EP1129223A2 - Method and device for heating metal components using electron irradiation in a vacuum chamber - Google Patents

Method and device for heating metal components using electron irradiation in a vacuum chamber

Info

Publication number
EP1129223A2
EP1129223A2 EP99960771A EP99960771A EP1129223A2 EP 1129223 A2 EP1129223 A2 EP 1129223A2 EP 99960771 A EP99960771 A EP 99960771A EP 99960771 A EP99960771 A EP 99960771A EP 1129223 A2 EP1129223 A2 EP 1129223A2
Authority
EP
European Patent Office
Prior art keywords
layer
metal components
vacuum chamber
heat
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99960771A
Other languages
German (de)
French (fr)
Other versions
EP1129223B1 (en
Inventor
Lutz Wolkers
Peter Botzler
Carsten Deus
Ekkehart Reinhold
Hans-Jochen Student
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1129223A2 publication Critical patent/EP1129223A2/en
Application granted granted Critical
Publication of EP1129223B1 publication Critical patent/EP1129223B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices

Definitions

  • the invention is based on the object of proposing a method with which metal components can be heated uniformly over all areas of the respective metal component with electron radiation.
  • a method for heating metal components with electron radiation in a vacuum chamber in which, in order to hold the metal components in the vacuum chamber, multi-layer mounting elements with an electronically irradiated, heat-resistant and well heat-absorbing outer layer and with a respective metal component facing, well heat-radiating inner layer can be used.
  • An important advantage of the method according to the invention is that the components to be heated by means of electron radiation can also be heated uniformly in the areas which are covered in the vacuum chamber because of the necessary holding of the metal components in relation to the electron radiation.
  • the use of multilayer mounting elements with a heat-absorbing outer layer ensures that effective heat input takes place, while the inner layer, due to its good heat-radiating properties, gives off the heat absorbed by the outer layer to the respective metal component. Therefore, metal components can be heated homogeneously in all areas by means of the method according to the invention.
  • Another object of the invention is to provide an arrangement for heating metal components with electron beams. to specify in a vacuum chamber that allows a uniform heating of the metal components in all areas with a comparatively simple construction.
  • an arrangement for heating metal components with electron radiation in a vacuum chamber with multilayer mounting elements for the metal components is used to achieve this object, the multilayer mounting elements comprising an outer layer exposed to electron radiation, heat-resistant and well heat-absorbing, and an outer layer for the respective metal component have facing, well heat-radiating inner layer.
  • the arrangement according to the invention is advantageous above all insofar as it enables homogeneous heating of the metal components solely by using multilayer mounting elements, because the multilayer mounting elements ensure good heat absorption and good heat dissipation to the areas of the respective metal component. which are shaded from the electron beam by the mounting elements.
  • the multilayer holding elements can be manufactured comparatively easily.
  • the multilayer mounting elements can be constructed in different ways. It is considered advantageous if the outer layer is a solid part made of tantalum or molybdenum, on which there is a graphite layer as the inner layer.
  • the advantage of a multilayer holding element designed in this way is, in particular, that the solid part made of tantalum or molybdenum absorbs the heat generated by the electron radiation well and has low radiation losses.
  • Such a solid part is also heat-resistant and has the property that the graphite layer can be applied with good thermal conductivity.
  • the graphite layer in turn is advantageous in that it has a high heat radiation capability.
  • the outer layer is a solid part made of a metal tending to form thermally highly stable oxides, on which there is an oxide layer of the metal as the inner layer.
  • the design of a multilayer mounting element designed in this way offers the advantage that the metals in question are resistant to high temperatures and show good heat absorption capacity. This can be further improved in that the surface of the solid part on the
  • the oxide layer on the outside of the solid parts is advantageously removed in order to avoid radiation losses.
  • Chromium, nickel or aluminum are particularly suitable as metals that tend to form thermally highly stable oxides. Furthermore, it has proven to be advantageous if multilayer mounting elements with an oxide layer as the inner layer carry a ceramic layer on the outside on the solid part, because such a ceramic layer is very good at absorbing heat, but is poorly heat-conducting.
  • FIG. 1 shows a metal component to be heated with a multi-layer mounting element
  • FIG. 2 a partial sectional area through the embodiment of the multi-layer mounting element according to FIG. 1
  • FIG. 3 a corresponding partial sectional area through a second embodiment of a multi-layer mounting element
  • FIG. 4 shows a corresponding partial sectional area through a third exemplary embodiment of a multilayer mounting element.
  • a vacuum chamber 1 is shown schematically in FIG. 1, in which there is a device 2 for electron radiation
  • a metal component 3 to be heated which can be a shaft 4 with a flange 5, for example.
  • the metal component 3 to be heated is surrounded in the area of its flange 5 on the outside by a multilayer mounting element 6, which is held on a rear wall 8 of the vacuum chamber 1 by a mounting arm 7 indicated by dashed lines in FIG.
  • the multilayer mounting element 6 has an outer layer 9 facing the device for electron radiation 2, which is heat-resistant and good heat-absorbing. With this outer layer 9 an inner layer 10 is connected, which faces the flange 5 and consists of a good heat-radiating material. Both layers 9 and 10 of the multi-layer mounting element 6 are intimately connected to one another and tightly enclose the flange 5 while ensuring good thermal contact.
  • the multilayer holding element 6 with its outer layer also absorbs the heat well and passes it on to the inner layer 10. which in turn guides them into the flange 5 due to their good heat radiation behavior, so that the metal component 3 to be heated is heated almost as much in the area of the flange 5 as in the area of the shaft part 4.
  • a multilayer mounting element 6 it is therefore possible to achieve a largely homogeneous heating of the metal component 3 in all its areas.
  • the different mass distribution in flange 5 and shaft 4 must be taken into account, which requires a correspondingly different dose of radiation in order to achieve homogeneous heating.
  • the outer layer 12 forms a solid part which consists of tantalum or molybdenum.
  • a graphite layer 13 is applied to this solid part 12 by coating or plating on the inside 14 thereof.
  • the multilayer mounting element 15 shown in FIG. 3 is in turn designed as a mounting element made of two layers and contains a solid part 16 made of chromium, nickel or aluminum or their alloys as the outer layer.
  • the inner layer 17 of the multilayer holding element 15 is formed by an oxide layer of the solid part 16.
  • FIG. 4 shows in section a multi-layer holding element 18 with three layers, a solid part 19 being designed in exactly the same way as the outer layer 16 of the exemplary embodiment according to FIG. 3 and the inner layer 20 again representing an oxide layer of the solid part 19.
  • a ceramic layer 21 is located on the outside of the solid part 19.
  • the multilayer mounting elements can be constructed in very different ways. For example, they can serve as mounting elements for firmly enclosing the metal component to be heated in each case, or also as bearing points for the metal components if they are to be rotated to achieve good heating.
  • the multilayer mounting elements can also be designed as simple supports for the metal components to be heated.

Landscapes

  • Furnace Details (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Resistance Heating (AREA)

Abstract

The invention relates to a method for heating metal components using electron irradiation in a vacuum chamber. In order to uniformly heat the metal components in all areas thereof, the invention provides that multilayer holding elements (6) are used for holding the metal components (3) in the vacuum chamber (1). Said holding elements are provided with a layer (9) which faces the electron irradiation, which is resistant to heat and which exhibits good heat absorbing properties. The holding elements are also provided with an inner layer (10) which faces the respective metal component (3) and which exhibits good heat radiating properties. The invention also relates to a device for heating metal components which comprises multilayer holding elements (6). Said holding elements each comprise an outer layer (9) which exhibits absorbing properties and an inner layer (10) which exhibits good heat radiating properties.

Description

Beschreibungdescription
Verfahren und Einrichtung zum Erwärmen von Metallbauteilen mit Elektronenbestrahlung in einer VakuumkammerMethod and device for heating metal components with electron radiation in a vacuum chamber
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren vorzuschlagen, mit dem sich Metallbauteile mit Elektronenbestrahlung gleichmäßig über alle Bereiche des jeweiligen Metallbauteils erwärmen lassen.The invention is based on the object of proposing a method with which metal components can be heated uniformly over all areas of the respective metal component with electron radiation.
Zur Lösung dieser Aufgabe dient erfindungsgemäß ein Verfahren zum Erwärmen von Metallbauteilen mit Elektronenbestrahlung in einer Vakuumkammer, bei dem zur Halterung der Metallbauteile in der Vakuumkammer Mehrschichten-Halterungselemente mit ei- ner der Elektronenbestrahlung zugewandten, hitzebeständigen und gut wärmeabsorbierenden äußeren Schicht und mit einer dem jeweiligen Metallbauteil zugewandten, gut wärmeabstrahlenden inneren Schicht verwendet werden.To achieve this object, a method for heating metal components with electron radiation in a vacuum chamber is used according to the invention, in which, in order to hold the metal components in the vacuum chamber, multi-layer mounting elements with an electronically irradiated, heat-resistant and well heat-absorbing outer layer and with a respective metal component facing, well heat-radiating inner layer can be used.
Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß sich die mittels Elektronenbestrahlung zu erwärmenden Bauteile auch in den Bereichen gleichmäßig erwärmen lassen, die in der Vakuumkammer wegen der notwendigen Halterung der Metallbauteile gegenüber der Elektronenbestrah- lung abgedeckt sind. Durch die Verwendung von Mehrschichten- Halterungselementen mit einer w rmeabsorbierenden äußeren Schicht ist dafür gesorgt, daß ein wirkungsvoller Wärmeeintrag erfolgt, während die innere Schicht wegen ihrer gut wärmestrahlenden Eigenschaften die von der äußeren Schicht aufgenommene Wärme gut an das jeweilige Metallbauteil abgibt. Daher lassen sich Metallbauteile mittels des erfindungsgemäßen Verfahrens in allen Bereichen homogen erwärmen.An important advantage of the method according to the invention is that the components to be heated by means of electron radiation can also be heated uniformly in the areas which are covered in the vacuum chamber because of the necessary holding of the metal components in relation to the electron radiation. The use of multilayer mounting elements with a heat-absorbing outer layer ensures that effective heat input takes place, while the inner layer, due to its good heat-radiating properties, gives off the heat absorbed by the outer layer to the respective metal component. Therefore, metal components can be heated homogeneously in all areas by means of the method according to the invention.
Der Erfindung liegt ferner die Aufgabe zugrunde, eine Anord- nung zum Erwärmen von Metallbauteilen mit Elektronenbestrah- lung m einer Vakuumkammer anzugeben, die bei vergleichsweise einfachem Aufbau eine gleichmäßige Erwärmung der Metallbauteile in allen Bereichen erlaubt.Another object of the invention is to provide an arrangement for heating metal components with electron beams. to specify in a vacuum chamber that allows a uniform heating of the metal components in all areas with a comparatively simple construction.
Zur Losung dieser Aufgabe dient erfindungsgemaß eine Anordnung zum Erwarmen von Metallbauteilen mit Elektronenbestrahlung in einer Vakuumkammer mit Mehrschichten-Halterungsele- menten für die Metallbauteile, wobei die Mehrschichten-Halte- rungselemente eine der Elektronenbestrahlung ausgesetzte, hitzebestandige und gut warmeabsorbierende äußere Schicht und eine dem jeweiligen Metallbauteil zugewandte, gut warmeabstrahlende innere Schicht aufweisen.According to the invention, an arrangement for heating metal components with electron radiation in a vacuum chamber with multilayer mounting elements for the metal components is used to achieve this object, the multilayer mounting elements comprising an outer layer exposed to electron radiation, heat-resistant and well heat-absorbing, and an outer layer for the respective metal component have facing, well heat-radiating inner layer.
Vorteilhaft ist die erfmdungsgemaße Anordnung vor allem m- sofern, als sie allein durch Verwendung von Mehrschichten- Halterungselementen eine homogene Erwärmung der Metallbauteile ermöglicht, weil durch die Mehrschichten-Halterungsele- mente eine gute Wärmeaufnahme und eine gute Wärmeabgabe an die Bereiche des jeweiligen Metallbauteils erfolgt, die durch die Halterungselemente gegenüber der Elektronenbestrahlung abgeschattet sind. Dabei lassen sich die Mehrschichten-Halte- rungselemente vergleichsweise einfach herstellen.The arrangement according to the invention is advantageous above all insofar as it enables homogeneous heating of the metal components solely by using multilayer mounting elements, because the multilayer mounting elements ensure good heat absorption and good heat dissipation to the areas of the respective metal component. which are shaded from the electron beam by the mounting elements. The multilayer holding elements can be manufactured comparatively easily.
Bei der erfmdungsgemaßen Anordnung können die Mehrschichten- Halterungselemente in unterschiedlicher Weise aufgebaut sein. Als vorteilhaft wird es angesehen, wenn die äußere Schicht ein Massivteil aus Tantal oder Molybdän ist, auf dem sich als innere Schicht eine Graphitschicht befindet.In the arrangement according to the invention, the multilayer mounting elements can be constructed in different ways. It is considered advantageous if the outer layer is a solid part made of tantalum or molybdenum, on which there is a graphite layer as the inner layer.
Der Vorteil eines derart ausgebildeten Mehrschichten-Halte- rungsele entes besteht insbesondere darin, daß das Massivteil aus Tantal oder Molybdän die durch die Elektronenbestrahlung aufgebrachte Warme gut aufnimmt und geringe Strahlungsverluste aufweist. Außerdem ist ein solches Massivteil hitzebe- standig und hat die Eigenschaft, das auf ihm die Graphit- schicht gut wärmeleitend aufgebracht werden kann. Die Graphitschicht ihrerseits ist insofern vorteilhaft, als sie ein hohes Wärmeabstrahlungsvermögen aufweist.The advantage of a multilayer holding element designed in this way is, in particular, that the solid part made of tantalum or molybdenum absorbs the heat generated by the electron radiation well and has low radiation losses. Such a solid part is also heat-resistant and has the property that the graphite layer can be applied with good thermal conductivity. The graphite layer in turn is advantageous in that it has a high heat radiation capability.
Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Anordnung ist die äußere Schicht ein Massivteil aus einem zur Bildung von thermisch hochstabilen Oxiden neigenden Metall, auf dem sich als innere Schicht eine Oxidschicht des Metalls befindet.In a further advantageous embodiment of the arrangement according to the invention, the outer layer is a solid part made of a metal tending to form thermally highly stable oxides, on which there is an oxide layer of the metal as the inner layer.
Die Ausführung eines derartig ausgestalteten Mehrschichten- Halterungselementes bietet den Vorteil, daß die in Frage kommenden Metalle hochtemperaturfest sind und ein gutes Wärmeaufnahmevermögen zeigen. Dies kann noch dadurch verbessert werden, daß die Oberfläche des Massivteils auf ihrer derThe design of a multilayer mounting element designed in this way offers the advantage that the metals in question are resistant to high temperatures and show good heat absorption capacity. This can be further improved in that the surface of the solid part on the
Elektronenbestrahlung zugewandten Seite beispielsweise durch Sandstrahlen verbessert ist. Durch die Oxide ist eine gute Wärmeabstrahlung gewährleistet. Außerdem hat die Verwendung von zur Bildung von thermisch hochstabilen Oxiden neigenden Metallen als Werkstoff für das Massivteil den Vorteil, daß die Bildung der Oxide im Einsatz der Mehrschichten-Halterungselemente in der Vakuumkammer während des Erwärmungsprozesses geschehen kann, so daß sich solche Mehrschichten-Halterungselemente besonders einfach herstellen lassen. Außerdem führt die starke Oxidbildung zur Selbstheilung möglicherSide facing electron radiation is improved, for example, by sandblasting. Good heat radiation is guaranteed by the oxides. In addition, the use of metals with a tendency to form thermally highly stable oxides as the material for the solid part has the advantage that the formation of the oxides in the use of the multilayer mounting elements in the vacuum chamber can occur during the heating process, so that such multilayer mounting elements are particularly simple have it made. In addition, the strong oxide formation leads to self-healing possible
Oberflächendefekte und erhöht die Reproduzierbarkeit des Erwärmungsverfahrens. An der Außenseite der Massivteile ist die Oxidschicht vorteilhafterweise entfernt, um Strahlungsverluste zu vermeiden.Surface defects and increases the reproducibility of the heating process. The oxide layer on the outside of the solid parts is advantageously removed in order to avoid radiation losses.
Als Metalle, die zur Bildung von thermisch hochstabilen Oxiden neigen, kommen vor allem Chrom, Nickel oder Aluminium in Frage . Ferner hat es sich als vorteilhaft erwiesen, wenn Mehrschichten-Halterungselemente mit einer Oxidschicht als innere Schicht außen auf dem Massivteil eine Keramikschicht tragen, weil eine solche Keramikschicht sehr gut wärmeabsorbierend, aber schlecht wärmeleitend ist.Chromium, nickel or aluminum are particularly suitable as metals that tend to form thermally highly stable oxides. Furthermore, it has proven to be advantageous if multilayer mounting elements with an oxide layer as the inner layer carry a ceramic layer on the outside on the solid part, because such a ceramic layer is very good at absorbing heat, but is poorly heat-conducting.
Zur Erläuterung der Erfindung ist in der Figur 1 ein zu erwärmendes Metallbauteil mit einem Mehrschichten-Halterungselement, in Figur 2 eine Teilschnittfläche durch das Ausführungsbeispiel des Mehrschichten-Halterungselementes gemäß Figur 1, in Figur 3 eine entsprechende Teilschnittfläche durch ein zweites Ausführungsbeispiel eines Mehrschichten-Halterungselementes und in Figur 4 eine entsprechende Teilschnittfläche durch ein drittes Ausführungsbeispiel eines Mehrschichten-Halterungselementes dargestellt.To explain the invention, FIG. 1 shows a metal component to be heated with a multi-layer mounting element, in FIG. 2 a partial sectional area through the embodiment of the multi-layer mounting element according to FIG. 1, in FIG. 3 a corresponding partial sectional area through a second embodiment of a multi-layer mounting element and FIG. 4 shows a corresponding partial sectional area through a third exemplary embodiment of a multilayer mounting element.
In Figur 1 ist schematisch eine Vakuumkammer 1 gezeigt, in der sich eine Einrichtung 2 zur ElektronenbestrahlungA vacuum chamber 1 is shown schematically in FIG. 1, in which there is a device 2 for electron radiation
(ebenfalls schematisch dargestellt) befindet. Oberhalb der Einrichtung zur Elektronenbestrahlung 2 befindet sich in der Vakuumkam er 1 ein zu erwärmendes Metallbauteil 3, das beispielsweise eine Welle 4 mit einem Flansch 5 sein kann.(also shown schematically). Above the device for electron irradiation 2 is in the vacuum chamber 1 there is a metal component 3 to be heated, which can be a shaft 4 with a flange 5, for example.
Das zu erwärmende Metallbauteil 3 ist im Bereich seines Flansches 5 außen von einem Mehrschichten-Halterungselement 6 umfaßt, das mit einem in Figur 1 strichliert angedeuteten Halterungsarm 7 an einer Rückwand 8 der Vakuumkammer 1 gehalten ist. Das Mehrschichten-Halterungselement 6 weist eine der Einrichtung zur Elektronenbestrahlung 2 zugewandte, äußere Schicht 9 auf, die hitzebeständig und gut wärmeabsorbierend ist. Mit dieser äußeren Schicht 9 ist eine innere Schicht 10 verbunden, die dem Flansch 5 zugewandt ist und aus einem gut wärmeabstrahlenden Werkstoff besteht. Beide Schichten 9 und 10 des Mehrschichten-Halterungselementes 6 sind innig miteinander verbunden und umfassen unter Gewährleistung eines guten Wärmekontaktes den Flansch 5 eng.The metal component 3 to be heated is surrounded in the area of its flange 5 on the outside by a multilayer mounting element 6, which is held on a rear wall 8 of the vacuum chamber 1 by a mounting arm 7 indicated by dashed lines in FIG. The multilayer mounting element 6 has an outer layer 9 facing the device for electron radiation 2, which is heat-resistant and good heat-absorbing. With this outer layer 9 an inner layer 10 is connected, which faces the flange 5 and consists of a good heat-radiating material. Both layers 9 and 10 of the multi-layer mounting element 6 are intimately connected to one another and tightly enclose the flange 5 while ensuring good thermal contact.
Wird von der Einrichtung zur Elektronenbestrahlung 2 in Richtung der Pfeile durch Elektronenbestrahlung ein Wärmeeintrag in das Metallbauteil 3 vorgenommen, dann nimmt dabei auch das Mehrschichten-Halterungselement 6 mit seiner äußeren Schicht die Wärme gut auf und gibt sie an die innere Schicht 10 wei- ter, die sie wiederum aufgrund ihres guten wärmeabstrahlenden Verhaltens in den Flansch 5 leitet, so daß das zu erwärmende Metallbauteil 3 im Bereich des Flansches 5 nahezu genauso stark erwärmt wird wie im Bereich des Wellenteils 4 . Trotz der notwendigen Verwendung eines Mehrschichten-Halterungse- lementes 6 läßt sich daher eine weitgehend homogene Erwärmung des Metallbauteils 3 in allen seinen Bereichen erreichen. Zu beachten ist bei dem dargestellten Ausführungsbeispiel die unterschiedliche Masseverteilung in Flansch 5 und Welle 4, die eine entsprechend unterschiedliche Strahlungsdosierung verlangt, um eine homogene Erwärmung zu erreichen.If the device for electron irradiation 2 in the direction of the arrows introduces heat into the metal component 3 by electron irradiation, then the multilayer holding element 6 with its outer layer also absorbs the heat well and passes it on to the inner layer 10. which in turn guides them into the flange 5 due to their good heat radiation behavior, so that the metal component 3 to be heated is heated almost as much in the area of the flange 5 as in the area of the shaft part 4. Despite the necessary use of a multilayer mounting element 6, it is therefore possible to achieve a largely homogeneous heating of the metal component 3 in all its areas. In the exemplary embodiment shown, the different mass distribution in flange 5 and shaft 4 must be taken into account, which requires a correspondingly different dose of radiation in order to achieve homogeneous heating.
Bei dem in Figur 2 gezeigten Schnitt durch ein Mehrschichten- Halterungselement 11 bildet die äußere Schicht 12 ein Massivteil, das aus Tantal oder Molybdän besteht. Auf dieses Massivteil 12 ist durch Beschichtung oder Plattierung auf seiner Innenseite 14 eine Graphitschicht 13 aufgebracht.In the section through a multi-layer holding element 11 shown in FIG. 2, the outer layer 12 forms a solid part which consists of tantalum or molybdenum. A graphite layer 13 is applied to this solid part 12 by coating or plating on the inside 14 thereof.
Das in Figur 3 dargestellte Mehrschichten-Halterungselement 15 ist wiederum als ein Halterungselement aus zwei Schichten ausgeführt und enthält als äußere Schicht ein Massivteil 16 aus Chrom, Nickel oder Aluminium oder deren Legierungen. Die innere Schicht 17 des Mehrschichten-Halterungselementes 15 ist von einer Oxidschicht des Massivteils 16 gebildet. Die Figur 4 zeigt im Schnitt ein Mehrschichten-Halterungselement 18 mit drei Schichten, wobei ein Massivteil 19 genauso ausgeführt ist wie die äußere Schicht 16 des Ausführungsbei- spiels nach Figur 3 und die innere Schicht 20 wiederum eine Oxidschicht des Massivteils 19 darstellt. Außen auf dem Massivteil 19 befindet sich eine Keramikschicht 21.The multilayer mounting element 15 shown in FIG. 3 is in turn designed as a mounting element made of two layers and contains a solid part 16 made of chromium, nickel or aluminum or their alloys as the outer layer. The inner layer 17 of the multilayer holding element 15 is formed by an oxide layer of the solid part 16. FIG. 4 shows in section a multi-layer holding element 18 with three layers, a solid part 19 being designed in exactly the same way as the outer layer 16 of the exemplary embodiment according to FIG. 3 and the inner layer 20 again representing an oxide layer of the solid part 19. A ceramic layer 21 is located on the outside of the solid part 19.
Abschließend ist darauf hinzuweisen, daß die Mehrschichten- Halterungselemente konstruktiv in sehr unterschiedlicher Weise ausgebildet sein können. Beispielsweise können sie als Halterungselemente zum festen Umfassen des jeweils zu erwärmenden Metallbauteils dienen oder auch als Lagerstellen für die Metallbauteile, wenn diese zur Erzielung einer guten Durchwärmung gedreht werden sollen. Auch als einfache Ab- Stützungen für die zu erwärmenden Metallbauteile können die Mehrschichten-Halterungselemente ausgestaltet sein. In conclusion, it should be pointed out that the multilayer mounting elements can be constructed in very different ways. For example, they can serve as mounting elements for firmly enclosing the metal component to be heated in each case, or also as bearing points for the metal components if they are to be rotated to achieve good heating. The multilayer mounting elements can also be designed as simple supports for the metal components to be heated.

Claims

Patentansprüche claims
1. Verfahren zum Erwärmen von Metallbauteilen (3) mit Elektronenbestrahlung in einer Vakuumkammer (1), bei dem zur Hal- terung der Metallbauteile (3) in der Vakuumkammer (1) Mehrschichten-Halterungselemente (6) mit einer der Elektronenbestrahlung zugewandten, hitzebestandigen und gut warmeabsorbierenden äußeren Schicht (9) und mit einer dem jeweiligen Metallbauteil (3) zugewandten, gut wärmeabstrahlenden inneren Schicht verwendet werden.1. A method for heating metal components (3) with electron radiation in a vacuum chamber (1), in which for holding the metal components (3) in the vacuum chamber (1) multilayer mounting elements (6) with a heat-resistant and good heat-absorbing outer layer (9) and with a good heat-radiating inner layer facing the respective metal component (3).
2. Anordnung zum Erwärmen von Metallbauteilen (3) mit Elektronenbestrahlung in einer Vakuumkammer (1) mit Mehrschichten-Halterungselementen (6) für die Metallbauteile (3), wobei die Mehrschichten-Halterungselemente (6) eine der Elektronbestrahlung zugewandte, hitzbeständige und gut wärmeabsorbierende äußere Schicht (9) und eine dem jeweiligen Metallbauteil zugewandte, gut wärmeabstrahlende innere Schicht (10) aufweisen.2. Arrangement for heating metal components (3) with electron radiation in a vacuum chamber (1) with multilayer mounting elements (6) for the metal components (3), the multilayer mounting elements (6) facing the electron radiation, heat-resistant and well heat-absorbing outer Layer (9) and an inner layer (10) which radiates good heat radiation and faces the respective metal component.
3. Anordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß3. Arrangement according to claim 2, d a d u r c h g e k e n n z e i c h n e t that
- die äußere Schicht ein Massivteil (12) aus Tantal oder Molybdän ist, auf dem sich als innere Schicht eine Graphit- schicht (13) befindet.- The outer layer is a solid part (12) made of tantalum or molybdenum, on which there is a graphite layer (13) as the inner layer.
4. Anordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß4. Arrangement according to claim 2, d a d u r c h g e k e n n z e i c h n e t that
- die äußere Schicht ein Massivteil (16) aus einem zur Bil- düng von thermisch hochstabilen Oxiden neigenden Metall ist, auf dem sich als innere Schicht eine Oxidschicht (17) des Metalls befindet.- The outer layer is a solid part (16) made of a metal that tends to form thermally highly stable oxides, on which there is an oxide layer (17) of the metal as the inner layer.
5. Anordnung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß - das Metall Chrom, Nickel oder Aluminium oder eine Legierung dieser Metalle ist.5. Arrangement according to claim 4, characterized in that - The metal is chrome, nickel or aluminum or an alloy of these metals.
6. Anordnung nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t, daß6. Arrangement according to claim 3 or 4, d a d u r c h g e k e n n z e i c h n e t that
- sich außen auf dem Massivteil (18) eine Keramikschicht (21) befindet. - On the outside of the solid part (18) is a ceramic layer (21).
EP99960771A 1998-09-30 1999-09-30 Method and device for heating metal components using electron irradiation in a vacuum chamber Expired - Lifetime EP1129223B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19845804A DE19845804C2 (en) 1998-09-30 1998-09-30 Method and arrangement for heating metal components with electron radiation in a vacuum chamber
DE19845804 1998-09-30
PCT/DE1999/003235 WO2000018985A2 (en) 1998-09-30 1999-09-30 Method and device for heating metal components using electron irradiation in a vacuum chamber

Publications (2)

Publication Number Publication Date
EP1129223A2 true EP1129223A2 (en) 2001-09-05
EP1129223B1 EP1129223B1 (en) 2002-05-22

Family

ID=7883453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99960771A Expired - Lifetime EP1129223B1 (en) 1998-09-30 1999-09-30 Method and device for heating metal components using electron irradiation in a vacuum chamber

Country Status (5)

Country Link
US (1) US6469273B2 (en)
EP (1) EP1129223B1 (en)
JP (1) JP2003521376A (en)
DE (2) DE19845804C2 (en)
WO (1) WO2000018985A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1292470B (en) * 1965-03-30 1969-04-10 Steigerwald Strahltech Method for material processing using radiant energy
JPS491058B1 (en) * 1969-09-24 1974-01-11
DE2638094C3 (en) * 1976-08-24 1980-10-16 Viktor Nikolaevitsch Odinzowo Moskowskoj Oblasti Karinskij (Sowjetunion) Vacuum arc heating device
IL74360A (en) * 1984-05-25 1989-01-31 Wedtech Corp Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
US5814784A (en) * 1992-01-13 1998-09-29 Powerlasers Ltd. Laser-welding techniques using pre-heated tool and enlarged beam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0018985A2 *

Also Published As

Publication number Publication date
DE59901522D1 (en) 2002-06-27
DE19845804A1 (en) 2000-05-31
US20010030177A1 (en) 2001-10-18
WO2000018985A3 (en) 2000-05-25
DE19845804C2 (en) 2000-11-30
JP2003521376A (en) 2003-07-15
US6469273B2 (en) 2002-10-22
EP1129223B1 (en) 2002-05-22
WO2000018985A2 (en) 2000-04-06

Similar Documents

Publication Publication Date Title
DE68928189T2 (en) Sputtering target
DE2832620C2 (en)
DE2824250C2 (en) Carrier electrode of a semiconductor component
DE69212774T2 (en) Heat-resistant plate with cooling structure and manufacturing process
DE2852908A1 (en) ROTATING ANODE TUBE
DE2154888A1 (en) ROENTINE PIPE
CH667469A5 (en) PROCESS FOR APPLYING PROTECTIVE LAYERS.
DE2757457A1 (en) PROCESS FOR FLUIDLESS HARD SOLDERING OF ALUMINUM STRUCTURES
DE69016066T2 (en) Bimetal spring element for a radiation environment.
DE2816116C2 (en) Rotating anode for X-ray tubes with a graphite substrate
DE2011215C3 (en) Electric heater
DE2816120A1 (en) METHOD OF CONNECTING A TUNGSTEN CONTAINING ANODENTARGET TO A GRAPHITE SUBSTRATE
EP0284818A1 (en) Method and device for layer bonding
AT403331B (en) TURNING ANODE FOR AN X-RAY TUBE
DE2258160C3 (en)
EP1129223A2 (en) Method and device for heating metal components using electron irradiation in a vacuum chamber
DE2357292C3 (en) X-ray tube rotating anode with an impact surface made from a tungsten-rhenium-tantalum alloy
DE102010022595B4 (en) X-ray tube with backscatter electron catcher
DE2001124A1 (en) Self-cleaning cooking appliance
EP0609492B1 (en) Holder plate for the partial heat treatment of articles
DE68912207T2 (en) Gas laser device.
DE3202722A1 (en) "ARRANGEMENT WITH SPOT-WELDED AL-FE-SI-LAMELLES FOR A MAGNETIC HEAD"
DE2737715C3 (en) Corpuscular beam device with components made of superconducting material
DE102018201245B3 (en) Target for a radiation source, radiation source for generating invasive electromagnetic radiation, use of a radiation source and method for producing a target for a radiation source
DE69201614T2 (en) Collector unit for a microwave tube.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010219

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20011024

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59901522

Country of ref document: DE

Date of ref document: 20020627

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020725

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1129223E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040921

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 12

Ref country code: CH

Payment date: 20101207

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110915

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110927

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59901522

Country of ref document: DE

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930