EP1127288A1 - Dispositif optique pour viseur de casque comportant un miroir diffractif - Google Patents

Dispositif optique pour viseur de casque comportant un miroir diffractif

Info

Publication number
EP1127288A1
EP1127288A1 EP99970171A EP99970171A EP1127288A1 EP 1127288 A1 EP1127288 A1 EP 1127288A1 EP 99970171 A EP99970171 A EP 99970171A EP 99970171 A EP99970171 A EP 99970171A EP 1127288 A1 EP1127288 A1 EP 1127288A1
Authority
EP
European Patent Office
Prior art keywords
mirror
diffractive
image
spherical
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99970171A
Other languages
German (de)
English (en)
Inventor
Laurent Thomson-CSF Prop. Int. Dépt. Brev. POTIN
L. Thomson-CSF Prop. Int. Dépt. Brevets BIGNOLLES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP1127288A1 publication Critical patent/EP1127288A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the present invention relates to an optical device for correcting aberrations affecting an image.
  • a device according to the invention makes it possible to correct the distortion due to a spherical concave mirror inclined relative to the direction in which this mirror is observed.
  • the invention applies in particular, but not exclusively, to a helmet finder for pilot of an aircraft or helicopter weapons or for operator of a training simulator.
  • a helmet viewfinder is an image presentation device integrated into a helmet.
  • the viewfinder allows the wearer of the helmet, such as an airplane pilot in flight, to observe visual information simultaneously with the view of the landscape, or of the cockpit, which he most often perceives through a visor of protection.
  • the presentation of adapted information allows assistance with piloting and navigation.
  • the presentation of a reticle provides assistance in aiming a weapon.
  • the information may also consist of a landscape image acquired by sensors different from the eye of the helmet wearer such as infrared image sensors or light intensifiers to supplement or replace the direct view.
  • an image generator comprises an imager whose screen, for example a cathode ray tube screen or a liquid crystal screen, makes it possible to display an image.
  • the image is most often transported using a relay optic to a combiner which provides a presentation of the transported image superimposed on the landscape view.
  • the latter is also focused at infinity by a co-animation optic.
  • the coliimation of the image can be achieved by an optic placed between the imager and the combiner; such an embodiment of the prior art has the main drawback of requiring too bulky coliimation optics relative to the restricted field of view provided.
  • a combiner having optical power has been proposed; such a combiner achieves for its user both the collimation of the image and the superimposition of the collimated image with the view of the landscape.
  • the prior art is rich in numerous and varied devices comprising an optical power combiner. We are particularly interested in image presentation systems comprising a spherical concave mirror to collimate the image.
  • a concave spherical mirror achieves an average quality coliimation of an image placed at a particular point in the space located on the axis of the mirror and at a distance from it equal to half of its radius of curvature.
  • the eye located on the axis of the mirror receives rays from the imager after their reflection on the spherical mirror, these rays are parallel and lead to the perception by the eye of a coliimatée image.
  • the mirror is semi-reflecting, it allows the same eye to observe the landscape by transparency.
  • the imager should be on the axis of the semi-transparent spherical mirror and it would obscure the field of view of the user.
  • the spherical mirror is tilted relative to the normal to the face and the user's eye is no longer on the axis of the mirror.
  • This arrangement has the drawback of leading to a coliimated image affected by optical aberrations, in particular eccentricity, which it is necessary to correct at least partially.
  • eccentric distortion of the second kind characterized by a convergence of verticals and an apparent curvature of horizontals.
  • the prior art teaches us to correct the distortion of the image provided by an optical assembly to introduce reverse distortion at the level of the imager by electronic correction; this is easily achieved when the imager includes a cathode ray tube, but this solution is not suitable for an imager, such as for example a light intensifier, which does not have the necessary image adjustments.
  • the particular surface of the aspherical mirror proposed makes it possible to modify the light rays in order to correct the effects of the spherical concave mirror on the horizontal and the vertical of the image observed and thus ensure a correction of the distortion.
  • This correction is achieved by the introduction by the aspherical mirror of a second kind of eccentricity distortion to compensate for the distortion of the same type due to the spherical concave coliimation mirror used off axis.
  • the effect of the aspherical mirror leads to making the vertical parallel and the horizontal rectilinear in the coliimated image.
  • the image is straightened and orthoscopic, but the overall shape of the mirror locally causes an amplification of aberrations and in particular of astigmatism.
  • the correction of the distortion that this invention allows is limited by a degradation of the resolution of the image.
  • the problem consists in producing an image presentation device comprising an off-axis spherical collimating mirror, presenting a collimated image satisfactory for the user, that is to say devoid of annoying aberrations and having a large superior field of view. or equal to 40 degrees. It is a question of obtaining a coliimaté image which presents at the same time a good resolution and a good correction of the distortion.
  • the spherical collimating mirror being observed at an oblique angle relative to its axis, it introduces a second kind of eccentric distortion characterized by an absence of symmetry of revolution.
  • This distortion is particularly dangerous for a user driving a vehicle, since the perception of perspective is degraded.
  • the difficulty consists in finding a means for correcting the distortion which does not degrade the quality of the image and such that the entire optical device has a reduced mass and size.
  • the invention provides an optical device for a system for presenting collimated images to a user comprising an imager and a spherical concave mirror off-axis, characterized in that it comprises optical means for correcting the distortion of the image. presented to the user which is due to the spherical concave mirror off axis, said means comprising a diffractive field mirror.
  • the diffractive mirror includes a reflection hologram. According to the invention, the correction of the distortion is made when the diffractive mirror is placed in the vicinity of an intermediate image of the optical device: it is a diffractive field mirror. Its diffractive effect near the intermediate image makes it possible to move the points of the image non-uniformly.
  • the correction made by the diffractive mirror does not degrade the resolution of the image.
  • the extent of the neighborhood is limited by the resolution, which is imposed by the rest of the device.
  • the diffractive mirror is preferably located at the limit of the neighborhood fixed by the resolution. While being inside the vicinity of the intermediate image, the diffractive mirror is placed at a maximum distance from the intermediate image beyond which it degrades the resolution of the image presented to the user.
  • the diffractive mirror can be, for example, located in the vicinity of the first intermediate image, that is to say that which is closest to the eye of the user of the device. However, it is preferably placed in the vicinity of the second intermediate image; this preferred arrangement allows the production of a lighter and less bulky device and in which the hologram is better protected.
  • the hologram in the invention is for example digital digital with discrete variations, planar digital continuous profile, it can also be recorded in a photosensitive material.
  • the substrate in which the hologram is shaped may be planar, but is preferably not planar; the curvatures of the surface taking care of part of the correction, the hologram ensuring a residual correction.
  • the transparent substrate of the volume hologram in a photosensitive layer preferably has a variable optical index or a variable thickness.
  • the device also includes one or more optical power or relay groups placed on the ray path between the imager and the spherical mirror, upstream and / or downstream of the diffractive field mirror.
  • optical groups also ensure the precorrection of the astigmatism necessarily introduced into the coliimated image because the spherical mirror is observed at an angle inclined relative to the radius which defines the optical axis of this mirror.
  • This astigmatism can be corrected for example by a spherical converging lens and a cylindrical lens, in an optical relay group located between the imager and the diffractive mirror. It can also be corrected by a diffractive lens placed in a power group between the diffractive mirror and the spherical mirror.
  • the invention makes it possible to preserve an image of good resolution while ensuring a thorough correction of the distortion due to the spherical and inclined collimating mirror.
  • the invention has the advantage of correcting the distortion of the image presented to the eye of the user for a large instrumental pupil, for example at least 15 millimeters in diameter, and for a wide field typically greater than 40 degrees.
  • the instrumental pupil is the area of space in which the user of an instrument must place the pupil of his eye to use it. This correction is particularly interesting when a distortion cannot or cannot easily be imposed on the imager. Indeed in such a case an electronic correction of the prior art is not suitable.
  • the first pupillary image of the device is inclined relative to the optical axis, the diffractive mirror according to the invention gives a second pupil image straightened on the optical axis.
  • the invention can be integrated into a helmet sight having a wide instrumental pupil and a wide field.
  • FIG. 1 schematically and partially represents an optical device with a spherical combiner mirror off the optical axis
  • FIG. 2 represents the distortion that the invention corrects
  • FIG. 3 represents a preferred embodiment of a device according to the invention
  • FIG. 4 shows another embodiment of a device according to the invention.
  • the optical diagrams are shown developed in a plane called the plane of symmetry of the optics. This plane contains the normal to the pupil of the entrance of the eye of the user and the center of the sphere supporting the spherical mirror.
  • mirrors not shown, which do not introduce aberration, make it possible to direct the beams in three dimensions, to satisfy various space constraints: for example so that the device is adapted to the contour of the head of the user.
  • a user of an optical device comprising a spherical mirror 1 is represented by the plane of the pupils 2 and the straight line 5 normal to this plane 2.
  • the pupil 11 of the eye is generally located optically at 3 millimeters in removal of cornea 12 from the eye 3.
  • the straight line 5 may correspond to the view of the user straight in front of him, or else to a view upwards, downwards, towards one side. or the opposite side.
  • the spherical mirror 1 is placed in front of the user, its concavity is turned towards the user.
  • the intersection of the observation axis 5 with the mirror 1 is designated by the reference 6.
  • the spherical mirror 1 is supported by a sphere S whose center 4 does not belong to this straight line 5.
  • the plane P of FIG. 1 is a plane of space which contains the center 4 of the support sphere of the spherical mirror 1 and the line 5 passing through the center of the pupil 11 of the eye 3. It is the plane of incidence of the line 5 on the spherical mirror 1, it is called the plane of symmetry of the optics. Most often this plane is coincident with the plane passing through the center of the pupil 11 and parallel to the theoretical plane of symmetry of the face of the user.
  • the line 5 and the radius 7 of the sphere S passing through the point of intersection 6 are separated by an angle ⁇ .
  • a non-zero value of this angle ⁇ characterizes an off-axis use of the spherical mirror 1.
  • the spherical mirror 1 itself is said to be "off-axis".
  • an image whose center 9 is placed at a distance equal to half of the radius of curvature of the sphere S on this optical ray is perceived by the user's eye 3 as coliimated in the first order because the light rays coming from the image thus placed are reflected by the spherical mirror 1 in the direction of l eye 3 in the form of a beam of substantially parallel rays.
  • the center image 9 may have field curvature.
  • the coliimation by reflection on the spherical mirror is not perfect, it is affected, in addition to the aberrations intrinsic to this mirror, an optical aberration of eccentricity due to the off-axis use of the spherical mirror 1.
  • the spherical mirror 1 may be semi-transparent. In this case light rays 10 coming from the environment external to the spherical mirror 1, that is to say coming to strike the convex face of this mirror, are transmitted to the eye 3 by the spherical mirror 1. This spherical mirror 1 then produces a combiner which superimposes a coliimated image with the direct view of the environment. This arrangement is generally adopted in a helmet sight.
  • the central field is defined as the beam of light rays coming from the center 9 of the image to be collimated.
  • the path of this light ray is the optical axis of the device used.
  • the optical axis is generally a broken line.
  • Line 5 supports part of the optical axis. Most often, the image is presented straight in front of the user, the line 5 is then substantially normal to the face of the user, but the image can for example be presented at the top of the field of vision of rest at infinity of the user and the line 5 is then oriented in the corresponding direction.
  • FIG. 2 represents the image perceived by the eye of the user of an optical device according to FIG. 1 in which an image centered on point 9 and comprising a square with a regular square grid is collimated.
  • the perceived deformation is a second kind of eccentric distortion: the vertical lines which should be parallel lines are converging and the horizontal lines which should be parallel lines are curved. This particular distortion is due to the inclination of the spherical collimating mirror relative to the axis of observation; it presents an absence of symmetry of revolution.
  • a driver uses an optical device according to FIG. 1 to steer his vehicle, he is greatly disturbed by the deformation between the image presented and the real landscape. Heights are overestimated and speeds are underestimated.
  • FIG. 3 paths of light rays inside a preferred embodiment of a device according to the invention are shown.
  • the imager comprises a screen such as for example the screen of a cathode ray tube or a liquid crystal screen.
  • the screen can also be produced for example by a fiber optic beam section or a slide or the screen of a light intensifier tube.
  • An image whose surface is arbitrary is displayed on the screen 20 of the imager represented by its tangent plane.
  • the image provided by the imager can be flat, spherical or even have another shape. The paths of the light rays from the screen 20 of the imager to the eye 3 of the user are traced for this embodiment of the invention.
  • the device comprises a spherical mirror 1 placed in front of the user's eye 3 and a field diffractive mirror 21 placed between the screen 20 and the spherical mirror 1.
  • a diffractive mirror is a diffractive optic which works in reflection.
  • the device also includes a power unit 22 between the diffractive field mirror 21 and the spherical mirror 1, as well as relay optics 29 between the screen 20 and the diffractive field mirror 21.
  • the light rays coming from the screen 20 of the imager are received, after passing through relay optics 29, by the diffractive mirror 21; they are reflected and deflected by the latter then pass through the power unit 22 before striking the spherical mirror 1 off-axis which ensures a coliimation of the image finally perceived by the eye 3 of the user.
  • the light rays coming from the center of the screen 20 of the imager form the central field of the imager.
  • the optical axis of the device corresponds to the path of the radius of the central field which passes through the center of the pupil of the user's eye 3.
  • the path of the light rays is now observed in the other direction, that is to say starting from the user's eye 3 and going up the various optical elements towards the screen 20 of the display.
  • the rays from the eye are reflected on the spherical mirror 1 off-axis then form a first intermediate image 25.
  • the image perceived by the eye is combined with the first intermediate image 25 by the spherical mirror 1.
  • the optical axis which, in the example of FIG. 3, is horizontal on a first part 31 between the center of the pupil of the eye 3 and the spherical mirror 1 is also reflected on the spherical mirror 1.
  • This part 31 of the optical axis and its reflection on the spherical mirror 1 define a plane called the plane of incidence of the optical axis on the spherical mirror 1 off-axis.
  • the plane of incidence coincides with the plane of symmetry of the optics which is represented by the plane of FIG. 3.
  • the plane of symmetry of the optics is a plane containing the path described by the optical axis between the imager and the pupil of the user.
  • an embodiment of the invention is not limited to an optic in this plane; in the context of the invention, it is always possible to add additional plane mirrors allowing, for example, to exit optical elements outside the plane of the figure. Indeed, flat mirrors, also called folding mirrors, do not modify the optical function, they do not provide and do not correct aberration but they allow the optical rays to bypass obstacles such as the user's head.
  • the rays reflected by the spherical mirror 1 strike, in this embodiment, a plane mirror 23 which allows the folding of the optical rays while respecting the plane of incidence of the optical axis on the spherical mirror 1.
  • the invention can be produced without this plane mirror 23.
  • the optical axis is oriented along a straight line 32 of the plane of incidence.
  • first pupillary image 24 which is the image of the pupil of the eye 3 given by the spherical mirror 1 off axis.
  • the normal to the plane tangent to this first pupil image 24 is not parallel to the corresponding section 32 of the optical axis.
  • the first pupillary image 24 is inclined on the optical axis. This inclination is an effect of the distortion to be corrected.
  • the power group 22 is placed for example so that the first pupil image 24 is on the path of the light rays between the spherical mirror 1 and the power group 22.
  • the power group is preferably centered on the second part 32 of the optical axis. It includes at least one converging lens. And in the embodiment illustrated in FIG.
  • the power unit comprises a diverging lens placed between a first and a second converging lens; these successive lenses, each having a reduced optical power, limit the aberrations introduced by the power unit 22 itself.
  • the group 22 reduces the opening of the incident beam on the diffractive mirror 21. This opening is very small in comparison with the opening of the incident beams on the spherical mirror 1.
  • the power group focuses the first intermediate image 25 on a second intermediate image 27. It affects the image and it allows the optical device according to the invention to present good image quality.
  • This power group is an optical element close to the first pupillary image 24; it has little effect on the latter.
  • the diffractive mirror 21 is placed in the vicinity of the second part 32 of the optical axis, the first pupil image 24 is on one side of the power unit 22 and the diffractive mirror 21 is on the other side.
  • the diffractive mirror 21 reflects rays coming from the pupil of the eye towards the screen 20 of the imager.
  • the plane of FIG. 3 is also the plane of incidence of the optical axis on the diffractive mirror 21.
  • the diffractive mirror 21 is close to the second intermediate image 27 that the device forms from the image displayed on the screen 20.
  • the mirror 21 imposes at each point on its surface a particular deviation from each light beam it receives.
  • a point of the image 27 is formed by rays which are both reflected by the mirror 21 and deflected by the diffractive power of this mirror.
  • the local phase difference applied by the mirror 21 to the light wavefront is recorded in a hologram and the pitch of the fringes interference is proportional to the derivative of the phase function.
  • the deviation imposed on a light ray is all the more important as the fringes are tight.
  • the mirror If the mirror is far from the image, which in this example is the second intermediate image 27, it imposes an overall deformation of the image which does not correct the annoying distortion.
  • the deviations move the points of the image independently of each other.
  • the proximity of the intermediate image makes it possible to separate the points of the field, the displacements of the points are not uniform and they allow a correction of the distortion distortion of the image.
  • the distortion can only be corrected by large deviations; the phase function ensuring the correction then presents significant fluctuations, it is difficult to control and to carry out. In the extreme, when the mirror 21 is exactly on the image, the deviation imposed by the mirror at each point of the image is zero.
  • the hologram placed in the vicinity of the intermediate image 27 deflects a light ray from the image without modifying the local focusing: it shifts the position of a point in the image without modifying the quality of the image.
  • the diffractive mirror 21 according to the invention affects the distortion of the image without affecting the resolution.
  • the diffractive mirror 21 makes it possible to correct the distortion of the image introduced by the spherical coliimation mirror 1 used off-axis.
  • the mirror is preferably at a distance which corresponds for the center of the field to the resolution limit of the image, the vicinity of the image is limited by this distance depending on the resolution. At the edge of the field, a lower resolution is tolerated.
  • phase function of the hologram is calculated by projection on a reference base, preferably a polynomial or Zernike type base. Such projection provides a slowly variable phase function. The calculated coefficients are then recorded on a substrate.
  • the hologram is for example a reflective digital hologram: the phase function is digitized and recorded in a substrate in the form of a variation in thickness of the substrate.
  • the variation can be discrete as for example in a digital digital hologram with discrete variations which can be obtained by attack of the substrate with through binary masks.
  • the variation can be performed analogically, as for example in a flat digital hologram with a continuous profile, which is in particular produced with masks with variable transmission.
  • the hologram is recorded on a substrate, for example glass; it may be a blade with flat and parallel faces, but the surface is preferably not planar, which has the advantage of relieving variations in incidence on the substrate and / or of performing part of the optical function of the mirror 21
  • the reflective hologram can also be a volume hologram recorded in the photosensitive surface of a transparent support using a recording bench using two waves arriving on either side of a surface made of a photosensitive material such as for example a bi-chromated gelatin.
  • the transparent support of the sensitive surface can be a glass slide with flat and parallel faces. But it can also have a variable thickness, or have a variable optical index depending on the position on the surface of the substrate.
  • the substrate is a spherical plate and the hologram performs the residual correction that the spherical plate alone cannot provide.
  • the hologram according to the invention is supported for example by an aspherical surface or a Mangin mirror.
  • the position of the diffractive mirror 21 in the vicinity of the second intermediate image 27 makes it possible to place it fairly far from the eye of the user.
  • the hologram is placed inside the helmet in a location protected from attack such as humidity or contact with the pilot's fingers.
  • the third part 33 of the optical axis corresponds to the reflection of the second part 32 of this same optical axis on the diffractive mirror 21, one observes there, between the diffractive mirror 21 and the screen of the imager 20, a second pupillary image 30 which has a tangent plane substantially normal to the local optical axis 33.
  • the diffractive mirror 21 transforms a pupillary image 24 inclined on the optical axis into an image pupillary 30 perpendicular to the optical axis.
  • the diffractive mirror 21 allows the device according to the invention to present a good quality of pupil without affecting the quality of the image.
  • the useful part of the diffractive mirror 21 has a tangent plane whose normal 28, belonging to the plane of incidence, is not parallel to the second part 32 of the optical axis.
  • the diffractive mirror 21 is inclined relative to the optical axis, it is said to be off-axis.
  • the opening around the axis 28 is sufficient to optimize the draft left available to place, for example, return mirrors between the diffractive mirror 21 and the nearest lens in the power group 22.
  • the angle of incidence the optical axis on the mirror 21 also makes it possible to limit the useful surface and thus to maintain good image quality over the entire surface.
  • the angle of incidence is preferably close to 45 degrees.
  • the useful surface of the mirror 21 is for example estimated by a diameter of approximately 45 millimeters.
  • the optical device according to the invention illustrated in FIG. 3 comprises a relay optics 29, placed between the diffractive mirror 21 and the screen 20 of the imager, to distance the screen 20 of the imager from the diffractive mirror 21.
  • This distance is generally made necessary to meet space constraints. It allows for example for a helmet finder to place the entire imager, which can be a cathode ray tube, at a satisfactory position in the available volume of the helmet.
  • the beams of light rays between the relay optics 29 and the diffractive mirror 21 have a very small aperture. These beams are downstream of the diffractive mirror 21 by considering the paths of inverted beams, that is to say from the eye to the imager. The opening is very small compared to that of the beams on the spherical mirror 1.
  • the relay optics 29 is substantially aligned with the third part 33 of the optical axis. This essentially centered relay optic is simple to achieve.
  • the relay optics 29 also has optical power functions for pre-correcting near the imager the astigmatism which will be introduced by the off-axis observation of the spherical mirror 1. In an alternative embodiment, this correction of the astigmatism is not performed at the relay optics 29 but in the power unit 22, which then comprises for example a diffractive lens and a converging lens.
  • the relay optics 29 also comprises a mixing cube 26, or a semi-reflecting blade, which allows the mixing of the channel of the screen 20 with a channel of another not shown display. in FIG. 3.
  • the cube 26 makes it possible, for example, to superimpose visual information from a cathode ray tube and that coming from an assembly (not shown) comprising a shooting objective and an image intensifier.
  • the magnification between the two pupillary images 30 and 24 is preferably of a value close to one.
  • the practically unitary pupillary conjugation has the advantage of reducing the size of the optical device, it allows minimization of the size of the optics along the optical path. This reduction in size is advantageous for the weight of the device and for its cost.
  • the optical device comprises, between an inclined spherical collimating mirror 1 and the screen 20 of the imager, a diffractive mirror 41 placed near the first intermediate image 25.
  • the substrate of the hologram is for example a flat glass slide with parallel faces.
  • the optical assembly 42 provides a conjugation of the intermediate image 25 on the screen 20, it comprises several lenses including two aspherical lenses 43, 44.
  • the assembly 42 may also include a mixer cube 45 associated with another light source.
  • this embodiment of the invention requires a heavier and more expensive optical assembly than the preferred embodiment illustrated in FIG. 3.
  • the spherical mirror 1 off-axis can be semi-transparent, in this case, the light rays emitted by the landscape or the environment in the field of view of the user are transmitted by this mirror and are received by the pupil of the eye simultaneously with the rays reflected by this same mirror and previously described.
  • the semi-transparent mirror is a combiner. It is therefore a spherical combiner used off-axis.
  • the combiner is preferably part of a visor for protecting the eyes and even the face of the user.
  • a visor according to the invention has at least one spherical reflecting part off axis. In use position the visor is folded down so that the part corresponding to the spherical mirror 1 is placed in front of the user's eye.
  • the entire device for presenting collimated images can be integrated into a helmet, for example for an airplane or helicopter pilot, and makes it possible to produce a helmet viewfinder.
  • the viewfinder can be monocular if it presents the coliimated image to only one eye.
  • the viewfinder can be binocular if it includes the presentation of an image for each eye. It has the advantage of allowing a pleasant vision when the overlap of the fields of view of the two images is total.
  • a binocular viewfinder can also present a partial overlap of the two fields of view which allows for the same size of the optics to obtain a wider field of view without damaging the perception of the information presented.
  • the distortion of an image having a grid leads to the distortion of the grid.
  • the images presented to the user and of which the distortion inherent in the concave spherical off-axis visor is corrected are particularly advantageous for a helmet viewfinder because they respect the real dimensions of the objects represented. This is essential when the viewfinder presents an image superimposed on the direct view and is even more so when the image presented replaces the direct view for the user, for example in the case of night vision assisted by an intensifier. image, infrared vision or training simulator.
  • the correction of this distortion has the advantage of allowing the user a good appreciation of the distances on the image he observes and of allowing him, for example, to pilot at night without positioning error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

L'invention concerne un dispositif optique pour système de présentation d'images collimatées par un miroir concave sphérique hors axe (1). L'invention permet de présenter à l'utilisateur (3) une image corrigée de la distorsion d'excentrement due au miroir concave sphérique hors axe (1) sans dégradation de la qualité d'image. Pour cela le dispositif selon l'invention comporte un miroir diffractif (21) placé au voisinage d'une image intermédiaire (25, 27) du dispositif, de préférence la seconde image intermédiaire (27). L'étendue du voisinage est limitée par la résolution de l'image et, dans le voisinage, la correction par le miroir diffractif (21) ne dégrade pas la résolution. Le miroir diffractif présente un hologramme qui peut être numérique ou réalisé dans un matériau photosensible. Le substrat de l'hologramme n'est de préférence pas plan pour prendre en charge une partie de la correction, la correction résiduelle étant effectuée par l'hologramme. L'invention s'applique notamment aux viseurs de casque pour pilote d'aéronef.

Description

DISPOSITIF OPTIQUE POUR VISEUR DE CASQUE COMPORTANT UN MIROIR DIFFRACTIF.
La présente invention concerne un dispositif optique de correction d'aberrations affectant une image. En particulier, un dispositif selon l'invention permet de corriger la distorsion due à un miroir concave sphérique incliné par rapport à la direction sous laquelle ce miroir est observé.
L'invention s'applique notamment, mais non exclusivement, à un viseur de casque pour pilote d'avion ou d'hélicoptères d'armes ou pour opérateur d'un simulateur d'entraînement.
Un viseur de casque est un dispositif de présentation d'images intégré à un casque. Le viseur permet au porteur du casque, comme par exemple un pilote d'avion en vol, d'observer des informations visuelles simultanément à la vue du paysage, ou du poste de pilotage, qu'il perçoit le plus souvent à travers une visière de protection. La présentation d'informations adaptées, par exemple sous forme de symboles, permet une aide au pilotage et à la navigation. Ainsi pour des véhicules armés la présentation d'un réticule réalise une aide à la visée d'une arme. Les informations peuvent aussi consister en une image du paysage acquise par des capteurs différents de l'œil du porteur du casque comme des capteurs d'image infrarouge ou des intensificateurs de lumière pour compléter ou remplacer la vue directe. A l'intérieur du casque, un générateur d'image comporte un imageur dont l'écran, par exemple un écran de tube cathodique ou un écran à cristaux liquides, permet d'afficher une image.
L'image est le plus souvent transportée à l'aide d'une optique de relais jusqu'à un combineur qui assure une présentation de l'image transportée en superposition à la vue du paysage.
Pour permettre au pilote une observation simultanée du paysage vu directement à l'infini et de l'image de l'imageur, cette dernière est aussi focalisée à l'infini par une optique de coliimation.
Lorsque le combineur est formé d'une simple lame plane semi- réfléchissante, la coliimation de l'image peut être réalisée par une optique placée entre l'imageur et le combineur; une telle réalisation de l'art antérieur présente l'inconvénient principal de nécessiter une optique de coliimation trop encombrante relativement au champ de vue restreint procuré.
Pour réduire l'encombrement, un combineur présentant une puissance optique a été proposé ; un tel combineur réalise pour son utilisateur à la fois la coliimation de l'image et la superposition de l'image coliimatée avec la vue du paysage.
L'art antérieur est riche de dispositifs nombreux et variés comportant un combineur à puissance optique. On s'intéresse plus particulièrement aux systèmes de présentation d'images comportant un miroir concave sphérique pour collimater l'image.
Un miroir sphérique concave réalise une coliimation de qualité moyenne d'une image placée en un point particulier de l'espace situé sur l'axe du miroir et à une distance de celui-ci égale à la moitié de son rayon de courbure. En plaçant un imageur en ce point, l'œil situé sur l'axe du miroir reçoit des rayons issus de l'imageur après leur réflexion sur le miroir sphérique, ces rayons sont parallèles et conduisent à la perception par l'œil d'une image coliimatée. Si de plus le miroir est semi-réfléchissant, il permet au même œil d'observer le paysage par transparence. Cependant dans un tel dispositif l'imageur devrait se trouver sur l'axe du miroir sphérique semi- transparent et il masquerait le champ de vue de l'utilisateur.
Pour dégager la vue de l'utilisateur, le miroir sphérique est incliné par rapport à la normale au visage et l'œil de l'utilisateur n'est plus sur l'axe du miroir. Cette disposition présente l'inconvénient de conduire à une image coliimatée affectée d'aberrations optiques, d'excentrement en particulier, qu'il est nécessaire de corriger au moins partiellement.
L'inclinaison du miroir concave sphérique entache l'image coliimatée de distorsion, appelée distorsion d'excentrement de seconde espèce, caractérisée par une convergence des verticales et une courbure apparente des horizontales. L'art antérieur nous enseigne pour corriger la distorsion de l'image fournie par un ensemble optique d'introduire une distorsion inverse au niveau de l'imageur par correction électronique ; ceci est aisément réalisé lorsque l'imageur comporte un tube cathodique mais cette solution n'est pas adaptée à un imageur, comme par exemple un intensificateur de lumière, qui ne présente pas les réglages nécessaires de l'image. On pourrait aussi essayer de corriger la distorsion en insérant dans le trajet optique entre l'imageur et le miroir sphérique un autre miroir sphérique incliné introduisant une distorsion inverse du premier ; mais on aboutirait à un système optique inutilisable du fait de son encombrement. Dans un brevet déposé sous le numéro 97 09893 le 1er août 1997 par le demandeur, un miroir asphérique d'une forme adaptée permet une correction de la distorsion d'excentrement de seconde espèce.
La surface particulière du miroir asphérique proposé permet de modifier les rayons lumineux afin de rectifier les effets du miroir concave sphérique sur les horizontales et les verticales de l'image observée et ainsi assurer une correction de la distorsion. Cette correction est réalisée par l'introduction par le miroir asphérique d'une distorsion d'excentrement de seconde espèce pour compenser la distorsion de même type due au miroir concave sphérique de coliimation utilisé hors axe. L'effet du miroir asphérique conduit à rendre les verticales parallèles et les horizontales rectilignes dans l'image coliimatée. L'image est redressée et orthoscopique, mais la forme globale du miroir provoque localement une amplification des aberrations et notamment de l'astigmatisme. La correction de la distorsion que permet cette invention est limitée par une dégradation de la résolution de l'image.
Le problème consiste à réaliser un dispositif de présentation d'images comportant un miroir de coliimation sphérique hors axe, présentant une image coliimatée satisfaisante pour l'utilisateur c'est-à-dire dépourvue d'aberrations gênantes et présentant un grand champ de vue supérieur ou égal à 40 degrés. Il s'agit d'obtenir une image coliimatée qui présente à la fois une bonne résolution et une bonne correction de la distorsion.
Le miroir de coliimation sphérique étant observé sous un angle oblique par rapport à son axe, il introduit une distorsion d'excentrement de seconde espèce caractérisée par une absence de symétrie de révolution. Cette distorsion est particulièrement dangereuse pour un utilisateur pilotant un véhicule, car la perception de la perspective est dégradée. La difficulté consiste à trouver un moyen pour corriger la distorsion ne dégradant pas la qualité de l'image et tel que l'ensemble du dispositif optique présente une masse et un encombrement réduits. C'est pourquoi l'invention propose un dispositif optique pour système de présentation d'images collimatées à un utilisateur comportant un imageur et un miroir concave sphérique hors axe caractérisé en ce qu'il comporte des moyens optiques pour corriger la distorsion de l'image présentée à l'utilisateur qui est due au miroir concave sphérique hors axe, lesdits moyens comportant un miroir diffractif de champ.
Le miroir diffractif comporte un hologramme par réflexion. Selon l'invention, la correction de la distorsion est opérée lorsque le miroir diffractif est placé dans un voisinage d'une image intermédiaire du dispositif optique : c'est un miroir diffractif de champ. Son effet diffractif à proximité de l'image intermédiaire permet de déplacer non uniformément les points de l'image.
Dans le voisinage, la correction réalisée par le miroir diffractif ne dégrade pas la résolution de l'image. L'étendue du voisinage est limitée par la résolution, qui est imposée par le reste du dispositif. Le miroir diffractif est situé de préférence à la limite du voisinage fixé par la résolution. Tout en étant à l'intérieur du voisinage de l'image intermédiaire, le miroir diffractif est placé à une distance maximale de l'image intermédiaire au-delà de laquelle il dégrade la résolution de l'image présentée à l'utilisateur.
Le miroir diffractif peut être, par exemple, situé au voisinage de la première image intermédiaire c'est-à-dire celle qui est la plus proche de l'œil de l'utilisateur du dispositif. Mais il est de préférence placé au voisinage de la seconde image intermédiaire; cette disposition préférée permet la réalisation d'un dispositif moins lourd et moins encombrant et dans lequel l'hologramme est mieux protégé. L'hologramme dans l'invention est par exemple numérique digital à variations discrètes, numérique plan à profil continu, il peut aussi être enregistré dans une matière photosensible.
Le substrat dans lequel l'hologramme est façonné peut être plan, mais il n'est de préférence pas plan; les courbures de la surface prenant en charge une partie de la correction, l'hologramme assurant une correction résiduelle.
Le substrat transparent de l'hologramme de volume dans une couche photosensible présente de préférence un indice optique variable ou une épaisseur variable. Le dispositif comporte également un ou plusieurs groupes optiques de puissance ou de relais placés sur le trajet des rayons entre l'imageur et le miroir sphérique, en amont et/ou en aval du miroir diffractif de champ.
Ces groupes optiques assurent aussi la précorrection de l'astigmatisme nécessairement introduit dans l'image coliimatée du fait que le miroir sphérique est observé sous un angle incliné par rapport au rayon qui définit l'axe optique de ce miroir. Cet astigmatisme peut être corrigé par exemple par une lentille convergente sphérique et une lentille cylindrique, dans un groupe optique de relais situé entre l'imageur et le miroir diffractif. Il peut être corrigé aussi par une lentille diffractive placée dans un groupe de puissance entre le miroir diffractif et le miroir sphérique.
L'invention permet de conserver une image de bonne résolution tout en assurant une correction poussée de la distorsion due au miroir de coliimation sphérique et incliné. L'invention présente l'avantage de corriger la distorsion de l'image présentée à l'œil de l'utilisateur pour une pupille instrumentale large, par exemple d'au moins 15 millimètres de diamètre, et pour un champ large typiquement supérieur à 40 degrés. La pupille instrumentale est la zone de l'espace dans laquelle l'utilisateur d'un instrument doit placer la pupille de son œil pour l'utiliser. Cette correction est particulièrement intéressante lorsqu'une distorsion ne peut pas du tout ou ne peut pas facilement être imposée au niveau de l'imageur. En effet dans un tel cas une correction électronique de l'art antérieur ne convient pas.
La première image pupillaire du dispositif est inclinée par rapport à l'axe optique, le miroir diffractif selon l'invention en donne une seconde image pupillaire redressée sur l'axe optique.
L'invention peut être intégrée à un viseur de casque présentant une pupille instrumentale large et un champ large.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée suivante de réalisations particulières qui sont faites en référence aux dessins annexés suivants :
- la figure 1 représente schématiquement et partiellement un dispositif optique avec miroir combineur sphérique hors axe optique,
- la figure 2 représente la distorsion que corrige l'invention, - la figure 3 représente une réalisation préférée d'un dispositif selon l'invention,
- la figure 4 représente une autre réalisation d'un dispositif selon l'invention. Dans les dessins, les schémas optiques sont représentés développés dans un plan dit plan de symétrie de l'optique. Ce plan contient la normale à la pupille de l'entrée de l'œil de l'utilisateur et le centre de la sphère supportant le miroir sphérique. Dans la réalité, des miroirs non représentés, qui n'introduisent pas d'aberration, permettent de diriger les faisceaux dans les trois dimensions, pour satisfaire diverses contraintes d'encombrement : par exemple pour que le dispositif soit adapté au contour de la tête de l'utilisateur.
Sur la figure 1 , un utilisateur d'un dispositif optique comportant un miroir sphérique 1 est représenté par le plan des pupilles 2 et la droite 5 normale à ce plan 2. La pupille 11 de l'œil est généralement située optiquement à 3 millimètres en retrait de la cornée 12 de l'œil 3.
On note qu'en fonction de son orientation par rapport au visage de l'utilisateur, la droite 5 peut correspondre à la vue de l'utilisateur droit devant lui, ou bien à une vue vers le haut, vers le bas, vers un côté ou le côté opposé.
Le miroir sphérique 1 est placé en avant de l'utilisateur, sa concavité est tournée vers l'utilisateur. L'intersection de l'axe d'observation 5 avec le miroir 1 est désignée par la référence 6.
Le miroir sphérique 1 est supporté par une sphère S dont le centre 4 n'appartient pas à cette droite 5. Le plan P de la figure 1 est un plan de l'espace qui contient le centre 4 de la sphère support du miroir sphérique 1 et la droite 5 passant par le centre de la pupille 11 de l'œil 3. C'est le plan d'incidence de la droite 5 sur le miroir sphérique 1 , on l'appelle plan de symétrie de l'optique. Le plus souvent ce plan est confondu avec le plan passant par le centre de la pupille 11 et parallèle au plan de symétrie théorique du visage de l'utilisateur.
La droite 5 et le rayon 7 de la sphère S passant par le point d'intersection 6 sont écartés d'un angle θ. Une valeur non nulle de cet angle θ caractérise une utilisation hors axe du miroir sphérique 1. Le miroir sphérique 1 lui-même est dit "hors axe". On s'intéresse à un rayon optique 8 qui est symétrique de la droite 5 de l'axe optique par rapport au rayon 7 de la sphère S. En première approximation, une image dont le centre 9 est placé à une distance égale à la moitié du rayon de courbure de la sphère S sur ce rayon optique est perçue par l'œil 3 de l'utilisateur comme coliimatée au premier ordre car les rayons lumineux issus de l'image ainsi placée sont réfléchis par le miroir sphérique 1 en direction de l'œil 3 sous la forme d'un faisceau de rayons sensiblement parallèles. L'image de centre 9 peut présenter de la courbure de champ. Cependant la coliimation par réflexion sur le miroir sphérique n'est pas parfaite, elle est affectée, en plus des aberrations intrinsèques à ce miroir, d'une aberration optique d'excentrement due à l'utilisation hors axe du miroir sphérique 1.
Le miroir sphérique 1 peut-être semi-transparent. Dans ce cas des rayons lumineux 10 provenant de l'environnement extérieur au miroir sphérique 1 , c'est-à-dire venant frapper la face convexe de ce miroir, sont transmis à l'œil 3 par le miroir sphérique 1. Ce miroir sphérique 1 réalise alors un combineur qui superpose une image coliimatée avec la vue directe de l'environnement. Cette disposition est généralement adoptée dans un viseur de casque.
Le champ central est défini comme le faisceau des rayons lumineux issus du centre 9 de l'image à collimater. On considère un rayon lumineux particulier qui appartient au champ central et qui passe par le centre de la pupille de l'utilisateur. Le trajet de ce rayon lumineux est l'axe optique du dispositif utilisé. L'axe optique est généralement une ligne brisée. La droite 5 supporte une partie de l'axe optique. Le plus souvent, l'image est présentée droit devant l'utilisateur, la droite 5 est alors sensiblement normale au visage de l'utilisateur, mais l'image peut être par exemple présentée en haut du champ de vision de repos à l'infini de l'utilisateur et la droite 5 est alors orientée dans la direction correspondante.
La figure 2 représente l'image que perçoit l'œil de l'utilisateur d'un dispositif optique selon la figure 1 dans lequel une image centrée sur le point 9 et comportant un carré avec un quadrillage carré régulier est coliimatée. La déformation perçue est une distorsion d'excentrement de seconde espèce: les lignes verticales qui devraient être des droites parallèles sont convergentes et les lignes horizontales qui devraient être des droites parallèles sont courbes. Cette distorsion particulière est due à l'inclinaison du miroir sphérique de coliimation par rapport à l'axe d'observation; elle présente une absence de symétrie de révolution. Lorsqu'un pilote utilise un dispositif optique selon la figure 1 pour diriger son véhicule, il est fortement perturbé par la déformation entre l'image présentée et le paysage réel. Des hauteurs sont surestimées et des vitesses sont sous-estimées.
Divers éléments optiques vont être décrits selon l'invention afin d'obtenir, à partir d'une image lumineuse fournie par un imageur et coliimatée par un miroir sphérique hors axe, la perception par l'œil de l'utilisateur d'une image coliimatée de bonne qualité.
Sur la figure 3, des trajets de rayons lumineux à l'intérieur d'une réalisation préférée d'un dispositif selon l'invention sont représentés.
Dans cette réalisation, destinée à un viseur de casque, l'imageur, non représenté, comporte un écran comme par exemple l'écran d'un tube cathodique ou un écran à cristaux liquides. L'écran peut aussi être réalisé par exemple par une section de faisceau de fibres optiques ou une diapositive ou l'écran d'un tube intensificateur de lumière. Une image dont la surface est quelconque est affichée sur l'écran 20 de l'imageur représenté par son plan tangent. L'image fournie par l'imageur peut être plane, sphérique ou avoir même encore une autre forme. Les trajets des rayons lumineux de l'écran 20 de l'imageur jusqu'à l'œil 3 de l'utilisateur sont tracés pour cette réalisation de l'invention.
Le dispositif comprend un miroir sphérique 1 placé devant l'œil 3 de l'utilisateur et un miroir diffractif de champ 21 placé entre l'écran 20 et le miroir sphérique 1. Un miroir diffractif est une optique diffractive qui travaille en réflexion. Le dispositif comprend également un groupe de puissance 22 entre le miroir diffractif de champ 21 et le miroir sphérique 1 , ainsi qu'une optique de relais 29 entre l'écran 20 et le miroir diffractif de champ 21. Les rayons lumineux issus de l'écran 20 de l'imageur sont reçus, après traversée de l'optique de relais 29, par le miroir diffractif 21 ; ils sont réfléchis et déviés par ce dernier puis traversent le groupe de puissance 22 avant de frapper le miroir sphérique 1 hors axe qui assure une coliimation de l'image finalement perçue par l'oeil 3 de l'utilisateur. Les rayons lumineux issus du centre de l'écran 20 de l'imageur forment le champ central de l'imageur. L'axe optique du dispositif correspond au trajet du rayon du champ central qui passe par le centre de la pupille de l'œil 3 de l'utilisateur. On observe maintenant le trajet des rayons lumineux dans l'autre sens c'est-à-dire en partant de l'œil 3 de l'utilisateur et en remontant les différents éléments optiques vers l'écran 20 de l'afficheur.
Les rayons issus de l'œil sont réfléchis sur le miroir sphérique 1 hors axe puis forment une première image intermédiaire 25. L'image perçue par l'œil est conjuguée de la première image intermédiaire 25 par le miroir sphérique 1. L'axe optique qui, dans l'exemple de la figure 3, est horizontal sur une première partie 31 entre le centre de la pupille de l'œil 3 et le miroir sphérique 1 est également réfléchi sur le miroir sphérique 1.
Cette partie 31 de l'axe optique et sa réflexion sur le miroir sphérique 1 définissent un plan nommé plan d'incidence de l'axe optique sur le miroir sphérique 1 hors axe. Dans l'exemple de la figure 3, le plan d'incidence est confondu avec le plan de symétrie de l'optique qui est représenté par le plan de la figure 3. Le plan de symétrie de l'optique est un plan contenant le trajet décrit par l'axe optique entre l'imageur et la pupille de l'utilisateur. Mais une réalisation de l'invention n'est pas limitée à une optique dans ce plan ; dans le cadre de l'invention, il est toujours possible d'ajouter des miroirs plans supplémentaires permettant, par exemple, de sortir des éléments optiques en dehors du plan de la figure. En effet les miroirs plans, également appelés miroirs de pliage, ne modifient pas la fonction optique, ils n'apportent pas et ne corrigent pas d'aberration mais ils permettent aux rayons optiques de contourner des obstacles comme la tête de l'utilisateur.
Les rayons réfléchis par le miroir sphérique 1 frappent, dans cet exemple de réalisation, un miroir plan 23 qui permet le pliage des rayons optiques en respectant le plan d'incidence de l'axe optique sur le miroir sphérique 1. L'invention peut être réalisée sans ce miroir plan 23. Après réflexion sur le miroir plan 23, l'axe optique est orienté selon une droite 32 du plan d'incidence.
Sur la seconde partie 32 de l'axe optique, on observe une première image pupillaire 24 qui est l'image de la pupille de l'œil 3 donnée par le miroir sphérique 1 hors axe. La normale au plan tangent à cette première image pupillaire 24 n'est pas parallèle à la section correspondante 32 de l'axe optique. La première image pupillaire 24 est inclinée sur l'axe optique. Cette inclinaison est un effet de la distorsion à corriger. Le groupe de puissance 22 est placé par exemple de façon à ce que la première image pupillaire 24 soit sur le trajet des rayons lumineux entre le miroir sphérique 1 et le groupe de puissance 22. Le groupe de puissance est de préférence centré sur la seconde partie 32 de l'axe optique. Il comporte au moins une lentille convergente. Et dans la réalisation illustrée par la figure 3, le groupe de puissance comporte une lentille divergente placée entre une première et une seconde lentilles convergentes; ces lentilles successives présentant chacune une puissance optique réduite limitent les aberrations introduites par le groupe de puissance 22 lui-même. Le groupe 22 réduit l'ouverture du faisceau incident sur le miroir diffractif 21. Cette ouverture est très faible en comparaison avec l'ouverture des faisceaux incidents sur le miroir sphérique 1.
Le groupe de puissance focalise la première image intermédiaire 25 sur une seconde image intermédiaire 27. Il affecte l'image et il permet au dispositif optique selon l'invention de présenter une bonne qualité d'image. Ce groupe de puissance est un élément optique proche de la première image pupillaire 24; il affecte peu cette dernière.
Le miroir diffractif 21 est placé au voisinage de la seconde partie 32 de l'axe optique, la première image pupillaire 24 est d'un côté du groupe de puissance 22 et le miroir diffractif 21 est de l'autre côté. Le miroir diffractif 21 réfléchit des rayons venant de la pupille de l'œil en direction de l'écran 20 de l'imageur. Le plan de la figure 3 est aussi le plan d'incidence de l'axe optique sur le miroir diffractif 21.
Le miroir diffractif 21 est proche de la seconde image intermédiaire 27 que le dispositif forme à partir de l'image affichée sur l'écran 20. Le miroir 21 impose en chacun des points de sa surface une déviation particulière à chaque faisceau lumineux qu'il reçoit. Ainsi, en remontant le trajet réel des rayons lumineux, un point de l'image 27 est formé par des rayons qui sont à la fois réfléchis par le miroir 21 et déviés par le pouvoir diffractif de ce miroir.
La différence de phase locale appliquée par le miroir 21 au front d'onde lumineux est enregistrée dans un hologramme et le pas des franges d'interférence est proportionnel à la dérivée de la fonction de phase. La déviation imposée à un rayon lumineux est d'autant plus importante que les franges sont serrées.
Si le miroir est loin de l'image, qui est dans cet exemple la seconde image intermédiaire 27, il impose une déformation globale de l'image qui ne corrige pas la distorsion gênante. Lorsque le miroir 21 est au voisinage de l'image, les déviations déplacent les points de l'image indépendamment les uns des autres. La proximité de l'image intermédiaire permet de séparer les points du champ, les déplacements des points ne sont pas uniformes et ils permettent une correction de la déformation de distorsion de l'image. Si le miroir 21 est très près de l'image 27, la distorsion ne peut être corrigée que par de fortes déviations; la fonction de phase assurant la correction présente alors des fluctuations importantes, elle est difficile à maîtriser et à réaliser. A l'extrême, lorsque le miroir 21 est exactement sur l'image, la déviation imposée par le miroir à chaque point de l'image est nulle.
Dans l'invention, l'hologramme placé dans le voisinage de l'image intermédiaire 27, dévie un rayon lumineux de l'image sans modifier la focalisation locale : il décale la position d'un point dans l'image sans modifier la qualité de l'image. Le miroir diffractif 21 selon l'invention affecte la distorsion de l'image sans en affecter la résolution. Le miroir diffractif 21 permet de corriger la distorsion de l'image introduite par le miroir de coliimation sphérique 1 utilisé hors axe.
Dans l'invention, le miroir est de préférence à une distance qui correspond pour le centre du champ à la limite de résolution de l'image, le voisinage de l'image est limité par cette distance dépendant de la résolution. Au bord du champ, une résolution moins bonne est tolérée.
La fonction de phase de l'hologramme est calculée par projection sur une base de référence, de préférence une base polynomiale ou de type Zernike. Une telle projection assure une fonction de phase lentement variable. Les coefficients calculés sont en suite enregistrés sur un substrat.
L'hologramme est par exemple un hologramme numérique réfléchissant : la fonction de phase est numérisée et inscrite dans un substrat sous la forme d'une variation d'épaisseur du substrat. La variation peut être discrète comme par exemple dans un hologramme numérique plan digital à variations discrètes qui peut être obtenu par attaque du substrat à travers des masques binaires. La variation peut être réalisée de manière analogique, comme par exemple dans un hologramme numérique plan à profil continu, lequel est notamment réalisé avec des masques à transmission variable. L'hologramme est enregistré sur un substrat, par exemple du verre; ce peut être une lame à faces planes et parallèles mais la surface n'est de préférence pas plane ce qui présente l'avantage de soulager les variations d'incidence sur le substrat et/ou de réaliser une partie de la fonction optique du miroir 21. L'hologramme réfléchissant peut aussi être un hologramme de volume enregistré dans la surface photosensible d'un support transparent à l'aide d'un banc d'enregistrement à l'aide de deux ondes arrivant de part et d'autre d'une surface réalisée dans une matière photosensible comme par exemple une gélatine bi-chromatée. Le support transparent de la surface sensible peut être une lame de verre à faces planes et parallèles. Mais il peut aussi présenter une épaisseur variable, ou présenter un indice optique variable selon la position sur la surface du substrat.
Ainsi dans l'exemple de la figure 3, le substrat est une lame sphérique et l'hologramme réalise la correction résiduelle que la lame sphérique seule ne peut assurer. Dans des variantes de réalisation, l'hologramme selon l'invention est supporté par exemple par une surface asphérique ou un miroir de Mangin.
Dans la réalisation illustrée par la figure 3, la position du miroir diffractif 21 au voisinage de la seconde image intermédiaire 27 permet de le placer assez loin de l'œil de l'utilisateur. Notamment dans un viseur de casque, l'hologramme est placé à l'intérieur du casque dans un emplacement protégé d'agressions comme par exemple l'humidité ou le contact avec les doigts du pilote. Sur la figure 3, la troisième partie 33 de l'axe optique correspond à la réflexion de la seconde partie 32 de ce même axe optique sur le miroir diffractif 21 , on y observe, entre le miroir diffractif 21 et l'écran de l'imageur 20, une seconde image pupillaire 30 qui présente un plan tangent sensiblement normal à l'axe optique local 33. Le miroir diffractif 21 transforme une image pupillaire 24 inclinée sur l'axe optique en une image pupillaire 30 perpendiculaire à l'axe optique. Le miroir diffractif 21 permet au dispositif selon l'invention de présenter une bonne qualité de pupille sans affecter la qualité de l'image.
La partie utile du miroir diffractif 21 présente un plan tangent dont la normale 28, appartenant au plan d'incidence, n'est pas parallèle à la deuxième partie 32 de l'axe optique. Le miroir diffractif 21 est incliné par rapport à l'axe optique, il est dit hors axe. L'ouverture autour de l'axe 28 est suffisante pour optimiser le tirage laissé disponible pour placer par exemple des miroirs de renvoi entre le miroir diffractif 21 et la lentille la plus proche dans le groupe de puissance 22. Et l'angle d'incidence de l'axe optique sur le miroir 21 permet aussi de limiter la surface utile et ainsi de conserver une bonne qualité d'image sur toute la surface. L'angle d'incidence est de préférence voisin de 45 degrés. Dans cette réalisation, la surface utile du miroir 21 est par exemple estimée par un diamètre d'environ 45 millimètres. Le dispositif optique selon l'invention illustré par la figure 3 comporte une optique de relais 29, placée entre le miroir diffractif 21 et l'écran 20 de l'imageur, pour éloigner l'écran 20 de l'imageur du miroir diffractif 21. Cet éloignement est généralement rendu nécessaire pour satisfaire des contraintes d'encombrement. Il permet par exemple pour un viseur de casque de placer l'ensemble de l'imageur, qui peut être un tube à rayons cathodiques, à une position satisfaisante dans le volume disponible du casque. Les faisceaux des rayons lumineux entre l'optique de relais 29 et le miroir diffractif 21 présentent une très faible ouverture. Ces faisceaux sont en aval du miroir diffractif 21 en considérant les trajets de faisceaux inversés, c'est-à-dire de l'œil vers l'imageur. L'ouverture est très faible en comparaison à celle des faisceaux sur le miroir sphérique 1.
L'optique de relais 29 est sensiblement alignée avec la troisième partie 33 de l'axe optique. Cette optique de relais essentiellement centrée est simple à réaliser. L'optique de relais 29 a aussi des fonctions de puissance optique pour précorriger à proximité de l'imageur l'astigmatisme qui sera introduit par l'observation hors axe du miroir sphérique 1. Dans une variante de réalisation, cette correction de l'astigmatisme n'est pas réalisée au niveau de l'optique de relais 29 mais dans le groupe de puissance 22, lequel comporte alors par exemple une lentille diffractive et une lentille convergente. Dans la réalisation de la figure 3, l'optique de relais 29 comporte également un cube mélangeur 26, ou une lame semi-réféchissante, qui permet le mélange de la voie de l'écran 20 avec une voie d'un autre afficheur non représenté sur la figure 3. Le cube 26 permet par exemple de superposer des informations visuelles d'un tube cathodique et celles issues d'un ensemble (non représenté) comportant un objectif de prise de vue et un intensificateur d'image.
D'autre part, le grandissement entre les deux images pupillaires 30 et 24 est de préférence d'une valeur proche de un. La conjugaison pupillaire pratiquement unitaire présente l'avantage de réduire l'encombrement du dispositif optique, elle permet une minimisation de la taille des optiques tout au long du chemin optique. Cette réduction d'encombrement est avantageuse pour le poids du dispositif et pour son coût.
Dans la réalisation de la figure 4, le dispositif optique comporte entre un miroir de coliimation sphérique incliné 1 et l'écran 20 de l'imageur, un miroir diffractif 41 placé à proximité de la première image intermédiaire 25. Le substrat de l'hologramme est par exemple une lame de verre plane à faces parallèles. Entre le miroir diffractif 41 et l'écran 20, l'ensemble optique 42 assure une conjugaison de l'image intermédiaire 25 sur l'écran 20, il comporte plusieurs lentilles dont deux lentilles asphériques 43, 44. L'ensemble 42 peut également comporter un cube mélangeur 45 associé à une autre source lumineuse.
Cependant pour des performances optiques comparables, cette réalisation de l'invention nécessite un ensemble optique plus lourd et plus coûteux que la réalisation préférée illustrée par la figure 3.
Le miroir sphérique 1 hors axe peut être semi-transparent, dans ce cas, les rayons lumineux émis par le paysage ou l'environnement dans le champ de vue de l'utilisateur sont transmis par ce miroir et sont reçus par la pupille de l'œil simultanément avec les rayons réfléchis par ce même miroir et précédemment décrits. Le miroir semi-transparent est un combineur. C'est donc un combineur sphérique utilisé hors axe.
Le combineur fait de préférence partie d'une visière de protection des yeux et même du visage de l'utilisateur.
Une visière selon l'invention présente au moins une partie réfléchissante sphérique hors axe. En position d'utilisation la visière est rabattue de façon à ce que la partie correspondant au miroir sphérique 1 soit placée devant l'œil de l'utilisateur. L'ensemble du dispositif de présentation d'images collimatées peut être intégré à un casque par exemple pour un pilote d'avion ou d'hélicoptère et permet de réaliser un viseur de casque. Le viseur peut être monoculaire s'il présente l'image coliimatée à un seul œil. Le viseur peut être binoculaire s'il comporte la présentation d'une image pour chaque œil. Il présente l'avantage de permettre une vision agréable lorsque le recouvrement des champs de vue des deux images est total. Un viseur binoculaire peut également présenter un recouvrement partiel des deux champs de vue ce qui permet pour un même dimensionnent des optiques d'obtenir un champ de vue plus large sans trop dégrader la perception des informations présentées.
La distorsion d'une image présentant un quadrillage conduit à la déformation du quadrillage. Les images présentées à l'utilisateur et dont la distorsion inhérente à la visière concave sphérique hors axe est corrigée sont particulièrement avantageuses pour un viseur de casque car elles respectent les dimensions réelles des objets représentés. Ce qui est primordial lorsque le viseur présente une image superposée à la vue directe et l'est encore plus lorsque l'image présentée se substitue à la vue directe pour l'utilisateur par exemple dans le cas d'une vision nocturne assistée par un intensificateur d'image, d'une vision infrarouge ou d'un simulateur d'entraînement. La correction de cette distorsion présente l'avantage de permettre à l'utilisateur une bonne appréciation des distances sur l'image qu'il observe et de lui permettre par exemple de piloter de nuit sans erreur de positionnement.

Claims

REVENDICATIONS
1. Dispositif optique pour système de présentation d'images collimatées à un utilisateur, comportant un imageur (20) et un miroir concave sphérique hors axe (1 ), caractérisé en ce qu'il comporte des moyens optiques pour corriger la distorsion de l'image présentée à l'utilisateur qui est due au miroir concave sphérique hors axe (1 ), lesdits moyens comportant un miroir diffractif de champ (21 ).
2. Dispositif selon la revendication 1 , caractérisé en ce que le miroir diffractif de champ (21 ) est situé au voisinage d'une image intermédiaire (25, 27) formée par ledit dispositif optique.
3. Dispositif selon la revendication 2, caractérisé en ce que l'étendue du dit voisinage est limitée par la résolution.
4. Dispositif selon la revendication 2, caractérisé en ce que le miroir diffractif (21 ) est placé à une distance maximale de l'image intermédiaire (25, 27) au-delà de laquelle le miroir diffractif (21 ) dégrade la résolution de l'image.
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le miroir diffractif de champ (21 ) est situé au voisinage de la seconde image intermédiaire (27).
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le miroir diffractif de champ (21 ) est un hologramme numérique plan digital à variations discrètes.
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le miroir diffractif de champ (21 ) est un hologramme numérique plan à profil continu.
8. Dispositif selon l'une des revendications 6 et 7, caractérisé en ce que la face du support du miroir diffractif de champ (21 ) dans laquelle est réalisée l'hologramme n'est pas plane.
9. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le miroir diffractif de champ (21 ) est un hologramme de volume enregistré dans une matière photosensible.
10. Dispositif selon la revendication 9, caractérisé en ce que la matière photosensible est sur un support transparent d'indice optique variable.
11. Dispositif selon la revendication 9, caractérisé en ce que la matière photosensible est sur un support transparent d'épaisseur variable.
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un groupe de puissance (22) placé entre les miroirs sphérique (1 ) et diffractif (21 ).
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un ou plusieurs groupes optiques de puissance (22) ou de relais (29) placés sur le trajet des rayons entre l'imageur et le miroir sphérique, en amont et/ou en aval du miroir diffractif (21 ), ces groupes donnant aux faisceaux incidents sur le miroir diffractif une très faible ouverture, comparée à l'ouverture des faisceaux incidents sur le miroir sphérique.
14. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le miroir sphérique (1) est semi-transparent.
15. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le système de présentation d'images collimatées est un viseur de casque.
EP99970171A 1998-10-06 1999-10-05 Dispositif optique pour viseur de casque comportant un miroir diffractif Withdrawn EP1127288A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9812499 1998-10-06
FR9812499A FR2784201B1 (fr) 1998-10-06 1998-10-06 Dispositif optique pour viseur de casque comportant un miroir diffractif
PCT/FR1999/002378 WO2000020913A1 (fr) 1998-10-06 1999-10-05 Dispositif optique pour viseur de casque comportant un miroir diffractif

Publications (1)

Publication Number Publication Date
EP1127288A1 true EP1127288A1 (fr) 2001-08-29

Family

ID=9531244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99970171A Withdrawn EP1127288A1 (fr) 1998-10-06 1999-10-05 Dispositif optique pour viseur de casque comportant un miroir diffractif

Country Status (5)

Country Link
US (1) US6788442B1 (fr)
EP (1) EP1127288A1 (fr)
FR (1) FR2784201B1 (fr)
IL (2) IL142439A0 (fr)
WO (1) WO2000020913A1 (fr)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9104195B2 (en) 2006-12-20 2015-08-11 Lincoln Global, Inc. Welding job sequencer
US10994358B2 (en) 2006-12-20 2021-05-04 Lincoln Global, Inc. System and method for creating or modifying a welding sequence based on non-real world weld data
US9937577B2 (en) 2006-12-20 2018-04-10 Lincoln Global, Inc. System for a welding sequencer
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9483959B2 (en) 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
US8274013B2 (en) 2009-03-09 2012-09-25 Lincoln Global, Inc. System for tracking and analyzing welding activity
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US10748447B2 (en) 2013-05-24 2020-08-18 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US8569655B2 (en) * 2009-10-13 2013-10-29 Lincoln Global, Inc. Welding helmet with integral user interface
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
FR2959022B1 (fr) * 2010-04-16 2012-10-26 Thales Sa Dispositif de visualisation a "combineur" optique corrige des aberrations chromatiques
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US10359545B2 (en) 2010-10-21 2019-07-23 Lockheed Martin Corporation Fresnel lens with reduced draft facet visibility
WO2012082105A1 (fr) 2010-12-13 2012-06-21 Edison Welding Institute, Inc. Système d'apprentissage de soudage
US9720228B2 (en) 2010-12-16 2017-08-01 Lockheed Martin Corporation Collimating display with pixel lenses
US20160093233A1 (en) 2012-07-06 2016-03-31 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US20150072323A1 (en) 2013-09-11 2015-03-12 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
CN106233358A (zh) 2014-06-02 2016-12-14 林肯环球股份有限公司 用于人工焊工培训的系统和方法
WO2016061447A1 (fr) * 2014-10-17 2016-04-21 Lockheed Martin Corporation Dispositif d'affichage à champ de vision ultra-large et pouvant être porté sur la tête
JP6458935B2 (ja) * 2014-12-10 2019-01-30 株式会社リコー 虚像表示装置および画像投影装置
JP6451277B2 (ja) * 2014-12-10 2019-01-16 株式会社リコー 虚像表示装置および画像投影装置
US9939650B2 (en) 2015-03-02 2018-04-10 Lockheed Martin Corporation Wearable display system
US10754156B2 (en) 2015-10-20 2020-08-25 Lockheed Martin Corporation Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system
US9995936B1 (en) 2016-04-29 2018-06-12 Lockheed Martin Corporation Augmented reality systems having a virtual image overlaying an infrared portion of a live scene
EP3319066A1 (fr) 2016-11-04 2018-05-09 Lincoln Global, Inc. Sélection de fréquence magnétique pour le suivi de position électromagnétique
US10878591B2 (en) 2016-11-07 2020-12-29 Lincoln Global, Inc. Welding trainer utilizing a head up display to display simulated and real-world objects
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10997872B2 (en) 2017-06-01 2021-05-04 Lincoln Global, Inc. Spring-loaded tip assembly to support simulated shielded metal arc welding
EP3518024A1 (fr) * 2018-01-26 2019-07-31 Seiko Epson Corporation Afficheur
JP7192396B2 (ja) * 2018-01-26 2022-12-20 セイコーエプソン株式会社 表示装置
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
FR3082318B1 (fr) * 2018-06-07 2023-04-14 Thales Sa Lunette de vision de nuit comportant un oculaire a transport d'image corrigee de la distorsion et procede de calcul associe
JP7187987B2 (ja) * 2018-10-31 2022-12-13 セイコーエプソン株式会社 表示装置
JP7223248B2 (ja) * 2018-11-01 2023-02-16 セイコーエプソン株式会社 表示装置
JP7205166B2 (ja) * 2018-11-01 2023-01-17 セイコーエプソン株式会社 表示装置
JP2020076880A (ja) 2018-11-08 2020-05-21 セイコーエプソン株式会社 画像表示装置
JP2020160134A (ja) * 2019-03-25 2020-10-01 セイコーエプソン株式会社 表示装置、光学素子及び光学素子の製造方法
JP2020160130A (ja) * 2019-03-25 2020-10-01 セイコーエプソン株式会社 表示装置
JP7375374B2 (ja) * 2019-08-28 2023-11-08 セイコーエプソン株式会社 虚像表示装置及び導光装置
JP7293993B2 (ja) * 2019-08-29 2023-06-20 セイコーエプソン株式会社 表示装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2009960A (en) * 1977-12-09 1979-06-20 Hughes Aircraft Co Distortion corrected holographic optical elements
US4582389A (en) 1982-02-18 1986-04-15 Flight Dynamics, Inc. Holographic device
US4669810A (en) * 1984-02-03 1987-06-02 Flight Dynamics, Inc. Head up display system
US4763990A (en) * 1984-02-03 1988-08-16 Flight Dynamics, Inc. Head up display system
IL79391A (en) * 1985-08-14 1994-06-24 Hughes Aircraft Co Non-spherical patch with a stepped key and a display system that uses it
DE3532120A1 (de) * 1985-09-10 1987-03-19 Ver Glaswerke Gmbh Windschutzscheibe mit einer reflektierenden einrichtung zur einspiegelung von optischen signalen in das gesichtsfeld des fahrers
FR2593932B1 (fr) * 1986-02-04 1989-12-01 Thomson Csf Dispositif de visualisation a grand champ et a rendement optique eleve
US4826287A (en) * 1987-01-20 1989-05-02 Hughes Aircraft Company Display system having coma-control plate in relay lens
FR2613497B1 (fr) * 1987-03-31 1991-08-16 Thomson Csf Viseur binoculaire, holographique et a grand champ, utilisable sur casque
FR2614434B1 (fr) * 1987-04-22 1989-06-09 Thomson Csf Viseur clair holographique montable sur casque
DE3855418D1 (de) * 1987-09-18 1996-08-14 Hughes Flight Dynamics Inc N D Head-up-anzeigesystem für fahrzeugfahrer
CA2044932C (fr) * 1990-06-29 1996-03-26 Masayuki Kato Ecran d'affichage
DE69325607T2 (de) * 1992-04-07 2000-04-06 Raytheon Co Breites spektrales Band virtuelles Bildanzeige optisches System
FR2696013B1 (fr) 1992-09-21 1994-11-25 Sextant Avionique Combineur holographique escamotable, notamment pour aéronef.
FR2698767B1 (fr) 1992-12-08 1995-01-06 Sextant Avionique Système de maintien d'au moins une visière sur casque.
FR2700023B1 (fr) 1992-12-24 1995-02-10 Sextant Avionique Dispositif de maintien et de guidage pour collimateur.
US5537253A (en) * 1993-02-01 1996-07-16 Honeywell Inc. Head mounted display utilizing diffractive optical elements
GB9304944D0 (en) * 1993-03-11 1993-04-28 Pilkington Perkin Elmer Ltd Head-up displays
FR2717272B1 (fr) 1994-03-08 1996-05-31 Sextant Avionique Dispositif d'accrochage mécanique d'un système de visualisation sur un casque.
FR2717045B1 (fr) 1994-03-11 1996-05-31 Sextant Avionique Equipement de tête à liaison isostatique entre coque et équipements optroniques.
FR2725114B1 (fr) 1994-09-30 1996-11-15 Sextant Avionique Casque modulaire a montage rapide
FR2745917B1 (fr) * 1996-03-08 1998-04-03 Sextant Avionique Dispositif de visualisation pour viseur de casque
FR2754609B1 (fr) 1996-10-15 1998-12-18 Sextant Avionique Panneau de visualisation avec compensation par films birefringents holographiques
FR2762688B1 (fr) 1997-04-29 1999-07-16 Sextant Avionique Systeme optique combinant une presentation d'image et une analyse de l'oeil
FR2772242B1 (fr) 1997-12-12 2000-03-03 Sextant Avionique Casque comportant une partie largable par un coussin gonflable
FR2772343B1 (fr) 1997-12-12 2000-03-03 Sextant Avionique Fixation d'un support d'equipement embarque

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0020913A1 *

Also Published As

Publication number Publication date
IL142439A (en) 2006-12-10
FR2784201A1 (fr) 2000-04-07
WO2000020913A1 (fr) 2000-04-13
IL142439A0 (en) 2002-03-10
US6788442B1 (en) 2004-09-07
FR2784201B1 (fr) 2003-01-31

Similar Documents

Publication Publication Date Title
EP1127288A1 (fr) Dispositif optique pour viseur de casque comportant un miroir diffractif
EP1019775B1 (fr) Dispositif optique pour viseur de casque comportant un miroir de mangin
EP1714179B1 (fr) Procede et dispositif pour la creation d'images retiniennes utilisant le stigmatisme des deux foyers d'un dioptre sensiblement elliptique
EP0365406B1 (fr) Système optique de collimation notamment pour visuel de casque
FR2526553A1 (fr) Dispositif d'affichage pour collimateur de pilotage tete haute
EP0487385B1 (fr) Dispositif de visualisation collimaté à miroir sphérique hors d'axe pour simulateur
EP3215884B1 (fr) Système de visualisation tête haute à optiques croisées
FR2638242A1 (fr) Systeme optique de collimation, notamment pour visuel de casque
EP0011024A1 (fr) Système de visualisation monté sur un casque
FR2625336A1 (fr) Systeme de visualisation tete haute et aeronef equipe d'un tel systeme
EP1000375B1 (fr) Dispositif optique pour viseur de casque comportant un miroir aspherique
EP1057069B1 (fr) Dispositif optique pour viseur de casque comportant un miroir tubulaire
EP1258771B1 (fr) Architecture optique à encombrement réduit pour viseur de casque grand champ
EP1223455A1 (fr) Viseur tête haute apte à s'adapter à des équipements d'un type donné
EP3438725B1 (fr) Systeme de visualisation comportant un dispositif optique holographique permettant d'afficher des images dans des plans differents
EP0314243B1 (fr) Dispositif de rattrapage de la distorsion totale engendrée par la forme d'une paroi transparente
WO1999021044A1 (fr) Dispositif optique pour viseur de casque comportant une anamorphose a fibres optiques
FR2533326A1 (fr) Dispositif viseur a champ instantane agrandi comportant un miroir et procede de fabrication de ce miroir
FR2702283A1 (fr) Lunette à miroirs oscillants pour la vision infrarouge.
FR2949871A1 (fr) Dispositif de projection retinienne
FR3015701A1 (fr) Dispositif de projection retinienne.
CH499173A (fr) Appareil optique avec dispositif de stabilisation
BE888628A (fr) Appareil d'optique perfectionne pour vision binoculaire.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010918

RBV Designated contracting states (corrected)

Designated state(s): GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050720