EP1127090A1 - Thermoplastic article having low clarity and low haze - Google Patents
Thermoplastic article having low clarity and low hazeInfo
- Publication number
- EP1127090A1 EP1127090A1 EP99946766A EP99946766A EP1127090A1 EP 1127090 A1 EP1127090 A1 EP 1127090A1 EP 99946766 A EP99946766 A EP 99946766A EP 99946766 A EP99946766 A EP 99946766A EP 1127090 A1 EP1127090 A1 EP 1127090A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thermoplastic
- article according
- thermoplastic article
- particles
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
Definitions
- This application relates generally to translucent thermoplastic articles. Specifically, this application relates to thermoplastic articles having relatively high percent light transmission, haze less than about 95%, and relatively low percent clarity. For purposes of this application, levels of haze which may be high in an absolute sense, but are still between 70 and 95 %, will be referred to as "relatively low haze.” If an observer looks through such an article at an object behind the article, the observer can see that there is a particular object a distance behind the article (relatively low haze), but the observer can not clearly see the object (low clarity).
- thermoplastic articles having very high haze have been made by incorporating particles of a polymer into a polymer matrix having a different refractive index.
- Japanese Patent No. 3,143,950 discloses light fixture covers made by dispersing polymer particles in a polymer matrix having a different refractive index. Such materials have been useful for enclosures where the intent is not to let the observer see any apparatus behind the article. Very high haze, low clarity light fixture enclosures are made from this material because the emitted light is well dispersed across the entire enclosure. Also, the light bulb remains hidden behind the enclosure when it is not lit.
- articles having relatively low haze also have high clarity.
- polycarbonate compositions comprising ZnO as a light diffuser typically have clarity above 90 % when haze is near 90%.
- haze is defined as the percentage of transmitted light that deviates from the incident beam by more than 2.5° on average. Clarity is defined as the percentage of transmitted light that deviates from the incident by more than 0, but less than 2.5° on average.
- Conventional materials which have relatively low haze i.e., a smaller degree of > 2.5° scattering
- also have high clarity i.e., a smaller degree of ⁇ 2.5° scattering. This relationship holds true even when the absolute level of haze is high, but the "relatively low" haze level is less than about 95%.
- a translucent material having relatively low haze and relatively low clarity.
- compositions which incorporate zinc oxide or other inorganic light diffusing agents tend to react with polycarbonate and other thermoplastics to cause degradation of the physical characteristics of the thermoplastic.
- compositions comprising zinc oxide tend to have very high clarity at relatively low levels of haze which are still high in an absolute sense (e.g., 40% to about 98%).
- thermoplastic article which has a high percent light transmission, relatively low haze and low clarity. If this article is placed in front of an object, the observer on the far side of the article will see the object, but not clearly.
- the thermoplastic article will have a percentage light transmission above 60%, a haze value between 30 and 95%, and a clarity of above 70%, but below 95%. In a more preferred embodiment of the invention, the clarity will be below 85%.
- the article described herein comprises roughly spherical transparent thermoplastic particles dispersed in a transparent matrix thermoplastic resin.
- the particles and the matrix thermoplastic resin have differing refractive indices.
- the size, loading and type of spherical transparent thermoplastic particles is chosen appropriately, a material will be obtained which has a relatively low clarity without sufficient haze to prevent an observer from discerning objects behind the article.
- the article is preferably substantially free from inorganic light diffusion agents, and thereby avoids degradation caused by such additives.
- FIG. 1 is a plot of percent light transmission versus sample number for the six samples described in Example 1.
- FIG. 2 is a plot of percent haze versus sample number for the six samples described in Example 1.
- FIG. 3 is a plot of percent clarity versus sample number for the six samples described in Example 1.
- FIG. 4 is a plot of percent clarity and haze versus particle size for a polycarbonate /PMMA article as described in Example 2. (PMMA is polymethylmethacrylate) .
- FIG. 5 is a plot of haze versus PMMA particle size for samples having various thicknesses as described in Example 2.
- FIG. 6 is a plot of clarity versus PMMA particle size for samples having various thicknesses as described in Example 2.
- a typical thermoplastic article according to the invention comprises a matrix of transparent matrix thermoplastic resin (hereinafter “the matrix”) and transparent spherical thermoplastic particles (hereinafter “spherical particles”) suspended therein.
- the matrix transparent matrix thermoplastic resin
- spherical particles transparent spherical thermoplastic particles suspended therein.
- Such articles have a percent light transmission above 60%, a haze of less than 95%, and a clarity of greater than 70% but less than 97%.
- the particles must be selected carefully. Specifically, they must have an average diameter small enough such that the clarity is below its maximum versus the average diameter of the spherical particles (i.e., as shown in Figures 4 and 6, the clarity remains very flat above a certain diameter threshold, but begins to taper off steeply below this point).
- the spherical particles are sufficiently small such that clarity is less than 85%.
- the spherical particle size can not be made too small beca ⁇ ise the haze varies inversely with particle diameter.
- the spherical particles have an average diameter large enough such that the haze is above its minimum value versus particle size, but below 95%. The percent light transmission is preferably maintained above 60%.
- the percent light transmission is above 85%, the haze is less than 95%, and the clarity is less than 85%.
- the loading of PMMA particles is preferably from 0.01 to 0.50, and more preferably 0.05 to 0.50 parts per hundred resin based on the matrix.
- the transparent thermoplastic matrix described above may be any transparent thermoplastic material which is compatible with PMMA spherical light diffusing agents.
- Preferred matrix materials include polycarbonates, polyetherimides, transparent polyimides, transparent polyamides (nylons), polyesters such as transparent aliphatic polyesters (e.g., polycyclohexane carboxylic acid), transparent polycarbonate-polyester blends, polysulfones, polyether and polyphenyl sulfones, styrene acrylonitrile (SAN), polyethylene polystyrene, and miscible transparent polystyrene-polyphenylene oxide (PS- PPO) blends, acrylics, polycarbonate-polysiloxanes, polyetherimide- polysiloxanes, polyarylates (e.g., isophthalate resorcinol terephthalate), and blends and copolymers of all of the above.
- Preferred matrix materials include polycarbonates, polyetherimides,
- More preferred transparent thermoplastic matrix materials are polycarbonate homopolymers or copolymers, polyester carbonates and polyethylene terephthalate (PET).
- the most preferred matrix material is an aromatic polycarbonate homopolymer based primarily on the bisphenol-A monomer.
- the synthesis of such materials is well known in the art.
- U.S. Patent No. 5,364,926 describes the melt process for making polycarbonate, and is incorporated by reference herein.
- the interfacial and solid state process can also be used.
- the spherical particles may be any transparent thermoplastic polymer or other light diffuser which has a refractive index (hereinafter "R.I.") different from that of the matrix.
- R.I. refractive index
- the R.I. of the light diffuser differs from that of the matrix by at least 0.01.
- Suitable light diffusers included polytetrafluoroethylene, zinc oxide, and PMMA.
- the matrix thermoplastic resin is polycarbonate having an R.I. of 1.56 to 1.62
- the spherical particles are PMMA having an R.I. of 1.46 to 1.53.
- the spherical transparent thermoplastic particles have an average diameter which is sufficiently small such that the clarity of the article is below its maximum value with respect to the average diameter of the spheres.
- the matrix thermoplastic resin is polycarbonate and the spherical particles are PMMA
- this condition is typically satisfied when the average particle diameter is less than about 30 microns (see FIG. 4).
- the particle size is more preferably below 15 microns, and most preferably between 3 and 10 microns.
- there may be two or more sets of PMMA particles wherein at least one set has a particle size below 30 microns.
- Preferred PMMA particles for incorporation in a polycarbonate matrix have a specific gravity of about 1.10 to 1.30, and are highly crosslinked (e.g., essentially 100% crosslinked).
- the diameter of the spherical particles is sufficiently small such that the clarity is less than 0.95 of its maximum value versus the diameter of the spherical particles. In a most preferred embodiment, the spherical particles are sufficiently such that the clarity is less than 0.93 of its maximum value versus the diameter of the particles.
- PMMA spherical particles in the various sizes between 1 and 50 micron diameter are commercially available from Nagase America. Methods of making such particles are known, and are described, for example, in Japanese Published Patent Application No. JP 6220290, which is incorporated herein by reference.
- the thermoplastic matrix may optionally further contain an optical brightening agent, additional pigments and /or a fluorescent dye. Adding an optical brightening agent helps produce a brighter color for the article.
- Suitable optical brightening agents include aromatic stilbene derivatives, aromatic benzoxazole derivatives, or aromatic stilbene benzoxazole derivatives. Among these optical brightening agents, Uvitex OB from Ciba Specialty Chemicals [2,5-bis(5'-tert-butyl-2-benzoxazolyl)thiophene] is preferred.
- Suitable fluorescent dyestuffs include Permanent Pink R (Color Index Pigment Red 181, from Clariant Corporation), Hostasol Red 5B (Color Index #73300, CAS # 522-75-8, from Clariant Corporation) and Macrolex Fluorescent Yellow 10GN (Color Index Solvent Yellow 160:1, from Bayer Corporation). Among these, Permanent Pink R is preferred.
- pigments include titanium dioxide, zinc sulfide, carbon black, cobalt chromate, cobalt titanate, cadmium sulfides, iron oxide, sodium aluminum sulfosilicate, sodium sulfosilicate, chrome antimony titanium rutile, nickel antimony titanium rutile, zinc oxide, and polytetrafluoroethylene.
- UV stabilizers include various chemicals to prevent degradation of the thermoplastic matrix due to exposure to UV light.
- Suitable UV stabilizers include substituted benzotriazoles, or triazines, or tetraalkylpiperidines.
- the UV stabilizers may be mixed into the thermoplastic matrix, or they can be included only in a "hardcoat” transparent protective layer which is applied over the viewing surface.
- the resin composition according to the invention may further contain other resins and additives such as reinforcing agents, fillers, impact modifiers, heat resisting agents, antioxidants, anti-weathering agents, stabilizers, mold release agents, lubricants, nucleating agents, plasticizers, flame retardants, flow-improving agents and anti-statics.
- additives may be introduced in a mixing or molding process, provided the properties of the composition are not damaged.
- the reinforcing fillers may be metallic fillers such as fine powder aluminum, iron, nickel, or metal oxides.
- Non-metallic fillers include carbon filaments, silicates such as mica, aluminum silicate or clay, talc and asbestos, titanium oxide, wollastonite, novaculite, potassium titanate, titanate whiskers, glass fillers and polymer fibers or combinations thereof.
- Glass fillers useful for reinforcement are not particularly limited in their types or shapes and may be, for instance, glass fibers, milled glass, glass flakes and hollow or solid glass beads. Glass fillers may be subjected to surface treatment with coupling agents such as silane or titanate-type agents to enhance their adhesion with resin, or coated with inorganic oxides to provide some surface color to the filler.
- Reinforcing fillers are preferably used in an amount sufficient to yield the reinforcing effect, usually 1 to 60% by weight, preferably less than 10% by weight, based on the total weight of the composition.
- Glass fibers, or a combination of glass fibers with talc, mica or aluminum silicate are preferred reinforcing agents. These fibers are preferably about 0.00012 to 0.00075 inches long. The amount of filler must be less than that which would make the material opaque.
- a polycarbonate derived from brominated bisphenol is added as a flame retardant.
- inorganic or organic antimony compounds may further be blended in the composition to synergistically enhance flame retardance introduced by such polycarbonate.
- Suitable inorganic antimony compoL nds are antimony oxide, antimony phosphate, KSb(OH) 6 , NH 4 SbF 6 and Sb 2 S3.
- organic antimony compounds may also be used, such as antimonic esters of organic acids, cyclic alkyl antimonite esters and aryl antimonic acid compounds.
- Examples of typical organic antimony compounds are potassium antimony tartrate, antimony salt of caproic acid, Sb(OCH 2 CH 3 )3, Sb[OCH(CH 3 )CH 2 CH 3 ] 3 , antimony polymethylene glycorate and triphenyl antimony.
- a preferred antimony compound is antimony oxide.
- Phosphites e.g., aromatic phosphite thermal stabilizers
- metal salts of phosphoric and phosphorous acid may also be added as stabilizers or antioxidants.
- Suitable antistatic agents include, but are not limited to, phosphonium salts, polyalkylene glycols, sulfonium salts and alkyl and aryl ammonium salts.
- Suitable mold release agents include, but are not limited to, pentaerythritol tetracarboxylate, glyc ⁇ rol monocarboxylates, glycerol tricarboxylates, polyolefins, alkyl waxes and amides.
- the components may be mixed by any known methods.
- a premixing step the dry ingredients are mixed together.
- This premixing step is typically performed using a tumbler mixer or a ribbon blender.
- the premix may be manufactured using a high shear mixer such as a Henschel mixer or similar high intensity device.
- the premixing step must be followed by a melt mixing step where the premix is melted and mixed again as a melt.
- it is possible to skip the premixing step and simply add the raw materials directly into the feed section of a melt mixing device via separate feed systems.
- the ingredients are typically melt kneaded in a single screw or twin screw extruder, a Banburv mixer, a two roll mill, or similar device.
- composition according to present invention may then be formed into articles by any known method such as extrusion or injection molding.
- the composition may be may be used to prepare film sheet or complex shapes via any conventional technique.
- thermoplastic articles according to the present invention are useful for a variety of different purposes. As some specific, non-limiting examples, they may be used for business equipment housings such as computer, monitor or printer housings, communications equipment housings such as cellular phone enclosures, data storage device housings, appliances, or automobile parts such as instrument panel components or in a lens for a head lamp.
- the article can be any size or shape.
- Thermoplastic articles according to the invention are particularly preferred for applications where low clarity and high percent light transmission are design objectives.
- Each of the above six samples further comprises 0.06 parts per hundred
- Figures 1 - 3 show the results obtained upon measuring percent light transmission, haze and clarity, respectively, for these six samples.
- Figure 1 seems to show that transmission falls off slightly with increasing PMMA spherical particle size, but the effect is very small and could be within experimental error. In any case, the percent light transmission for these samples was relatively high (about 86 - 87).
- Figure 2 shows that haze decreases with increasing particle size to a minimum value at about 30 microns (sample #3). There is no significant further decrease from 30 microns to 50 micron (sample #4).
- the bimodal particle size distribution of sample 6 gives an additive effect.
- Table 3 shows that the clarity increases with increasing particle size up to a maximum at a particle size of about 30 microns. There is no further increase in clarity when progressing from 30 microns to 50 micron particles. Again, sample 6 shows an additive effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18763798A | 1998-11-06 | 1998-11-06 | |
US187637 | 1998-11-06 | ||
PCT/US1999/020424 WO2000027927A1 (en) | 1998-11-06 | 1999-09-07 | Thermoplastic article having low clarity and low haze |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1127090A1 true EP1127090A1 (en) | 2001-08-29 |
EP1127090B1 EP1127090B1 (en) | 2003-04-09 |
EP1127090B2 EP1127090B2 (en) | 2006-09-27 |
Family
ID=22689818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99946766A Expired - Lifetime EP1127090B2 (en) | 1998-11-06 | 1999-09-07 | Thermoplastic article having low clarity and low haze |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1127090B2 (en) |
JP (1) | JP2002529569A (en) |
AT (1) | ATE236958T1 (en) |
DE (1) | DE69906778T3 (en) |
ES (1) | ES2196858T5 (en) |
WO (1) | WO2000027927A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1177256B1 (en) | 1999-04-28 | 2005-06-22 | General Electric Company | Compositions and methods for reduced food adhesion |
US6448334B1 (en) | 2000-12-19 | 2002-09-10 | General Electric Company | Translucent polycarbonate composition, method for preparation thereof, and articles derived therefrom |
US7008700B1 (en) | 2001-03-05 | 2006-03-07 | 3-Form | Architectural laminate panel with embedded compressible objects and methods for making the same |
US20060046017A1 (en) | 2004-09-01 | 2006-03-02 | 3Form | Architectural glass panels with embedded objects and methods for making the same |
KR100782265B1 (en) * | 2005-12-30 | 2007-12-04 | 제일모직주식회사 | Polycarbonate resin composition with good light reflectance and good flame retardancy |
CA2687190C (en) | 2007-05-08 | 2015-12-08 | 3Form, Inc. | Multivariate color system with texture application |
JP2011068724A (en) * | 2009-09-24 | 2011-04-07 | Shin-Etsu Chemical Co Ltd | Light-diffusible silicone rubber composition and molded form |
US9290618B2 (en) | 2011-08-05 | 2016-03-22 | Sabic Global Technologies B.V. | Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions |
JP5787736B2 (en) * | 2011-12-10 | 2015-09-30 | 三菱樹脂株式会社 | Translucent biaxially stretched polyester film for glass lamination |
USD691289S1 (en) | 2012-09-05 | 2013-10-08 | 3Form, Inc. | Panel with cut and aligned thatch interlayer |
EP2912107B1 (en) | 2012-10-25 | 2018-03-28 | SABIC Global Technologies B.V. | Light emitting diode devices, method of manufacture, uses thereof |
CN103849136B (en) * | 2012-11-30 | 2016-12-21 | 纳幕尔杜邦公司 | Comprise the polymer composition of the enhancing of the titanium dioxide granule of cladding |
JP7054522B2 (en) * | 2017-10-25 | 2022-04-14 | 有限会社エイト | Resin composition and resin parts |
JP7007950B2 (en) * | 2018-03-05 | 2022-01-25 | 東洋鋼鈑株式会社 | Pearl-like glossy film |
CN110256796B (en) * | 2019-07-18 | 2021-06-29 | 广东一龙新材料科技有限公司 | Special high-light-reflection PMMA master batch for traffic and preparation method thereof |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5938253A (en) * | 1982-08-27 | 1984-03-02 | Mitsubishi Rayon Co Ltd | Light-diffusing acrylic resin molding |
JPS6322816A (en) * | 1986-07-03 | 1988-01-30 | Asahi Oorin Kk | High cycle rate sheet-forming process |
US5237004A (en) * | 1986-11-18 | 1993-08-17 | Rohm And Haas Company | Thermoplastic and thermoset polymer compositions |
JP2667876B2 (en) * | 1988-06-14 | 1997-10-27 | 株式会社クラレ | Light diffusing plastic |
JP2667878B2 (en) * | 1988-06-24 | 1997-10-27 | 株式会社クラレ | Light diffusing plastic |
JPH03126766A (en) * | 1989-10-03 | 1991-05-29 | Rohm & Haas Co | Polymer composition |
JP2696573B2 (en) * | 1989-10-30 | 1998-01-14 | 日本ジーイープラスチックス 株式会社 | Light diffusing polycarbonate resin |
JPH03285958A (en) * | 1990-03-31 | 1991-12-17 | Dainichiseika Color & Chem Mfg Co Ltd | Light-diffusible resin composition |
DE4040203A1 (en) * | 1990-12-15 | 1992-06-17 | Roehm Gmbh | IMPORTED PLASTIC ELEMENTS |
JPH04279668A (en) * | 1991-03-07 | 1992-10-05 | Kao Corp | Light diffusing resin |
JPH04328148A (en) * | 1991-04-30 | 1992-11-17 | Mitsubishi Rayon Co Ltd | Light-diffusing sheet-like article |
JP3103652B2 (en) * | 1992-02-27 | 2000-10-30 | 日本ジーイープラスチックス株式会社 | Method for producing optical polycarbonate composition |
JPH0632995A (en) * | 1992-07-13 | 1994-02-08 | Osaka Shinku Kogyo Kk | Chromatic glittering powder |
GB9215169D0 (en) * | 1992-07-16 | 1992-08-26 | Rohm & Haas | Mouldable crystalline polyester composition |
DE4231995A1 (en) * | 1992-09-24 | 1994-03-31 | Roehm Gmbh | Light-scattering polystyrene molding compound and moldings made from it |
JPH06220290A (en) * | 1993-01-29 | 1994-08-09 | Sekisui Plastics Co Ltd | Methacrylic resin composition for molded object with excellent light diffusion property |
JPH0790167A (en) * | 1993-09-22 | 1995-04-04 | Teijin Ltd | Light-diffusing resin composition |
DE9318362U1 (en) * | 1993-12-01 | 1994-02-03 | Roehm Gmbh | Uniformly illuminated light guide plates |
JPH07234304A (en) * | 1994-02-23 | 1995-09-05 | Soken Kagaku Kk | Light diffusion plate |
US5512620A (en) * | 1994-05-05 | 1996-04-30 | General Electric Company | Benzoxazolyl optical brightners in and for thermoplastic compositions |
-
1999
- 1999-09-07 AT AT99946766T patent/ATE236958T1/en not_active IP Right Cessation
- 1999-09-07 JP JP2000581099A patent/JP2002529569A/en active Pending
- 1999-09-07 EP EP99946766A patent/EP1127090B2/en not_active Expired - Lifetime
- 1999-09-07 ES ES99946766T patent/ES2196858T5/en not_active Expired - Lifetime
- 1999-09-07 WO PCT/US1999/020424 patent/WO2000027927A1/en active IP Right Grant
- 1999-09-07 DE DE69906778T patent/DE69906778T3/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO0027927A1 * |
Also Published As
Publication number | Publication date |
---|---|
ATE236958T1 (en) | 2003-04-15 |
DE69906778T3 (en) | 2007-05-16 |
WO2000027927A1 (en) | 2000-05-18 |
ES2196858T3 (en) | 2003-12-16 |
EP1127090B1 (en) | 2003-04-09 |
DE69906778T2 (en) | 2004-03-04 |
DE69906778D1 (en) | 2003-05-15 |
EP1127090B2 (en) | 2006-09-27 |
ES2196858T5 (en) | 2007-05-16 |
JP2002529569A (en) | 2002-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1127090B1 (en) | Thermoplastic article having low clarity and low haze | |
KR101362642B1 (en) | Flame retardant and light diffusing polycarbonate resin composition and light diffusing plate comprising the same | |
KR101174686B1 (en) | Resin composition and fixing frames for flat-panel displays | |
JP5021928B2 (en) | A lens barrel made of a glass fiber reinforced flame retardant resin composition | |
JP2010015091A (en) | Lens barrel made of glass fiber reinforced resin composition | |
WO2008047673A1 (en) | Flame-retardant polycarbonate resin composition, polycarbonate resin molded article, and method for producing the polycarbonate resin molded article | |
JP5541881B2 (en) | Glass reinforced resin composition | |
JP2011026439A (en) | Glass fiber-reinforced resin composition | |
JP5397958B2 (en) | Flame retardant polycarbonate resin composition with excellent antistatic properties | |
WO2008047672A1 (en) | Flame-retardant polycarbonate resin composition, polycarbonate resin molded article, and method for producing the polycarbonate resin molded article | |
JPWO2009060986A1 (en) | Resin composition | |
JPH07242810A (en) | Flame-retardant resin composition | |
KR20120101638A (en) | Polycarbonate resin composition, polycarbonate resin molded article, and manufacturing method therefor | |
JP2000063653A (en) | Polycarbonate resin composition having transparency and slidability | |
JP3007046B2 (en) | Flame retardant polycarbonate resin composition | |
JP2001254009A (en) | Molded article composed of polybutylene terephthalate resin composition | |
JP5662220B2 (en) | Glass reinforced resin composition | |
USH1975H1 (en) | Thermoplastic article having a metallic flake appearance | |
WO2000024580A1 (en) | Thermoplastic article which exhibits angular metamerism | |
JPH1160920A (en) | Flame-retardant polyester resin composition, exhibiting antistatic property, for illuminator member | |
JP4665433B2 (en) | Flame retardant polyethylene terephthalate resin composition | |
EP0978540B1 (en) | Fire-retardant resin compositions | |
JP5428047B2 (en) | Polycarbonate resin composition pellets for rotational molding | |
JPH09302209A (en) | Resin composition and molded article obtained therefrom | |
KR20190080256A (en) | Thermoplastic resin composition and article produced therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20011012 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030409 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030409 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030409 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030409 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030409 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030709 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030709 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030709 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030709 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030907 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2196858 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: ROEHM GMBH & CO. KG Effective date: 20040109 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20060927 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Date of ref document: 20061222 Kind code of ref document: T5 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080915 Year of fee payment: 10 Ref country code: FI Payment date: 20080915 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080927 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090907 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090907 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: SABIC GLOBAL TECHNOLOGIES B.V. Effective date: 20160126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69906778 Country of ref document: DE Representative=s name: FARAGO PATENTANWALTS- UND RECHTSANWALTSGESELLS, DE Ref country code: DE Ref legal event code: R082 Ref document number: 69906778 Country of ref document: DE Representative=s name: FARAGO PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 69906778 Country of ref document: DE Representative=s name: SCHIEBER - FARAGO, DE Ref country code: DE Ref legal event code: R081 Ref document number: 69906778 Country of ref document: DE Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NL Free format text: FORMER OWNER: SABIC INNOVATIVE PLASTICS IP B.V., BERGEN OP ZOOM, NL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170906 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20171002 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180828 Year of fee payment: 20 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180907 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69906778 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20191030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180908 |