EP1116885B1 - Method and apparatus to control a turbo compressor to prevent surge - Google Patents

Method and apparatus to control a turbo compressor to prevent surge Download PDF

Info

Publication number
EP1116885B1
EP1116885B1 EP01100755A EP01100755A EP1116885B1 EP 1116885 B1 EP1116885 B1 EP 1116885B1 EP 01100755 A EP01100755 A EP 01100755A EP 01100755 A EP01100755 A EP 01100755A EP 1116885 B1 EP1116885 B1 EP 1116885B1
Authority
EP
European Patent Office
Prior art keywords
compressor
controller
line
control line
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01100755A
Other languages
German (de)
French (fr)
Other versions
EP1116885A2 (en
EP1116885A3 (en
Inventor
Wilfried Blotenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Turbomaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Turbomaschinen AG filed Critical MAN Turbomaschinen AG
Publication of EP1116885A2 publication Critical patent/EP1116885A2/en
Publication of EP1116885A3 publication Critical patent/EP1116885A3/en
Application granted granted Critical
Publication of EP1116885B1 publication Critical patent/EP1116885B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids

Definitions

  • a surge line can be defined that separates a stable map area from an unstable area to the left of the surge boundary. Operation in the unstable area to the left of the surge limit line is not permitted because serious machine damage can occur within a very short time.
  • a surge limit control is used, which controls a valve on the compressor outlet, which is connected as Abblaseventil with the atmosphere or as Umblaseventil with the suction side of the compressor.
  • such control operates such that the target value for the flow control is determined from the compressor pressure or from the pressure ratio between discharge pressure (discharge pressure) and inlet pressure, or from a quantity derived from this pressure ratio.
  • This setpoint corresponds to the control line.
  • the measured Kompressorsansaug grasp glucose is compared with the setpoint, and in case of a deviation occurs an adjustment of the blow-off valve. If the operating point of the compressor is on the control line, the control difference of the surge limit controller is zero and the blow-off valve remains in its position. If the operating point exceeds the control line in the direction of the pumping limit, the controller continues to open the valve, if the operating point is to the right of the control line, the controller closes the valve.
  • the operating point of the compressor In normal operation of the compressor, the operating point of the compressor is clearly to the right of the control line (the design point is typically 20-30% to the right) and the blow-off valve is fully closed.
  • a conventional controller When the operating point is shifted out of this operating state in the direction of the pumping limit, a conventional controller does not open until the actual value falls below the setpoint value, that is to say when the operating point has exceeded the control line in the direction of the pumping limit.
  • a method according to the preamble of claim 1 is known from DE-2828124 C2.
  • the difference signal from the setpoint and the actual value is supplied once without delay and delayed in parallel to a subtraction point, from which the input signal for the regulator is tapped.
  • This has the advantage that the control loop can also process fast, transient changes in the operating point with sufficient certainty.
  • the effect of the system is that the setpoint of the controller an additional Signal is added, which causes a shift of the control line at transient operating point shifts such that when approaching the operating point to the control line, the safety margin between surge line and control line is increased and the controller responds earlier.
  • the rule line is moved almost dynamically and effective is a new "dynamic rule line".
  • the safety distance between the control line and the stability limit under transient conditions is significantly greater than under stationary conditions and the compressor is significantly better protected in such critical conditions.
  • the known method however, has the disadvantage that, although the safety margin for transient working point shifts, which take place from a stationary state towards the surge line, is increased, but that the controller only delays the changes, with the time constant set on the delay element, can follow.
  • the known method is only fully effective if the operating point shifts from a stationary operating point in the direction of the surge line.
  • the known method only works unsatisfactorily in the case of disturbances which initially result in a displacement of the operating point away from the surge limit and then again in the direction of the surge limit.
  • the rule line is initially transiently shifted to the left, with the tendency to return to the steady state value according to the set time constant, that is, usually over several minutes.
  • US 4,938,658 A and DE 38 09 070.8 A disclose a method for controlling a turbocompressor to prevent the pumping, in which in addition to the continuous control of the Ab- or Umblaseventils depending on the control difference, a quick opening of the blow-off valve is provided which depends on the speed of the pumping limit directed working point shifts is triggered.
  • a filtering can be provided, which causes the differentiation for speed determination of the operating point without delay responds to working point shifts towards the surge line or blow-off line. According to the present invention, it is about the optimization of the continuous control of the discharge or Umblaseventils and not a superimposed this rapid opening.
  • the invention is based on the object to improve a method and a device of the known type so that the advantage of increasing the safety distance is always fully usable, regardless of whether the operating point before the beginning of the disturbance in a stationary Operating state is or whether previously transient operating point shifts have occurred.
  • the time constant of the delay element is designed asymmetrically. At operating point shifts in the direction of surge limit, the delay element acts as described in the prior art. On the other hand, with a shift of the operating point in the direction away from the boundary line, the delay element operates with a much smaller time constant. This ensures that the control line follows almost instantaneously at working point shifts away from the boundary line, but with the known, much slower time constant when moving in the direction of the surge line.
  • the control line is shifted to the right, for example by half the distance between the operating point and the stationary control line, with slower operating point shifts, the shift of the control line is lower. If the operating point is moved very slowly, that is to say over, for example, 1 hour in the direction of the stationary control line, the dynamic control line almost completely coincides with the stationary control line.
  • the control method according to the invention is particularly suitable for applications in which a controlled variable, in particular the flow signal, is very noisy due to flow vortices at the measuring point.
  • Classic PID controllers with differentiating algorithms fail in these applications because the derivative component responds to the rate of change of the controlled variable.
  • differentiating control algorithms are not permitted because they also lead to significant signal changes of the manipulated variable during stationary machine operation. They would also react in steady state operation near the design point and often prevent complete closure of the valve during steady state operation to the right of the control line. For reasons of economy, the valve is to be kept completely closed in stationary operation.
  • the method according to the invention offers significant advantages here, since it does not show this disadvantageous effect even with extremely strongly noisy controlled variables.
  • FIGS. 1-7 each show a simplified scheme of a device according to the invention for controlling a turbo-compressor to prevent pumping.
  • the pressure in front of and behind an orifice plate (not shown) in the suction line 1 of a turbo-compressor K is measured by measuring sensors 3, 5, from which a measuring transducer 7 forms the actual value for the suction-side compressor throughput V.
  • a measuring sensor 9 with a downstream measuring transducer 11 comprises the actual value of the final pressure P.
  • Both actual values V and P are input to a computer 13.
  • the computer 13 is provided with a memory in which the course of a stationary control line (blow-off line) in the compressor map, for example represented by P and V, e.g. as a polygon, is stored.
  • the Kompressorauslstratik P 2 can be used to calculate the setpoint or even the setpoint, if all other parameters are constant.
  • the computer 13 determines from the position of the operating point in the characteristic field defined by the actual values of V and P relative to the control line a nominal value for the throughput V.
  • the delay element 23 is a first-order delay element which is asymmetrical in terms of its time constant. In shifts of the operating point to the left in the direction of the surge boundary line G, ie when the change in time of the differential signal x d formed at the subtracting 17 has a positive slope, the delay element 23 operates with normal delay. If, on the other hand, the operating point shifts to the right, ie away from the surge limit line G, and thus the change in the time of the difference signal x d formed at the subtraction point 17 has a negative sign, the delay element 23 operates with a significantly smaller time constant, typically approximately 1 second. This ensures that the controller R can also follow rapid changes in the operating point, which are directed away from the surge boundary line G and therefore "harmless", almost instantaneously.
  • the circuit branch between the summators 17 and 19 containing the asymmetric delay element 23 may be considered as a "gradient sensor" detecting the direction and velocity of working point shifts towards or away from the surge line.
  • the mode of operation can then be described as follows: In the memory 13, the stationary control line is entered as a polygon. In the summer 17, the difference between the stationary control line (setpoint for the surge limit control) and the current flow of the compressor is formed. This (current) control difference is applied to the controller R, which changes its output according to the implemented control algorithm. Furthermore, from the current control difference by means of the gradient sensor 23 and the adder 19, a virtual control difference is formed as the sum of the difference between the stationary control line and the current flow and the output signal of the gradient sensor 23.
  • This virtual control difference is applied to the controller R as an additional input variable.
  • This results in a virtual rule line which follows a transient shift point with a set time constant (typically 20 to 60 seconds). After the decay of this time constant, the virtual rule line coincides with the stationary rule line.
  • the circuit part 40 which is framed in dashed lines and functions as a gradient sensor, contains an integrator 32 whose output signal is fed back to the input and is added to the input signal of the integrator 32 with a negative sign by means of a summing element 30.
  • the time constant of the integrator 32 changes depending on the movement of the operating point.
  • the gradient sensor follows the new distance between operating point and control line without delay.
  • the output of the gradient sensor follows in a time-delayed manner, that is to say slowly, and thus causes a continuous settling into the stationary state.
  • FIG. 4 shows a possible embodiment of the "gradient sensor" as it is inserted in block 40 of FIG. 3.
  • a feedback integrator 32 is preceded by an asymmetric limiter 31.
  • the output signal of the integrator 32 is applied to the summer 30 at the input with a negative sign.
  • the asymmetric limiter 31 is set to reduce input signals generated by movement of the compressor operating point toward the surge line to very small values, e.g. 0.02, limited.
  • Input signals corresponding to a shift of the compressor operating point away from the surge limit are hardly limited, e.g. by a limit of 1.
  • the integrator Since the limiter 31 limits positive values to a maximum of 0.02, the integrator receives an input signal of 0.02 and thereby integrates it with a time constant of 50 seconds. Only after the decay of this settling time, the output of the integrator 32 coincides with its input.
  • the difference between the input of the adder 30 and the output of the integrator is formed and the dynamic Rule line switched on. In the steady state, the output of the summer 19 is zero, with transient shifts of the operating point in the direction of surge line, the output of the summer 19 transiently assumes a positive value whose amplitude is proportional to the size of the operating point shift and proportional to the speed of the operating point.
  • the lower limit of the limiter 31 engages and the integrator follows with a small time constant, e.g. 1 second.
  • the gradient sensor is thus almost ineffective in this direction.
  • this has the advantage that the integrator very quickly assumes the new steady state value. If the operating point changes transiently, e.g. first from -0.2 to -0.3, and then to go to -0.1, according to the invention, the output of the integrator follows very quickly to - 0.3. The full dynamics of the system is thus available. In a prior art technique, the integrator would follow the change from -0.2 to -0.3 with the same time constant as in the other direction. With a short succession of both disturbances, the movement away from the rule line would be ignored.
  • FIG. 5 shows a further embodiment of the gradient sensor 40.
  • two amplifiers 33 and 34 are used whose outputs are connected to the integrator 31 via a changeover switch 35.
  • the amplifiers are set to different amplification factors, the amplifier 33, for example, to 0.02 and the amplifier 34 to 1.
  • the switch 35 is controlled by a differentiator or a sign generator 36 and switches, depending on the sign of the input to one or the other amplifier , This ensures that at a shift in the operating point in the direction of the pumping limit, a small gain and thus a large time constant is effective, and with a shift in the direction away from the surge line, a large gain, ie small target constant.
  • FIG. 6 A further embodiment is shown in FIG. 6.
  • an integrator 32 with a parameter-adaptable time constant is used instead of the limiter 31, instead of the limiter 31, a parameter-adaptable time constant is used. Depending on the direction of change of the input signal, the time constant of the integrator is switched over the adaptation block 37 between a large and a small value.
  • FIG. 7 shows a further embodiment whose gradient sensor 40 uses a special structure-switchable integrator NFI 32.
  • the integrator Via a control input, which is connected to the output of the differentiator 36, the integrator switches between the two modes of integration and tracking. If the operating point of the compressor shifts in the direction of the surge line, the differentiator DIF 36 switches the integrator 32 into the operating mode Integrate. The integrator, with its set time constant (typically, for example, 50 seconds), follows the change in the input signal to the summer 30. On the other hand, if the operating point shifts away from the surge line, the differentiator 36 switches the integrator 32 to the tracking mode. The output of the integrator follows without any time delay the second input, that is, the output of the summer 17. As soon as the operating point moves back towards the surge line, the differentiator 36 switches the integrator 32 back into the operating mode Integrate. The output of the integrator follows from this state with its set time constant to the new value.
  • set time constant typically, for example, 50 seconds
  • the differentiator 36 recognizes the change in direction and switches the integrator into the operating mode Integrate.
  • the output of the integrator 32 follows the input with the set time constant (e.g., 50 seconds).
  • the adder 18 transiently adds up a positive quantity which has the same effect as the described dynamic rule line.
  • the embodiment variants of the gradient sensor 40 illustrated in FIGS. 4-7 can also be used in the embodiment according to FIG. 2. It only needs to be replaced in the arrangement shown in FIG. 2 of the integrator 32 and summer 30 existing gradient sensor 40 by one of the gradient sensors 40 as shown in FIG. 4-7. A separate drawing and description of such arrangements will be omitted here.
  • the advantage of the arrangement according to FIG. 2 with respect to that according to FIG. 3 and its variants according to FIGS. 4-7 is that only one Function generator 13 (polygon generator) is required for the imaging of the stationary control line, while a dynamic rule line function generator 41 is omitted and the dynamic rule line exists only virtually since it is calculated as the distance between the stationary control line and the current operating point.
  • Function generator 13 polygon generator

Description

Die Erfindung betrifft ein Verfahren zum Regeln eines Turbokompressors zum Verhindern des Pumpens, von der im Oberbegriff des Anspruchs 1 angegebenen Art, sowie eine Einrichtung zur Durchführung des Verfahrens.The invention relates to a method for controlling a turbocompressor for preventing pumping, of the type specified in the preamble of claim 1, and a device for carrying out the method.

Als Pumpen bezeichnet man bei Kompressoren das stoßweise oder periodische Rückströmen von Fördermedium von der Druck- zur Saugseite. Dieser Zustand tritt z.B. bei zu hohem Enddruck und/oder zu niedrigem Durchsatz ein. Im Kennfeld kann deshalb eine Pumpgrenzlinie definiert werden, die einen stabilen Kennfeldbereich von einem instabilen Bereich links der Pumpgrenzlinie trennt. Betrieb im instabilen Bereich links von der Pumpgrenzlinie ist unzulässig, da innerhalb kürzester Zeit gravierende Maschinenschäden eintreten können. Zur Vermeidung des Pumpens, d.h. des Betriebs im instabilen Bereich wird eine Pumpgrenzregelung eingesetzt, die ein Ventil am Kompressorauslass steuert, welches als Abblaseventil mit der Atmosphäre oder als Umblaseventil mit der Saugseite des Kompressors verbunden ist. Durch Öffnen des Ventils wird der Durchfluss durch den Kompressor so weit erhöht, dass der Arbeitspunkt stets innerhalb des stabilen Kennfeldbereichs verbleibt. Für eine solche Regelung wird im Kennfeld in einem Sicherheitsabstand von der Pumpgrenzlinie eine Regellinie (Abblase- oder Umblaselinie) definiert. Bei Annäherung des momentanen Arbeitspunktes an die Regellinie wird das Abblase- oder Umblaseventil (im Folgenden nur Abblaseventil genannt) mehr oder weniger geöffnet.Pumps are referred to in compressors, the intermittent or periodic backflow of fluid from the pressure to the suction side. This condition occurs, for example, at too high final pressure and / or low throughput. In the map, therefore, a surge line can be defined that separates a stable map area from an unstable area to the left of the surge boundary. Operation in the unstable area to the left of the surge limit line is not permitted because serious machine damage can occur within a very short time. To avoid the pumping, ie the operation in the unstable region, a surge limit control is used, which controls a valve on the compressor outlet, which is connected as Abblaseventil with the atmosphere or as Umblaseventil with the suction side of the compressor. By opening the valve, the flow through the compressor is increased to such an extent that the operating point always remains within the stable map range. For such a regulation, a control line (blow-off or blow-by line) is defined in the characteristic field at a safety distance from the surge limit line. When approaching the current operating point to the rule line the blow-off or Umblaseventil (hereinafter called only blow-off valve) is opened more or less.

Genauer gesagt, arbeitet eine solche Regelung derart, dass der Sollwert für die Durchflussregelung aus dem Kompressordruck oder aus dem Druckverhältnis zwischen Austrittsdruck (Enddruck) und Eintrittsdruck, oder aus einer aus diesem Druckverhältnis hergeleiteten Größe ermittelt wird. Dieser Sollwert entspricht der Regellinie. Der gemessene Kompressoransaugdurchfluss wird mit dem Sollwert verglichen, und bei einer Abweichung erfolgt eine Verstellung des Abblaseventils. Sofern sich der Arbeitspunkt des Kompressors auf der Regellinie befindet, ist die Regeldifferenz des Pumpgrenzreglers null und das Abblaseventil verharrt in seiner Stellung. Überschreitet der Arbeitspunkt die Regellinie in Richtung Pumpgrenze, öffnet der Regler das Ventil weiter, befindet sich der Arbeitspunkt rechts von Regellinie, schließt der Regler das Ventil.More specifically, such control operates such that the target value for the flow control is determined from the compressor pressure or from the pressure ratio between discharge pressure (discharge pressure) and inlet pressure, or from a quantity derived from this pressure ratio. This setpoint corresponds to the control line. The measured Kompressorsansaugdurchfluss is compared with the setpoint, and in case of a deviation occurs an adjustment of the blow-off valve. If the operating point of the compressor is on the control line, the control difference of the surge limit controller is zero and the blow-off valve remains in its position. If the operating point exceeds the control line in the direction of the pumping limit, the controller continues to open the valve, if the operating point is to the right of the control line, the controller closes the valve.

Bei normaler Betriebsweise des Kompressors liegt der Arbeitspunkt des Kompressors deutlich rechts von der Regellinie (der Auslegungspunkt liegt typischerweise 20 bis 30% rechts davon) und das Abblaseventil ist völlig geschlossen. Bei einer Verschiebung des Arbeitspunktes aus diesem Betriebszustand heraus in Richtung Pumpgrenze beginnt ein herkömmlicher Regler erst dann zu öffnen, wenn der Istwert den Sollwert unterschreitet, das heißt wenn der Arbeitspunkt die Regellinie in Richtung Pumpgrenze überschritten hat.In normal operation of the compressor, the operating point of the compressor is clearly to the right of the control line (the design point is typically 20-30% to the right) and the blow-off valve is fully closed. When the operating point is shifted out of this operating state in the direction of the pumping limit, a conventional controller does not open until the actual value falls below the setpoint value, that is to say when the operating point has exceeded the control line in the direction of the pumping limit.

Ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 ist aus DE-2828124 C2 bekannt. Bei diesen bekannten Verfahren wird das Differenzsignal aus Sollwert und Istwert einmal unverzögert und parallel dazu verzögert einer Subtrahierstelle zugeführt, von der das Eingangssignal für den Regler abgegriffen wird. Dies hat den Vorteil, dass der Regelkreis auch schnelle, transiente Änderungen des Arbeitspunktes mit ausreichender Sicherheit verarbeiten kann. Die Wirkung des Systems ist die, dass dem Sollwert des Reglers ein zusätzliches Signal aufaddiert wird, das bei transienten Arbeitspunktverschiebungen eine Verschiebung der Regellinie derart bewirkt, dass bei einer Annäherung des Arbeitspunktes an die Regellinie der Sicherheitsabstand zwischen Pumpgrenze und Regellinie vergrößert wird und der Regler dadurch früher anspricht. Die Regellinie wird quasi dynamisch verschoben und wirksam ist eine neue "dynamische Regellinie". Dies hat zur Folge, dass der Sicherheitsabstand zwischen Regellinie und Stabilitätsgrenze unter transienten Bedingungen deutlich größer ist als unter stationären Bedingungen und der Kompressor in solchen kritischen Bedingungen deutlich besser geschützt ist.A method according to the preamble of claim 1 is known from DE-2828124 C2. In these known methods, the difference signal from the setpoint and the actual value is supplied once without delay and delayed in parallel to a subtraction point, from which the input signal for the regulator is tapped. This has the advantage that the control loop can also process fast, transient changes in the operating point with sufficient certainty. The effect of the system is that the setpoint of the controller an additional Signal is added, which causes a shift of the control line at transient operating point shifts such that when approaching the operating point to the control line, the safety margin between surge line and control line is increased and the controller responds earlier. The rule line is moved almost dynamically and effective is a new "dynamic rule line". As a result, the safety distance between the control line and the stability limit under transient conditions is significantly greater than under stationary conditions and the compressor is significantly better protected in such critical conditions.

Das bekannte Verfahren hat allerdings den Nachteil, dass zwar der Sicherheitsabstand bei transienten Arbeitspunktverschiebungen, die aus einem stationären Zustand heraus in Richtung Pumpgrenze erfolgen, vergrößert ist, dass aber der Regler den Änderungen nur verzögert, mit der am Verzögerungsglied eingestellten Zeitkonstante, folgen kann. Voll wirksam ist das bekannte Verfahren nur dann, wenn sich der Arbeitspunkt von einem stationären Betriebspunkt ausgehend in Richtung Pumpgrenze verschiebt. Dagegen wirkt das bekannte Verfahren bei Störungen, die zunächst eine Verschiebung des Arbeitspunktes weg von der Pumpgrenze und dann wieder in Richtung Pumpgrenze zur Folge haben, nur unbefriedigend. Bei der Bewegung des Arbeitspunktes weg von der Pumpgrenze wird die Regellinie zunächst transient nach links verschoben, mit der Tendenz, sich gemäß der eingestellten Zeitkonstante, das heißt normalerweise über mehrere Minuten hin, wieder auf den stationären Wert einzustellen. Erst wenn dieser Zustand abgeklungen ist, kann von einem neuen stationären Zustand ausgegangen werden, und das bekannte Verfahren kann seine volle Wirksamkeit zeigen. Bis zum Abklingen dieses transienten Zustands befindet sich die dynamische (dieses ist die wirksame) Regellinie links von der stationären Regellinie. Die Pumpgrenzregelung greift daher nur mit Verzögerung ein, da der Arbeitspunkt transient einen weiteren Weg Richtung Pumpgrenze zurücklegen muss, bis der Regler eingreift.The known method, however, has the disadvantage that, although the safety margin for transient working point shifts, which take place from a stationary state towards the surge line, is increased, but that the controller only delays the changes, with the time constant set on the delay element, can follow. The known method is only fully effective if the operating point shifts from a stationary operating point in the direction of the surge line. On the other hand, the known method only works unsatisfactorily in the case of disturbances which initially result in a displacement of the operating point away from the surge limit and then again in the direction of the surge limit. When moving the operating point away from the surge line, the rule line is initially transiently shifted to the left, with the tendency to return to the steady state value according to the set time constant, that is, usually over several minutes. Only when this condition has subsided can it be assumed that a new steady-state condition exists, and the known method can show its full effectiveness. Until the transient state dies, the dynamic (this is the effective) rule line is to the left of the stationary rule line. The surge limit control therefore intervenes only with a delay, since the operating point is transient must travel another way in the direction of the surge line until the controller intervenes.

US 4 938 658 A und DE 38 09 070.8 A offenbaren ein Verfahren zur Regelung eines Turbokompressors zur Verhinderung des Pumpens, bei dem zusätzlich zur kontinuierlichen Regelung des Ab- oder Umblaseventils in Abhängigkeit von der Regeldifferenz eine Schnellöffnung des Abblaseventils vorgesehen ist, die in Abhängigkeit von der Geschwindigkeit der zur Pumpgrenze hin gerichteten Arbeitspunktverschiebungen ausgelöst wird. Zusätzlich kann eine Filterung vorgesehen sein, die bewirkt, dass die Differenzierung zur Geschwindigkeitsermittlung des Arbeitspunktes unverzögert auf Arbeitspunktverschiebungen in Richtung zur Pumpgrenze bzw. Abblaselinie reagiert. Gemäß der vorliegenden Erfindung geht es um die Optimierung der kontinuierlichen Regelung des Ab- oder Umblaseventils und nicht um eine diese überlagernde Schnellöffnung.US 4,938,658 A and DE 38 09 070.8 A disclose a method for controlling a turbocompressor to prevent the pumping, in which in addition to the continuous control of the Ab- or Umblaseventils depending on the control difference, a quick opening of the blow-off valve is provided which depends on the speed of the pumping limit directed working point shifts is triggered. In addition, a filtering can be provided, which causes the differentiation for speed determination of the operating point without delay responds to working point shifts towards the surge line or blow-off line. According to the present invention, it is about the optimization of the continuous control of the discharge or Umblaseventils and not a superimposed this rapid opening.

Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren und eine Einrichtung der bekannten Art so zu verbessern, dass der Vorteil der Vergrößerung des Sicherheitsabstands stets in vollem Umfang nutzbar ist, und zwar unabhängig davon, ob sich der Arbeitspunkt vor Beginn der Störung in einem stationären Betriebszustand befindet oder ob zuvor bereits transiente Arbeitspunktverschiebungen erfolgt sind.The invention is based on the object to improve a method and a device of the known type so that the advantage of increasing the safety distance is always fully usable, regardless of whether the operating point before the beginning of the disturbance in a stationary Operating state is or whether previously transient operating point shifts have occurred.

Die erfindungsgemäße Lösung der Aufgabe ist im Anspruch 1 angegeben. Die weiteren Ansprüche beziehen sich auf weitere vorteilhafte Merkmale des erfindungsgemäßen Verfahrens bzw. der Einrichtung zur seiner Durchführung.The achievement of the object according to the invention is specified in claim 1. The other claims relate to further advantageous features of the method according to the invention or the device for its implementation.

Erfindungsgemäß ist die Zeitkonstante des Verzögerungsgliedes asymmetrisch gestaltet. Bei Arbeitspunktverschiebungen in Richtung Pumpgrenze wirkt das Verzögerungsglied so, wie im Stand der Technik beschrieben. Bei einer Verschiebung des Arbeitspunktes in Richtung weg von der Grenzlinie arbeitet das Verzögerungsglied dagegen mit einer deutlich kleineren Zeitkonstante. Dadurch ist gewährleistet, dass die Regellinie bei Arbeitspunktverschiebungen weg von der Grenzlinie nahezu unverzögert folgt, bei Verschiebung in Richtung Pumpgrenze dagegen mit der bekannten, deutlich langsameren Zeitkonstante.According to the invention, the time constant of the delay element is designed asymmetrically. At operating point shifts in the direction of surge limit, the delay element acts as described in the prior art. On the other hand, with a shift of the operating point in the direction away from the boundary line, the delay element operates with a much smaller time constant. This ensures that the control line follows almost instantaneously at working point shifts away from the boundary line, but with the known, much slower time constant when moving in the direction of the surge line.

Mit anderen Worten wird erfindungsgemäß die bekannte Pumpgrenzregelung für Turbokompressoren mit stationär eingestellter Regellinie, die in einem festen Abstand rechts von der Pumpgrenze wirksam ist, um eine dynamische Regellinie erweitert. Diese dynamische Regellinie ist derart implementiert, dass sie bei transienten Verschiebungen des Kompressorarbeitspunktes in Richtung Pumpgrenze die wirksame Lage der Regellinie verändert,und zwar derart, dass in Abhängig-keit von der Geschwindigkeit der Annäherung des Arbeitspunktes an die Pumpgrenze die wirksame Regellinie nach rechts im Kennfeld in Richtung Arbeitspunkt verschoben wird mit der Folge, dass der Sicherheitsabstand zwischen Pumpgrenze und Regellinie vergrößert wird und demzufolge der Pumpgrenzregler frühzeitiger eingreift. Bei sehr schnellen Verschiebungen des Arbeitspunktes in Richtung Pumpgrenze wird die Regellinie z.B. um den halben Abstand zwischen Arbeitspunkt und der stationären Regellinie nach rechts verschoben, bei langsameren Arbeitspunktverschiebungen ist die Verschiebung der Regellinie geringer. Wird der Arbeitspunkt nur sehr langsam, das heißt über z.B. 1 Stunde in Richtung stationäre Regellinie verschoben, stimmt die dynamische Regellinie nahezu vollständig mit der stationären Regellinie überein.In other words, according to the invention, the known surge limit control for turbocompressors with stationary set control line, which is effective at a fixed distance to the right of the surge line, extended by a dynamic rule line. This dynamic control line is implemented in such a way that it changes the effective position of the control line in the event of transient shifts of the compressor operating point in the direction of the surge limit, in such a way that it depends From the speed of approach of the operating point to the surge line, the effective control line is shifted to the right in the map in the direction of the operating point with the result that the safety margin between surge line and control line is increased and consequently engages the surge regulator earlier. For very fast shifts of the operating point in the direction of the pumping limit, the control line is shifted to the right, for example by half the distance between the operating point and the stationary control line, with slower operating point shifts, the shift of the control line is lower. If the operating point is moved very slowly, that is to say over, for example, 1 hour in the direction of the stationary control line, the dynamic control line almost completely coincides with the stationary control line.

Das erfindungsgemäße Regelverfahren eignet sich insbesondere für solche Anwendungen, in denen eine Regelgröße, insbesondere das Durchflusssignal, durch Strömungswirbel an der Messstelle stark verrauscht ist. Klassische PID-Regler mit differenzierenden Algorithmen versagen bei diesen Anwendungen, da der Differenzialanteil auf die Änderungsgeschwindigkeit der Regelgröße reagiert. Bei hochfrequenten (einige Hz) Signalstörungen mit Signalhüben von einigen Prozent sind differenzierende Regelalgorithmen unzulässig, da sie auch bei stationärem Maschinenbetrieb zu erheblichen Signaländerungen der Stellgröße führen. Sie würden auch bei stationärem Betrieb in der Nähe des Auslegungspunktes reagieren und ein völliges Schließen des Ventils bei stationärem Betrieb rechts von der Regellinie häufig verhindern. Aus Wirtschaftlichkeitsgründen ist das Ventil aber im stationären Betrieb völlig geschlossen zu halten. Das erfindungsgemäße Verfahren bietet hier deutliche Vorteile, da es auch bei extrem stark verrauschter Regelgröße diesen nachteiligen Effekt nicht zeigt.The control method according to the invention is particularly suitable for applications in which a controlled variable, in particular the flow signal, is very noisy due to flow vortices at the measuring point. Classic PID controllers with differentiating algorithms fail in these applications because the derivative component responds to the rate of change of the controlled variable. In the case of high-frequency (a few Hz) signal disturbances with signal hops of a few percent, differentiating control algorithms are not permitted because they also lead to significant signal changes of the manipulated variable during stationary machine operation. They would also react in steady state operation near the design point and often prevent complete closure of the valve during steady state operation to the right of the control line. For reasons of economy, the valve is to be kept completely closed in stationary operation. The method according to the invention offers significant advantages here, since it does not show this disadvantageous effect even with extremely strongly noisy controlled variables.

Ausführungsformen der Erfindung werden anhand der Zeichnung näher erläutert. Fig. 1-7 zeigen jeweils ein verein-fachtes Schema einer erfindungsgemäßen Einrichtung zur Regelung eines Turbokompressors zum Verhindern des Pumpens.Embodiments of the invention will be explained in more detail with reference to the drawing. FIGS. 1-7 each show a simplified scheme of a device according to the invention for controlling a turbo-compressor to prevent pumping.

Gemäß Fig. 1 wird in der Saugleitung 1 eines Turbokompressors K durch Messfühler 3, 5, der Druck vor und hinter einer Drosselblende (nicht dargestellt) gemessen, woraus ein Messumformer 7 den Istwert für den saugseitigen Kompressordurchsatz V bildet. Am Kompressorausgang umfasst ein Messfühler 9 mit nachgeschaltetem Messumformer 11 den Istwert des Enddruckes P. Beide Istwerte V und P werden in einen Rechner 13 eingegeben. Der Rechner 13 ist mit einem Speicher versehen, in welchem der Verlauf einer stationären Regellinie (Abblaselinie) in dem beispielsweise durch P und V dargestellten Kompressorkennfeld, z.B. als Polygonzug, abgespeichert ist.According to FIG. 1, the pressure in front of and behind an orifice plate (not shown) in the suction line 1 of a turbo-compressor K is measured by measuring sensors 3, 5, from which a measuring transducer 7 forms the actual value for the suction-side compressor throughput V. At the compressor output, a measuring sensor 9 with a downstream measuring transducer 11 comprises the actual value of the final pressure P. Both actual values V and P are input to a computer 13. The computer 13 is provided with a memory in which the course of a stationary control line (blow-off line) in the compressor map, for example represented by P and V, e.g. as a polygon, is stored.

Der Sollwert wird vorzugsweise errechnet auf der Grundlage der Enthalpiedifferenz (Förderhöhe) Δh des Kompressors nach der Formel Δh = κR T 1 κ - 1 P 2 P 1 κ - 1 κ - 1

Figure imgb0001

wobei

  • κ = isentropischer Exponent
  • R = Gaskonstante
  • T1 = Temperatur am Kompressoreinlaß
  • P1 = Druck am Kompressoreinlaß
  • P2 = Druck am Kompressorauslaß
The setpoint is preferably calculated based on the enthalpy difference (head) Δh of the compressor according to the formula .delta.h = κR T 1 κ - 1 P 2 P 1 κ - 1 κ - 1
Figure imgb0001

in which
  • κ = isentropic exponent
  • R = gas constant
  • T 1 = temperature at the compressor inlet
  • P 1 = pressure at the compressor inlet
  • P 2 = pressure at the compressor outlet

Der Kompressorauslaßdruck P2 kann zur Berechnung des Sollwertes dienen oder selbst der Sollwert sein, wenn alle anderen Parameter konstant sind.The Kompressorauslaßdruck P 2 can be used to calculate the setpoint or even the setpoint, if all other parameters are constant.

Der Rechner 13 ermittelt aus der durch die Istwerte von V und P definierten Lage des Arbeitspunktes im Kennfeld relativ zur Regellinie einen Sollwert für den Durchsatz V.The computer 13 determines from the position of the operating point in the characteristic field defined by the actual values of V and P relative to the control line a nominal value for the throughput V.

Sollwert und Istwert werden einer Subtrahierstelle 17 zugeführt, die ein Differenzsignal xd (Regelabweichung) bildet. Das Differenzsignal xd wird einer weiteren Subtrahierstelle 19 einmal über einen Signalweg 21 unverzögert und einmal über ein Verzögerungsglied 23 verzögert zugeführt. Die an der Subtrahierstelle 19 gebildete Differenz aus dem unverzögerten und dem verzögerten Signal wird als Eingangssignal einem Regler R zugeführt, der gemäß einem in ihm implementierten Regelalgorithmus ein Stellsignal zum Steuern eines an der Ausgangsleitung des Kompressors K vorgesehenen Abblaseventils oder Umblaseventils 27 erzeugt, um die Pumpgrenzregelung in an sich bekannter Weise durchzuführen. Insoweit entspricht die beschriebene Anordnung dem aus DE-2828124 C2 bekannten Verfahren.Setpoint value and actual value are fed to a subtraction point 17, which forms a difference signal x d (control deviation). The difference signal x d is fed to a further subtraction point 19 once via a signal path 21 without delay and once via a delay element 23. The difference between the instantaneous and the delayed signal formed at the subtracting point 19 is supplied as input to a regulator R, which generates a control signal for controlling a blow-off valve or blow-off valve 27 provided on the output line of the compressor K in accordance with a control algorithm implemented in it, by the surge limit control perform in a conventional manner. In that regard, the arrangement described corresponds to the method known from DE-2828124 C2.

Das Verzögerungsglied 23 ist gemäß der Erfindung ein Verzögerungsglied erster Ordnung, das hinsichtlich seiner Zeitkonstanten asymmetrisch ausgebildet ist. Bei Verschiebungen des Arbeitspunktes nach links in Richtung auf die Pumpgrenzlinie G, d.h. wenn die zeitliche Änderung des an der Subtrahierstelle 17 gebildeten Differenzsignals xd eine positive Steigung hat, arbeitet das Verzögerungsglied 23 mit normaler Verzögerung. Wenn sich dagegen der Arbeitspunkt nach rechts, d.h. von der Pumpgrenzlinie G weg verschiebt, und somit die zeitliche Änderung des an der Subtrahierstelle 17 gebildeten Differenzsignals xd negatives Vorzeichen hat, arbeitet das Verzögerungsglied 23 mit einer deutlich kleineren Zeitkonstanten, typischerweise ca. 1 sec. Damit wird erreicht, dass der Regler R auch schnellen Änderungen des Arbeitspunktes, die von der Pumpgrenzlinie G weg gerichtet und daher "ungefährlich" sind, nahezu unverzögert folgen kann.The delay element 23 according to the invention is a first-order delay element which is asymmetrical in terms of its time constant. In shifts of the operating point to the left in the direction of the surge boundary line G, ie when the change in time of the differential signal x d formed at the subtracting 17 has a positive slope, the delay element 23 operates with normal delay. If, on the other hand, the operating point shifts to the right, ie away from the surge limit line G, and thus the change in the time of the difference signal x d formed at the subtraction point 17 has a negative sign, the delay element 23 operates with a significantly smaller time constant, typically approximately 1 second. This ensures that the controller R can also follow rapid changes in the operating point, which are directed away from the surge boundary line G and therefore "harmless", almost instantaneously.

Bei dem erfindungsgemäßen Verfahren wird kein differenzierender Regler verwendet. Insbesondere ist der im Regler R implementierte Regelalgorithmus nicht differenzierend. Wie bereits erwähnt, kann ein differenzierender Regler nur dann verwendet werden, wenn die Eingangssignale weitgehend frei von Signalrauschen sind. Das ohne differenzierenden Regler arbeitende Verfahren gemäß der Erfindung kann auch dann verwendet werden, wenn die Eingangssignale einen starken Anteil von Signalrauschen aufweisen, wie er z.B. durch Wirbelbildung im Bereich der den Durchfluss erfassenden Messfühler 35 verursacht wird.In the method according to the invention, no differentiating controller is used. In particular, the control algorithm implemented in the controller R is not differentiating. As already mentioned, a differentiating controller can only be used if the input signals are largely free of signal noise. The non-discriminating controller method according to the invention can be used even if the input signals have a high proportion of signal noise, e.g. is caused by vortex formation in the area of the flow sensing sensor 35.

In allgemeinerer Betrachtung kann der zwischen den Summierern 17 und 19 liegende, das asymmetrische Verzögerungsglied 23 enthaltende Schaltungszweig als "Gradientensensor" betrachtet werden, mit dem die Richtung und Geschwindigkeit von Arbeitspunktverschiebungen zur Pumpgrenze hin oder von ihr weg erfasst werden. Die Wirkungsweise kann dann wie folgt beschrieben werden: Im Speicher 13 ist die stationäre Regellinie als Polygonzug eingegeben. Im Summierer 17 wird die Differenz aus stationärer Regellinie (Sollwert für die Pumpgrenzregelung) und dem aktuellen Durchfluss des Kompressors gebildet. Diese (aktuelle) Regeldifferenz wird dem Regler R aufgeschaltet, der seinen Ausgang gemäss dem implementierten Regelalgorithmus ändert. Ferner wird aus der aktuellen Regeldifferenz mittels des Gradientensensors 23 und des Summierers 19 eine virtuelle Regeldifferenz als Summe aus der Differenz aus stationärer Regellinie und aktuellen Durchfluss und dem Ausgangssignal des gradienten - Sensors 23 gebildet. Diese virtuelle Regeldifferenz wird dem Regler R als zusätzliche Eingangsgröße aufgeschaltet. Hierdurch ergibt sich eine virtuelle Regellinie, die einer transienten Arbeitspunktverschiebung mit einer eingestellten Zeitkonstante (typischerweise 20 bis 60 Sekunden) folgt. Nach Abklingen dieser Zeitkonstante stimmt die virtuelle Regellinie mit der stationären Regellinie überein.More generally, the circuit branch between the summators 17 and 19 containing the asymmetric delay element 23 may be considered as a "gradient sensor" detecting the direction and velocity of working point shifts towards or away from the surge line. The mode of operation can then be described as follows: In the memory 13, the stationary control line is entered as a polygon. In the summer 17, the difference between the stationary control line (setpoint for the surge limit control) and the current flow of the compressor is formed. This (current) control difference is applied to the controller R, which changes its output according to the implemented control algorithm. Furthermore, from the current control difference by means of the gradient sensor 23 and the adder 19, a virtual control difference is formed as the sum of the difference between the stationary control line and the current flow and the output signal of the gradient sensor 23. This virtual control difference is applied to the controller R as an additional input variable. This results in a virtual rule line, which follows a transient shift point with a set time constant (typically 20 to 60 seconds). After the decay of this time constant, the virtual rule line coincides with the stationary rule line.

Für den Gradientensensor, der in Fig. 1 durch das Glied 23 repräsentiert wird, sind verschiedene Ausgestaltungen möglich, die nachstehend erläutert werden.For the gradient sensor represented by the member 23 in Fig. 1, various configurations are possible, which will be explained below.

Gemäß Fig. 2 enthält der gestrichelt umrahmte, als Gradientensensor wirksame Schaltungsteil 40 einen Integrierer 32, dessen Ausgangssignal auf den Eingang rückgekoppelt ist und mittels eines Summiergliedes 30 dem Eingangssignal des Integrierers 32 mit negativen Vorzeichen hinzu addiert wird. Die Zeitkonstante des Integrierers 32 ändert sich an Abhängigkeit von der Bewegung des Arbeitspunktes.According to FIG. 2, the circuit part 40, which is framed in dashed lines and functions as a gradient sensor, contains an integrator 32 whose output signal is fed back to the input and is added to the input signal of the integrator 32 with a negative sign by means of a summing element 30. The time constant of the integrator 32 changes depending on the movement of the operating point.

Fig. 3 zeigt eine Ausführungsform, bei der durch einen zusätzlichen Funktionsgeber 41 (z.B. Polygongenerator) eine zusätzliche dynamische Regellinie vorgegeben wird, zusätzlich zu der durch den Funktionsgeber oder Rechner 13 vorgegebenen stationären Regellinie. Die dynamische Regellinie 41 wird gebildet aus den gleichen Eingangsgrößen wie die stationäre Regellinie 13, allerdings verschiebt ein "Gradientensensor" 40 mit nachgeschaltetem Summierer 19 die dynamische Regellinie um einen Anteil, um den sich die Differenz aus stationärer Regellinie und aktuellem Kompressordurchfluss, gebildet im Summierer 17, dynamisch ändert. Der Gradientensensor merkt sich den stationären Abstand zwischen stationärer Regellinie und aktuellem Kompressoransaugdurchfluss und addiert diese Größe der dynamischen Regellinie 41 auf. Im Summierer 18 wird die Differenz aus dynamischer Regellinie und aktuellem Ansaugdurchfluss gebildet und als Regeldifferenz dem Regler R aufgeschaltet, der seinerseits das Abblase-/Um-blaseventil entsprechend verstellt. Der Gradientensensor ist derart ausgebildet, dass er die dynamische Regellinie nur in Richtung größerer Durchflüsse verschiebt, das heißt zur sicheren Seite für den Kompressor.3 shows an embodiment in which an additional dynamic rule line is given by an additional function generator 41 (e.g., polygon generator) in addition to the stationary rule line given by the function generator or computer 13. The dynamic control line 41 is formed from the same input variables as the stationary control line 13, however, a "gradient sensor" 40 with a downstream summer 19 shifts the dynamic control line by an amount equal to the difference between the stationary control line and the current compressor flow formed in the summer 17 , changes dynamically. The gradient sensor remembers the stationary distance between the stationary control line and the current compressor intake flow and adds this size of the dynamic control line 41. In the adder 18, the difference between the dynamic control line and the current intake flow is formed and applied as a control difference to the controller R, which in turn adjusts the blow-off / blow-around valve accordingly. The gradient sensor is designed such that it shifts the dynamic control line only in the direction of larger flows, that is to the safe side for the compressor.

Erfindungsgemäß folgt bei einer transienten Verschiebung des Arbeitspunktes weg von der Pumpgrenze der Gradientensensor dem neuen Abstand zwischen Arbeitspunkt und Regellinie unverzögert. In Richtung auf die Regellinie zu folgt der Ausgang des Gradientensensors zeitlich verzögert, das heißt langsam, und bewirkt dadurch ein kontinuierliches Einschwingen in den stationären Zustand.According to the invention, with a transient shift of the operating point away from the surge limit, the gradient sensor follows the new distance between operating point and control line without delay. In the direction of the control line, the output of the gradient sensor follows in a time-delayed manner, that is to say slowly, and thus causes a continuous settling into the stationary state.

Fig. 4 zeigt eine mögliche Ausgestaltung des "Gradientensensors", so wie er in den Block 40 von Fig. 3 eingefügt ist. Einem rückgekoppelten Integrierer 32 ist ein asymmetrischer Begrenzer 31 vorgeschaltet. Das Ausgangssignal des Integrierers 32 ist auf den Summierer 30 am Eingang mit negativem Vorzeichen aufgeschaltet. Der asymmetrische Begrenzer 31 ist derart eingestellt, dass er Eingangssignale, die durch eine Bewegung des Kompressorarbeitspunktes in Richtung Pumpgrenze erzeugt werden, auf sehr kleine Werte, z.B. 0,02, begrenzt. Eingangssignale, die einer Verschiebung des Kompressorarbeitpunktes weg von der Pumpgrenze entsprechen, werden kaum begrenzt, z.B. durch eine Grenze von 1.FIG. 4 shows a possible embodiment of the "gradient sensor" as it is inserted in block 40 of FIG. 3. A feedback integrator 32 is preceded by an asymmetric limiter 31. The output signal of the integrator 32 is applied to the summer 30 at the input with a negative sign. The asymmetric limiter 31 is set to reduce input signals generated by movement of the compressor operating point toward the surge line to very small values, e.g. 0.02, limited. Input signals corresponding to a shift of the compressor operating point away from the surge limit are hardly limited, e.g. by a limit of 1.

Die Wirkung soll an einem Beispiel erläutert werden. Angenommen sei eine Verschiebung des Kompressorarbeitspunktes in Richtung Pumpgrenze, z.B. derart, dass der Arbeitspunkt nahezu sprungförmig aus einem Arbeitspunkt im Abstand von 20% von der Regellinie in einen Punkt im Abstand von 10% von der Regellinie springt. Auf Grund der Vereinbarung "Regeldifferenz xd = Sollwert minus Istwert" bedeutet dies eine Änderung der Regeldifferenz xd von -0,2 auf -0,1. Der Ausgang des Integrierers 32 beträgt vor Beginn der Störung -0,2, der Eingang des Summierers 30 springt von -0,2 auf - 0,1. Der Ausgang des Summierers 30 beträgt +0,1. Da der Begrenzer 31 positive Werte auf maximal 0,02 begrenzt, erhält der Integrier ein Eingangssignal von 0,02 und integriert dadurch mit einer Zeitkonstanten von 50 Sekunden. Erst nach Abklingen dieser Einschwingzeit stimmt der Ausgang des Integrierers 32 mit seinem Eingang überein. Im Summierer 19 wird die Differenz aus Eingang des Summierers 30 und Ausgang des Integrierers gebildet und der dynamischen Regellinie aufgeschaltet. Im stationären Zustand ist der Ausgang des Summierers 19 null, bei transienten Verschiebungen des Arbeitspunkts in Richtung Pumpgrenze nimmt der Ausgang des Summierers 19 transient einen positiven Wert an, dessen Amplitude proportional zur Größe der Arbeitspunktverschiebung sowie proportional zur Geschwindigkeit der Arbeitspunktverschiebung ist.The effect will be explained by an example. Suppose a shift of the compressor working point in the direction of the surge line, for example, such that the operating jumps almost jump jump from an operating point at a distance of 20% from the rule line to a point at a distance of 10% from the rule line. Due to the agreement "control difference xd = setpoint minus actual value", this means a change in the control deviation xd from -0.2 to -0.1. The output of the integrator 32 is before the start of the disturbance -0.2, the input of the summer 30 jumps from -0.2 to - 0.1. The output of the summer 30 is +0.1. Since the limiter 31 limits positive values to a maximum of 0.02, the integrator receives an input signal of 0.02 and thereby integrates it with a time constant of 50 seconds. Only after the decay of this settling time, the output of the integrator 32 coincides with its input. In the summer 19, the difference between the input of the adder 30 and the output of the integrator is formed and the dynamic Rule line switched on. In the steady state, the output of the summer 19 is zero, with transient shifts of the operating point in the direction of surge line, the output of the summer 19 transiently assumes a positive value whose amplitude is proportional to the size of the operating point shift and proportional to the speed of the operating point.

Verschiebt sich der Arbeitspunkt weg von der Regellinie, greift die untere Grenze des Begrenzers 31 und der Integrierer folgt mit kleiner Zeitkonstante, z.B. 1 Sekunde. Der Gradientensensor ist somit in dieser Richtung nahezu wirkungslos. Allerdings hat dies den Vorteil, dass der Integrierer sehr schnell den neuen stationären Wert annimmt. Verändert sich der Arbeitspunkt transient, z.B. zunächst von -0,2 auf -0,3, um dann auf -0,1 zu gehen, folgt erfindungsgemäß der Ausgang des Integrierers sehr schnell auf - 0,3. Die volle Dynamik des Systems steht damit zur Verfügung. Bei einer Methode nach dem Stand der Technik würde der Integrierer der Änderung von -0,2 auf -0,3 mit der gleichen Zeitkonstanten folgen, wie in die andere Richtung. Bei kurzer Aufeinanderfolge beider Störungen würde die Bewegung weg von der Regellinie quasi ignoriert.When the operating point shifts away from the rule line, the lower limit of the limiter 31 engages and the integrator follows with a small time constant, e.g. 1 second. The gradient sensor is thus almost ineffective in this direction. However, this has the advantage that the integrator very quickly assumes the new steady state value. If the operating point changes transiently, e.g. first from -0.2 to -0.3, and then to go to -0.1, according to the invention, the output of the integrator follows very quickly to - 0.3. The full dynamics of the system is thus available. In a prior art technique, the integrator would follow the change from -0.2 to -0.3 with the same time constant as in the other direction. With a short succession of both disturbances, the movement away from the rule line would be ignored.

Fig. 5 zeigt eine weitere Ausgestaltung des Gradientensensors 40. Statt des Begrenzers 32 werden zwei Verstärker 33 und 34 verwendet, deren Ausgänge über einen Umschalter 35 auf den Integrierer 31 geschaltet sind. Die Verstärker sind auf unterschiedliche Verstärkungsfaktoren eingestellt, der Verstärker 33 z.B. auf 0,02 und der Verstärker 34 auf 1. Der Umschalter 35 ist durch einen Differenzierer oder einen Vorzeichenbildner 36 gesteuert und schaltet, je nach Vorzeichen des Eingangs auf den einen oder anderen Verstärker um. Dadurch ist sichergestellt, dass bei einer Arbeitspunktverschiebung in Richtung Pumpgrenze eine kleine Verstärkung und damit eine große Zeitkonstante wirksam ist und bei einer Verschiebung in Richtung weg von der Pumpgrenze eine große Verstärkung, das heißt kleine Zielkonstante.FIG. 5 shows a further embodiment of the gradient sensor 40. Instead of the limiter 32, two amplifiers 33 and 34 are used whose outputs are connected to the integrator 31 via a changeover switch 35. The amplifiers are set to different amplification factors, the amplifier 33, for example, to 0.02 and the amplifier 34 to 1. The switch 35 is controlled by a differentiator or a sign generator 36 and switches, depending on the sign of the input to one or the other amplifier , This ensures that at a shift in the operating point in the direction of the pumping limit, a small gain and thus a large time constant is effective, and with a shift in the direction away from the surge line, a large gain, ie small target constant.

Eine weitere Ausgestaltung zeigt Fig. 6. Hier wird statt des Begrenzers 31 ein Integrierer 32 mit parameteradaptierbarer Zeitkonstante verwendet. Je nach Änderungsrichtung des Eingangssignals wird die Zeitkonstante des Integrierers über den Adaptionsblock 37 zwischen einem großen und einem kleinen Wert umgeschaltet.A further embodiment is shown in FIG. 6. Here, instead of the limiter 31, an integrator 32 with a parameter-adaptable time constant is used. Depending on the direction of change of the input signal, the time constant of the integrator is switched over the adaptation block 37 between a large and a small value.

Fig. 7 zeigt eine weitere Ausführungsform, deren Gradientensensor 40 einen speziellen strukturumschaltbaren Integrierer NFI 32 verwendet. Über einen Steuereingang, der mit dem Ausgang des Differenzierers 36 beschaltet ist, schaltet der Integrierer zwischen den beiden Betriebsarten Integrieren und Nachführen um. Verschiebt sich der Arbeitspunkt des Kompressors in Richtung Pumpgrenze, schaltet der Differenzierer DIF 36 den Integrierer 32 in die Betriebsart Integrieren. Der Integrierer folgt mit seiner eingestellten Zeitkonstanten (typischerweise z.B. 50 Sekunden) der Änderung des Eingangssignals zum Summierer 30. Verschiebt sich der Arbeitspunkt dagegen weg von der Pumpgrenze, schaltet der Differenzierer 36 den Integrierer 32 in die Betriebsart Nachführen. Der Ausgang des Integrierers folgt ohne jegliche Zeitverzögerung dem zweiten Eingang, das heißt dem Ausgang des Summierers 17. Sobald sich der Arbeitspunkt wieder in Richtung Pumpgrenze bewegt, schaltet der Differenzierer 36 den Integrierer 32 wieder in die Betriebsart Integrieren. Der Ausgang des Integrierers folgt aus diesem Zustand mit seiner eingestellten Zeitkonstanten dem neuen Wert.FIG. 7 shows a further embodiment whose gradient sensor 40 uses a special structure-switchable integrator NFI 32. Via a control input, which is connected to the output of the differentiator 36, the integrator switches between the two modes of integration and tracking. If the operating point of the compressor shifts in the direction of the surge line, the differentiator DIF 36 switches the integrator 32 into the operating mode Integrate. The integrator, with its set time constant (typically, for example, 50 seconds), follows the change in the input signal to the summer 30. On the other hand, if the operating point shifts away from the surge line, the differentiator 36 switches the integrator 32 to the tracking mode. The output of the integrator follows without any time delay the second input, that is, the output of the summer 17. As soon as the operating point moves back towards the surge line, the differentiator 36 switches the integrator 32 back into the operating mode Integrate. The output of the integrator follows from this state with its set time constant to the new value.

Auch diese Wirkung sei an dem nachstehenden Beispiel erläutert. Verändert sich der Arbeitspunkt transient, z.B. zunächst von -0,2 auf -0,3, um dann auf -0,1 zu gehen, folgt erfindungsgemäß der Ausgang des Integrierers sehr schnell auf -0,3. Da der Differenzierer 36 die Verschiebung weg von der Pumpgrenze, das heißt Änderung der Regeldifferenz xd von -0,2 auf -0,3, feststellt, wird der Integrierer während dieses Vorgangs in Betriebsart Nachführen stets den gleichen Wert annehmen wie die Regeldifferenz, sprich das Ausgangssignal des Summierers 17. Der Ausgang des Summierers 19 ist stets null und der Gradientensensor damit bei einer Arbeitsverschiebung weg von der Pumpgrenze wirkungslos.This effect is also explained in the example below. If the operating point changes transiently, for example initially from -0.2 to -0.3, in order then to go to -0.1, according to the invention the output of the integrator follows very quickly to -0.3. Since the differentiator 36, the shift away from the surge line, that is change in the control difference xd from -0.2 to -0.3, the integrator will always assume the same value as the control difference, ie the output signal of summer 17 during this process in tracking mode. The output of summer 19 is always zero and the gradient sensor is therefore zero ineffective at a work shift away from the surge line.

Bewegt sich dagegen der Arbeitspunkt in Richtung Pumpgrenze, das heißt ändert sich die Regeldifferenz xd von -0,3 auf -0,1, erkennt der Differenzierer 36 die Richtungsänderung und schaltet den Integrierer in die Betriebsart Integrieren. Der Ausgang des Integrierers 32 folgt der Eingangsgröße mit der eingestellten Zeitkonstanten (z.B. 50 Sekunden). Hierdurch wird dem Addierer 18 transient eine positive Größe aufaddiert, die die gleiche Wirkung hat wie die beschriebene dynamische Regellinie.If, on the other hand, the operating point moves in the direction of the surge limit, that is to say if the control difference xd changes from -0.3 to -0.1, the differentiator 36 recognizes the change in direction and switches the integrator into the operating mode Integrate. The output of the integrator 32 follows the input with the set time constant (e.g., 50 seconds). As a result, the adder 18 transiently adds up a positive quantity which has the same effect as the described dynamic rule line.

Die volle Dynamik des Systems steht damit zur Verfügung, da der Gradientensensor bereits mit Beginn der Arbeitspunktverschiebung aus der xd = -0,3 Position heraus wirksam ist. Bei einem System nach dem Stand der Technik würde der Gradientensensor bei schnell aufeinander folgenden Vorgängen erst bei einer Regeldifferenz von -0,2 die Regellinie in Richtung weg von der Pumpgrenze verschieben. Bei kurzer Aufeinanderfolge beider Störungen würde die Bewegung weg von der Regellinie quasi ignoriert.The full dynamics of the system is thus available, since the gradient sensor is already effective with the beginning of the operating point shift out of the xd = -0.3 position. In a system according to the prior art, the gradient sensor would move the control line in the direction away from the surge line only at a control difference of -0.2 in fast successive operations. With a short succession of both disturbances, the movement away from the rule line would be ignored.

Die in den Fig. 4-7 darstellten Ausführungsvarianten des Gradientensensors 40 können auch bei der Ausführungsform gemäß Fig. 2 verwendet werden. Es braucht lediglich in der Anordnung gemäß Fig. 2 der aus dem Integrierer 32 und Summierer 30 bestehende Gradientensensor 40 durch einen der Gradientensensoren 40 gemäß Fig. 4-7 ersetzt zu werden. Von einer gesonderten zeichnerischen Darstellung und Beschreibung solcher Anordnungen wird hier abgesehen. Der Vorteil der Anordnung gemäß Fig. 2 gegenüber der gemäß Fig. 3 und ihren Varianten gemäß Fig. 4-7 liegt darin, dass nur ein Funktionsgeber 13 (Polygongenerator) für die Abbildung der stationären Regellinie erforderlich ist, während ein Funktionsgeber 41 für die dynamische Regellinie weggelassen wird und die dynamische Regellinie nur noch virtuell existiert, da sie jeweils als Abstand zwischen der stationären Regellinie und dem aktuellen Arbeitspunkt berechnet wird.The embodiment variants of the gradient sensor 40 illustrated in FIGS. 4-7 can also be used in the embodiment according to FIG. 2. It only needs to be replaced in the arrangement shown in FIG. 2 of the integrator 32 and summer 30 existing gradient sensor 40 by one of the gradient sensors 40 as shown in FIG. 4-7. A separate drawing and description of such arrangements will be omitted here. The advantage of the arrangement according to FIG. 2 with respect to that according to FIG. 3 and its variants according to FIGS. 4-7 is that only one Function generator 13 (polygon generator) is required for the imaging of the stationary control line, while a dynamic rule line function generator 41 is omitted and the dynamic rule line exists only virtually since it is calculated as the distance between the stationary control line and the current operating point.

Claims (5)

  1. A method for controlling a turbo compressor for so as to prevent surge,
    wherein a valve (24) branching off from the compressor outlet is controlled by a controller (R) on the basis of a supplied input signal and a predetermined control line,
    wherein the input signal of said controller is obtained from a difference signal (xd) corresponding to the difference between a continuously determined actual value of an operating variable of the compressor (K) and a target value depending on the position of the set point in the characteristic diagram,
    and wherein the difference signal both undelayed and delayed by means of a delay element (23) is used for forming the input signal of the controller (R) to thereby obtain a dynamic shift of the control line in case of working point shifts,
    characterized in that said difference signal (xd) is delayed with different time constants depending on the direction of its change (increase or decrease) in such a way that the controller (R) responds to working point shifts is the direction towards the surge limited line with a slower shift of the control line and responds to working point shifts in the opposite direction with a faster shift of the control line.
  2. Method according to claim 1 wherein the difference signal is sent once via the delay element and once without delay to a subtraction point (19) from which the input signal for the controller (R) is taken.
  3. Method according to claim 1 or 2, wherein the delay of the delay element is substantially or nearly zero in the case of working point shifts directed away from the surge limit line.
  4. Device for carrying out the method according to one of claims 1 to 3 for controlling a turbo compressor to prevent surge, comprising measuring transducers (3, 5) for determining the actual value of one or more operating variables characteristic for the working point of the compressor (K), a target value generator (13) having a predetermined shape of a control line (A) in the characteristic diagram of the compressor, a difference element (17) for generating a difference signal (xd) from the target value and the actual value, the controller (R) for generating an actuating signal for actuating a valve (27) at the compressor outlet, and a circuit supplied with said difference signal (xd) and comprising a delay member (23) for generating the input signal for the controller (R)
    characterized in that said delay element (23) is an asymmetric delay element providing a delay which is greater in case of a change of said difference signal (xd) corresponding to a shift of the working point in the direction towards the surge limit line (D) than in case of a change of the difference signal (xd) in the opposite direction.
  5. Device for carrying out the method according to one of claims 1 to 3 for controlling a turbo compressor to prevent surge, comprising measuring transducers (3, 5) for determining the actual value of one or more operating variables characteristic for the working point of the compressor (K), a target value generator (13) having a predetermined shape of the control line (A) in the characteristic diagram of the compressor, a difference element (17) for generating a difference signal (xd) from target the value and the actual value, and a controller (R) for generating an actuating signal for actuating a valve (27) at the compressor outlet
    characterized by comprising a gradient sensor (40) determining the amount and direction of the change of the difference signal (Xd), the output signal of said gradient sensor (40) controlling a function generator (41) in which the dynamic control line is stored, wherein the sum of the output signal of the function generator (41) and the actual value of the compressor throughput (V) is supplied to said controller (R) as an input signal.
EP01100755A 2000-01-14 2001-01-12 Method and apparatus to control a turbo compressor to prevent surge Expired - Lifetime EP1116885B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10001365A DE10001365A1 (en) 2000-01-14 2000-01-14 Regulating turbo compressor to prevent pumping involves using different delay time constants for increasing/decreasing difference signal for slower changes towards pump limiting line
DE10001365 2000-01-14

Publications (3)

Publication Number Publication Date
EP1116885A2 EP1116885A2 (en) 2001-07-18
EP1116885A3 EP1116885A3 (en) 2003-03-26
EP1116885B1 true EP1116885B1 (en) 2007-01-10

Family

ID=7627533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01100755A Expired - Lifetime EP1116885B1 (en) 2000-01-14 2001-01-12 Method and apparatus to control a turbo compressor to prevent surge

Country Status (3)

Country Link
US (1) US6558113B2 (en)
EP (1) EP1116885B1 (en)
DE (2) DE10001365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208459A1 (en) * 2022-04-28 2023-11-02 Robert Bosch Gmbh Method for operating a multi-stage air compression system, multi-stage air compression system and fuel cell system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094019B1 (en) * 2004-05-17 2006-08-22 Continuous Control Solutions, Inc. System and method of surge limit control for turbo compressors
RU2354851C1 (en) * 2007-09-24 2009-05-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Method of controlling compressor operating conditions and device to this end
IT1402481B1 (en) * 2010-10-27 2013-09-13 Nuovo Pignone Spa METHOD AND DEVICE THAT PERFORM AN COMPENSATION OF THE DEAD TIME OF ANTI-PUMPING BASED ON MODEL
US9133850B2 (en) * 2011-01-13 2015-09-15 Energy Control Technologies, Inc. Method for preventing surge in a dynamic compressor using adaptive preventer control system and adaptive safety margin
JP6533366B2 (en) * 2013-03-15 2019-06-19 ダイキン アプライド アメリカズ インコーポレィティッド Refrigerating apparatus and control device for refrigerating machine
US10254719B2 (en) 2015-09-18 2019-04-09 Statistics & Control, Inc. Method and apparatus for surge prevention control of multistage compressor having one surge valve and at least one flow measuring device
KR101989588B1 (en) * 2018-11-27 2019-06-14 터보윈 주식회사 Turbo blower
CN112648200B (en) * 2020-12-24 2021-10-19 北京理工大学 High-speed electric air compressor with vibration suppression function for fuel cell automobile
CN114870422B (en) * 2022-05-12 2024-03-01 梅胜 Fractionating tower top pressure control method and device based on air pressure unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142838A (en) * 1977-12-01 1979-03-06 Compressor Controls Corporation Method and apparatus for preventing surge in a dynamic compressor
DE2828124C2 (en) 1978-06-27 1981-11-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Procedure to prevent pumping of turbo compressors
DE3105376C2 (en) * 1981-02-14 1984-08-23 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Procedure for operating turbo compressors
US4697980A (en) * 1984-08-20 1987-10-06 The Babcock & Wilcox Company Adaptive gain compressor surge control system
DE3540087A1 (en) 1985-11-12 1987-05-14 Gutehoffnungshuette Man METHOD FOR REGULATING TURBO COMPRESSORS
DE3540284A1 (en) 1985-11-13 1987-05-14 Gutehoffnungshuette Man DEVICE FOR CONTROLLING A TURBO COMPRESSOR TO PREVENT THE PUMP
DE3540285A1 (en) 1985-11-13 1987-05-14 Gutehoffnungshuette Man METHOD AND DEVICE FOR REGULATING TURBO COMPRESSORS
DE3544821A1 (en) * 1985-12-18 1987-06-19 Gutehoffnungshuette Man METHOD FOR REGULATING TURBO COMPRESSORS TO AVOID THE PUMP
DE3809070A1 (en) * 1988-03-18 1989-10-26 Gutehoffnungshuette Man METHOD FOR THE SAFE OPERATION OF TURBO COMPRESSORS
US4940391A (en) * 1988-11-07 1990-07-10 Westinghouse Electric Corp. Compressor surge detection system
GB2273316B (en) * 1992-12-12 1996-02-28 Rolls Royce Plc Bleed valve control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208459A1 (en) * 2022-04-28 2023-11-02 Robert Bosch Gmbh Method for operating a multi-stage air compression system, multi-stage air compression system and fuel cell system

Also Published As

Publication number Publication date
EP1116885A2 (en) 2001-07-18
US6558113B2 (en) 2003-05-06
EP1116885A3 (en) 2003-03-26
DE50111831D1 (en) 2007-02-22
US20010014280A1 (en) 2001-08-16
DE10001365A1 (en) 2001-07-19

Similar Documents

Publication Publication Date Title
EP1134422B1 (en) Turbo compressor surge control method
EP0669565B1 (en) Pressure control device
DE69728254T2 (en) CONTROL SYSTEM FOR DYNAMIC COMPRESSORS FOR PREVENTING THE RECONSTRUCTION OF THE PUMP
EP0132487B1 (en) Process for controlling at least two turbo compressors mounted in parallel
EP1116885B1 (en) Method and apparatus to control a turbo compressor to prevent surge
DE2838650A1 (en) PRESSURE IMPACT CONTROL SYSTEM FOR COMPRESSORS
DE10313503B4 (en) Method and device for exhaust gas recirculation control in internal combustion engines
DE19828368C2 (en) Method and device for operating two-stage or multi-stage compressors
EP0336095B1 (en) Control method to prevent surge of a centrifugal compressor by means of venting by need
EP0332888B1 (en) Method for the safe operation of turbo compressors
EP1016787B1 (en) Operating method of a compressor having a downstream user, and system operating according to this method
EP0254029A2 (en) Process for filtering a noisy signal
EP0223208B1 (en) Method and apparatus for the regulation of turbo compressors
EP0223207B1 (en) Method and apparatus for the regulation of a turbo compressor for preventing surge
EP0077997B1 (en) Process and apparatus for controlling the rotational speed of a combustion engine
DE102010040503A1 (en) Method for controlling a compressor
EP0334034B1 (en) Control method to prevent surge of a centrifugal compressor
EP0222382B1 (en) Regulation process of turbo compressors
EP0757180B1 (en) Method and device for operating turbomachines with controllers having a high proportional gain
DE4025847A1 (en) SYSTEM FOR CONTROLLING AN ACTUATOR IN A MOTOR VEHICLE
EP3167196B1 (en) Method for regulating the rotational speed of cryogenic compressors which are connected in series
DE2735246A1 (en) Control system for centrifugal compressor - has coupling between anti-stall control loop and main control loop to improve stability
DE2739229A1 (en) Control system for axial flow air compressor - feeds signal from anti-surge control to main control to improve stability
DE102009030165A1 (en) Result control value calculating method for controlling temperature of cooling oil of motor vehicle, involves setting limited output value to output minimum value when output value lies below output threshold value
WO2018054546A1 (en) Method for operating a turbo compressor, turbo compressor having a surge limit controller and air separation plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030708

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TURBOMASCHINEN AG

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070110

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070110

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070131

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50111831

Country of ref document: DE

Date of ref document: 20070222

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070611

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071011

BERE Be: lapsed

Owner name: MAN TURBOMASCHINEN A.G.

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160127

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160120

Year of fee payment: 16

Ref country code: FR

Payment date: 20160121

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170112

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170112

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111831

Country of ref document: DE

Owner name: MAN ENERGY SOLUTIONS SE, DE

Free format text: FORMER OWNER: MAN TURBO AG, 46145 OBERHAUSEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R231

Ref document number: 50111831

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20200522