EP1112896B1 - Système de génération de puissance pour un réseau bitension - Google Patents

Système de génération de puissance pour un réseau bitension Download PDF

Info

Publication number
EP1112896B1
EP1112896B1 EP00403549A EP00403549A EP1112896B1 EP 1112896 B1 EP1112896 B1 EP 1112896B1 EP 00403549 A EP00403549 A EP 00403549A EP 00403549 A EP00403549 A EP 00403549A EP 1112896 B1 EP1112896 B1 EP 1112896B1
Authority
EP
European Patent Office
Prior art keywords
voltage
network
sub
alternator
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00403549A
Other languages
German (de)
English (en)
Other versions
EP1112896A1 (fr
Inventor
Philippe Dupuy
Didier Richer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1112896A1 publication Critical patent/EP1112896A1/fr
Application granted granted Critical
Publication of EP1112896B1 publication Critical patent/EP1112896B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a system for generating power for an on-board dual voltage network on a motor vehicle, intended to meet the growing demand for electrical power in future vehicles, which will introduce new electrical functions tending to improve safety, like the comfort of the passengers. Simultaneously, the invention must take into account the objectives of reduced fuel consumption, also aimed at reducing pollutant emissions.
  • Another solution currently being considered by car manufacturers is to increase the output voltage, especially to triple the voltage current 14 Volts network to 42 Volts.
  • This solution is advantageous because it allows the use of certain consumers who do not only work with 42 Volts, improving the network distribution, both in terms of relaying, fusiblage, the connection that the section cables which is then reduced, and the production additional energy.
  • the increase of the output voltage of the alternator must remain compatible with the standard current voltage of the onboard network, 14 volts, because it is not possible to replace it brutally and completely through a 42-volt network, for industrial, technical and economic reasons. he therefore a phase of cohabitation of the two 14 and 42 Volt power sub-networks within the same vehicle, even if it is necessary to the next evolution of certain circuits consumers of the subnet 14 Volts to the subnet 42 Volts.
  • This phase of cohabitation of the two sub-networks of different voltages assumes a configuration particular electrical system production of energy, an example of which is shown in the diagram of Figure 1. It includes, driven by the engine shaft 2 of the vehicle, live or via a gearbox, an electric machine 3, of type alternator or alternator-starter, associated with a circuit of recovery 4 made from one or more diode bridges according to the number of stator windings.
  • an alternator-starter the recovery is performed using transistors constituting a inverter.
  • the machine thus straightened is connected with a part to consumer elements in 42 Volts and on the other hand to a battery 6, which can be constituted of several storage elements 60, of tension between 30 and 48 volts.
  • a converter static 7 must lower the voltage of 42 Volts to a rated voltage of 14 volts, to ensure the transfer energy to the second network, which includes a battery 8 of 12 Volts and supplies the elements consumers 9 operating at this voltage.
  • This architecture has many disadvantages, whose presence of this electronic converter, expensive, bulky - about 1.5 liters of volume depending its power - generating heat losses difficult to evacuate.
  • Document DE-4226311 describes a generation system of power for a dual voltage network.
  • the two networks are connected to the neutral point and the value subnet voltage is still half the other.
  • the aim of the invention is to overcome these disadvantages by proposing a system of energy production for dual voltage network without DC / DC voltage converter, alternatively or alternator-starter and authorizing the transfer of energy from a from the two sub-networks to the other, in particular from Volts to 14 Volts, but also so totally reversible.
  • the object of the invention is a power generation system for a dual-voltage electrical network, comprising a three-phase alternator type electrical machine whose stator phases are rectified to generate the desired power on the sub-network operating at a maximum voltage.
  • first voltage value (U s ) the stator of the three-phase alternator (20) being star-wound so as to have a neutral point (N) to which the second sub-network operating at a second voltage value (U) is connected; b ) less than the first, characterized in that it comprises electronic control means (22) and voltage regulation (U s and U b ) of the two sub-networks, the regulation values of the two subnets being independent and allowing the transfer of energy from one of the two sub-networks to the other so as to make the system completely reversible.
  • the means for rectifying the stator phases of the three-phase alternator consist of a three-phase inverter comprising six switches H 1 to H 3 and L 1 to L 3 , of type transistors, connected in series and in the same direction, in groups of two between the mass and the highest voltage U s for each of the three phases of the stator, each of the six transistors being controlled by the electronic control circuit, which is intended to to enslave the average value of the voltage of the three phases to a set voltage for obtaining the voltage U b at the input of the second sub-network at lower voltage.
  • the system furthermore comprises two filtering means respectively arranged at the neutral point N at the input of the lower voltage subnet U b and at the output of the inverter at the input of the higher voltage subnet U s .
  • the recovery means of the stator phases of the three-phase alternator are constituted by a passive rectifier bridge comprising six diodes d 1 to d 6 , mounted in pairs, in series and in the same direction, between the mass and the highest voltage U s for each of the three phases of the stator and in that the electronic means for regulating the voltage U b of the second sub-network consist of a switch I 0 whose closure is controlled by a control circuit.
  • the recovery means of the stator phases of the three-phase alternator are constituted by a passive rectifier bridge comprising six diodes d 1 to d 6 , mounted in groups of two, in series and in the same direction, between the ground and the highest voltage U s for each of the three phases of the stator and in that the electronic means for regulating the voltage U b of the second sub-network consist of a linear or switching regulator.
  • the power generation system for a dual voltage electrical network comprises a three-phase electrical machine 20 of the alternator type, which can be synchronous with a coiled rotor or with magnets or else a coiled and coiled with magnets.
  • the stator phases are rectified to generate the desired power on the first sub-network operating at a first voltage value U s .
  • U s can also be an asynchronous alternator.
  • It is star wound to the stator so as to have a neutral point N to which is connected the second sub-network operating at a second voltage value U b less than the first voltage value U s .
  • a three-phase inverter 21 which delivers a voltage U s , equal to 42 Volts in the particular case of a current motor vehicle, and which consists of six switches H 1 to H 3 and L 1 to L 3 . They are arranged in three arms of two switches each, mounted in series and in the same direction, one L i "low-side” between the mass and one of the phases and the other H i "high-side” between the phase and the upper voltage U s .
  • These switches are transistors of MOSFET or IGBT or bipolar or other type, associated or not with a reverse diode.
  • control and regulation means 22 which receive regulation instructions of the voltages U s and U b of the two sub-networks, coming from a computer 99 establishing electronic strategies for managing the electrical energy of the network.
  • These control means 22 can also receive information on the position of the rotor relative to the stator on the part of a position sensor 32.
  • Two filtering means 23 and 24 can be respectively arranged at the entrance of each of the two subnets, either at the neutral point N, towards the subnet at 14 volts and at the output S of the control circuit, to the subnet at 42 Volts.
  • These means consist, for example, of capacities associated with inductances sized to deliver filtered continuous voltages remaining in the tolerances allowed for the application, in emission and electromagnetic susceptibility.
  • These two subnetworks may each have a battery, referenced respectively 25 and 26, and powering consumers 27 and 28 running respectively at 14 volts and 42 volts.
  • the voltage regulation on the sub-network of 14 Volts, is obtained by adjusting the average value of the three phase voltages, that is to say by adjusting the three control signals of the three-phase machine. delivered by the electronic circuit for controlling and regulating the voltages U s and U b of the dual voltage network.
  • alternator or alternator-starter.
  • the regulation of these two voltages is done according to a pulse width modulation method of control signals of the transistors constituting the arm of the inverter, to generate on the three phases, three periodic waves, sinusoidal, trapezoidal, triangular for example, out of phase 120 ° from each other.
  • This process is applicable to three types of machine: synchronous wound rotor (SYRB), synchronous permanent magnet (SYAP) and asynchronous (ASY).
  • the regulation is done according to a process of commands "full wave” synchronous rectification type, applicable only to synchronous rotor machines coil.
  • the average voltage U moy of the three stator voltages must be enslaved at the three output points of the phases P 1 , P 2 and P 3 at a necessary setpoint voltage for the regulation of the 14-pole network. volts.
  • the regulation of the upper voltage U s is achieved by two parameters: the adjustment of the amplitude of the setpoints of phase and adjustment of either the excitation of the rotor in the case of a synchronous alternator with wound rotor, or of the speed slip existing between the speed of the stator rotating field and the mechanical rotational speed of the rotor in the case of a rotor.
  • FIG. 3 is a block diagram of the electronic control means 22 of the inverter, ensuring the regulation of the two voltages U s and U b of the dual voltage network according to the invention.
  • These means 34 take into account the phase shift instructions DEP or GLI, issued from the second corrector C 2 , to shift the synchronization tops of the position signal (FIG. 4b) from which the reference sinusoid S ref (FIG. 4 c ). To this is then applied a multiplicative coefficient C m , calculated by the correction circuit C 1 , to adjust the amplitude A of this sinusoid ( Figure 4 d ). This amplitude is imperatively lower than U s , or 42 Volts, for reasons of safety of the passengers of the vehicle, so that its average is around 24 Volts.
  • the regulation of the lowest voltage U b is achieved by adjusting the average value of the setpoints of the three phases.
  • This phase reference signal thus obtained is then transformed by a method of pulse width modulation in means 37 for generating control pulses of the six transistors of the inverter 21, H i and L i , i varying from 1 to 3 ( Figure 4 f ).
  • This control of the transistors of the inverter thus makes it possible to generate three periodic voltage waves, offset by 120 ° from each other, in the form of sinusoids in FIG. 4g , at the level of the three phases P 1 to P 3 , allowing a continuous rotation of the stator field of the alternator.
  • the regulation of the higher voltage U s at the output of the inverter is carried out by two parameters: the adjustment of the excitation of the rotor on the one hand and the combined adjustment of the angle of phase shift ⁇ and the angle of opening ⁇ of the pulses of the control signal of the inverter.
  • differentiating means 51 calculate an error ⁇ s existing between the voltage U s measured at the input of the 42-volt sub-network and a set value (U ' s ) c issued by an external electronic computer, then send it on first correcting means C 4 which will calculate the EXC excitation of the rotor.
  • a rotor position sensor 52 with respect to the stator or an auto-detection method according to the type of synchronous machine makes it possible to produce a position signal, for example in the form of synchronization tops (FIG. 6 a ). in means 53, which will be offset by a phase angle ⁇ (FIG. 6 b ), calculated in second correcting means C 5 from the error ⁇ s previously found.
  • Second differentiating means 54 calculate the error ⁇ b between the voltage U b measured at the terminals of the second sub-network and a set value (U ' b ) c delivered by the external computer.
  • This error ⁇ b passes through correction means C 6 which calculate the opening angle ⁇ , sent in means 55 for generating control pulses of the inverter, which also receive the synchronization tops offset from the angle ⁇ .
  • FIG. 6c represents the control signals in each of the six transistors of the inverter, each pair of high transistors H i and low L i being assigned to one of the three phases P i , i varying from 1 to 3, at the output of which three periodic voltage waves are generated, shifted by 120 °.
  • a suitable control of the three arm of the inverter, by the control circuit 22, allows to perform a transfer of energy from one of the two networks, 14 or 42 volts, towards the other.
  • the structure of static converter thus obtained is of type voltage booster or voltage booster.
  • Figure 7 is a block diagram of a structure depressing the voltage 42 Volts to the voltage 14 Volts.
  • the three arms of the inverter 21 are driven to the same switching frequency and can be out of phase in order to decrease the residual voltage of rejection on the two voltage networks.
  • control means 22 of the inverter 21 comprise means 70 for generating control pulses of the transistors which receive, as input information, on the one hand the measured voltage U s at the terminals of the battery 26 of the first subarray at 42 Volts and at the other hand the setpoint C calculated by correction means 71 from the error ⁇ b resulting from the comparison between the measured voltage U b at the terminals of the second sub-network and a reference value U b1 , carried out in comparison means 72.
  • FIG. 8 is a block diagram of a voltage booster type static converter.
  • it is the voltage U b delivered by the battery 25 which is the input data from which will be regulated the input voltage U s of the 42 Volts network.
  • This voltage U s is measured and compared in comparison means 80, to be slaved to a setpoint U C2 by determining a setpoint C 'in correcting means 81 from the error ⁇ s resulting from the comparison, in Pulse width modulation case.
  • control pulse generating means 82 sends signals to the six transistors of the inverter 21.
  • the recovery means of the stator phases of the three-phase alternator 90 are passive type, consisting of a bridge 91 of six diodes d 1 to d 6 , either three groups of two diodes connected in series and in the same direction, for each of the three phases of the alternator, between the mass and the voltage U s the highest of the dual voltage network, 42 volts in the example chosen.
  • the voltage U s of the sub-network connected to the output of this passive rectifier bridge is regulated only by the control of the excitation of the rotor R of the alternator.
  • the electronic means for regulating the voltage U b of the second sub-network consist of a switch I 0 whose closure is controlled by a control circuit 92.
  • This circuit 92 compares the measured voltage U b on the one hand with a first threshold S OFF , in a comparator 93, to deliver a control signal of the opening of the switch I o , and on the other hand, to a second threshold S ON , in another comparator 94, to output a control signal of its closure.
  • These two control signals will alternately drive the switch I o , after passing through a logic latch 95.
  • a diode 96 may be placed in series with the switch I o to improve its operation and to prevent the passage of a 14-volt sub-network current to the 42-volt sub-network.
  • the regulation of the voltage U b of the second sub-network is provided by a regulator 97, ie of linear type if the voltage at the neutral point N is close to the voltage U b at the input of the sub-network, or of the switching type if the voltage at the neutral point N is close to half the voltage U s at the terminals of the first sub-network.
  • the presence of a converter DC / DC electronics, expensive and bulky, is deleted between the two subnets.
  • the fact that the alternator directly produces energy at subnet to 14 Volts without intermediary allows obtaining a very good return.
  • system is completely reversible, allowing the transfer of energy from one of the two sub-networks towards the other. Thanks to the independence of the values of regulation of the two sub-networks, it is possible to apply the invention to other voltage values, different from 14 and 42 Volts.
  • the system according to the invention makes compatible the electric power generation with the use of all types of storage elements, such as a battery lead, lithium, nickel-cadmium or capacitor of great value for example.
  • the system is reliable and has a duration of increased life thanks to the minimization of components implemented to produce energy electrical dual voltage network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

L'invention concerne un système de génération de puissance pour un réseau électrique bitension embarqué sur véhicule automobile, destiné à répondre à la demande croissante de puissance électrique dans les véhicules futurs, qui vont présenter de nouvelles fonctions électriques tendant à améliorer la sécurité, comme le confort des passagers. Simultanément, l'invention doit tenir compte des objectifs de consommation de carburant de plus en plus réduite, visant également à diminuer les émissions de polluants.
En effet, sur de nombreux projets de véhicules, les bilans électriques font apparaítre une demande croissante de puissance électrique, liée à l'apparition de ces nouvelles fonctions électriques qui sont par exemple le chauffage et la climatisation, les soupapes pilotées électromagnétiquement, la direction assistée électrique, le freinage électrique ... . Or, au-delà de 3 kiloWatts de production électrique, l'architecture globale du système de production de puissance doit être profondément modifiée, en particulier l'alternateur qui est entraíné par l'arbre tournant du moteur thermique pour fournir la tension de sortie utile. Les alternateurs classiques de type synchrone triphasé, dans leur configuration actuelle, c'est-à-dire avec un rotor à griffes bobiné, un refroidissement à air et un redressement à diodes pour une tension de sortie de 14 Volts, ne fonctionneront pas de façon optimale.
Pour augmenter la puissance, différentes solutions ont été envisagées, comme le remplacement des griffes du rotor par des pôles saillants, l'ajout d'aimants au rotor ou le double bobinage au stator, l'amincissement des tôles, le refroidissement à eau, qui permettent d'augmenter sa puissance générée, sa densité et plus globalement ses performances.
Pour augmenter le rendement de production et tirer le meilleur parti des alternateurs, une solution consiste à remplacer les diodes du circuit de redressement par des transistors pour constituer un onduleur.
Une autre solution actuellement envisagée par les constructeurs automobiles consiste à augmenter la tension de sortie, en particulier à tripler la tension actuelle du réseau de 14 Volts pour atteindre 42 Volts. Cette solution est avantageuse car elle permet l'utilisation de certains consommateurs qui ne fonctionnent qu'avec 42 Volts, l'amélioration du réseau de distribution tant en ce qui concerne le relayage, le fusiblage, la connectique que la section des câbles électriques qui est alors réduite, et la production d'énergie supplémentaire.
Cependant, l'augmentation de la tension de sortie de l'alternateur doit rester compatible avec le standard actuel de tension du réseau de bord, soit 14 Volts, car il n'est pas envisageable de le remplacer brutalement et complètement par un réseau à 42 Volts, pour des raisons industrielles, techniques et économiques. Il faut donc envisager une phase de cohabitation des deux sous-réseaux d'alimentation électrique à 14 et 42 Volts au sein d'un même véhicule, même s'il faut prévoir l'évolution prochaine de certains circuits consommateurs du sous-réseau 14 Volts vers le sous-réseau 42 Volts.
Cette phase de cohabitation des deux sous-réseaux de tensions différentes suppose une configuration électrique particulière du système de production d'énergie, dont un exemple est représenté sur le schéma fonctionnel de la figure 1. Il comporte, entraínée par l'arbre du moteur thermique 2 du véhicule, en direct ou via un réducteur, une machine électrique 3, de type alternateur ou alterno-démarreur, associée à un circuit de redressement 4 réalisé à partir d'un ou plusieurs ponts de diodes selon le nombre de bobinage du stator. Dans le cas d'un alterno-démarreur, le redressement s'effectue à l'aide de transistors constituant un onduleur. La machine ainsi redressée est reliée d'une part à des éléments 5 consommateurs en 42 Volts et d'autre part à une batterie 6, pouvant être constituée de plusieurs éléments de stockage 60, de tension comprise entre 30 et 48 Volts. Un convertisseur statique 7 doit abaisser la tension de 42 Volts à une tension nominale de 14 Volts, pour assurer le transfert d'énergie vers le deuxième réseau, qui comporte une batterie 8 de 12 Volts et alimente les éléments consommateurs 9 fonctionnant à cette tension.
Cette architecture présente de nombreux inconvénients, dont la présence de ce convertisseur électronique, coûteux, encombrant - environ 1,5 litre de volume selon sa puisance -, générant des pertes thermiques difficiles à évacuer.
De plus, la structure série entre l'alternateur et le réseau à 14 Volts aboutit à un rendement global limité par les rendements successifs des étages de conversion. On peut ajouter un coût global très supérieur à celui d'une architecture classique par alternateur sur réseau unique, à cause de l'ajout d'un convertisseur abaisseur de tension.
Le document DE-4226311 décrit un système de génération de puissance pour un réseau électrique bitension. Les deux réseaux sont reliés au point neutre et le valeur de tension du sous réseau est toujours de valeur moitié de l'autre.
L'invention vise à pallier ces inconvénients en proposant un système de production d'énergie pour réseau bitension sans convertisseur DC/DC de tension, pouvant fonctionner en alternateur ou en alterno-démarreur et autorisant le transfert de l'énergie d'un des deux sous-réseaux vers l'autre, notamment du 42 Volts vers le 14 Volts, mais également de façon totalement réversible.
Pour cela, l'objet de l'invention est un système de génération de puissance pour un réseau électrique bitension, comprenant une machine électrique de type alternateur triphasé dont les phases statoriques sont redressées pour générer la puissance souhaitée sur le sous-réseau fonctionnant à une première valeur de tension (Us), le stator de l'alternateur triphasé (20) étant bobiné en étoile de façon à présenter un point neutre (N) auquel est relié le second sous-réseau fonctionnant à une deuxième valeur de tension (Ub) inférieure à la première, caractérisé en ce que qu'il comporte des moyens électroniques de commande (22) et de régulation des tensions (Us et Ub) des deux sous-réseaux, les valeurs de régulation des deux sous-réseau étant indépendant et permettant le transfert de l'énergie depuis un des deux sous-réseaux vers l'autre de façon à rendre le système complètement réversible.
Selon une autre caractéristique du système de génération de puissance selon l'invention, les moyens de redressement des phases statoriques de l'alternateur triphasé sont constitués par un onduleur triphasé comprenant six interrupteurs H1 à H3 et L1 à L3, de type transistors, montés en série et dans le même sens, par groupe de deux entre la masse et la tension Us la plus élevée pour chacune des trois phases du stator, chacun des six transistors étant piloté par le circuit électronique de commande, qui est destiné à asservir la valeur moyenne de la tension des trois phases à une tension de consigne permettant d'obtenir la tension Ub en entrée du second sous-réseau à plus basse tension. Selon une autre caractéristique, le système comporte de plus deux moyens de filtrage respectivement disposés au point neutre N en entrée du sous-réseau à plus basse tension Ub et en sortie de l'onduleur en entrée du sous-réseau à plus haute tension Us.
Selon une autre caractéristique, le moyens de redressement des phases statoriques de l'alternateur triphasé sont constitués par un pont de redressement passif comprenant six diodes d1 à d6, montées par groupe de deux, en série et dans le même sens, entre la masse et la tension Us la plus élevée pour chacune des trois phases du stator et en ce que les moyens électroniques de régulation de la tension Ub du second sous-réseau sont constitués d'un interrupteur I0 dont la fermeture est pilotée par un circuit de commande.
Selon une autre caractéristique, les moyens de redressement des phases statoriques de l'alternateur triphasé sont constitués par un pont de redressement passif comprenant six diodes d1 à d6, montées par groupe de deux, en série et dans le même sens, entre la masse et la tension Us la plus élevée pour chacune des trois phases du stator et en ce que les moyens électroniques de régulation de la tension Ub du second sous-réseau sont constitués par un régulateur linéaire ou à découpage.
D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description d'un exemple de réalisation d'un système de production de puissance pour réseau bitension, illustrée par les figures suivantes qui sont, outre la figure 1, déjà décrite à propos de l'art antérieur :
  • la figure 2 : un schéma fonctionnel d'un système de production de puissance selon l'invention ;
  • les figures 3 et 5 : deux schémas fonctionnels de deux variantes d'un premier mode de réalisation des moyens électroniques de régulation du réseau bitension selon l'invention ;
  • les figures 4a à 4g : les chronogrammes des signaux délivrés par les, différents éléments du régulateur selon la première variante du premier mode de réalisation de l'invention ;
  • la figure 6a à 6c : les chronogrammes des signaux délivrés par les différents éléments du régulateur selon la deuxième variante du premier mode de réalisation de l'invention ;
  • la figure 7 : un schéma fonctionnel d'un circuit abaisseur de tension ;
  • la figure 8 : un schéma fonctionnel d'un circuit élévateur de tension ;
  • les figures 9 et 10 : les schémas fonctionnels de deux variantes du deuxième mode de réalisation du régulateur du réseau bitension selon l'invention.
Selon un premier mode de réalisation représenté schématiquement sur la figure 2, le système de production de puissance pour un réseau électrique bitension comprend une machine électrique triphasée 20 de type alternateur, qui peut être synchrone à rotor bobiné ou à aimants ou bien encore mixte bobinée et à aimants. Les phases statoriques sont redressées pour générer la puissance souhaitée sur le premier sous-réseau fonctionnant à une première valeur de tension Us. Ce peut être aussi un alternateur asynchrone. Il est bobiné en étoile au stator de façon à présenter un point neutre N auquel est relié le second sous-réseau fonctionnant à une deuxième valeur de tension Ub inférieure à la première valeur de tension Us.
Pour redresser le courant des phases statoriques de l'alternateur, ces trois phases sont reliées à un onduleur triphasé 21, qui délivre une tension Us, égale à 42 Volts dans le cas particulier d'un véhicule automobile actuel, et qui est constitué de six interrupteurs H1 à H3 et L1 à L3. Ils sont disposés selon trois bras de deux interrupteurs chacun, montés en série et dans le même sens, l'un Li "low-side" entre la masse et une des phases et l'autre Hi "high-side" entre la phase et la tension supérieure Us. Ces interrupteurs sont des transistors de type MOSFET ou IGBT ou bipolaire ou autre, associés ou non à une diode inverse. Ils sont pilotés par des moyens électroniques de commande et de régulation 22 qui reçoivent des consignes de régulation des tensions Us et Ub des deux sous-réseaux, provenant d'un calculateur 99 établissant des stratégies électroniques de gestion de l'énergie électrique du réseau. Ces moyens de commande 22 peuvent également recevoir une information sur la position du rotor par rapport au stator de la part d'un capteur de position 32.
Deux moyens de filtrage 23 et 24 peuvent être respectivement disposés à l'entrée de chacun des deux sous-réseaux, soit au niveau du point neutre N, vers le sous-réseau à 14 Volts et au niveau de la sortie S du circuit de régulation, vers le sous-réseau à 42 Volts. Ces moyens sont par exemple constitués de capacités associées à des inductances dimensionnées pour délivrer des tensions continues filtrées restant dans les tolérances admises pour l'application, en matière d'émission et de susceptibilité électromagnétique. Ces deux sous-réseaux peuvent comporter chacun une batterie, référencée respectivement 25 et 26, et alimenter des consommateurs 27 et 28 fonctionnant respectivement à 14 Volts et à 42 Volts.
Lorsque la machine électrique 20 est en mouvement, en mode alternateur entraíné par le moteur du véhicule ou en mode démarreur pour au contraire entraíner le moteur, la liaison de son point neutre N au sous-réseau à 14 Volts impose la polarisation moyenne des trois phases du stator au même potentiel Ub de 14 Volts, dont les impédances en mode continu sont équivalentes aux résistances des enroulements.
La régulation de tension, sur le sous-réseau de 14 Volts, est obtenue par l'ajustement de la valeur moyenne des trois tensions de phase, c'est-à-dire par l'ajustement des trois signaux de pilotage de la machine triphasée délivrés par le circuit électronique de commande et de régulation des tensions Us et Ub du réseau bitension. Il existe deux procédés classiques de pilotage de cet alternateur, ou alterno-démarreur.
Selon une première variante de réalisation, la régulation de ces deux tensions se fait selon un procédé de modulation de largeur d'impulsion des signaux de commande des transistors constituant les bras de l'onduleur, pour générer sur les trois phases, trois ondes périodiques, de forme sinusoïdale, trapézoïdale, triangulaire par exemple, déphasées de 120° les unes des autres. Ce procédé est applicable aux trois types de machine : synchrone à rotor bobiné (SYRB), synchrone à aimant permanent (SYAP) et asynchrone (ASY).
Selon une deuxième variante de réalisation, la régulation se fait selon un procédé de commandes "pleine onde" du type redressement synchrone, applicable seulement aux machines synchrones à rotor bobiné.
Dans le cas des deux procédés, il faut asservir la tension moyenne Umoy des trois tensions statoriques, sur les trois points de sortie des phases P1, P2 et P3, à une tension de consigne nécessaire pour la régulation du réseau à 14 Volts.
Dans le cas de la première variante de réalisation utilisant un procédé de modulation de largeur d'impulsions, la régulation de la tension supérieure Us, égale notamment à 42 Volts, est réalisée par deux paramètres : le réglage de l'amplitude des consignes de phase et le réglage soit de l'excitation du rotor dans le cas d'un alternateur synchrone à rotor bobiné, soit du glissement de vitesse existant entre la vitesse du champ tournant statorique et la vitesse de rotation mécanique du rotor dans le cas d'un alternateur asynchrone, soit du déphasage entre le champ magnétique statorique et le flux rotorique dans le cas d'un alternateur synchrone à aimant permanent.
La figure 3 est un schéma fonctionnel des moyens électroniques de commande 22 de l'onduleur, assurant la régulation des deux tensions Us et Ub du réseau bitension selon l'invention.
La régulation de la tension Us la plus haute, soit 42 Volts, est réalisée par des moyens différenciateurs 31, qui reçoivent en entrée la tension mesurée à l'entrée du sous-réseau à Us = 42 Volts et la comparent à une valeur de consigne (Us)c délivrée par un calculateur électronique extérieur au système. Il en déduit une erreur εS envoyée à des premiers moyens correcteurs C1, ainsi qu'à des deuxièmes circuits correcteurs C2 qui calculent des consignes de déphasage DEP ou de glissement GLI et d'excitation EXC du rotor. Simultanément, grâce à un capteur 32 de position du rotor par rapport au stator ou à un procédé d'autodétection selon le type de machine, des moyens 33 élaborent le signal de position, par exemple sous la forme de tops de synchronisation (figure 4a) qui sont envoyés dans des moyens 34 d'élaboration d'un signal de référence Sréf, une sinusoïde par exemple.
Ces moyens 34 prennent en compte les consignes de déphasage DEP ou de glissement GLI, issues du deuxième correcteur C2, pour décaler les tops de synchronisation du signal de position (figure 4b) à partir desquels est élaborée la sinusoïde de référence Sref (figure 4c). A celle-ci est ensuite appliqué un coefficient multiplicatif Cm, calculé par le circuit correcteur C1, pour régler l'amplitude A de cette sinusoïde (figure 4d). Cette amplitude est impérativement inférieure à Us, soit 42 Volts, pour des raisons de sécurité des passagers du véhicule, de sorte que sa moyenne avoisine 24 Volts.
Selon l'invention, la régulation de la tension Ub la plus basse, soit 14 Volts, est réalisée par l'ajustement de la valeur moyenne des consignes des trois phases. Pour cela, des moyens différenciateurs 35, recevant d'une part la tension Ub mesurée aux bornes du deuxième sous-réseau et d'autre part la valeur de consigne (Ub)c délivrée par le calculateur extérieur, calculent un signal d'erreur εb qui traverse des troisièmes moyens correcteurs C3, destinés à calculer un offset Om à ajouter dans des moyens additionneurs 36, aux consignes de phase pour le réglage de la valeur moyenne de la sinusoïde de référence (figure 4e), de façon à obtenir réellement Ub = 14 Volts à l'entrée du sous-réseau après la cellule de filtrage 23.
Ce signal de consigne de phase ainsi obtenu est alors transformé par un procédé de modulation de largeur d'impulsion dans des moyens 37 de génération d'impulsions de commande des six transistors de l'onduleur 21, Hi et Li, i variant de 1 à 3 (figure 4f). Cette commande des transistors de l'onduleur permet ainsi, de générer trois ondes périodiques de tension, décalées de 120° les unes des autres, sous forme de sinusoïdes sur la figure 4g, au niveau des trois phases P1 à P3, autorisant une rotation continue du champ statorique de l'alternateur.
Selon une seconde variante de réalisation du système, dont un schéma fonctionnel des moyens électroniques de commande de l'onduleur est représenté sur la figure 5, dans le cas d'une machine synchrone à rotor bobiné, la régulation des deux tensions du réseau bitension se fait par un procédé de commande "pleine onde" de type redressement synchrone.
La régulation de la tension supérieure Us en sortie de l'onduleur est réalisée par deux paramètres : le réglage de l'excitation du rotor d'une part et le réglage combiné de l'angle de déphasage α et de l'angle d'ouverture β des impulsions du signal de commande de l'onduleur.
Pour réaliser le réglage de l'excitation EXC du rotor de l'alternateur, des moyens différenciateurs 51 calculent une erreur δs existant entre la tension Us mesurée à l'entrée du sous-réseau à 42 Volts et une valeur de consigne (U's)c délivrée par un calculateur électronique extérieur, puis l'envoient sur des premiers moyens correcteurs C4 qui vont calculer l'excitation EXC du rotor.
Parallèlement, un capteur 52 de position du rotor par rapport au stator ou un procédé d'auto-détection selon le type de machine synchrone, permettent d'élaborer un signal de position, par exemple sous forme de tops de synchronisation (figure 6a), dans des moyens 53, qui vont être décalés d'un angle de déphasage α (figure 6b), calculé dans des deuxièmes moyens correcteurs C5 à partir de l'erreur δs précédemment trouvée.
Etant donnée la nécessité de réguler la tension Ub du second sous-réseau par ajustement de l'angle d'ouverture β des impulsions du signal de commande des transistors, le réglage de l'angle de déphasage α et de l'angle ouverture β doivent être combinés car ils ne sont pas indépendants l'un de l'autre.
Des seconds moyens différenciateurs 54 calculent l'erreur δb entre la tension Ub mesurée aux bornes du deuxième sous-réseau et une valeur de consigne (U'b)c délivrée par le calculateur extérieur. Cette erreur δb traverse des moyens correcteurs C6 qui calculent l'angle d'ouverture β, envoyé dans des moyens 55 de génération d'impulsions de commande de l'onduleur, qui reçoivent par ailleurs les tops de synchronisation décalés de l'angle α.
La figure 6c représente les signaux de commande dans chacun des six transistors de l'onduleur, chaque couple de transistors haut Hi et bas Li étant affecté à une des trois phases Pi, i variant de 1 à 3, en sortie desquelles sont générées trois ondes périodiques de tension, décalées de 120°.
Lorsque la machine électrique est à l'arrêt, en mode convertisseur de tension, un pilotage adapté des trois bras de l'onduleur, par le circuit de commande 22, permet d'effectuer un transfert d'énergie d'un des deux réseaux, 14 ou 42 Volts, vers l'autre. La structure du convertisseur statique ainsi obtenu est de type abaisseur de tension ou élévateur de tension.
La figure 7 est un schéma fonctionnel d'une structure d'abaisseur de la tension 42 Volts vers la tension 14 Volts. Les trois bras de l'onduleur 21 sont pilotés à la même fréquence de découpage et peuvent être déphasés afin de diminuer la tension résiduelle de rejection sur les deux réseaux de tension.
Selon le mode de régulation par modulation de largeur d'impulsion, les moyens de commande 22 de l'onduleur 21 comprennent des moyens 70 de génération d'impulsions de commande des transistors qui reçoivent, comme informations d'entrée, d'une part la tension mesurée Us aux bornes de la batterie 26 du premier sous-réseau à 42 Volts et d'autre part la consigne C calculée par des moyens correcteurs 71 à partir de l'erreur σb issue de la comparaison entre la tension mesurée Ub aux bornes du deuxième sous-réseau et une valeur de consigne Ub1, effectuée dans des moyens de comparaison 72.
La figure 8 est un schéma fonctionnel d'un convertisseur statique de type élévateur de tension. Dans ce cas, c'est la tension Ub délivrée par la batterie 25 qui est la donnée d'entrée à partir de laquelle va être régulée la tension Us d'entrée du réseau 42 Volts. Cette tension Us est mesurée et comparée dans des moyens de comparaison 80, pour être asservie à une consigne UC2 par détermination d'une consigne C' dans des moyens correcteurs 81 à partir de l'erreur σs issue de la comparaison, en cas de modulation de largeur d'impulsions. Puis des moyens générateurs 82 d'impulsions de commande envoie des signaux aux six transistors de l'onduleur 21.
Selon un autre mode de réalisation du système de génération de puissance selon l'invention, les moyens de redressement des phases statoriques de l'alternateur triphasé 90 sont de type passif, constitués d'un pont 91 de six diodes d1 à d6, soit trois groupes de deux diodes montées en série et dans le même sens, pour chacune des trois phases de l'alternateur, entre la masse et la tension Us la plus élevée du réseau bitension, soit 42 Volts dans l'exemple choisi. La tension Us du sous-réseau branché en sortie de ce pont de redressement passif n'est régulée que par la commande de l'excitation du rotor R de l'alternateur.
D'après une première variante, représentée sur la figure 9, les moyens électroniques de régulation de la tension Ub du second sous-réseau sont constitués par un interrupteur I0, dont la fermeture est pilotée par un circuit de commande 92. Ce circuit 92 compare la tension mesurée Ub d'une part à un premier seuil SOFF, dans un comparateur 93, pour délivrer un signal de commande de l'ouverture de l'interrupteur Io, et d'autre part, à un deuxième seuil SON, dans un autre comparateur 94, pour délivrer un signal de commande de sa fermeture. Ces deux signaux de commande vont piloter alternativement l'interrupteur Io, après passage dans une bascule logique 95.
Une diode 96 peut être placée en série avec l'interrupteur Io pour améliorer son fonctionnement et éviter le passage d'un courant du sous-réseau à 14 Volts vers le sous-réseau à 42 Volts.
D'après une deuxième variante, représentée sur la figure 10, la régulation de la tension Ub du second sous-réseau est assurée par un régulateur 97, soit de type linéaire si la tension au point neutre N est proche de la tension Ub à l'entrée du sous-réseau, soit de type à découpage si la tension au point neutre N est voisine de la moitié de la tension Us aux bornes du premier sous-réseau.
Grâce à l'invention, la présence d'un convertisseur électronique DC/DC, coûteux et volumineux, est supprimée entre les deux sous-réseaux. Le fait que l'alternateur produise directement de l'énergie au sous-réseau à 14 Volts sans intermédiaire permet l'obtention d'un très bon rendement. De plus, le système est complètement réversible, permettant le transfert de l'énergie depuis un des deux sous-réseaux vers l'autre. Grâce à l'indépendance des valeurs de régulation des deux sous-réseaux, il est possible d'appliquer l'invention à d'autres valeurs de tension, différentes de 14 et 42 Volts.
Le système selon l'invention rend compatible la production d'énergie électrique avec l'utilisation de tous types d'éléments de stockage, comme une batterie au plomb, au lithium, au nickel-cadmium ou un condensateur de grande valeur par exemple.
Enfin, le système est fiable et présente une durée de vie accrue grâce à la minimisation des composants électroniques mis en oeuvre pour produire l'énergie électrique au réseau bitension.

Claims (13)

  1. Système de génération de puissance pour un réseau électrique bitension, comprenant une machine électrique de type alternateur triphasé dont les phases statoriques sont redressées pour générer la puissance souhaitée sur le sous-réseau fonctionnant à une première valeur de tension (Us), le stator de l'alternateur triphasé (20) étant bobiné en étoile de façon à présenter un point neutre (N) auquel est relié le second sous-réseau fonctionnant à une deuxième valeur de tension (Ub) inférieure à la première, caractérisé en ce que qu'il comporte des moyens électroniques de commande (22) et de régulation des tensions (Us et Ub)des deux sous-réseaux, les valeurs de régulation des deux sous-réseaux étant indépendantes et permettant le transfert de l'énergie depuis un des deux sous-réseaux vers l'autre de façon à rendre le système complètement réversible.
  2. Système de génération de puissance selon la revendication 1, caractérisé en ce que les moyens de redressement des phases statoriques de l'alternateur triphasé sont constitués par un onduleur triphasé (21) comprenant six interrupteurs (H1 à H3) et (L1 à L3), de type transistors, montés en série et dans le même sens, par groupe de deux entre la masse et la tension (Us) la plus élevée pour chacune des trois phases du stator, chacun des six transistors étant piloté par les moyens électroniques de commande (22), qui sont destinés à asservir la valeur moyenne de la tension des trois phases à une tension de consigne permettant d'obtenir la tension (Ub) en entrée du second sous-réseau à plus basse tension, et en ce que le système comporte de plus deux moyens de filtrage respectivement disposés au point neutre (N) en entrée du sous-réseau à plus basse tension (Ub) et en sortie de l'onduleur en entrée du sous-réseau à plus haute tension (Us).
  3. Système de génération de puissance selon la revendication 2 caractérisé en ce que les moyens électroniques (22) de commande réalise la régulation des deux tensions (Us et Ub) du réseau bitension par modulation de la largeur des impulsions de commande des transistors constituant les trois bras de l'onduleur (21), la régulation de la tension supérieure (Us) étant réalisée d'une part par le réglage de l'amplitude des consignes de phase et d'autre part par le réglage soit de l'excitation du rotor dans le cas d'un alternateur synchrone à rotor bobiné, soit du glissement de vitesse existant entre la vitesse du champ tournant statorique et la vitesse de rotation mécanique du rotor dans le cas d'un alternateur asynchrone, soit du déphasage entre le champ magnétique statorique et le flux rotorique dans le cas d'un alternateur synchrone à aimant permanent, et la régulation de la tension inférieure (Ub) étant réalisée par l'asservissement de la tension moyenne des trois phases de l'alternateur à une consigne destinée à obtenir la tension (Ub) en entrée du sous-réseau, après les moyens de filtrage (23).
  4. Système de génération de puissance selon la revendication 2 caractérisé en ce que, dans le cas d'une machine électrique de type synchrone à rotor bobiné, les moyens électroniques (22) de commande réalisent la régulation des deux tensions (Us et Ub) du réseau bitension par un procédé de commandes « pleine onde » de type redressement synchrone, la régulation de la tension inférieure (Ub) étant réalisée par le réglage de l'angle d'ouverture (β) des impulsions du signal de commande des transistors de l'onduleur (21) et la régulation de la tension supérieure (Us) étant réalisée d'une part par le réglage de l'excitation du rotor de l'alternateur et d'autre part par le réglage combiné de l'angle de déphasage (α) et de l'angle d'ouverture (β) des impulsions de commande.
  5. Système de génération de puissance selon la revendication 3, caractérisé en ce que les moyens électroniques (22) de commande et de régulation de l'onduleur (21) comprennent :
    des premiers moyens différenciateurs (31) recevant la tension (Us) mesurée en entrée du premier sous-réseau et une valeur de consigne (Us)c délivrée par un calculateur extérieur, et délivrant une erreur (εs) ;
    des premiers moyens correcteurs (C1) recevant ladite erreur (εs) issue des premiers moyens différenciateurs (31) et délivrant un coefficient multiplicatif (Cm) ;
    des seconds moyens correcteurs (C2) recevant ladite erreur (εs) issue des premiers moyens différenciateurs (31) et calculant des consignes de déphasage (DEP) ou de glissement (GLI), et d'excitation (EXC) du rotor ;
    des moyens (34) d'élaboration d'une onde de référence (Sréf) à partir de tops de synchronisation décalés par les consignes de déphasage ou de glissement ;
    des seconds moyens différenciateurs (35) recevant la tension (Ub) mesurée en entrée du deuxième sous-réseau et une valeur de consigne (Us)c délivrée par un calculateur extérieur, et délivrant une erreur (εb) ;
    des troisièmes moyens correcteurs (C3) recevant ladite erreur (εb) des deuxièmes moyens différenciateurs et calculant un offset (Om) à ajouter aux consignes de phase pour le réglage de la valeur moyenne de l'onde de référence (Sréf) ;
    des moyens (37) de génération d'impulsions de commande des six transistors de l'onduleur (21).
  6. Système de génération de puissance selon la revendication 4, caractérisé en ce que le circuit électronique (21) comprend :
    des premiers moyens différenciateurs (51) calculant une erreur (δs) existant entre la tension supérieure mesurée (Us) à l'entrée du premier sous-réseau et une valeur de consigne (U's)c délivrée par un calculateur extérieur ;
    des premiers moyens correcteurs (C4) recevant ladite erreur (δs) issue des moyens différenciateurs (51) et calculant l'excitation (EXC) du rotor de l'alternateur ;
    des moyens (53) d'élaboration de tops de synchronisation décalés d'un angle de déphasage (α) calculé dans des seconds moyens correcteurs (C5) à partir de l'erreur (δs) issue des moyens différenciateurs (51) ;
    des seconds moyens différenciateurs (54) calculant l'erreur (δb) existant entre la tension inférieure (Ub) mesurée à l'entrée du second sous-réseau et une valeur de consigne (U'b)c délivrée par le calculateur extérieur ;
    des troisièmes moyens correcteurs (C6) recevant ladite erreur (δb) issu des deuxièmes moyens différenciateurs (54) et calculant l'angle d'ouverture (β) des impulsions de commande des six transistors de l'onduleur (21), élaborées dans des moyens (55) de génération qui reçoivent également les tops de synchronisation décalés de l'angle de déphasage (α) issu des moyens (δ3).
  7. Système de génération de puissance selon la revendication 2 caractérisée en ce que l'alternateur (20) étant à l'arrêt, en mode convertisseur de tension, les moyens de commande (22) de l'onduleur (21) comprennent des moyens (70) de génération d'impulsions de commande des transistors qui reçoivent, comme informations d'entrée, d'une part la tension mesurée (Us) aux bornes de la batterie (26)du premier sous-réseau à 42 Volts et d'autre part une consigne (C) calculée par des moyens correcteurs (71) à partir de l'erreur (σb) issue de la comparaison dans des moyens de comparaison (72), entre la tension mesurée (Ub) aux bornes du deuxième sous-réseau et une valeur de consigne (Ub1).
  8. Système de génération de puissance selon la revendication 2 caractérisé en ce que l'alternateur (20) étant à l'arrêt, en mode convertisseur de tension, les moyens de commande (22) de l'onduleur (21) comprennent des moyens (82) générateurs d'impulsions de commande des transistors qui reçoivent d'une part la tension mesurée (Ub) aux bornes de la batterie (25) du deuxième sous-réseau à plus basse tension et d'autre part une consigne (C') calculée par des moyens correcteurs (81) à partir de l'erreur (σs) issue de la l'erreur (σs) issue de la comparaison entre la tension (Us) mesurée aux bornes du premier sous-réseau et une valeur de consigne (Uc2).
  9. Système de génération de puissance selon l'une des revendications 1 à 8, caractérisé en ce que les six interrupteurs (I1 à I6) commandables sont des transistors de type MOSFET ou IGBT ou bipolaire, associés ou pas à une diode externe.
  10. Système de génération de puissance selon l'une des revendications 2 à 9, caractérisé en ce que les deux moyens de filtrage (23 et 24) sont constitués de capacités associées à des inductances dimensionnées de façon à délivrer des tensions continues filtrées restant dans les tolérances admises.
  11. Système de génération de puissance selon la revendication 1, caractérisé en ce que les moyens de redressement des phases statoriques de l'alternateur triphasé sont constitués par un pont (91) de redressement passif comprenant six diodes (d1 à d6), montées par groupe de deux, en série et dans le même sens, entre la masse et la tension (Us) la plus élevée pour chacune des trois phases du stator et en ce que les moyens électroniques de régulation de la tension (Ub) du second sous-réseau sont constitués d'un interrupteur (I0) dont la fermeture est pilotée par un circuit de commande (92).
  12. Système de génération de puissance selon la revendication 1, caractérisé en ce que les moyens de redressement des phases statoriques de l'alternateur triphasé sont constitués par un pont (91) de redressement passif comprenant six diodes (d1 à d6), montées par groupe de deux, en série et dans le même sens, entre la masse et la tension (Us) la plus élevée pour chacune des trois phases du stator et en ce que les moyens électroniques de régulation de la tension (Ub) du second sous-réseau sont constitués par un régulateur (95) linéaire ou à découpage.
  13. Système de génération de puissance selon l'une des revendications 1 à 12, caractérisé en ce qu'il comporte de plus deux batteries (25 et 26) placées en entrée respectivement des deux étages de tension (U1 et U2), après les cellules de filtrage (23 et 24).
EP00403549A 1999-12-30 2000-12-15 Système de génération de puissance pour un réseau bitension Expired - Lifetime EP1112896B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9916750A FR2803447B1 (fr) 1999-12-30 1999-12-30 Systeme de generation de puissance pour un reseau bitension
FR9916750 1999-12-30

Publications (2)

Publication Number Publication Date
EP1112896A1 EP1112896A1 (fr) 2001-07-04
EP1112896B1 true EP1112896B1 (fr) 2005-09-07

Family

ID=9554061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00403549A Expired - Lifetime EP1112896B1 (fr) 1999-12-30 2000-12-15 Système de génération de puissance pour un réseau bitension

Country Status (3)

Country Link
EP (1) EP1112896B1 (fr)
DE (1) DE60022460T2 (fr)
FR (1) FR2803447B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733038B2 (en) 2005-04-06 2010-06-08 Bayerische Motoren Werke Aktiengesellschaft Switching device for linking various electrical voltage levels in a motor vehicle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933549B1 (fr) 2008-07-02 2010-08-20 Valeo Equip Electr Moteur Procede pour commander une machine electrique tournante, notamment un alternateur
DE102010023732A1 (de) * 2010-06-14 2011-12-15 Audi Ag Schaltungsanordnung, Kraftfahrzeug und Verfahren
CN107218176B (zh) 2016-03-21 2020-05-19 通用电气公司 风力节距调整系统
FR3056037B1 (fr) 2016-09-14 2018-08-17 Valeo Equipements Electriques Moteur Systeme de transfert de puissance electrique
US20190031125A1 (en) * 2017-07-25 2019-01-31 Hamilton Sundstrand Corporation Electric system architecture for range extended electric vehicles
KR20200088663A (ko) 2019-01-15 2020-07-23 주식회사 엘지화학 배터리 충전 시스템 및 배터리 충전 방법
CN112389270B (zh) 2019-08-15 2022-07-15 比亚迪股份有限公司 能量转换装置及车辆
CN113746191A (zh) * 2021-09-24 2021-12-03 中国北方车辆研究所 一种采用永磁电机构建直流±28v电源的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2810201C2 (de) * 1978-03-09 1985-11-14 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Vorrichtung zur Energieversorgung von an das Bordnetz eines Kraftfahrzeugs angeschlossenen elektrischen Verbrauchern
DE4226311A1 (de) * 1992-08-08 1994-02-10 Audi Ag Drehstromgenerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7733038B2 (en) 2005-04-06 2010-06-08 Bayerische Motoren Werke Aktiengesellschaft Switching device for linking various electrical voltage levels in a motor vehicle

Also Published As

Publication number Publication date
DE60022460D1 (de) 2005-10-13
FR2803447A1 (fr) 2001-07-06
FR2803447B1 (fr) 2003-08-29
EP1112896A1 (fr) 2001-07-04
DE60022460T2 (de) 2006-06-14

Similar Documents

Publication Publication Date Title
EP1632019B1 (fr) Circuit de commande a modulation en largeur d'impulsions pour machine electrique multi mode et machine electrique multi mode equipee d'un tel circuit de commande
FR2604041A1 (fr) Procede de commande d'une machine electrique reversible generateur-moteur, pour vehicule automobile, et installation de commande pour la mise en oeuvre d'un tel procede
EP0792769A1 (fr) Alternateur de véhicule automobile fonctionnant comme générateur et comme moteur électrique et procédé pour la commande d'un tel alternateur
FR2811824A1 (fr) Moteur electrique a deux modes de communication d'alimentation
US20060017290A1 (en) Fast torque control of a belted alternator starter
EP1112896B1 (fr) Système de génération de puissance pour un réseau bitension
WO2003088471A2 (fr) Agencement pour la mise en œuvre d'une machine electrique tournante polyphasee et reversible associee a un moteur thermique d'un vehicule automobile
FR3004031A1 (fr) Dispositif de regulation pour un moteur-generateur de vehicule et son procede de regulation
EP3183795B1 (fr) Chargeur de batterie pour un véhicule automobile électrique ou hybride à haute intégration
EP3539204B1 (fr) Procédé de commande d'un redresseur triphasé pour un dispositif de charge embarqué sur un véhicule électrique ou hybride
EP1220416A2 (fr) Dispositif de production d'électricité à partir du réseau triphasé, comprenant un alternateur embarqué
EP3520210B1 (fr) Procede de commande d'un redresseur triphase pour un dispositif de charge embarque sur un vehicule electrique ou hybride
EP1974457B1 (fr) Procede de commande d'une machine electrique tournante polyphasee
FR2961966A1 (fr) Procede de charge de moyens d'accumulation et dispositif de charge correspondant
WO2005031961A1 (fr) Dispositif de redressement synchrone et machine electrique synchrone mettant en oeuvre le dispositif
FR3043285B1 (fr) Procede et dispositif de commande d'une machine electrique tournante de vehicule automobile, et machine correspondante
EP3513473A1 (fr) Système de transfert de puissance électrique
EP2702667B1 (fr) Dispositif et procédé de conversion reversible de puissance électrique multifonction
EP4382343A1 (fr) Système d'alimentation électrique alimentant une charge électrique via une tension polyphasée et en outre un réseau auxiliaire via une composante homopolaire de ladite tension, installation électrique associée
EP4047813A1 (fr) Module de régulation pour une machine électrique tournante
EP4128521A2 (fr) Procédé de commande d'un redresseur connecté à une génératrice électrique synchrone à aimants permanents pour fournir une tension continue, programme d'ordinateur et dispositif correspondant
FR2870401A1 (fr) Generateur electrique compose d'une generatrice asynchrome rendue capable de fonctionnement autonome grace a un dispositif electronique lui fournissant sa puissance reactive.
FR2977746A1 (fr) Procede de commande d'une machine electrique polyphasee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011214

AKX Designation fees paid

Free format text: BE DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

17Q First examination report despatched

Effective date: 20030819

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60022460

Country of ref document: DE

Date of ref document: 20051013

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121220

Year of fee payment: 13

Ref country code: BE

Payment date: 20121219

Year of fee payment: 13

BERE Be: lapsed

Owner name: *RENAULT S.A.S.

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60022460

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60022460

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131215