EP1108115B1 - Method for sealing rocks or building material and corresponding device - Google Patents

Method for sealing rocks or building material and corresponding device Download PDF

Info

Publication number
EP1108115B1
EP1108115B1 EP99941306A EP99941306A EP1108115B1 EP 1108115 B1 EP1108115 B1 EP 1108115B1 EP 99941306 A EP99941306 A EP 99941306A EP 99941306 A EP99941306 A EP 99941306A EP 1108115 B1 EP1108115 B1 EP 1108115B1
Authority
EP
European Patent Office
Prior art keywords
rock
polyamides
building material
heated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99941306A
Other languages
German (de)
French (fr)
Other versions
EP1108115A1 (en
Inventor
Josef Lueger
Franz Sündermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Insond En Strabag AG GmbH
Original Assignee
INSOND GmbH
Lueger Josef
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSOND GmbH, Lueger Josef filed Critical INSOND GmbH
Priority to AT99941306T priority Critical patent/ATE244356T1/en
Publication of EP1108115A1 publication Critical patent/EP1108115A1/en
Application granted granted Critical
Publication of EP1108115B1 publication Critical patent/EP1108115B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/001Improving soil or rock, e.g. by freezing; Injections
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
    • E04B1/644Damp-proof courses
    • E04B1/648Damp-proof courses obtained by injection or infiltration of water-proofing agents into an existing wall
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones

Definitions

  • the invention relates to a method for sealing Building structures, walls and cavities in the ground, rock or in the mountains, especially tunnels, tunnels, shafts, canals and caverns, with sealing material via a sealed borehole is introduced into the rock under pressure.
  • the invention further relates to a device for sealing of building structures, walls and cavities in the floor, Rock or in the mountains according to such a method.
  • the present invention relates to Use of polyamides in the process according to the invention.
  • US 4,370,077 relates to a method for stabilization of rocks by repeated injections of a hardenable gel, such as epoxy resin or polystyrene, i.e. of plastics, which harden by adding heat and / or adding a catalyst.
  • a hardenable gel such as epoxy resin or polystyrene, i.e. of plastics, which harden by adding heat and / or adding a catalyst.
  • the aim of the present invention is to provide a method for Sealing e.g. Rocks or building material available the sealing material against moisture, Completely seals gases etc., a practically unlimited lifespan and has a fast initial strength.
  • the procedure should also be uncomplicated and any one in a short time Seal a large area of a rock or building material.
  • the inventive method of the type mentioned is characterized in that heated polyamides under pressure pressed into the rock or building material via the borehole after which they are to be sealed in the gaps and pores of the Rock or building material penetrate and this after cooling sealed and permanently sealed.
  • the polyamides are heated to a low viscosity Condition brought, making them even the smallest Fissures, pores, cracks, etc. of the rock or building material can.
  • the polyamides are pressed into the borehole and from there into the pores and fissures of the rock or building material pressed in, the temperature of the polyamides with the Depth of pores decreases, so that from a certain depth of penetration seen from the borehole, depending on the initial temperature, the Polyamides become increasingly viscous and eventually solidify. Due to the pressure of the incoming polyamides, they will somewhat thicker polyamides even deeper into the pores or Fissures repressed. If the polyamides have been overheated, they show a sufficiently high temperature so that the liquid is heated Polyamides deep in the pores of the rock or building material can penetrate before they cool and solidify.
  • the polyamides When in contact with water, the polyamides have the property especially during the hardening process to absorb certain amounts of water, which increases the volume of the polyamides.
  • the Polyamides expand further in the pores and fissures, causing the rock or building material is sealed even more. If the sealed rock or building material is water or Exposed to moisture, the volume increases the polyamides built up a structure by absorbing water Durability also withstands a strong hydrostatic pressure.
  • the pressing is preferred performed several times, already in fissures and pores penetrated polyamides of the rock or building material to be sealed cool at least partially between the press-in processes fresh and heated ones during the next press-in process Polyamides can penetrate into other fractures and pores.
  • the heated polyamides are at a temperature from 50 to 1000 ° C and with a pressure of 1 to 500 bar brought into the borehole.
  • the pressure and temperature are aligned the polyamides according to their properties, according to their density, Cleftness or porosity of the rock or building material, as well according to the ambient temperature and the desired penetration depth the polyamides.
  • a particularly advantageous method is given by that several boreholes are spaced apart in the rock or Building materials are provided, taken from a borehole polyamides pressed into the rock or building material with the from the surrounding boreholes into the rock or building material pressed polyamides meet, so that a coherent sealing screen is formed.
  • This will allows a larger area of the rock to be sealed or building materials, such as a wall or a tunnel wall, completely is sealed.
  • the meeting of the polyamides is a complete Seal achieved because of the colliding polyamides the polyamides, which constantly penetrate further from behind, are stronger are pressed against each other and in this way the ones there pores and fissures are completely filled by the polyamides become.
  • gas heated in the preheating step placed in the borehole over a period of 1 to 60 minutes becomes.
  • a heated gas is technically simple and inexpensive to carry out.
  • the heated gas is preferably in the same Drilled hole into which the polyamides are later pressed. It is particularly important to ensure that this is done before the start the polyamides are pressed in, otherwise gas bubbles into the pores and fissures, causing leaks Places in the rock or building material can arise.
  • Liquids have the advantage of that it due to the low specific density due to the polyamides can be easily displaced, and this without dealing with the polyamides continue to mix.
  • the time span of the gas flow in turn depends on the ambient or stone or building material temperature, or of the Temperature of the gas, as well as the temperature to be reached of the rock or building material.
  • the heated gas advantageously has a temperature from 50 to 1000 ° C and a pressure of 1 to 250 bar. there if the heated gas is not too high, not so deep into the pores or fissures of the rock or building material penetrate, since again from those subsequently flowing Polyamides enclosed gas bubbles leaks in the rock or building material.
  • the gas pressure should therefore adapted to the properties of the rock or building material and not be too big.
  • the temperature should be high enough to penetrate the rock or building material to heat the polyamides sufficiently.
  • the temperature, the pressure and the time span of the inflow of the gas to coordinate properly.
  • a particularly simple embodiment is that the heated gas is air.
  • the one heated in the conventional way Air is brought into the respective borehole from where from which the rock or building material is heated. Air shows that The advantage is that it does not contaminate the rock or building material. Or is corrosive. Furthermore, air is everywhere and can easily be heated, which is especially in remote places (e.g. tunnel in the mountains) is an advantage. Another advantage is that the air without further precautions (e.g. filter) can be led outside again after use can. Air also pollutes or corrodes unlike others Do not gas the polyamides.
  • the heated gas is a combustion gas.
  • the combustion process can be done directly in front of a borehole (the boreholes) or else in the boreholes themselves, provided the combustion process runs completely and without any residues leave off.
  • the preheating process is a step a heat exchanger.
  • the combustion gas or the heated one Air could be in a primary reaction, such as driving one Gas turbine or in another, completely independent of the preheating process Work step arise, the resulting Heat used to preheat the rock or building material becomes.
  • Another possibility of the method according to the invention consists in preheating the rock or building material by micro-explosion of a suitable fuel at or in Rock or building material is reached.
  • the micro-explosion happens thereby in a conventional manner known to the person skilled in the art.
  • Both in this heating process using fuels as well special derivatives can be used in the heating process using combustion gas the gas or fuel used, for example with a filter, out of the borehole.
  • An advantageous embodiment of the invention The process is based on sensors located in the borehole or used in the rock or building material between the boreholes are, quantity, pressure, flow duration or temperature of the heated Gases, fuels or polyamides or Energy input of the microwaves is regulated. For It is essential that the procedure runs smoothly that the different parameters are properly coordinated are.
  • the rock or building material must be preheated sufficiently and the polyamides must be sufficiently thin and one have sufficient pressure to make it as deep as necessary can penetrate the rock or building material. If several Drilled holes are placed side by side in the rock or building material the distances between them must not be too large, that between them there are leaks in the rock or building material arise. These leaks can be done by means of fine, in the Rocks or building material introduced sensors are detected.
  • Sensors in the borehole can e.g. the parameters air and Pressure can be measured over time, thereby drawing conclusions the rock or building material can be pulled and thus also the necessary temperature of the rock or building material, as well as on the necessary pressure of the polyamides and again the minimum distance between the individual drill holes.
  • the borehole has a diameter from 2 to 50 cm and a length of up to 30 m. ever according to the properties of the rock or building material, its dimensions, and the intended seal, the dimensions vary the boreholes. Furthermore, the dimensioning of the Borehole or the boreholes also from the task to be solved (e.g. pre-consolidation of a tunnel route to be created; Sealing of house walls or entire buildings, e.g. Underground garages, against groundwater).
  • the drill holes Preferably after completion of the sealing of the rock or construction material completely closed the drill holes.
  • a device for performing this method has at least one line each for the supply of the polyamides, if appropriate of the heated gas and / or the fuels and / or line with source for microwaves, the line (s) is or are tightly surrounded by a jacket.
  • the line for the first Supply of the heated gas or the fuels opened or the Source for the microwaves activated is usually the line for the first Supply of the heated gas or the fuels opened or the Source for the microwaves activated, and after a certain one Time or an reached temperature of the rock or building material this line is closed or turned off. simultaneously or after that the line for feeding the polyamides is opened, so that they are brought into the borehole. After graduation the sealing of the rock or building material or interim cooling of the polyamides in the "stop and go" process this polyamide line is closed.
  • the line (s) are sealed by a sheath is or are surrounded, they can simultaneously in the respective Borehole inserted and pulled out again, which is labor significantly reduced.
  • the lines can be connected to each other coordinated and from a common control, for example in Dependence on the sensors can be regulated. While pulling out the line (s) together with the jacket after the termination of the The polyamide pipe can be used to seal the rock or building material Remain open so the borehole is complete or partially filled with polyamides. Only when that Line (s) completely or partially from the respective borehole is pulled out, the polyamide line is closed.
  • the sheathing of the line (s) is not only for the lighter one Handling, but also for protection, such as from sharp Edges that may be present in the borehole.
  • a particularly advantageous embodiment is given if the casing has a suitable seal on the outside (e.g. packer) has, so that the borehole is sealed. This will prevents the polyamides introduced into the respective borehole, Gases, fuels, etc. are released immediately after they leak the respective line from the borehole. Furthermore can this builds up the necessary pressure in the respective borehole become.
  • a suitable seal on the outside e.g. packer
  • the seal can be used simultaneously with the introduction of the Line (s) in the respective borehole, such as in Shape of a ring made of flexible material around the tight casing, or only afterwards, e.g. in the form of a (tough) liquid substance that hardens.
  • the seal can also Polyamides used to seal the rock or building material his. After completion of the sealing of the rock or building material the sheathing is made with the line (s) the respective borehole, the seal, e.g. the polyamides can remain in the borehole.
  • the method according to the invention is preferably used for pre-consolidation a tunnel route applied. In doing so, the floor of a tunnel that is still to be built, for example.
  • the present invention also relates to the use of polyamides in the process according to the invention.
  • polyamides are used without environmentally toxic additives come, particularly preferably polyamide with a softening point from 150 ° C to 200 ° C according to ASTM E28 (in silicone oil) and a melt viscosity at 180 ° C of 300 ⁇ 150 m.Pa.s (according to ASTM D 3236).
  • FIG. 1 shows a rock 1 with a borehole 2, in which a line for the supply of heated gas or Fuels 3 and 4 introduced for the supply of polyamides are. These two lines 3, 4 are of a common one Sheath 5 tightly surrounded.
  • the casing 5 has an outside Seal 6 on, so that the borehole 2 seals to the outside is.
  • the polyamides are in the pores or Fissures of the rock l pressed in so that the borehole 2 surrounding rock 7 is sealed by the polyamides.
  • Fig. 2 shows a larger rock surface 7 with three boreholes 2 ', 2' ', 2' '', of which polyamides in the the boreholes 2 ', 2' ', 2' '' surrounding rock 7 ', 7' ', 7' '' penetrated are.
  • polyamides in the individual Drill holes 2 ', 2' ', 2' '' become a coherent sealing screen 8 formed.
  • the rock surface 1 is opposite sealed the room 9.
  • the drill holes 2 ', 2' ', 2' '' point themselves polyamides solidified at their respective ends 10 ', 10' ', 10' '' so that the boreholes 2 ', 2' ', 2' '' are also sealed.
  • the individual drill holes 2 ', 2' ', 2' '' are not parallel and of equal length, but vary depending on the rock section, in Direction and length.
  • the pipe was filled with dry grit (approx. 3/8 mm, low dust content) and the experimental setup directly connected to the supply of the polyamides. After graduation The pressing of polyamide was found to be the polyamide the entire length of the test pipe section (2 m) had been filled in completely, a pressure test showed that the Filling up to the maximum achievable pressure of 10 bar Compressed air was pressure-tight. Then there was a pressure test carried out by means of oil pressure, with an applied Pressure of about 20 bar the entire filling of the test tube piece was squeezed, the filling was thus at least 20 bar pressure tight.
  • the penetration depth of the melt material was up to approx. 1.2 m detected.
  • a pressure test showed pressure density up to the maximum achievable pressure of 10 bar compressed air. Then was another pressure test was carried out using oil pressure, whereby one Pressure density up to the maximum achievable oil pressure of 60 bar was found.
  • This example has shown that a full-surface Filling gaps and crevices in stone or masonry is easy and simple to carry out.
  • the borehole was closed some time before the start of the pressing filled with water, the water seeping away within a short time.
  • the melt material was then heated to approximately 200-230 ° C and melted, then at approx. 140 bar machine pressure injected via a heating hose. There were about 3 min 20 sec promoted. After a break of 1/2 min and a few more shorter pauses were injected again for a total of about 10 seconds. Corresponds to the previously determined delivery rate this is an injection volume of approx. 3.5 l.
  • a core drill was used with a diamond crown and water rinsing, a core with an 8 cm diameter drawn. Drilling was approximately normal on the main divide. The main gap was with an opening width of about 2-3 mm completely filled with polyamide, which differs from the Had broken walls. Cause of the missing connection was, according to the drill master, most likely a tear through the core drilling process itself.
  • the above example proves that the invention Process for sealing injections is best suited.
  • the spread in the rock and the adhesion of the sealing material to the Gap walls is satisfactory.
  • the curing takes place significantly faster than with conventionally used materials.
  • the Injection can also be interrupted in the same borehole and continued after partial solidification of the sealing material ("stop and go" procedure). This allows the distribution of the sealing material in the fissures. This effect is particularly noteworthy as a continuation the injection even after leakage of sealing material on the injection side is made possible for the first time.

Description

Die Erfindung betrifft ein Verfahren zur Abdichtung von Bauwerkskonstruktionen, Mauern und Hohlräumen im Boden, Gestein bzw. im Gebirge, insbesondere Tunnel, Stollen, Schächte, Kanäle und Kavernen, wobei über ein abgedichtetes Bohrloch Dichtungsmaterial unter Druck in das Gestein eingebracht wird.The invention relates to a method for sealing Building structures, walls and cavities in the ground, rock or in the mountains, especially tunnels, tunnels, shafts, canals and caverns, with sealing material via a sealed borehole is introduced into the rock under pressure.

Die Erfindung betrifft weiters eine Vorrichtung zum Abdichten von Bauwerkskonstruktionen, Mauern und Hohlräumen im Boden, Gestein bzw. im Gebirge gemäß einem solchen Verfahren.The invention further relates to a device for sealing of building structures, walls and cavities in the floor, Rock or in the mountains according to such a method.

Schließlich betrifft die vorliegende Erfindung noch die Verwendung von Polyamiden im erfindungsgemäßen Verfahren.Finally, the present invention relates to Use of polyamides in the process according to the invention.

Gesteine bzw. Baumaterial konnten bisher nur mit herkömmlichem Dichtungsmaterial abgedichtet werden, das jedoch mit der Zeit durch Temperatureinfluss und Feuchtigkeit, sowie chemische Einflüsse, z.B. durch Rauch oder Gase, spröde wird. Die Abdichtung verliert mit der Zeit ihre Dichtungseigenschaften und das Gestein bzw. Baumaterial wird für jegliche Gase oder Flüssigkeiten immer durchlässiger.Up to now, rocks and building materials could only be used with conventional ones Sealing material to be sealed, but with the Time due to temperature influence and humidity, as well as chemical Influences, e.g. through smoke or gases, becomes brittle. The seal Over time it loses its sealing properties and that Rock or building material is used for any gases or liquids more and more permeable.

Die US 4 370 077 betrifft ein Verfahren zur Stabilisierung von Felsen durch wiederholte Injektionen eines aushärtbaren Gels, wie Epoxyharz oder Polystyrol, also von Kunststoffen, welche mittels Wärmezufuhr und/oder Beigabe eines Katalysators aushärten.US 4,370,077 relates to a method for stabilization of rocks by repeated injections of a hardenable gel, such as epoxy resin or polystyrene, i.e. of plastics, which harden by adding heat and / or adding a catalyst.

Gemäß der DE 35 35 654 A1 besteht ein Verfahren zur Trockenlegung von Mauerwerk darin, dass in eine zu behandelnde Mauer in Abständen Sacklöcher von einer Seite aus eingebracht und in diese Heizkörper eingebracht werden. Sodann wird das Mauerwerk in der Umgebung des Sackloches getrocknet. Nach dem Entfernen der Heizkörper wird geschmolzenes Wachs oder eine entsprechende hydrophobe Vergussmasse unter Überdruck in die Sacklöcher eingepresst. Vergussmasse, Temperatur und Einpressdruck werden so gewählt, dass die Poren des Mauerwerks um das Sackloch herum versiegelt werden.According to DE 35 35 654 A1 there is a process for draining of masonry in that in a wall to be treated at intervals blind holes from one side and in these radiators are introduced. Then the masonry in dried around the blind hole. After removing the Radiator is melted wax or an appropriate hydrophobic Potting compound pressed into the blind holes under excess pressure. Potting compound, temperature and injection pressure are so chosen that the pores of the masonry around the blind hole be sealed.

Ziel der vorliegenden Erfindung ist es, ein Verfahren zur Abdichtung von z.B. Gesteinen bzw. Baumaterial zur Verfügung zu stellen, wobei das Abdichtungsmaterial gegenüber Feuchtigkeit, Gasen etc. völlig abdichtet, eine praktisch unbegrenzte Lebensdauer und eine schnelle Anfangsfestigkeit aufweist. Das Verfahren soll weiters unkompliziert sein und in kurzer Zeit eine beliebig große Fläche eines Gesteins bzw. Baumaterials abdichten.The aim of the present invention is to provide a method for Sealing e.g. Rocks or building material available the sealing material against moisture, Completely seals gases etc., a practically unlimited lifespan and has a fast initial strength. The procedure should also be uncomplicated and any one in a short time Seal a large area of a rock or building material.

Das erfindungsgemäße Verfahren der eingangs angeführten Art ist dadurch gekennzeichnet, dass erhitzte Polyamide unter Druck über das Bohrloch in das Gestein bzw. Baumaterial eingepresst werden, wonach sie in die Klüfte und Poren des abzudichtenden Gesteins bzw. Baumaterials eindringen und diese nach Abkühlung abgedichtet und dauerhaft verschlossen werden.The inventive method of the type mentioned is characterized in that heated polyamides under pressure pressed into the rock or building material via the borehole after which they are to be sealed in the gaps and pores of the Rock or building material penetrate and this after cooling sealed and permanently sealed.

Durch Erhitzen der Polyamide werden diese in einen niederviskosen Zustand gebracht, wodurch sie auch in die kleinsten Klüfte, Poren, Ritzen u.ä. des Gesteins bzw. Baumaterials eindringen können. Mit Druck werden die Polyamide in das Bohrloch und von dort aus in die Poren und Klüfte des Gesteins bzw. Baumaterials eingepresst, wobei die Temperatur der Polyamide mit der Tiefe der Poren abnimmt, so dass ab einer bestimmten Eindringtiefe vom Bohrloch aus gesehen, je nach Ausgangstemperatur, die Polyamide immer dickflüssiger werden und schließlich erstarren. Durch den Druck der nachströmenden Polyamide werden die schon etwas dickflüssigeren Polyamide noch tiefer in die Poren oder Klüfte nachgepresst. Wurden die Polyamide überhitzt, weisen sie eine ausreichend hohe Temperatur auf, so dass die flüssigen erhitzten Polyamide tief in die Poren des Gesteins bzw. Baumaterials eindringen können, bevor sie abkühlen und erstarren.The polyamides are heated to a low viscosity Condition brought, making them even the smallest Fissures, pores, cracks, etc. of the rock or building material can. The polyamides are pressed into the borehole and from there into the pores and fissures of the rock or building material pressed in, the temperature of the polyamides with the Depth of pores decreases, so that from a certain depth of penetration seen from the borehole, depending on the initial temperature, the Polyamides become increasingly viscous and eventually solidify. Due to the pressure of the incoming polyamides, they will somewhat thicker polyamides even deeper into the pores or Fissures repressed. If the polyamides have been overheated, they show a sufficiently high temperature so that the liquid is heated Polyamides deep in the pores of the rock or building material can penetrate before they cool and solidify.

Bei Kontakt mit Wasser haben die Polyamide die Eigenschaft, insbesondere beim Härtungsvorgang, gewisse Wassermengen aufzunehmen, wodurch das Volumen der Polyamide vergrößert wird. Die Polyamide dehnen sich in den Poren und Klüften weiter aus, wodurch das Gestein bzw. Baumaterial noch stärker abgedichtet wird. Wird das abgedichtete Gestein bzw. Baumaterial Wasser bzw. Feuchtigkeit ausgesetzt, so wird durch die Volumensvergrößerung der Polyamide durch Wasseraufnahme ein Gefüge aufgebaut, das auf Dauer auch einem starken hydrostatischen Druck standhält.When in contact with water, the polyamides have the property especially during the hardening process to absorb certain amounts of water, which increases the volume of the polyamides. The Polyamides expand further in the pores and fissures, causing the rock or building material is sealed even more. If the sealed rock or building material is water or Exposed to moisture, the volume increases the polyamides built up a structure by absorbing water Durability also withstands a strong hydrostatic pressure.

Vorzugsweise wird beim erfindungsgemäßen Verfahren das Einpressen mehrmals durchgeführt, wobei bereits in Klüften und Poren des abzudichtenden Gesteins bzw. Baumaterials eingedrungene Polyamide zwischen den Einpressvorgängen zumindest teilweise abkühlen können und beim nächsten Einpressvorgang frische, erhitzte Polyamide in andere Klüfte und Poren eindringen können.In the method according to the invention, the pressing is preferred performed several times, already in fissures and pores penetrated polyamides of the rock or building material to be sealed cool at least partially between the press-in processes fresh and heated ones during the next press-in process Polyamides can penetrate into other fractures and pores.

Die Vorteile dieses "stop and go"-Verfahrens liegen darin, dass, auch wenn es zu einem Rücklauf der Polyamide (z.B. durch an die Oberfläche des Gesteins bzw. Mauerwerks führende Klüfte) kommt, ein schneller, sicherer Druckaufbau trotzdem möglich ist. Bei herkömmlichen Verfahren, z.B. unter Verwendung von Epoxiharzen, mussten bei Rückläufen bisher immer die entsprechenden Klüfte mit Schnellmörtel abgedichtet werden oder die Epoxiharze mussten an den Austrittsstellen schnell gehärtet: werden. Weiters wird durch das "stop and go"-Verfahren auch eine Schrumpfung der Polyamide beim Abkühlen durch nachgepresste Polyamide ausgeglichen.The advantages of this "stop and go" process are that even if there is a return of the polyamides (e.g. due to fissures leading the surface of the rock or masonry) comes, a quick, safe pressure build-up is still possible. In conventional processes, e.g. using epoxy resins, Up to now, the corresponding returns have always been required Splits can be sealed with quick mortar or the epoxy resins had to be hardened quickly at the exit points. Furthermore, the "stop and go" process also shrinks the When cooling, polyamides balanced by re-pressed polyamides.

Für ein tiefes Eindringen der erhitzten Polyamide in das Gestein bzw. Baumaterial ist es günstig, wenn vor dem Einpressen der erhitzten Polyamide in das Gestein bzw. Baumaterial durch ein Vorheizen ein Temperaturgradient im Gestein bzw. Baumaterial aufgebaut wird. Um eine frühzeitige Verfestigung durch Abkühlung durch das kalte Gestein bzw. Baumaterial zu verhindern, wird dieses vor Einbringen der Polyamide erhitzt. Durch das Vorheizen des abzudichtenden Gesteins bzw. Baumaterials wird es möglich, auch weniger hoch erhitzte Polyamide mit schneller Anfangsfestigkeit zur Abdichtung zu verwenden, da sie durch die bereits erhöhte Temperatur des Gesteins bzw. Baumaterials nicht sofort an der Oberfläche des kalten Gesteins bzw. Baumaterials erstarren.For a deep penetration of the heated polyamides into the Rock or building material it is favorable if before pressing of the heated polyamides into the rock or building material Preheat a temperature gradient in the rock or building material is built up. For early solidification by cooling to prevent by the cold rock or building material this is heated before introducing the polyamides. By preheating of the rock or building material to be sealed, it becomes possible also less highly heated polyamides with quick initial strength to use for sealing as it is already through the increased temperature of the rock or building material does not immediately rise solidify the surface of the cold stone or building material.

Vorzugsweise werden die erhitzten Polyamide mit einer Temperatur von 50 bis 1000°C und mit einem Druck von 1 bis 500 bar in das Bohrloch eingebracht. Dabei richten sich Druck und Temperatur der Polyamide nach deren Eigenschaften, nach der Dichte, Klüftigkeit bzw. Porosität des Gesteins bzw. Baumaterials, sowie nach der Umgebungstemperatur und der angestrebten Eindringtiefe der Polyamide.Preferably the heated polyamides are at a temperature from 50 to 1000 ° C and with a pressure of 1 to 500 bar brought into the borehole. The pressure and temperature are aligned the polyamides according to their properties, according to their density, Cleftness or porosity of the rock or building material, as well according to the ambient temperature and the desired penetration depth the polyamides.

Ein besonders vorteilhaftes Verfahren ist dadurch gegeben, dass mehrere Bohrlöcher in Abständen zueinander im Gestein bzw. Baumaterial vorgesehen werden, wobei die von einem Bohrloch aus in das Gestein bzw. Baumaterial eingepressten Polyamide mit den von den umliegenden Bohrlöchern aus in das Gestein bzw. Baumaterial eingepressten Polyamiden aufeinandertreffen, so dass ein zusammenhängender Dichtungsschirm gebildet wird. Dadurch wird ermöglicht, dass eine größere Fläche des abzudichtenden Gesteins bzw. Baumaterials, etwa eine Mauer oder eine Tunnelwand, völlig abgedichtet wird. Je tiefer die Polyamide in die Poren bzw. Klüfte eindringen können, umso weniger Bohrlöcher müssen in das Gestein bzw. Baumaterial eingebracht werden.A particularly advantageous method is given by that several boreholes are spaced apart in the rock or Building materials are provided, taken from a borehole polyamides pressed into the rock or building material with the from the surrounding boreholes into the rock or building material pressed polyamides meet, so that a coherent sealing screen is formed. This will allows a larger area of the rock to be sealed or building materials, such as a wall or a tunnel wall, completely is sealed. The deeper the polyamides into the pores or Fractures can penetrate, the fewer drill holes have to be in the Rock or building material are introduced.

Durch das Aufeinandertreffen der Polyamide wird eine völlige Dichtung erreicht, da die aufeinandertreffenden Polyamide durch die ständig von hinten weiter eindringenden Polyamide stärker gegeneinander gepresst werden und auf diese Weise die sich dort befindlichen Poren und Klüfte von den Polyamiden völlig ausgefüllt werden.The meeting of the polyamides is a complete Seal achieved because of the colliding polyamides the polyamides, which constantly penetrate further from behind, are stronger are pressed against each other and in this way the ones there pores and fissures are completely filled by the polyamides become.

Weiters ist es günstig, wenn im Vorheizschritt erhitztes Gas während einer zeitspanne von 1 bis 60 min in das Bohrloch eingebracht wird. Das Vorheizen des Gesteins bzw. Baumaterials durch ein erhitztes Gas ist technisch einfach und kostengünstig auszuführen. Das erhitzte Gas wird dabei vorzugsweise in dasselbe Bohrloch, in das später die Polyamide eingepresst werden, eingebracht. Dabei ist besonders darauf zu achten, dass dies vor Beginn des Einpressens der Polyamide geschieht, da sonst Gasblasen in die Poren und Klüfte miteingetragen werden, wodurch undichte Stellen im Gestein bzw. Baumaterial entstehen können.Furthermore, it is favorable if gas heated in the preheating step placed in the borehole over a period of 1 to 60 minutes becomes. Preheating the rock or building material a heated gas is technically simple and inexpensive to carry out. The heated gas is preferably in the same Drilled hole into which the polyamides are later pressed. It is particularly important to ensure that this is done before the start the polyamides are pressed in, otherwise gas bubbles into the pores and fissures, causing leaks Places in the rock or building material can arise.

Gas weist gegenüber z.B. Flüssigkeiten den Vorteil auf, dass es aufgrund der geringen spezifischen Dichte durch die Polyamide problemlos verdrängt werden kann, und dies ohne sich mit den Polyamiden weiter zu vermischen.Gas is opposite e.g. Liquids have the advantage of that it due to the low specific density due to the polyamides can be easily displaced, and this without dealing with the polyamides continue to mix.

Die Zeitspanne des Gasflusses hängt wiederum von der Umgebungs- oder Gesteins- bzw. Baumaterialtemperatur, bzw. von der Temperatur des Gases, sowie von der zu erreichenden Temperatur des Gesteins bzw. Baumaterials ab.The time span of the gas flow in turn depends on the ambient or stone or building material temperature, or of the Temperature of the gas, as well as the temperature to be reached of the rock or building material.

Vorteilhafterweise weist das erhitzte Gas eine Temperatur von 50 bis 1000°C und einen Druck von 1 bis 250 bar auf. Dabei sollte das erhitzte Gas einen nicht zu hohen Gasdruck aufweisen, um nicht so tief in die Poren bzw. Klüfte des Gesteins bzw. Baumaterials einzudringen, da wiederum von den anschließend nachströmenden Polyamiden eingeschlossene Gasblasen undichte Stellen im Gestein bzw. Baumaterial bewirken könnten. Der Gasdruck sollte daher an die Eigenschaften des Gesteins bzw. Baumaterials angepasst und nicht allzu groß sein. Weiters sollte die Temperatur hoch genug sein, um das Gestein bzw. Baumaterial für das Eindringen der Polyamide ausreichend zu erhitzen. Jedenfalls ist es wichtig, die Temperatur, den Druck sowie die Zeitspanne des Zustroms des Gases richtig aufeinander abzustimmen.The heated gas advantageously has a temperature from 50 to 1000 ° C and a pressure of 1 to 250 bar. there if the heated gas is not too high, not so deep into the pores or fissures of the rock or building material penetrate, since again from those subsequently flowing Polyamides enclosed gas bubbles leaks in the rock or building material. The gas pressure should therefore adapted to the properties of the rock or building material and not be too big. Furthermore, the temperature should be high enough to penetrate the rock or building material to heat the polyamides sufficiently. Anyway it is important, the temperature, the pressure and the time span of the inflow of the gas to coordinate properly.

Eine besonders einfache Ausführungsform besteht darin, dass das erhitzte Gas Luft ist. Die auf herkömmliche Weise erhitzte Luft wird dabei in das jeweilige Bohrloch eingebracht, von wo aus das Gestein bzw. Baumaterial aufgeheizt wird. Luft weist den Vorteil auf, dass sie das Gestein bzw. Baumaterial nicht verunreinigt.oder verätzt. Des Weiteren ist Luft überall vorhanden und kann einfach erhitzt werden, was besonders an entlegenen Orten (z.B. Tunnel im Gebirge) von Vorteil ist. Ein weiterer Vorteil besteht darin, dass die Luft ohne weitere Vorsichtsmaßnahmen (z.B. Filter) nach Gebrauch wieder ins Freie geleitet werden kann. Auch verunreinigt oder verätzt Luft im Gegensatz zu anderen Gasen die Polyamide nicht.A particularly simple embodiment is that the heated gas is air. The one heated in the conventional way Air is brought into the respective borehole from where from which the rock or building material is heated. Air shows that The advantage is that it does not contaminate the rock or building material. Or is corrosive. Furthermore, air is everywhere and can easily be heated, which is especially in remote places (e.g. tunnel in the mountains) is an advantage. Another advantage is that the air without further precautions (e.g. filter) can be led outside again after use can. Air also pollutes or corrodes unlike others Do not gas the polyamides.

Ein anderes günstiges Verfahren ist dadurch gekennzeichnet, dass das erhitzte Gas ein Verbrennungsgas ist. Auf diese Weise werden rasch und einfach hohe Temperaturen - direkt am Ort des Gebrauchs - erzeugt. Der Verbrennungsprozess kann dabei direkt vor einem Bohrloch (den Bohrlöchern) stattfinden oder aber auch in den Bohrlöchern selbst, vorausgesetzt der Verbrennungsprozess läuft vollständig und ohne irgendwelche Rückstände zu hinterlassen ab. Denkbar wäre z.B. die Zuleitung des Verbrennungsgases in das jeweilige Bohrloch, wobei die Zündung direkt beim Ausströmen des Verbrennungsgases aus der Leitung geschieht, so dass eine Flamme ins jeweilige Bohrloch gerichtet ist.Another cheap method is characterized in that that the heated gas is a combustion gas. In this way become high temperatures quickly and easily - directly at the location of the Use - generated. The combustion process can be done directly in front of a borehole (the boreholes) or else in the boreholes themselves, provided the combustion process runs completely and without any residues leave off. For example, it would be conceivable the supply of the combustion gas into the respective borehole, the ignition being direct happens when the combustion gas flows out of the line, so that a flame is directed into the respective borehole.

Es wäre auch denkbar, dass der Vorheizprozess ein Schritt eines Wärmetauschers ist. Das Verbrennungsgas bzw. die erhitzte Luft könnte in einer Primärreaktion, etwa zum Antreiben einer Gasturbine oder in einem anderen, vom Vorheiz-Prozess völlig unabhängigen Arbeitsschritt, entstehen, wobei die dabei entstehende Hitze zum Vorheizen des Gesteins bzw. Baumaterials ausgenützt wird.It would also be conceivable that the preheating process is a step a heat exchanger. The combustion gas or the heated one Air could be in a primary reaction, such as driving one Gas turbine or in another, completely independent of the preheating process Work step arise, the resulting Heat used to preheat the rock or building material becomes.

Eine weitere Möglichkeit des erfindungsgemäßen Verfahrens besteht darin, dass das Vorheizen des Gesteins bzw. Baumaterials durch Mikroexplosion eines geeigneten Brennstoffes beim oder im Gestein bzw. Baumaterial erreicht wird. Die Mikroexplosion geschieht dabei auf herkömmliche, dem Fachmann bekannte, Weise.Another possibility of the method according to the invention consists in preheating the rock or building material by micro-explosion of a suitable fuel at or in Rock or building material is reached. The micro-explosion happens thereby in a conventional manner known to the person skilled in the art.

Sowohl bei diesem Heizprozess mittels Brennstoffen als auch beim Heizprozess mittels Verbrennungsgas können spezielle Ableitungen des verbrauchten Gases bzw. Brennstoffs, etwa mit Filter, aus dem Bohrloch hinaus notwendig sein.Both in this heating process using fuels as well special derivatives can be used in the heating process using combustion gas the gas or fuel used, for example with a filter, out of the borehole.

Es ist auch günstig, wenn das Vorheizen des Gesteins bzw. Baumaterials durch Einwirken von Mikrowellen auf das Gestein bzw. Baumaterial erreicht wird. Dies erfordert zwar eine spezielle, technisch höher entwickelte Ausrüstung, jedoch entstehen keine abzuleitenden Reaktionsprodukte. Der Aufheizprozess erfolgt rasch, und es können hohe Temperaturen erreicht werden, die tiefer in das Gestein bzw. Baumaterial dringen, als bei den herkömmlichen Aufheiz-Methoden.It is also advantageous if the rock is preheated or Building material by the action of microwaves on the rock or Building material is reached. Although this requires a special, technically more sophisticated equipment, but none are created to be derived reaction products. The heating process takes place quickly, and high temperatures can be reached, the lower penetrate into the rock or building material than with conventional ones Heat-up methods.

Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, dass über Sensoren, die im Bohrloch oder im Gestein bzw. Baumaterial zwischen den Bohrlöchern eingesetzt sind, Menge, Druck, Strömungsdauer bzw. Temperatur des erhitzten Gases, der Brennstoffe bzw. der Polyamide bzw. der Energieeintrag der Mikrowellen geregelt wird bzw. werden. Für einen einwandfreien Ablauf des Verfahrens ist es unerlässlich, dass die verschiedenen Parameter richtig aufeinander abgestimmt sind. Das Gestein bzw. Baumaterial muss genügend vorgeheizt werden, und die Polyamide müssen genügend dünnflüssig sein und einen ausreichenden Druck aufweisen, damit diese so tief wie notwendig in das Gestein bzw. Baumaterial eindringen können. Wenn mehrere Bohrlöcher nebeneinander im Gestein bzw. Baumaterial angebracht sind, so dürfen die Abstände zwischen diesen nicht zu groß sein, dass zwischen ihnen im Gestein bzw. Baumaterial undichte Stellen entstehen. Diese undichten Stellen können mittels feinen, in das Gestein bzw. Baumaterial eingeführte, Sensoren detektiert werden. Durch Sensoren im Bohrloch können z.B. die Parameter Luft und Druck im Zeitverlauf gemessen werden, wodurch Rückschlüsse auf das Gestein bzw. Baumaterial gezogen werden können und damit auch auf die notwendige Temperatur des Gesteins bzw. Baumaterials, sowie auf den notwendigen Druck der Polyamide und wiederum auf den Mindestabstand zwischen den einzelnen Bohrlöchern.An advantageous embodiment of the invention The process is based on sensors located in the borehole or used in the rock or building material between the boreholes are, quantity, pressure, flow duration or temperature of the heated Gases, fuels or polyamides or Energy input of the microwaves is regulated. For It is essential that the procedure runs smoothly that the different parameters are properly coordinated are. The rock or building material must be preheated sufficiently and the polyamides must be sufficiently thin and one have sufficient pressure to make it as deep as necessary can penetrate the rock or building material. If several Drilled holes are placed side by side in the rock or building material the distances between them must not be too large, that between them there are leaks in the rock or building material arise. These leaks can be done by means of fine, in the Rocks or building material introduced sensors are detected. Sensors in the borehole can e.g. the parameters air and Pressure can be measured over time, thereby drawing conclusions the rock or building material can be pulled and thus also the necessary temperature of the rock or building material, as well as on the necessary pressure of the polyamides and again the minimum distance between the individual drill holes.

Besonders günstig ist es, wenn das Bohrloch einen Durchmesser von 2 bis 50 cm und eine Länge von bis zu 30 m aufweist. Je nach Eigenschaften des Gesteins bzw. Baumaterials, dessen Dimensionen, sowie der vorgesehenen Abdichtung variieren die Dimensionen der Bohrlöcher. Weiters wird die Dimensionierung des Bohrloches bzw. der Bohrlöcher auch von der zu lösenden Aufgabe (z.B. Vorverfestigung einer noch zu erstellenden Tunneltrasse; Abdichtung von Hausmauern oder ganzen Gebäuden, wie z.B. Tiefgaragen, gegen Grundwasser) abhängen.It is particularly favorable if the borehole has a diameter from 2 to 50 cm and a length of up to 30 m. ever according to the properties of the rock or building material, its dimensions, and the intended seal, the dimensions vary the boreholes. Furthermore, the dimensioning of the Borehole or the boreholes also from the task to be solved (e.g. pre-consolidation of a tunnel route to be created; Sealing of house walls or entire buildings, e.g. Underground garages, against groundwater).

Vorzugsweise werden nach Beendigung der Abdichtung des Gesteins bzw. Baumaterials die Bohrlöcher vollständig verschlossen. Dies geschieht z.B. dadurch, dass durch die Polyamide, nachdem sie vollständig in das Gestein bzw. Baumaterial eingedrungen sind, auch das jeweilige Bohrloch mit Polyamiden ausgefüllt wird, wo sie auch erhärten. Dabei kann das gesamte Bohrloch mit Polyamiden ausgefüllt werden, oder aber auch nur ein Teil. Denkbar wäre weiters jegliches andere Dichtungsmaterial,' sowie das Einführen von einem "Stöpsel" in das jeweilige Bohrloch, das bzw. der jederzeit wieder herausgenommen werden kann.Preferably after completion of the sealing of the rock or construction material completely closed the drill holes. This happens e.g. in that by the polyamides after they have completely penetrated the rock or building material the respective borehole is also filled with polyamides, wherever they harden. The entire borehole can be covered with polyamides to be filled in, or just a part. Conceivable would also be any other sealing material, as well as the insertion from a "plug" into the respective borehole, the or which can be removed at any time.

Eine Vorrichtung zur Durchführung dieses Verfahrens weist zumindest eine Leitung jeweils für die Zufuhr der Polyamide, gegebenenfalls des erhitzten Gases und/oder der Brennstoffe und/oder Leitung mit Quelle für Mikrowellen auf, wobei die Leitung(en) von einer Ummantelung dicht umgeben ist bzw. sind. Beim Vorheizen, wenn gewünscht, wird meist zuerst die Leitung für die Zufuhr des erhitzten Gases bzw. der Brennstoffe geöffnet bzw. die Quelle für die Mikrowellen aktiviert, und nach einer bestimmten Zeit bzw. einer erreichten Temperatur des Gesteins bzw. Baumaterials wird diese Leitung geschlossen oder abgedreht. Gleichzeitig oder danach wird die Leitung für die Zufuhr der Polyamide geöffnet, so dass diese in das Bohrloch eingebracht werden. Nach Abschluss der Abdichtung des Gesteins bzw. Baumaterials bzw. zum zwischenzeitlichen Abkühlen der Polyamide im "stop and go"-Verfahren wird diese Polyamid-Leitung geschlossen.A device for performing this method has at least one line each for the supply of the polyamides, if appropriate of the heated gas and / or the fuels and / or line with source for microwaves, the line (s) is or are tightly surrounded by a jacket. At the Preheating, if desired, is usually the line for the first Supply of the heated gas or the fuels opened or the Source for the microwaves activated, and after a certain one Time or an reached temperature of the rock or building material this line is closed or turned off. simultaneously or after that the line for feeding the polyamides is opened, so that they are brought into the borehole. After graduation the sealing of the rock or building material or interim cooling of the polyamides in the "stop and go" process this polyamide line is closed.

Dadurch, dass die Leitung(en) von einer Ummantelung dicht umgeben ist bzw. sind, können sie gleichzeitig in das jeweilige Bohrloch eingeführt und wieder herausgezogen werden, was den Arbeitsaufwand deutlich verringert. Die Leitungen können aufeinander abgestimmt und von einer gemeinsamen Steuerung aus, etwa in Abhängigkeit zu den Sensoren, geregelt werden. Während des Herausziehens der Leitung(en) samt Ummantelung nach Beendigung der Abdichtung des Gesteins bzw. Baumaterials kann die Polyamid-Leitung weiter geöffnet bleiben, so dass das Bohrloch vollständig oder teilweise mit Polyamiden ausgefüllt wird. Erst wenn die Leitung(en) vollständig oder teilweise aus dem jeweiligen Bohrloch herausgezogen ist bzw. sind, wird die Polyamid-Leitung geschlössen.Because the line (s) are sealed by a sheath is or are surrounded, they can simultaneously in the respective Borehole inserted and pulled out again, which is labor significantly reduced. The lines can be connected to each other coordinated and from a common control, for example in Dependence on the sensors can be regulated. While pulling out the line (s) together with the jacket after the termination of the The polyamide pipe can be used to seal the rock or building material Remain open so the borehole is complete or partially filled with polyamides. Only when that Line (s) completely or partially from the respective borehole is pulled out, the polyamide line is closed.

Die Ummantelung der Leitung(en) dient nicht nur zur leichteren Handhabung, sondern auch zum Schutz, etwa vor scharfen Kanten, die im Bohrloch vorhanden sein können.The sheathing of the line (s) is not only for the lighter one Handling, but also for protection, such as from sharp Edges that may be present in the borehole.

Eine besonders vorteilhafte Ausführungsform ist gegeben, wenn die Ummantelung außen eine geeignete Dichtung (z.B. Packer) aufweist, so dass das Bohrloch abgedichtet ist. Dadurch wird verhindert, dass die in das jeweilige Bohrloch eingebrachten Polyamide, Gase, Brennstoffe, etc. gleich wieder nach Austritt aus der jeweiligen Leitung aus dem Bohrloch ausströmen. Weiters kann dadurch der notwendige Druck im jeweiligen Bohrloch aufgebaut werden.A particularly advantageous embodiment is given if the casing has a suitable seal on the outside (e.g. packer) has, so that the borehole is sealed. This will prevents the polyamides introduced into the respective borehole, Gases, fuels, etc. are released immediately after they leak the respective line from the borehole. Furthermore can this builds up the necessary pressure in the respective borehole become.

Dadurch, dass die Leitung(en) eine dichte Ummantelung aufweisen, ist eine Abdichtung des Bohrlochs, während die Leitung(en) sich noch darin befindet (befinden), nach außen hin leicht bewerkstelligbar.Because the line (s) have a tight sheathing, is a seal of the borehole while the The line (s) is still there, to the outside easy to do.

Die Dichtung kann sowohl gleichzeitig mit Einführung der Leitung(en) in das jeweilige Bohrloch angebracht werden, etwa in Form eines Rings aus flexiblem Material um die dichte Ummantelung, oder aber auch erst danach, z.B. in Form einer (zäh-) flüssigen Substanz, die erhärtet. Die Abdichtung kann auch die zur Abdichtung des Gesteins bzw. Baumaterials verwendeten Polyamide sein. Nach Beendigung der Abdichtung des Gesteins bzw. Baumaterials wird die Ummantelung mit den bzw. der Leitung(en) aus dem jeweiligen Bohrloch herausgezogen, wobei die Dichtung, z.B. die Polyamide, im Bohrloch verbleiben können.The seal can be used simultaneously with the introduction of the Line (s) in the respective borehole, such as in Shape of a ring made of flexible material around the tight casing, or only afterwards, e.g. in the form of a (tough) liquid substance that hardens. The seal can also Polyamides used to seal the rock or building material his. After completion of the sealing of the rock or building material the sheathing is made with the line (s) the respective borehole, the seal, e.g. the polyamides can remain in the borehole.

Vorzugsweise wird das erfindungsgemäße Verfahren zur Vorverfestigung einer Tunneltrasse angewendet. Dabei wird der Boden eines beispielsweise noch zu erstellenden Tunnels vorverfestigt.The method according to the invention is preferably used for pre-consolidation a tunnel route applied. In doing so, the floor of a tunnel that is still to be built, for example.

Weiters betrifft die vorliegende Erfindung auch die Verwendung von Polyamiden im erfindungsgemäßen Verfahren. Vorzugsweise werden dabei Polyamide ohne umwelttoxische Zusatzstoffe zur Verwendung kommen, besonders bevorzugt Polyamid mit einem Erweichungspunkt von 150°C bis 200°C gemäß ASTM E28 (in Silikonöl) und einer Schmelzviskosität bei 180°C von 300 ± 150 m.Pa.s (gemäß ASTM D 3236).The present invention also relates to the use of polyamides in the process according to the invention. Preferably polyamides are used without environmentally toxic additives come, particularly preferably polyamide with a softening point from 150 ° C to 200 ° C according to ASTM E28 (in silicone oil) and a melt viscosity at 180 ° C of 300 ± 150 m.Pa.s (according to ASTM D 3236).

Die Erfindung wird nachstehend anhand von in der Zeichnung dargestellten bevorzugten Ausführungsbeispielen, auf die sie jedoch nicht beschränkt sein soll, noch weiter erläutert. Im Einzelnen zeigen in der Zeichnung:

  • Fig. 1 ein Bohrloch in einem Gestein, worin zwei Leitungen mit einer gemeinsamen Ummantelung eingeführt sind; und
  • Fig. 2 ein Gestein, wobei ausgehend von drei Bohrlöchern ein zusammenhängender Dichtungsschirm aus Polyamiden gebildet ist.
  • The invention is explained in more detail below on the basis of preferred exemplary embodiments illustrated in the drawing, to which, however, it should not be limited. The drawing shows in detail:
  • 1 shows a borehole in a rock, in which two lines are introduced with a common casing; and
  • Fig. 2 is a rock, starting from three boreholes, a coherent sealing screen made of polyamides.
  • In Fig. 1 ist ein Gestein 1 dargestellt, mit einem Bohrloch 2, in das eine Leitung für die Zufuhr von erhitztem Gas bzw. Brennstoffen 3 und eine für die Zufuhr von Polyamiden 4 eingeführt sind. Diese zwei Leitungen 3, 4 sind von einer gemeinsamen Ummantelung 5 dicht umgeben. Die Ummantelung 5 weist außen eine Dichtung 6 auf, so dass das Bohrloch 2 nach außen hin abgedichtet ist. Ausgehend vom Bohrloch sind die Polyamide in die Poren bzw. Klüfte des Gesteins l eingepresst, so dass das das Bohrloch 2 umgebende Gestein 7 durch die Polyamide abgedichtet ist.1 shows a rock 1 with a borehole 2, in which a line for the supply of heated gas or Fuels 3 and 4 introduced for the supply of polyamides are. These two lines 3, 4 are of a common one Sheath 5 tightly surrounded. The casing 5 has an outside Seal 6 on, so that the borehole 2 seals to the outside is. Starting from the borehole, the polyamides are in the pores or Fissures of the rock l pressed in so that the borehole 2 surrounding rock 7 is sealed by the polyamides.

    Fig. 2 zeigt eine größere Gesteinsfläche 7 mit drei Bohrlöchern 2', 2'', 2''', von denen aus Polyamide in das die Bohrlöcher 2', 2'', 2''' umgebende Gestein 7', 7'', 7''' eingedrungen sind. Durch das Aufeinandertreffen der Polyamide der einzelnen Bohrlöcher 2', 2'', 2''' wird ein zusammenhängender Dichtungsschirm 8 gebildet. Dadurch wird die Gesteinsfläche 1 gegenüber dem Raum 9 abgedichtet. Die Bohrlöcher 2', 2'', 2''' selbst weisen an ihrem jeweiligen Ende 10', 10'', 10''' erstarrte Polyamide auf, so dass auch die Bohrlöcher 2', 2'', 2''' abgedichtet sind.Fig. 2 shows a larger rock surface 7 with three boreholes 2 ', 2' ', 2' '', of which polyamides in the the boreholes 2 ', 2' ', 2' '' surrounding rock 7 ', 7' ', 7' '' penetrated are. By the meeting of the polyamides of the individual Drill holes 2 ', 2' ', 2' '' become a coherent sealing screen 8 formed. As a result, the rock surface 1 is opposite sealed the room 9. The drill holes 2 ', 2' ', 2' '' point themselves polyamides solidified at their respective ends 10 ', 10' ', 10' '' so that the boreholes 2 ', 2' ', 2' '' are also sealed.

    Die einzelnen Bohrlöcher 2', 2'', 2''' sind nicht paralell und gleich lang, sondern variieren je nach Gesteinsabschnitt, in Richtung und Länge.The individual drill holes 2 ', 2' ', 2' '' are not parallel and of equal length, but vary depending on the rock section, in Direction and length.

    Beispiel 1: (Laborversuch) Example 1: (laboratory test)

    Versuchsanordnung: Polyamid (Hotmelt von Henkel KGaA, Düsseldorf) wurde auf 220°C erhitzt und mit 150 bar (Maschinendruck) in ein 1"-Wasserleitungsrohr gepresst, das mit Bodenmaterial gefüllt war. Zur Gewährleistung eines Wärmereservoirs wurde ein kleiner Hohlraum an der Einlassstelle freigelassen. Das Übergangsstück wurde mittels eines Heißluftgebläses vorgewärmt. Nach Abschluss des Einpressens des Polyamids wurde eine Druckprüfung mit Pressluft entgegen der Einpressrichtung durchgeführt.Experimental set-up: polyamide (hot melt from Henkel KGaA, Düsseldorf) was heated to 220 ° C and at 150 bar (machine pressure) in one 1 "water pipe pressed, filled with soil material was. To ensure a heat reservoir, a small one Cavity left at the inlet point. The transition piece was preheated using a hot air blower. After graduation the pressing of the polyamide was a pressure test with compressed air performed against the direction of insertion.

    Die Befüllung des Rohres erfolgte mit trockenem Splitt (ca. 3/8 mm, geringer Staubanteil) und die Versuchsanordnung wurde direkt an die Zufuhr der Polyamide angeschlossen. Nach Abschluss des Einpressens von Polyamid wurde festgestellt, dass das Polyamid die gesamte Länge des Versuchsrohrstückes (2 m) vollständig ausgefüllt hatte, eine Druckprüfung ergab, dass die Ausfüllung bis zum maximal erreichbaren Druck von 10 bar Pressluft druckdicht war. Anschließend wurde noch eine Druckprüfung mittels Öldruck durchgeführt, wobei bei einem angelegten Druck von etwa 20 bar die gesamte Füllung des Versuchsrohrstückes ausgepresst wurde, die Befüllung war somit bis zumindest 20 bar druckdicht.The pipe was filled with dry grit (approx. 3/8 mm, low dust content) and the experimental setup directly connected to the supply of the polyamides. After graduation The pressing of polyamide was found to be the polyamide the entire length of the test pipe section (2 m) had been filled in completely, a pressure test showed that the Filling up to the maximum achievable pressure of 10 bar Compressed air was pressure-tight. Then there was a pressure test carried out by means of oil pressure, with an applied Pressure of about 20 bar the entire filling of the test tube piece was squeezed, the filling was thus at least 20 bar pressure tight.

    Beispiel 2 : Example 2 :

    Versuchsanordung wie bei Beispiel 1. Die Befüllung des Rohres erfolgte mit einem Gemisch aus Sand, Kies und Splitt mit hohem Feinkornanteil, wassergesättigt und durch Einschlämmen verdichtet.Experimental arrangement as in example 1. The filling of the pipe was done with a mixture of sand, gravel and grit with high Fine grain fraction, saturated with water and compacted by slurrying.

    Es wurde eine Eindringtiefe des Schmelzstoffes bis ca. 1,2 m festgestellt. Eine Druckprüfung ergab Druckdichte bis zum maximal erreichbaren Druck von 10 bar Pressluft. Anschließend wurde noch eine Druckprüfung mittels Öldruck vorgenommen, wobei eine Druckdichte bis zum maximal erreichbaren Öldruck von 60 bar festgestellt wurde.The penetration depth of the melt material was up to approx. 1.2 m detected. A pressure test showed pressure density up to the maximum achievable pressure of 10 bar compressed air. Then was another pressure test was carried out using oil pressure, whereby one Pressure density up to the maximum achievable oil pressure of 60 bar was found.

    Beide Versuche 1 und 2 beweisen eine sehr rasche Abdichtung gegen hohen Wasserdruck (bis zu 60 bar) mit langfristiger Wirksamkeit.Both tests 1 and 2 demonstrate a very quick seal against high water pressure (up to 60 bar) with long-term effectiveness.

    Beispiel 3 :Example 3:

    Versuchsanordnung: Ein Polyamid (Hersteller Henkel KGaA, Düsseldorf) wurde auf 220°C erhitzt und mit 150 bar (Maschinendruck) im geschmolzenen Zustand zwischen zwei Waschbetonplatten gepresst. Der Abstand der Platten betrug ca. 2 mm. Der Hohlraum zwischen den Platten wurde mit einer Gummidichtung derart abgedichtet, dass die darin befindliche Luft verdrängt werden konnte. Die Platten wurden fix verspannt, um ein Abheben zu verhindern.Experimental arrangement: a polyamide (manufacturer Henkel KGaA, Düsseldorf) was heated to 220 ° C and at 150 bar (machine pressure) in the molten state between two washed concrete slabs pressed. The distance between the plates was approx. 2 mm. The cavity between the plates was sealed with a rubber gasket, that the air inside could be displaced. The plates were fixed under tension to prevent lifting.

    Innerhalb weniger Sekunden nach Beginn des Einpressens des Polyamids wurde der Spalt zwischen den Platten vollflächig ausgefüllt. Infolge des Drucks entstand in der oberen Platte ein Riss, durch den Polyamid austrat. Nach einigen Minuten Aushärtezeit wurde abermals Polyamid injiziert, welches das bereits vorhandene Polyamid aufschmolz, so dass weiteres Injektionsmaterial aus dem Spalt austrat. Within a few seconds after the start of pressing in the The gap between the plates was completely filled with polyamides. As a result of the printing, a appeared in the top plate Crack through which polyamide emerged. After a few minutes curing time polyamide was injected again, which already does melted existing polyamide so that further injection material emerged from the gap.

    Durch dieses Beispiel wurde bewiesen, dass eine vollflächige Verfüllung von Spalten und Klüften in Gestein bzw. Mauerwerk leicht und einfach durchzuführen ist.This example has shown that a full-surface Filling gaps and crevices in stone or masonry is easy and simple to carry out.

    Beispiel 4 :Example 4:

    In einem ehemaligen Steinbruch (Ritzengrub, Gemeinde St.Leonhard, Niederösterreich) wurden am Fuß der Steinbruchwand zwei Injektionsbohrlöcher gebohrt. Das Gestein war Kalkmarmor der Böhmischen Masse und wies Bankungen und Klüftungen in unterschiedlichen Richtungen auf. Der Kluftabstand betrug zumeist einige Dezimeter, die Kluftweite häufig 0,5 mm-1 mm, teilweise auch geschlossene Klüfte sowie weitere Klüfte mit eingeschwemmtem lehmigen Verwitterungsmaterial, das stellenweise auch durchwurzelt war. Die Bohrdurchmesser betrugen 22 mm (0-40 cm Tiefe) und 16 mm (40-100 cm Tiefe). Die Injektionsbohrlöcher wurden mit einer mechanischen Einfachpacker (Dichtung) in 10 cm Tiefe verschlossen. Der Schmelzstoff war ein Polyamidschmelzstoff der Firma Henkel KGaA, Düsseldorf.In a former quarry (Ritzengrub, municipality St.Leonhard, Lower Austria) were at the foot of the quarry wall two injection wells drilled. The rock was limestone marble the Bohemian mass and pointed bankings and fissures in different Directions on. The gap distance was mostly a few decimeters, the gap width often 0.5 mm-1 mm, partially also closed fissures and other fissures with washed-in loamy weathering material, in places too was rooted. The drilling diameter was 22 mm (0-40 cm Depth) and 16 mm (40-100 cm depth). The injection wells were with a mechanical simple packer (seal) in 10 cm Depth locked. The melt was a polyamide melt from the company Henkel KGaA, Düsseldorf.

    Einige Zeit vor Beginn des Einpressens wurde das Bohrloch mit Wasser befüllt, wobei das Wasser innerhalb kurzer Zeit versickerte.The borehole was closed some time before the start of the pressing filled with water, the water seeping away within a short time.

    Das Schmelzmaterial wurde sodann auf ca. 200-230°C erhitzt und aufgeschmolzen, anschließend bei ca. 140 bar Maschinendruck über einen Heizschlauch injiziert. Es wurden ca. 3 min 20 sek gefördert. Nach einer Pause von 1/2 min und einigen weiteren kürzeren Pausen wurden abermals insgesamt ca. 10 sek lang injiziert. Auf Grund der zuvor ermittelten Förderleistung entspricht dies einer Injektionsmenge von ca. 3,5 l.The melt material was then heated to approximately 200-230 ° C and melted, then at approx. 140 bar machine pressure injected via a heating hose. There were about 3 min 20 sec promoted. After a break of 1/2 min and a few more shorter pauses were injected again for a total of about 10 seconds. Corresponds to the previously determined delivery rate this is an injection volume of approx. 3.5 l.

    Nach ca. 3 min 20 sek trat geschmolzenes Polyamid an einer Kluft zu Tage. Nach den Pausen konnte zusätzliches Material injiziert werden, worauf weitere Austritte von geschmolzenem Polyamid an anderen Kluftstellen beobachtet werden konnten.After approx. 3 min 20 sec, molten polyamide appeared on one Divide. After the breaks, additional material could be injected be followed by further leaks of molten polyamide could be observed at other divide points.

    Nach ca. 1/2 h Aushärtezeit wurde mit einem Kernbohrgerät mit Diamantkrone und Wasserspülung ein Kern mit 8 cm Durchmesser gezogen. Die Bohrung erfolgte ungefähr normal auf die Hauptkluft. Die Hauptkluft mit einer Öffnungsweite von ca. 2-3 mm war vollflächig mit Polyamid ausgefüllt, das sich jedoch von den Kluftwänden gelöst hatte. Ursache für die fehlende Verbindung war nach Auskunft des Bohrmeisters höchstwahrscheinlich ein Abreißen durch den Kernbohrvorgang selbst.After a curing time of approx. 1/2 h, a core drill was used with a diamond crown and water rinsing, a core with an 8 cm diameter drawn. Drilling was approximately normal on the main divide. The main gap was with an opening width of about 2-3 mm completely filled with polyamide, which differs from the Had broken walls. Cause of the missing connection was, according to the drill master, most likely a tear through the core drilling process itself.

    Nach ca. 2 h nach der Injektion wurden von der Felsoberfläche her mittels Hammer Kluftflächen freigelegt. Dabei zeigte sich eine Ausbreitung des Polyamids über eine Distanz von ca. 60-80 cm. Am folgenden Tag wurde auch beobachtet, dass Polyamid nicht nur in die jeweilige Hauptkluft, sondern auch in Nebenklüfte eingedrungen war. Die freigelegten Klüfte waren vollflächig mit Polyamid verfüllt, das mit dem Gestein einen festen Verbund gebildet hatte. Das Polyamid konnte nur mit einigem Aufwand von den Kluftflächen gelöst werden. In den nachfolgenden Wochen wurde an einer mitgenommen Gesteinsprobe festgestellt, dass nach wie vor ein zumindest teilweiser Verbund zwischen Gestein und Polyamid bestand. Eine passive Ablösung war nicht erfolgt.After about 2 hours after the injection were from the rock surface Her fracture surfaces exposed. It showed the polyamide spreads over a distance of approx. 60-80 cm. The following day it was also observed that polyamide not only in the respective main divide, but also in secondary fissures had penetrated. The exposed fractures were all over filled with polyamide, which is solid with the rock Had formed a network. The polyamide could only with some Effort to be resolved from the fracture areas. In the following Weeks was found on a rock sample taken away, that there is still an at least partial bond between rocks and polyamide. There was no passive replacement.

    Das obgenannte Beispiel beweist, dass das erfindungsgemäße Verfahren für Dichtinjektionen bestens geeignet ist. Die Ausbreitung im Gestein und die Haftung des Dichtmaterials an den Kluftwänden ist zufriedenstellend. Die Aushärtung erfolgt bedeutend schneller als bei herkömmlich verwendeten Materialien. Die Injektion kann auch in ein und demselben Bohrloch unterbrochen und nach teilweiser Erstarrung des Dichtmaterials weiter fortgesetzt werden ("stop and go"-Verfahren). Dadurch kann die Verteilung des Dichtmaterials in den Klüften optimiert werden. Dieser Effekt ist besonders bemerkenswert, da eine Fortsetzung der Injektion auch nach Austritt von Dichtmaterial an der Injektionsseite erstmals ermöglicht wird.The above example proves that the invention Process for sealing injections is best suited. The spread in the rock and the adhesion of the sealing material to the Gap walls is satisfactory. The curing takes place significantly faster than with conventionally used materials. The Injection can also be interrupted in the same borehole and continued after partial solidification of the sealing material ("stop and go" procedure). This allows the distribution of the sealing material in the fissures. This effect is particularly noteworthy as a continuation the injection even after leakage of sealing material on the injection side is made possible for the first time.

    Claims (19)

    1. A method of sealing building constructions, walls and cavities in the ground, in rock and in the mountains, respectively, in particular tunnels, galleries, shafts, channels and caverns, wherein sealing material is introduced under pressure into the rock via a sealed drilled hole, characterised in that heated polyamides are injected under pressure via the drilled hole (2) into the rock (1), or building material, respectively, penetrating into crevices and pores of the rock (1), or building material, respectively, to be sealed, and the latter are sealed and permanently closed upon cooling.
    2. A method according to claim 1, characterised in that the injection is carried out several times, wherein polyamides that have already penetrated into crevices and pores of the rock (1), or building material, respectively, to be sealed are capable of cooling at least in part between injection procedures, and fresh, heated polyamides can penetrate into other crevices and pores during the next injection procedure.
    3. A method according to claim 1 or 2, characterised in that a temperature gradient is built up in the rock (1), or building material, respectively, by pre-heating before injection of the heated polyamides into the rock (1), or building material, respectively.
    4. A method according to any one of claims 1 to 3, characterised in that the heated polyamides are introduced into the drilled hole (2) with a temperature of from 50 to 1000°C and with a pressure of from 1 to 500 bar.
    5. A method according to any one of claims 1 to 4, characterised in that several drilled holes (2', 2'', 2''') are provided in the rock (1) or building material, respectively, in spaced relationship relative to each other, the polyamides injected into the rock (1), or building material, respectively, from one drilled hole (2', 2'', 2''') meeting with the polyamides injected into the rock (1), or building material, respectively, from the surrounding drilled holes (2', 2'', 2''') so as to form a coherent sealing curtain (8).
    6. A method according to any one of claims 3 to 5, characterised in that gas heated in the pre-heating step is introduced into the drilled hole (2) during a period of time of from 1 to 60 minutes.
    7. A method according to claim 6, characterised in that the heated gas has a temperature of from 50 to 1000°C and a pressure of from 1 to 250 bar.
    8. A method according to claim 6 or 7, characterised in that the heated gas is air.
    9. A method according to claim 6 or 7, characterised in that the heated gas is a combustion gas.
    10. A method according to any one of claims 3 to 5, characterised in that pre-heating of the rock (1) or building material, respectively, is achieved by micro-explosion of a suitable fuel at or in the rock or building material, respectively.
    11. A method according to any one of claims 3 to 5, characterised in that pre-heating of the rock (1) or building material, respectively, is achieved by the action of microwaves on the rock (1), or building material, respectively.
    12. A method according to any one of claims 6 to 11, characterised in that amount, pressure, duration of flow and temperature, respectively, of the heated gas, the fuel and the polyamides, respectively, and the energy input of the microwaves, respectively, is regulated via sensors inserted in the drilled hole (2) or in the rock (1), or building material, respectively, between the drilled holes (2', 2'', 2''').
    13. A method according to any one of claims 1 to 12, characterised in that the drilled hole (2) has a diameter of from 2 to 50 cm and a length of up to 30 m.
    14. A method according to any one of claims 1 to 13, characterised in that when sealing of the rock (1) or building material, respectively, has been finished, the drilled holes (2', 2'', 2''') are completely closed.
    15. A method according to any one of claims 1 to 14 for pre-solidifying a tunnel line.
    16. The use of polyamides in the method according to any one of claims 1 to 15.
    17. The use according to claim 16, characterised in that polyamides of low viscosity and rapid initial strength are used.
    18. The use according to claim 16 or 17, characterised in that polyamides without environmentally toxic additives are used.
    19. The use according to claims 16 to 18, characterised in that polyamides having a softening point of from 150°C to 200°C according to ASTM E28 (in silicone oil) and a melt viscosity of 300 ± 150 m.Pa.s (according to ASTM D3236) at 180°C are used.
    EP99941306A 1998-08-27 1999-08-23 Method for sealing rocks or building material and corresponding device Expired - Lifetime EP1108115B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    AT99941306T ATE244356T1 (en) 1998-08-27 1999-08-23 METHOD FOR SEALING ROCK OR BUILDING MATERIAL AND APPARATUS THEREOF

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    AT146098 1998-08-27
    AT146098 1998-08-27
    PCT/AT1999/000208 WO2000012863A1 (en) 1998-08-27 1999-08-23 Method for sealing rocks or building material and corresponding device

    Publications (2)

    Publication Number Publication Date
    EP1108115A1 EP1108115A1 (en) 2001-06-20
    EP1108115B1 true EP1108115B1 (en) 2003-07-02

    Family

    ID=3514406

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99941306A Expired - Lifetime EP1108115B1 (en) 1998-08-27 1999-08-23 Method for sealing rocks or building material and corresponding device

    Country Status (4)

    Country Link
    EP (1) EP1108115B1 (en)
    AU (1) AU5496799A (en)
    DE (1) DE59906198D1 (en)
    WO (1) WO2000012863A1 (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2907968A1 (en) 2014-02-12 2015-08-19 Züblin Spezialtiefbau Ges.m.b.H. Device and method for injecting a thermoplastic material
    DE102014016278A1 (en) * 2014-11-05 2016-05-12 Andreas Einsiedel Process for the preparation of a burial agent or at least a part thereof
    US9503938B2 (en) 2010-05-17 2016-11-22 Zte Corporation Handover method and system based on cognitive technology

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10031992A1 (en) 2000-06-30 2002-01-24 Henkel Kgaa Hot melt adhesives for sealing rock or building material
    EP1428952A1 (en) * 2002-12-11 2004-06-16 Ed. Züblin AG Method of sealing cracks and fissures in rock, soil, or buildings
    CN103104215A (en) * 2013-03-11 2013-05-15 枣庄矿业(集团)有限责任公司柴里煤矿 Deep drilling compression and sealing device
    DE102013105859A1 (en) * 2013-06-06 2014-12-11 SG Holding UG (haftungsbeschränkt) A soil-hardening substance for permanent fixation of a ground anchor or ground anchor and a method for introducing the same

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4370077A (en) * 1980-08-04 1983-01-25 Colgate Stirling A Method of pressurizing and stabilizing rock by periodic and repeated injections of a settable fluid of finite gel strength
    DE3535654A1 (en) * 1985-10-05 1987-04-23 Friedrich Roehrmann Process for drying and insulating moist masonrywork
    SE9101542L (en) * 1991-05-22 1992-11-23 Ingvar Bogdanoff METHOD OF INJECTING MOUNTAIN OR CONCRETE AND DEVICE BEFORE PERFORMING THE METHOD
    DE9203679U1 (en) * 1992-03-19 1993-05-06 Ziener, Gerhard, O-6800 Saalfeld, De
    DE4332272C2 (en) * 1993-09-23 1998-02-26 Isotec Franchise Systeme Gmbh Device for renovating damp masonry

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US9503938B2 (en) 2010-05-17 2016-11-22 Zte Corporation Handover method and system based on cognitive technology
    EP2907968A1 (en) 2014-02-12 2015-08-19 Züblin Spezialtiefbau Ges.m.b.H. Device and method for injecting a thermoplastic material
    DE102014016278A1 (en) * 2014-11-05 2016-05-12 Andreas Einsiedel Process for the preparation of a burial agent or at least a part thereof
    DE102014016278B4 (en) * 2014-11-05 2016-11-03 Andreas Einsiedel Methods and apparatus for the production of a burial and their use

    Also Published As

    Publication number Publication date
    WO2000012863A1 (en) 2000-03-09
    EP1108115A1 (en) 2001-06-20
    AU5496799A (en) 2000-03-21
    DE59906198D1 (en) 2003-08-07

    Similar Documents

    Publication Publication Date Title
    DE2651023C2 (en) Method for producing an in-situ concrete pile with a foot extension and device for carrying out the method
    DE3414464A1 (en) METHOD FOR INJECTING A FLOOR FILLING AGENT AND DEVICE FOR IMPLEMENTING IT
    EP1108115B1 (en) Method for sealing rocks or building material and corresponding device
    DE2932430C2 (en) Method for placing a concrete tunnel lining
    DE102005044352B4 (en) Method for producing a hot dry rock (HDR) heat exchanger
    DE2228270A1 (en) Method of fastening pipes in boreholes
    DE102007016682B3 (en) Method for installing geothermal probe into borehole, involves carrying out construction of geothermal probe before high pressure application
    DE19604525C2 (en) High-lying waterproofing sole with construction pit enclosure
    DE102005009036B3 (en) Sealing method e.g. for mining lines and or part of structure, involves having hard bitumen and dearomatised hydrocarbon injected by well-known injection techniques into mountains or into solid
    DE4401403C2 (en) Process for consolidating and / or sealing floors and device for carrying out the process
    EP1391566B1 (en) Method for producing a sealing
    DE3307619A1 (en) INJECTION METHODS FOR IMPROVING THE SOIL IN LOCKED STOCK BY INJECTING A QUICKLY HARDENING INJECTION DIMENSION INTO WATERPROOF OR MINIMUM WATERPROOF, THEREFORE IN BINDING SOILS
    DE4036103C2 (en)
    AT135768B (en) Method and device for pressing filling or sealing material into cracked concrete, fissured rock or the like.
    DE3521434A1 (en) Injection method and apparatus for soil stabilisation
    AT6557U1 (en) METHOD FOR SEALING ROCK OR CONSTRUCTION MATERIAL AND DEVICE THEREFOR
    AT374864B (en) MOISTURE INSULATION FOR NIGHT-SIDING INSTALLATION IN EXISTING RISING WALLS, WALLS, FOUNDATIONS OR THE LIKE.
    DE3921938A1 (en) Soil consolidation - by injection of organo-mineral resin contg. isocyanate and modified water glass
    DE923601C (en) Method for consolidating boreholes in loose rock
    DE102015122407A1 (en) Method for connecting a sewer pipe to a connection pipe
    DE3543059A1 (en) Method of stabilising soil sections
    DE8620410U1 (en) Multi-part connection profile for a diaphragm wall seal
    DE619189C (en) Device for pressing filler or sealant in layers into cracked concrete, fissured rock or the like.
    DE4326880C1 (en) Method of driving an underground cavity
    DE102013008448B4 (en) Method and device for the subsequent sealing of concrete structures surrounded by soil with sealing joints such as tunnels

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010223

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LUEGER, JOSEF

    Owner name: INSOND GESELLSCHAFT M.B.H.

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030702

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030702

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030702

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030702

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030702

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59906198

    Country of ref document: DE

    Date of ref document: 20030807

    Kind code of ref document: P

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: STRABAG AG

    Owner name: INSOND GESELLSCHAFT M.B.H.

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030823

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030823

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: INSOND GESELLSCHAFT M.B.H. EN STRABAG AG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031002

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031002

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031002

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031002

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031013

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20030702

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20030702

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: *LUEGER JOSEF

    Effective date: 20030831

    Owner name: *INSOND G.M.B.H.

    Effective date: 20030831

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040405

    EN Fr: translation not filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060831

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUEA

    Owner name: INSOND GESELLSCHAFT M.B.H.

    Free format text: INSOND GESELLSCHAFT M.B.H.#GLORIETTEGASSE 8#A-1130 WIEN (AT) $ STRABAG AG#ORTENBURGERSTRASSE 27#9800 SPITTAL AN DER DRAU (AT) -TRANSFER TO- INSOND GESELLSCHAFT M.B.H.#GLORIETTEGASSE 8#A-1130 WIEN (AT) $ DR. JOSEF LUEGER#GEIGENBERG 6#3243 ST. LEONHARD AM FORST (AT)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070823

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20100715

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100715

    Year of fee payment: 12

    Ref country code: AT

    Payment date: 20100827

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110831

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110831

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59906198

    Country of ref document: DE

    Effective date: 20120301

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 244356

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20110823

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110823

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120301