer chamber preferably has a cylindrical structure in which the subchambers are arranged concentrically around the guide rod for the gas introduction located on the central axis.
  • Each re-dividable reaction chamber in the reformer is referred to as a reformer chamber, in particular it can also be a honeycomb structure.
  • the reaction surface of the reformer chambers can preferably be adjusted in defined steps if an additional subchamber in the reformer is opened when the load is increased.
  • the reaction surface of the reformer chamber can also be infinitely variable, e.g. if the circumference of the cylinder is adjustable within appropriate limits (in the manner of hose clamps).
  • FIG. 1 shows a cross section in height through a reformer chamber.
  • Figure 2 shows a cross section across the width through a reformer chamber and
  • FIG. 3 again shows a cross section in height through a reformer chamber.
  • the gas (e.g. methane) enters the reformer chamber 1 from below via the gas supply pipe 4 arranged in the gas guide rod 3 arranged in the center.
  • the gas supply pipe 4 can be shifted in height and has an impermeable lower part 4a, a perforated upper part 4b and a nozzle 2 at the uppermost end.
  • a dynamic pressure is generated in the gas guide rod 3 at the upper end which presses the gas supply pipe 4 against the Return spring 5 presses. In FIG. 1, this dynamic pressure is sufficient for the perforated part 4b of the gas supply pipe 4 to extend over the opening of the first subchamber la.
  • gas that needs to be reformed flows only into the reformer chamber 1 a and hydrogen substance escapes from the top of this reformer chamber 1 a.
  • the reformer chambers 1b, 1c, 1d and 1e are closed by the lower, impermeable part 4a of the gas supply pipe 4.
  • the gas pressure inside the reformer chamber 1 is thus high because of the limited volume and the limited reaction surface, although the reformer is actually only operated with an extreme partial load.
  • FIG. 2 shows the arrangement of the subchambers la to le (with increasing reaction surface and increasing volume of the reformer chambers used) in the reformer chamber 1 from above.
  • the gas guide rod 3 is in the middle.
  • FIG 3 shows the same view as shown in Figure 1 part by • again, only here the back pressure sufficient that all Unterkam- ren the reformer Kammer (la to le) via the perforated top part 4b of the gas feed pipe 4 having gas-flow-type.
  • the return spring 5 at the lower end of the gas supply tube 4 is fully compressed.
  • the reformer runs at full load and above all la to le hydrogen flows from all subchambers.
  • the problem of the efficiency drop in the partial load operation of reformers of fuel line systems is solved for the first time with this invention.
  • the invention proposes a dynamically adaptable or multi-stage concept for a natural gas and / or methanol reformer. In the lowest partial load operation, the reformer is operated with the smallest possible reaction surface.
  • the reforming is carried out with an optimized degree of efficiency, because a predetermined partial load of e.g. 60%, 70% or 80% is not undercut.
  • Reformers optimized through a dynamically adaptable reaction surface of the reformer chamber are optimized through a dynamically adaptable reaction surface of the reformer chamber.
  • the additional constructive effort for e.g. the multi-stage embodiment is limited to a few inexpensive materials, e.g. Steel for the partition walls of the reformer subchambers and gas inlets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention relates to a reformer for reforming methanol and/or natural gas, especially a reformer for generating hydrogen for fuel cell systems. Said reformer has a reformer chamber with a dynamically adjustable reaction surface so that the reaction surface can be changed as required in such a way that the reformer does not fall below a predetermined partial load.

Description

Beschreibungdescription
Reformer mit dynamisch anpaßbarer ReaktionsoberflächeReformer with a dynamically adaptable reaction surface
Die Erfindung betrifft einen Reformer zur Methanol- und/oder Erdgasreformierung, insbesondere einen zur Wasserstofferzeugung für Brennstoffzellenanlagen der stationären und der mobilen Anwendung.The invention relates to a reformer for reforming methanol and / or natural gas, in particular one for generating hydrogen for fuel cell systems for stationary and mobile use.
Bislang bekannt sind großindustrielle Anlagen, die bei Vollastbetrieb einen Wirkungsgrad von ca. 80% haben. Im Bereich unter 70% Teillast fällt deren Wirkungsgrad dramatisch ab. Beim dynamischen Betrieb von Brennstoffzellenanlagen fallen die bekannten Reformer so oft unter die 70% Teillastgrenze, daß nach Lösungen gesucht werden muß, damit der Reformer- Wirkungsgrad nicht negativ auf das gesamte Energiewandlungssystem durchschlägt.Large-scale industrial plants that have an efficiency of approx. 80% at full load are known to date. In the range below 70% partial load, their efficiency drops dramatically. In the dynamic operation of fuel cell systems, the known reformers fall so often below the 70% partial load limit that solutions have to be sought so that the efficiency of the reformer does not have a negative impact on the entire energy conversion system.
Aufgabe der vorliegenden Erfindung ist es daher, einen Refor- mer zu schaffen, der bis in den extremen Teillastbereich einen hohen Wirkungsgrad hat. Ein solcher Reformer kann sowohl für stationäre als auch für mobile Anwendungen eingesetzt werden.The object of the present invention is therefore to create a reformer which has a high degree of efficiency down to the extreme part-load range. Such a reformer can be used for both stationary and mobile applications.
Diese Aufgabe wird dadurch gelöst, daß ein Reformer mit modu- larem Aufbau und damit einer dynamisch anpaßbaren Reaktionsoberfläche der Reformerkämmer geschaffen wird, so daß auch bei de facto kleinem (zu reformierenden) Gasvolumen die Reformerkammer auf eine so kleine Oberfläche heruntergefahren werden kann, daß der Reformer mit hoher Teillast und damit hohem Wirkungsgrad arbeitet.This object is achieved in that a reformer with a modular structure and thus a dynamically adaptable reaction surface of the reformer chambers is created, so that even with de facto small (to be reformed) gas volume, the reformer chamber can be brought down to such a small surface that the Reformer works with high partial load and thus high efficiency.
Gegenstand der Erfindung ist ein Reformer zur Erdgas- und/oder Methanolrefor ierung, einen Katalysator auf einem Träger, eine Heizung, zumindest einen Gasein- und einen Gasauslaß sowie eine Reformerkammer umfassend, wobei die Reformerkammer eine dynamisch anpaßbare Reaktionsoberfläche hat. Weiterhin ist Gegenstand der Erfindung ein Verfahren zum Betreiben eines Reformers, bei dem der Gasvolumenstrom und/oder der Gasdruck des eintretenden Gases direkt Einfluß auf die Reaktionsoberfläche der genutzten Reformerkammer hat und damit die Reaktionsoberfläche dem aktuellen Bedarf dynamisch angepaßt werden kann und eine vorgegebene Teillast des Reformers nicht unterschritten wird.The invention relates to a reformer for natural gas and / or methanol refor ization, comprising a catalyst on a support, a heater, at least one gas inlet and a gas outlet and a reformer chamber, the reformer chamber having a dynamically adaptable reaction surface. The invention further relates to a method for operating a reformer, in which the gas volume flow and / or the gas pressure of the incoming gas has a direct influence on the reaction surface of the reformer chamber used and thus the reaction surface can be dynamically adapted to the current demand and a predetermined partial load of the reformer is not undercut.
Nach einer bevorzugten Ausgestaltung der Erfindung ist die Reformerkammer in mehrere Unterkammern unterteilt, die nach und nach bei zunehmender Belastung und damit zunehmendem Gasvolumenstrom mit Gas angefüllt und betriebsbereit gemacht werden.According to a preferred embodiment of the invention, the reformer chamber is divided into a plurality of subchambers which are gradually filled with gas and made ready for operation as the load increases and thus the gas volume flow increases.
Bevorzugt hat die Reformerkammer einen zylindrischen Aufbau bei dem die Unterkammern konzentrisch um den sich auf der Mittelachse befindenden Führungsstab für die Gaseinleitung angeordnet sind. Als Reformerkämmer wird jeder unterteilbare Reaktionsraum im Reformer bezeichnet, insbesondere kann es sich dabei auch um eine wabenförmige Struktur handeln.The reformer chamber preferably has a cylindrical structure in which the subchambers are arranged concentrically around the guide rod for the gas introduction located on the central axis. Each re-dividable reaction chamber in the reformer is referred to as a reformer chamber, in particular it can also be a honeycomb structure.
Bevorzugt ist die Reaktionsoberfläche der Reformerkämmer in definierten Stufen verstellbar, wenn bei Erhöhung der Bela- stung jeweils eine zusätzliche Unterkammer im Reformer geöffnet wird. Die Reaktionsoberfläche der Reformerkammer kann jedoch auch stufenlos variabel sein, wenn z.B. der Umfang des Zylinders in entsprechenden Grenzen ( in der Art von Schlauchklemmen) verstellbar ist.The reaction surface of the reformer chambers can preferably be adjusted in defined steps if an additional subchamber in the reformer is opened when the load is increased. However, the reaction surface of the reformer chamber can also be infinitely variable, e.g. if the circumference of the cylinder is adjustable within appropriate limits (in the manner of hose clamps).
Im folgenden wird die Erfindung anhand von einer der möglichen Ausgestaltung weiter erläutert:In the following, the invention is further explained on the basis of one of the possible configurations:
Figur 1 zeigt einen Querschnitt der Höhe nach durch eine Re- formerkammer . Figur 2 zeigt einen Querschnitt der Breite nach durch eine Reformerkammer undFIG. 1 shows a cross section in height through a reformer chamber. Figure 2 shows a cross section across the width through a reformer chamber and
Figur 3 zeigt wieder einen Querschnitt der Höhe nach durch eine Reformerkammer .FIG. 3 again shows a cross section in height through a reformer chamber.
In Figur 1 erkennt man eine Reformerkammer 1 mit fünf Unterkammern la, lb, lc, ld und le. Von unten tritt das Gas (z.B. Methan) über das im mittig angeordneten Gasführungsstab 3 an- geordnete Gaszuleitungsrohr 4 in die Reformerkammer 1 ein. Das Gaszuleitungsrohr 4 ist höhenverschiebbar und hat einen undurchlässigen unteren Teil 4a, einen perforierten, oberen Teil 4b und am obersten Ende eine Düse 2. Durch die Düse 2 wird am oberen Ende im Gasführungsstab 3 ein Staudruck er- zeugt, der das Gaszuleitungsrohr 4 gegen die Rückholfeder 5 drückt. In Figur 1 reicht dieser Staudruck aus, daß der perforierte Teil 4b des Gaszuleitungsrohres 4 über die Öffnung der ersten Unterkammer la reicht. So strömt Gas, das reformiert werden muß, nur in die Reformerkammer la und Wasser- Stoff entweicht oben aus dieser Reformerkammer la . Die Reformerkammern lb, lc, ld und le sind durch den unteren, undurchlässigen Teil 4a des Gaszuleitungsrohres 4 verschlossen. Der Gasdruck innerhalb der Reformerkammer 1 ist so wegen des beschränkten Volumens und der damit beschränkten Reakti- onsoberflache hoch, obwohl der Reformer tatsächlich nur mit extremer Teillast gefahren wird.1 shows a reformer chamber 1 with five subchambers la, lb, lc, ld and le. The gas (e.g. methane) enters the reformer chamber 1 from below via the gas supply pipe 4 arranged in the gas guide rod 3 arranged in the center. The gas supply pipe 4 can be shifted in height and has an impermeable lower part 4a, a perforated upper part 4b and a nozzle 2 at the uppermost end. Through the nozzle 2, a dynamic pressure is generated in the gas guide rod 3 at the upper end which presses the gas supply pipe 4 against the Return spring 5 presses. In FIG. 1, this dynamic pressure is sufficient for the perforated part 4b of the gas supply pipe 4 to extend over the opening of the first subchamber la. For example, gas that needs to be reformed flows only into the reformer chamber 1 a and hydrogen substance escapes from the top of this reformer chamber 1 a. The reformer chambers 1b, 1c, 1d and 1e are closed by the lower, impermeable part 4a of the gas supply pipe 4. The gas pressure inside the reformer chamber 1 is thus high because of the limited volume and the limited reaction surface, although the reformer is actually only operated with an extreme partial load.
In Figur 2 wird die Anordnung der Unterkammern la bis le (mit steigender Reaktionsoberfläche und steigendem Volumen der be- nutzten Reformerkämmer) in der Reformer ämmer 1 von oben gezeigt. In der Mitte liegt der Gasführungsstab 3.FIG. 2 shows the arrangement of the subchambers la to le (with increasing reaction surface and increasing volume of the reformer chambers used) in the reformer chamber 1 from above. The gas guide rod 3 is in the middle.
In Figur 3 ist wieder dieselbe Ansicht wie in Figur 1 ge- zeigt, nur reicht hier der Staudruck aus, daß alle Unterkam- ern der Reformerkämmer (la bis le) über den perforierten oberen Teil 4b des Gaszuleitungsrohres 4 mit Gas beströmt werden. Die Rückholfeder 5 am unteren Ende des Gaszuleitungs- rohres 4 ist ganz zusammengedrückt. Der Reformer fährt auf Vollast und oben strömt aus allen Unterkammern la bis le Wasserstoff.3 shows the same view as shown in Figure 1 part by again, only here the back pressure sufficient that all Unterkam- ren the reformer Kammer (la to le) via the perforated top part 4b of the gas feed pipe 4 having gas-flow-type. The return spring 5 at the lower end of the gas supply tube 4 is fully compressed. The reformer runs at full load and above all la to le hydrogen flows from all subchambers.
Das Problem des Wirkungsgradeinbruchs im Teillastbetrieb von Reformern von BrennstoffZeilenanlagen wird mit dieser Erfindung erstmals gelöst. In der Erfindung wird ein dynamisch- anpaßbares oder mehrstufiges Konzept für einen Erdgas- und/oder Methanolreformer vorgeschlagen. Im untersten Teil- lastbetrieb wird der Reformer mit der kleinst möglichen Reaktionsoberfläche gefahren.The problem of the efficiency drop in the partial load operation of reformers of fuel line systems is solved for the first time with this invention. The invention proposes a dynamically adaptable or multi-stage concept for a natural gas and / or methanol reformer. In the lowest partial load operation, the reformer is operated with the smallest possible reaction surface.
Je nach Lastzustand und Wasserstoffbedarf der Brennstoffzel- lenanlage werden weitere Stufen zugeschaltet. Die Reformie- rung wird so mit einem optimierten Wirkungsgrad durchgeführt, weil über die dynamisch anpaßbare Reaktionsoberfläche eine vorgegebene Teillast von z.B. 60%, 70% oder 80% nicht unterschritten wird.Depending on the load status and hydrogen requirements of the fuel cell system, additional stages are activated. The reforming is carried out with an optimized degree of efficiency, because a predetermined partial load of e.g. 60%, 70% or 80% is not undercut.
Mit der vorliegenden Erfindung wird der Wirkungsgrad einesWith the present invention, the efficiency of a
Reformers durch eine dynamisch anpaßbare Reaktionsoberfläche der Reformerkammer optimiert. Der konstruktive Mehraufwand für z.B. die mehrstufige Ausführungsform beschränkt sich auf wenige kostengünstige Materialien, wie z.B. Stahl für die Trennwände der Reformer-Unterkammern und Gaseinlässe. DerReformers optimized through a dynamically adaptable reaction surface of the reformer chamber. The additional constructive effort for e.g. the multi-stage embodiment is limited to a few inexpensive materials, e.g. Steel for the partition walls of the reformer subchambers and gas inlets. The
Aufwand an kostenträchtigen Materialien wie z.B. Katalysator, bleibt gegenüber den bekannten Systemen gleich. Cost of expensive materials such as Catalyst remains the same compared to the known systems.

Claims

Patentansprüche claims
1. Reformer zur Erdgas und/oder Methanolreformierung, einen Katalysator auf einem Träger, eine Heizung, zumindest einen Gasein- und einen Gasauslaß sowie eine Reformerkämmer umfassend, wobei die Reformerkammer eine dynamisch anpaßbare Reaktionsoberfläche hat.1. A reformer for natural gas and / or methanol reforming, a catalyst on a support, a heater, at least one gas inlet and a gas outlet and a reformer chamber comprising, the reformer chamber having a dynamically adaptable reaction surface.
2. Reformer nach Anspruch 1, bei dem die Reaktionsoberfläche in definierten Stufen dynamisch anpaßbar ist.2. Reformer according to claim 1, wherein the reaction surface is dynamically adaptable in defined stages.
3. Reformer nach einem der vorstehenden Ansprüche, bei dem die Reaktionsoberfläche der Reformerkämmer über einen von einer Düse erzeugbaren Staudruck automatisch einstellbar ist.3. Reformer according to one of the preceding claims, in which the reaction surface of the reformer chambers is automatically adjustable via a back pressure which can be generated by a nozzle.
4. Verfahren zum Betreiben eines Reformers, bei dem der Gasvolumenstrom des eintretenden Gases direkt Einfluß auf die Größe der Reaktionsoberfläche des Reformers hat und damit die Reaktionsoberfläche der genutzten Reformerkammer dem aktuellen Bedarf angepaßt und eine vorgegebene Teillast des Reformers nicht unterschritten wird.4. Method for operating a reformer, in which the gas volume flow of the incoming gas has a direct influence on the size of the reaction surface of the reformer and thus the reaction surface of the reformer chamber used is adapted to the current requirements and a predetermined partial load of the reformer is not undercut.
5. Verfahren nach Anspruch 4, bei dem der Gasvolumenstrom am Gaseinlaß der Reformerkammer über eine Kolbenkonstruktion zum Öffnen zusätzlicher Reformerunterkammern eingesetzt wird. 5. The method according to claim 4, wherein the gas volume flow at the gas inlet of the reformer chamber is used via a piston construction to open additional reformer subchambers.
EP99957948A 1998-10-30 1999-10-27 Reformer with dynamically adjustable reaction surface Withdrawn EP1135326A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19850178 1998-10-30
DE19850178 1998-10-30
PCT/DE1999/003460 WO2000026136A1 (en) 1998-10-30 1999-10-27 Reformer with dynamically adjustable reaction surface

Publications (1)

Publication Number Publication Date
EP1135326A1 true EP1135326A1 (en) 2001-09-26

Family

ID=7886227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99957948A Withdrawn EP1135326A1 (en) 1998-10-30 1999-10-27 Reformer with dynamically adjustable reaction surface

Country Status (6)

Country Link
US (1) US20020006377A1 (en)
EP (1) EP1135326A1 (en)
JP (1) JP2002528376A (en)
CN (1) CN1325364A (en)
CA (1) CA2348396A1 (en)
WO (1) WO2000026136A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427382C (en) * 2006-09-10 2008-10-22 郑国璋 Heating to conatant temperature type equipment for reloading methanol
US9587632B2 (en) 2012-03-30 2017-03-07 General Electric Company Thermally-controlled component and thermal control process
US9671030B2 (en) 2012-03-30 2017-06-06 General Electric Company Metallic seal assembly, turbine component, and method of regulating airflow in turbo-machinery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002025C2 (en) * 2000-01-19 2003-11-13 Ballard Power Systems Method and device for treating a medium in a catalyst-containing reaction space
JP4830197B2 (en) 2000-09-13 2011-12-07 トヨタ自動車株式会社 Fuel reformer
DE10239083B4 (en) * 2002-08-26 2009-09-03 Schott Ag Device for supplying a process chamber with fluid media and their use
EP2089493A2 (en) * 2006-11-09 2009-08-19 Paul Scherrer Institut Method and plant for converting solid biomass into electricity
US9169567B2 (en) 2012-03-30 2015-10-27 General Electric Company Components having tab members

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2028326A (en) * 1931-01-23 1936-01-21 Standard Oil Dev Co Apparatus for the production of hydrogen
US3509043A (en) * 1967-11-14 1970-04-28 Chevron Res Increasing catalyst on-stream time
JPS63291638A (en) * 1987-05-22 1988-11-29 Mitsubishi Heavy Ind Ltd Gas/liquid dispersing device of three-phase fluid reactor
DE19526886C1 (en) * 1995-07-22 1996-09-12 Daimler Benz Ag Methanol reformation giving high methanol conversion and low amts. of carbon mono:oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0026136A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427382C (en) * 2006-09-10 2008-10-22 郑国璋 Heating to conatant temperature type equipment for reloading methanol
US9587632B2 (en) 2012-03-30 2017-03-07 General Electric Company Thermally-controlled component and thermal control process
US9671030B2 (en) 2012-03-30 2017-06-06 General Electric Company Metallic seal assembly, turbine component, and method of regulating airflow in turbo-machinery

Also Published As

Publication number Publication date
CA2348396A1 (en) 2000-05-11
WO2000026136A1 (en) 2000-05-11
CN1325364A (en) 2001-12-05
JP2002528376A (en) 2002-09-03
US20020006377A1 (en) 2002-01-17

Similar Documents

Publication Publication Date Title
CH673233A5 (en)
DE2635360C2 (en) Damping device for a liquid flow
EP1135326A1 (en) Reformer with dynamically adjustable reaction surface
EP1295191B1 (en) Pneumatic pressure control device
DE10116753A1 (en) On board fuel reformer system for fuel cells of vehicles, has several diaphragm hydrogen separation systems
WO2015024785A1 (en) Method for operating a fuel cell stack, fuel cell stack and fuel cell system
EP3994294A1 (en) Soec system and method for operating a soec system
DE102019104067A1 (en) Electrically controlled proportional valve with large capacity
EP1327277B1 (en) Fuel cell installation
DE102021109017A1 (en) Hydrogen gas supply device
DE3620752A1 (en) METHOD FOR GENERATING ELECTRICAL ENERGY BY MEANS OF A PRESSURE MEDIUM
EP0142181A1 (en) Centrifugal separator
EP0572355B1 (en) Module for executing the pervaporation of fluids
EP1090878B1 (en) Steam reforming unit
WO1999005739A1 (en) Method and device for filling a fuel cell stack
DE10046691C1 (en) Device used as a reformer for a gas production system of a fuel arrangement has intermediate chambers filled with a porous material formed between one plate and the end plate
EP0123086B1 (en) Adsorber
WO2002097908A2 (en) Interconnector for a fuel cell
DE10161622A1 (en) Operating PEM fuel cell system involves operating compressor at very low pressure, increasing input pressure if adequate oxidant moisturizing no longer occurs at defined pressure
DE102021002031A1 (en) Fuel cell system with modular compressors
DE102012007375A1 (en) Fuel cell system i.e. proton-conducting membrane fuel cell system, for use in vehicle, has pulsation device comprising movable element, which is automatically moved by variable force caused over flow and reaction force
EP1541923A1 (en) System for reforming fuel
DE10241669B4 (en) Apparatus and method for separating nearly pure hydrogen from a hydrogen-containing gas stream
DE10062627C2 (en) Method for operating a fuel cell and device / fuel cell suitable for carrying out the method
DE102022207777A1 (en) Method for operating an electrolysis system and electrolysis system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030303

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040504