EP1104628A1 - Device for producing three-dimensional images - Google Patents

Device for producing three-dimensional images

Info

Publication number
EP1104628A1
EP1104628A1 EP99944625A EP99944625A EP1104628A1 EP 1104628 A1 EP1104628 A1 EP 1104628A1 EP 99944625 A EP99944625 A EP 99944625A EP 99944625 A EP99944625 A EP 99944625A EP 1104628 A1 EP1104628 A1 EP 1104628A1
Authority
EP
European Patent Office
Prior art keywords
pixel
image
pixels
heights
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99944625A
Other languages
German (de)
French (fr)
Inventor
Alf Holger Tschersich
Frank Zubke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1104628A1 publication Critical patent/EP1104628A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume

Definitions

  • the invention relates to an image carrier for generating autostereoscopically viewed images with perspective views of the recorded object field.
  • a three-dimensional display in which several simple lenses are placed on a display surface, which include a convex lens with a short focal length, a light source and an elastic drive positioned in between.
  • a convex lens with a short focal length By varying the distance between the convex lens and the light source using the flexible drive, the position of the image of the light source imaged by the convex lens is changed in order to finally project imaginary images.
  • the device also includes the possibility that these simple lenses can be organized into geometrical figures, for example cylindrical or spherical bodies, so that the projection of the imaginary “front or back image” can be made possible by the viewer within a viewing radius of 360 °
  • Direct projection techniques for the eye which produce imaginary images imaginatively in space by zooming with simple lenses, and use a perceptual psychological effect (without glasses or similar aids), which is based on an empirically visually acquired memory, that the distance assessment of an object is related to the size of its perceived image.
  • a disadvantage of the anaglyph process mentioned is the high loss of color components.
  • the above-mentioned shutter glasses method has the disadvantage of having to use special glasses and, due to the image division, to use only half the refresh rate.
  • US 4,571,616 and DE 35 29 819 the three-dimensional image effect is impaired proportionally by changing the viewing angle and the distance to the screen in order to be able to perceive larger spatial perspectives of the image objects.
  • the latter method requires a high level of technical effort in order to increase the spatial image effect in such a way that hidden image contents can be conveyed to the viewer. This is done by duplicating the vertical lines, by additional projections, or by adapting them to the viewing position (calculation).
  • this method has the disadvantage that the stereoscopy is lost when the screen is rotated around an orthogonal screen.
  • This disadvantage applies to rotating screens or screens with a horizontal screen level ("Responsive Workbench" - Chip 5/98 p.32), which are used by several viewers at the same time.
  • the vertical line screen method is used.
  • the method of direct projection techniques using simple lenses contains, compared with the above methods, considerable quality reductions with higher technical and financial expenditure, which multiplies considerably with increasingly complex mediated image content.
  • the object of the invention is to develop a screen whose surface structure can produce a three-dimensional image, in which no separate technical aids are necessary in order to perceive the image depth.
  • This screen is to be designed in such a way that no fixed positioning of the viewer is required. zen or no new image to be calculated when changing the position without having to accept the quality of perception. In particular, it must be taken into account that the stereoscopic effect is retained when the screen is rotated around an orthogonal screen.
  • the screen is preferably composed of individual LED segments (pixels), which can each generate the three additive primary colors.
  • LEDs can be used both optically active elements and reflecting elements of suitable dimensions.
  • the LEDs are located as heads on a height-adjustable pixel carrier. When activated, these pixel carriers can be moved to different height positions (pixel heights) independently of one another. A distinction is made between the pixel heights in the zero position (corresponding to the zero level) and the pixel heights differing in the direction of the viewer and the opposite direction.
  • the zero position is not necessarily identical to the starting position, since you can move the pixel level to a target height, which then generates the corresponding zero level. With appropriate control, the pixels can be lowered and / or raised below or above the zero level.
  • the pixel carrier can e.g.
  • the spatial depth information can e.g. are converted proportionally into pixel heights from a Z buffer, i.e. without further intermediate steps.
  • other drive units with correspondingly short activation times e.g. using other field-electric effects, etc.
  • the piezo crystals mentioned can also be used.
  • the advantageous effect of the invention is that a height profile is generated by the movable screen surface to the previous methods.
  • This height profile enables a pronounced spatial depth perception of the image signal from a side view, but also from all other viewing directions.
  • the information about the image depth can be used directly to convert it into relief-like image depth, i.e. that the image color signals with the image depth of the objects represented by the pixel heights will complete a picture of new quality.
  • the greater the difference in height and its resolution in individual steps the more the possibility of generating an actual spatial depth that corresponds to the depth reproduced by color and brightness improves.
  • each relief structure has one Drawing file is assigned clock syncron.
  • the above term relief structure defines itself as the screen surface formed from the pixel matrix with a fixed height of each individual pixel.
  • FIG. 1 a single LED segment of a device for generating three-dimensional images can be seen schematically in FIG. 1, which contains a piezo element (1) in the pixel carrier (3) which, when a voltage is applied in the direction (7 ) Expands viewer position.
  • This pixel carrier (3) has a foot (6), over which there is a further piezo element (2) in the form of a shell, which carries the entire mechanism with its end or is attached to a mounting plate (4) with its end, and which allows a further basic movement away from the viewer (8).
  • the entire device for generating three-dimensional images consists here e.g. (for use as an advertising board) from a relatively large 480 x 270 matrix of the segments mentioned and has the size 160 cm x 90 cm.
  • the pixel carrier (3) runs in 3 linearly arranged electric ring coils (4).
  • An iron core (5) is integrated in the pixel carrier, which is positioned at the appropriate height by the electric ring coils.
  • a spiral spring (6) is located on the pixel carrier, which conveys the pixel carrier to the starting position when it is not activated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The invention relates to a device for producing autostereoscopically observed images with perspective views of the object field thus detected. The surface of the screen is composed of individual segments (pixels) that can produce three additive base colours. The pixels constitute the head of a height-adjustable pixel carrier. The pixel carriers can be individually controlled and adjusted at various heights (pixel heights). By controlling the pixel carriers in this manner, the pixels can be raised/and or lowered. Height effects can be produced in both the direction of the viewer and in an opposite direction. Spacial depth information, e.g. from a z buffer, can be transformed proportionally into pixel heights, i.e. without any intermediate steps. Current computer technology enables the image depth information to be used directly to convert said information into relief-shaped image depth, i.e. the colour signals of the image, toegether with the image depth of the objects as represented by the pixel heights, complete each other to form a new quality image.

Description

Beschreibungdescription
1. Vorrichtung zur Erzeugung dreidimensionaler Bilder1. Device for generating three-dimensional images
2. Die Erfindung betrifft einen Bildträger zur Erzeugung autostereoskopisch betrachteter Bilder mit perspektivischen Ansichten des aufgezeichneten Gegenstandsfeldes.2. The invention relates to an image carrier for generating autostereoscopically viewed images with perspective views of the recorded object field.
3. Bekannt sind aus US 4 571 616 und DE 35 29 819 Projektionseinrichtungen mit statischer Bildschirmebene bei welchen der Bildschirm in zylinderlinsenförmige Raster gruppiert ist um stereoskopische Bilder zu erzeugen. Dabei werden Bilder in vertikale Linien gesplittet und auf die Bildschirmrückwand projeziert, welche dann durch die vorgesetzten Zylinderlinsen richtungsselektiert werden, wodurch dem Betrachter ein Raumbildeffekt vermittelt wird. Desweiteren sind Anaglyphenverfahren bekannt, bei welchen zwei seitlich verschobene übereinander projektierte Bilder, die bei der Betrachtung der projektierten Bilder mit Hilfe einer Farbfilterbrille, deren Gläser genau in den gleichen Farben der beiden projektierten Bilder gefärbt sind, eine dreidimensionale Darstellung erzeugen. Bekannt sind zudem Shutter-Brillen (Chip 5/98 S.32) die zeitlich verschoben jeweils die Ansicht des Bildes synchron zur Bild- schirmdarstellung für das rechte bzw. linke Auge freigeben und somit ein dreidimensionales Bild erzeugen.3. Known from US 4,571,616 and DE 35 29 819 are projection devices with a static screen plane in which the screen is grouped into cylindrical lens-shaped grids in order to generate stereoscopic images. Images are split into vertical lines and projected onto the back of the screen, which are then directionally selected by the cylindrical lenses in front of them, which gives the viewer a spatial image effect. Furthermore, anaglyph methods are known in which two laterally shifted projected images, which when viewing the projected images with the help of color filter glasses, the glasses of which are colored in exactly the same colors of the two projected images, produce a three-dimensional representation. Shutter glasses (chip 5/98 p.32) are also known, which each time release the view of the image synchronously with the screen display for the right or left eye and thus generate a three-dimensional image.
Aus JP 07 - 64 020 A ist ein dreidimensionales Display bekannt, bei dem auf eine Anzeigefläche mehrere Einfachobjektive gestellt werden, die eine Konvexlinse mit kurzer Brennweite, eine Lichtquelle, sowie ein dazwischen positioniertes elastisches Laufwerk, einschließen. Durch Variieren des Abstandes zwischen der Konvexlinse und der Lichtquelle mit Hilfe des flexiblen Laufwerkes wird die Position des durch die Konvexlinse abgebildeten Bildes der Lichtquelle geändert um schließlich imaginäre Bilder zu projektieren. Die Vorrichtung beinhaltet auch die Möglichkeit, daß diese Einfachobjektive zu geometrischen Figuren organisiert werden können, z.B. Zylinder- oder Kugelkörper, so daß die Projektion des imaginären „Vor- oder Hinterbildes" vom Betrachter in einem Betrachtungsradius von 360° möglich gemacht werden kann. Bei solchen Direktprojektionstechniken für das Auge, die scheinbare Bilder durch Zoomung mittels Einfachobjektiven imaginär im Raum hervorrufen, und einen wahrnehmungspsychologischen Effekt (ohne Brille oder ähnliche Hilfsmittel) verwenden, der auf einer empirisch visuell gewonnenen Gedächtnisleistung beruht, wird ausgenutzt, daß die Entfernungseinschätzung eines Objektes in Zusammenhang steht mit der Größe seines wahrgenommenen Abbildes.From JP 07 - 64 020 A a three-dimensional display is known, in which several simple lenses are placed on a display surface, which include a convex lens with a short focal length, a light source and an elastic drive positioned in between. By varying the distance between the convex lens and the light source using the flexible drive, the position of the image of the light source imaged by the convex lens is changed in order to finally project imaginary images. The device also includes the possibility that these simple lenses can be organized into geometrical figures, for example cylindrical or spherical bodies, so that the projection of the imaginary “front or back image” can be made possible by the viewer within a viewing radius of 360 ° Direct projection techniques for the eye, which produce imaginary images imaginatively in space by zooming with simple lenses, and use a perceptual psychological effect (without glasses or similar aids), which is based on an empirically visually acquired memory, that the distance assessment of an object is related to the size of its perceived image.
4. Ein Nachteil des genannten Anaglyphenverfahrens ist der hohe Farbkomponen- tenverlust. Bei dem vorbezeichneten Shutter-Brillen-Verfahren besteht der Nachteil, eine Spezialbrille anwenden zu müssen, und dabei, bedingt durch die Bildaufteilung, nur die halbe Bildwiederholfrequenz zu nutzen. Während bei US 4 571 616 und DE 35 29 819 die dreidimensionale Bildwirkung proportional beeinträchtigt wird, indem man den Blickwinkel und die Entfernung zum Bildschirm verändert, um größere räumliche Perspektiven der Bildobjekte wahrnehmen zu können. Bei letztgenanntem Verfahren ist ein hoher technischer Aufwand nötig, um den Raumbildeffekt so zu steigern, daß verdeckte Bildinhalte dem Betrachter vermittelt werden können. Dies geschieht durch Vervielfältigung der Vertikailinien, durch zusätzliche Projektionen, oder deren Anpassung an die Betrachtunsposition (Berechnung). Ohnehin ist bei diesem Verfahren nachteilig, daß die Stereoskopie verloren geht, wenn der Bildschirm um eine Bildschirmorthogonale gedreht wird. Dieser Nachteil kommt zum Tragen bei Drehbildschirmen oder Bildschirmen mit horizontaler Bildschirmebene („Responsive Workbench" - Chip 5/98 S.32), die von mehreren Betrachtern gleichzeitig genutzt werden. Bei den vorgenannten Verfahren, ausgenommen der Shutter- Technik, kommen ausschließlich die Vertikallinienrasterverfahren in den unterschiedlichsten Variationen zum Einsatz. Die Methode der Direktprojektionstechniken mittels Einfachobjektiven enthält vergli- chen mit obigen Verfahren erhebliche Qualitätsminderungen bei höherem technischen, wie finanziellen, Aufwand, welcher sich erheblich vervielfacht mit zunehmend komplexeren vermittelten Bildinhalten.4. A disadvantage of the anaglyph process mentioned is the high loss of color components. The above-mentioned shutter glasses method has the disadvantage of having to use special glasses and, due to the image division, to use only half the refresh rate. While in US 4,571,616 and DE 35 29 819 the three-dimensional image effect is impaired proportionally by changing the viewing angle and the distance to the screen in order to be able to perceive larger spatial perspectives of the image objects. The latter method requires a high level of technical effort in order to increase the spatial image effect in such a way that hidden image contents can be conveyed to the viewer. This is done by duplicating the vertical lines, by additional projections, or by adapting them to the viewing position (calculation). In any case, this method has the disadvantage that the stereoscopy is lost when the screen is rotated around an orthogonal screen. This disadvantage applies to rotating screens or screens with a horizontal screen level ("Responsive Workbench" - Chip 5/98 p.32), which are used by several viewers at the same time. With the aforementioned methods, with the exception of the shutter technology, only the vertical line screen method is used The method of direct projection techniques using simple lenses contains, compared with the above methods, considerable quality reductions with higher technical and financial expenditure, which multiplies considerably with increasingly complex mediated image content.
5. Ausgehend vom Stand der Technik liegt daher der Erfindung die Aufgabe zu- gründe, einen Bildschirm zu entwickeln, dessen Oberflächenstruktur ein dreidimen- sionanles Bild erzeugen kann, bei welchem keine separaten technischen Hilfsmittel notwendig sind um die Bildtiefe wahrzunehmen. Dieser Bildschirm ist so zu gestalten, daß zu diesem keine festgelegte Positionierung des Betrachters vorauszuset- zen bzw. bei Änderung der Position kein neues Bild zu berechnen ist ohne Einschränkungen der Wahrnehmungsqualität hinnehmen zu müssen. Insbesondere ist zu berücksichtigen, daß der stereoskopische Effekt erhalten bleibt, wenn der Bildschirm um eine Bildschirmorthogonale gedreht wird.5. On the basis of the prior art, the object of the invention is to develop a screen whose surface structure can produce a three-dimensional image, in which no separate technical aids are necessary in order to perceive the image depth. This screen is to be designed in such a way that no fixed positioning of the viewer is required. zen or no new image to be calculated when changing the position without having to accept the quality of perception. In particular, it must be taken into account that the stereoscopic effect is retained when the screen is rotated around an orthogonal screen.
6. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Vorrichtung gemäß des Oberbegriffs des Anspruchs 1 ausgeführt ist.6. This object is achieved in that the device is designed according to the preamble of claim 1.
7. Der Bildschirm wird vorzugweise aus einzelnen LED-Segmenten (Pixel), welche jeweils die drei additiven Grundfarben erzeugen können, zusammengesetzt. Statt7. The screen is preferably composed of individual LED segments (pixels), which can each generate the three additive primary colors. Instead of
LED's sind alternativ sowohl optisch aktive Elemente als auch reflektierende Elemente geeigneter Dimensionierung einsetzbar. Die LED's befinden sich als Kopf auf einem höhenveränderlichen Pixelträger. Diese Pixelträger können bei Ansteuerung unabhängig voneinander in verschiedene Höhenpositionen (Pixelhöhen) bewegt werden. Die Pixelhöhen werden unterschieden in Nullposition (entsprechend Nullebene) und davon in Richtung Betrachter und Umkehrrichtung abweichende Pixelhöhen. Die Nullposition ist nicht unbedingt identisch mit der Ausgangsposition, da man die Pixelebene in eine Sollhöhe fahren kann, welche dann die entsprechende Nullebene erzeugt. Bei entsprechender Steuerung kann ein Absenken und/oder ein An- heben der Pixel unter bzw. über die Nullebene erreicht werden. Der Pixelträger kann z.B. so gestaltet sein, daß er aus mehreren schichtweise gefügten Piezo- Kristallen besteht, so daß summarische Höheneffekte bei Ansteuerung entstehen. Diese Höheneffekte können zur Nullebene aber auch zur Ausgangsposition sowohl in Richtung Betrachter als auch in Umkehrrichtung erzeugt werden. Dabei können die räumlichen Tiefeninformationen z.B. aus einem Z-Buffer proportional in Pixelhöhen umgesetzt werden, d.h. ohne weitere Zwischenschritte. Bei anderen Anwendungen (z.B. Stadionanzeigen, Werbetafeln etc.) können aber auch andere Antriebseinheiten, mit entsprechend kurzen Ansteuerzeiten (z. B unter anderer Ausnutzung feldelektrischer Effekte, etc.), als die genannten Piezo-Kristalle zum Einsatz kommen.Alternatively, LEDs can be used both optically active elements and reflecting elements of suitable dimensions. The LEDs are located as heads on a height-adjustable pixel carrier. When activated, these pixel carriers can be moved to different height positions (pixel heights) independently of one another. A distinction is made between the pixel heights in the zero position (corresponding to the zero level) and the pixel heights differing in the direction of the viewer and the opposite direction. The zero position is not necessarily identical to the starting position, since you can move the pixel level to a target height, which then generates the corresponding zero level. With appropriate control, the pixels can be lowered and / or raised below or above the zero level. The pixel carrier can e.g. be designed in such a way that it consists of several piezocrystals joined in layers, so that total height effects occur when actuated. These height effects can be generated to the zero level but also to the starting position both in the direction of the viewer and in the opposite direction. The spatial depth information can e.g. are converted proportionally into pixel heights from a Z buffer, i.e. without further intermediate steps. In other applications (e.g. stadium displays, billboards etc.), other drive units with correspondingly short activation times (e.g. using other field-electric effects, etc.) than the piezo crystals mentioned can also be used.
8. Die vorteilhafte Wirkung der Erfindung besteht darin, daß zu den bisherigen Verfahren durch die bewegliche Bildschirmoberfläche ein Höhenprofil erzeugt wird. Durch dieses Höhenprofil ist aus seitlicher Betrachtung, aber auch aus allen anderen Blickrichtungen, eine ausgeprägte räumliche Tiefenwahrnehmung des Bildsignals möglich. Mit der verfügbaren Rechentechnik können so die Informationen über die Bildtiefe (verwaltet z.B. im Z-Buffer von 3-D Grafikkarten) direkt genutzt werden, um sie in reliefartige Bildtiefe umzusetzen, d.h. daß die Bildfarbsignale mit der Bildtiefe der Objekte, die durch die Pixelhöhen repräsentiert wird, sich zu einem Bild neuer Qualität vervollständigen. Je größer die Höhenniveaudiffernz und deren Auflösung in einzelne Stufen, um so mehr verbessert sich die Möglichkeit eine tatsächliche räumliche Tiefe zu erzeugen, die mit der durch Farbgebung und Helligkeit nachgebildeten Tiefe korrespondiert. Zusätzlich bietet sich speziell bei den Piezokri- stallen die Möglichkeit, diese in hochfrequente Schwingungen zu versetzen und die Bildinformationen so zu überlagern, daß dem Betrachter Bilder übermittelt werden können, welche von verschiedenen Positionen aus berechnet bzw. aufgenommen worden sind, d.h. daß jeder Reliefstruktur ein Teilbild taktsyncron zugeordnet wird. Der vorstehende Begriff Reliefstruktur definiert sich als die aus der Pixelmatrix gebildete Bildschirmoberfläche mit festgelegter Höhe jedes einzelnen Pixels.8. The advantageous effect of the invention is that a height profile is generated by the movable screen surface to the previous methods. This height profile enables a pronounced spatial depth perception of the image signal from a side view, but also from all other viewing directions. With the available computing technology, the information about the image depth (managed, for example, in the Z-buffer of 3-D graphics cards) can be used directly to convert it into relief-like image depth, i.e. that the image color signals with the image depth of the objects represented by the pixel heights will complete a picture of new quality. The greater the difference in height and its resolution in individual steps, the more the possibility of generating an actual spatial depth that corresponds to the depth reproduced by color and brightness improves. In addition, especially with the piezo crystals, there is the possibility of setting them into high-frequency vibrations and superimposing the image information so that images can be transmitted to the viewer that have been calculated or recorded from different positions, ie that each relief structure has one Drawing file is assigned clock syncron. The above term relief structure defines itself as the screen surface formed from the pixel matrix with a fixed height of each individual pixel.
9. Als ein Anwendungsbeispiel ist schematisch in Fig. 1 ein einzelnes LED-Segment einer Vorrichtung zur Erzeugung dreidimensionaler Bilder zu sehen, daß im Pixel- träger (3) ein Piezoelement (1) enthält, welches sich bei Anlegen einer Spannung in Richtung (7) Betrachterposition ausdehnt. Dieser Pixelträger (3) weist einen Fuß (6) auf, über dem sich mantelförmig ein weiteres Piezoelement (2) befindet, welches mit seinem Ende den gesamten Mechanismus trägt bzw. mit dessem Ende er auf einer Montageplatte (4) befestigt ist, und welches eine weitere Grundbewegung vom Betrachter weg (8) ermöglicht. Auf dem Pixelträger befinden sich als Kopf drei LED's (5) in den Farben Rot, Grün und Blau. Die gesamte Vorrichtung zur Erzeugung dreidimensionaler Bilder besteht hier z.B. (für die Anwendung als Werbetafel) aus einer relativ großen 480 x 270 Matrix der genannten Segmente und besitzt die Größe 160 cm x 90 cm.9. As an example of an application, a single LED segment of a device for generating three-dimensional images can be seen schematically in FIG. 1, which contains a piezo element (1) in the pixel carrier (3) which, when a voltage is applied in the direction (7 ) Expands viewer position. This pixel carrier (3) has a foot (6), over which there is a further piezo element (2) in the form of a shell, which carries the entire mechanism with its end or is attached to a mounting plate (4) with its end, and which allows a further basic movement away from the viewer (8). On the pixel carrier there are three LEDs (5) in the colors red, green and blue. The entire device for generating three-dimensional images consists here e.g. (for use as an advertising board) from a relatively large 480 x 270 matrix of the segments mentioned and has the size 160 cm x 90 cm.
Als ein weiteres Beispiel in Fig. 2 läuft der Pixelträger (3) in 3 linear angeordneten Elektroringspulen (4). Im Pixelträger ist ein Eisenkern (5) integriert, welcher durch die Elektroringspulen auf dem entsprechenden Höhenniveau positioniert wird. Zu- sätzlich befindet sich auf dem Pixelträger eine Spiralfeder (6), welche den Pixelträger bei Nichtansteuerung in die Ausgangsposition befördert. As a further example in FIG. 2, the pixel carrier (3) runs in 3 linearly arranged electric ring coils (4). An iron core (5) is integrated in the pixel carrier, which is positioned at the appropriate height by the electric ring coils. To- In addition, a spiral spring (6) is located on the pixel carrier, which conveys the pixel carrier to the starting position when it is not activated.

Claims

Patentansprüche claims
1. Vorrichtung zur Darstellung dreidimensionaler Bilder zusammengesetzt aus ein- zelenen optisch aktiven oder reflektierenden Segmenten (Pixel), die eine Bild- schirmoberfläche bilden dadurch gekennzeichnet, daß sich diese Pixel auf einem steuerbar zur Bildschirmoberfläche höhenveränderlichen Pixelträger befinden.1. Device for displaying three-dimensional images composed of individual optically active or reflecting segments (pixels) which form a screen surface, characterized in that these pixels are located on a pixel carrier that can be adjusted in height relative to the screen surface.
2. Vorrichtung zur Darstellung dreidimensionaler Bilder gemäß Anspruch 1 dadurch gekennzeichnet, daß diese Pixelträger unabhängig voneinander in verschiedenen Höhenpositionen plaziert werden können. 2. Device for displaying three-dimensional images according to claim 1, characterized in that these pixel carriers can be placed independently of one another in different height positions.
3. Vorrichtung zur Darstellung dreidimensionaler Bilder gemäß Anspruch 1 und 2 dadurch gekennzeichnet, daß die Pixelhöhen zusammengefaßt in einer Nullposition, entsprechend Nullebene, und davon abweichend in Richtung Betrachter (positiv) und/oder Umkehrrichtung (negativ) positioniert werden können. 3. Device for displaying three-dimensional images according to claim 1 and 2, characterized in that the pixel heights combined in a zero position, corresponding to the zero level, and deviating therefrom can be positioned in the direction of the viewer (positive) and / or reverse direction (negative).
4. Vorrichtung zur Darstellung dreidimensionaler Bilder gemäß Anspruch 1 und 2 dadurch gekennzeichnet, daß bei Inbetriebnahme der Vorrichtung die Pixelträger auf eine Pixelsollhöhe (Nullposition) gefahren werden, und bei Ansteuerung in Richtung Betrachter (positiv) und/oder Umkehrrichtung (negativ) positioniert werden können. 4. Device for displaying three-dimensional images according to claim 1 and 2, characterized in that when the device is started up, the pixel carriers are moved to a desired pixel height (zero position), and can be positioned in the direction of the viewer (positive) and / or reverse direction (negative) .
EP99944625A 1998-09-22 1999-09-08 Device for producing three-dimensional images Ceased EP1104628A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19843296 1998-09-22
DE19843296A DE19843296A1 (en) 1998-09-22 1998-09-22 Device for generating three-dimensional images
PCT/EP1999/006611 WO2000018141A1 (en) 1998-09-22 1999-09-08 Device for producing three-dimensional images

Publications (1)

Publication Number Publication Date
EP1104628A1 true EP1104628A1 (en) 2001-06-06

Family

ID=7881745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99944625A Ceased EP1104628A1 (en) 1998-09-22 1999-09-08 Device for producing three-dimensional images

Country Status (7)

Country Link
EP (1) EP1104628A1 (en)
JP (1) JP2002525990A (en)
CN (1) CN1319310A (en)
AU (1) AU5746499A (en)
CA (1) CA2344042A1 (en)
DE (1) DE19843296A1 (en)
WO (1) WO2000018141A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098235B2 (en) * 2001-07-23 2008-06-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Stereoscopic image processing apparatus and method
DE102008006812A1 (en) * 2008-01-31 2009-08-06 Transmechatronics Gmbh Three-dimensional spatial representation producing device for e.g. visualization of spatial body, has light-emitting elements i.e. LEDs, repetitively moved in space, where spatial representation is produced by light emissions from elements
KR101541893B1 (en) 2014-02-25 2015-08-06 포테닛 주식회사 Display Device and Driving method of the same
CN105700159B (en) * 2014-11-29 2019-03-15 昆山工研院新型平板显示技术中心有限公司 3D flexible display screen and its display methods
CN105116559B (en) * 2015-09-29 2017-10-24 南安市腾龙专利应用服务有限公司 A kind of bore hole 3D displays and its method of work
EP3425907B1 (en) * 2017-07-03 2022-01-05 Vestel Elektronik Sanayi ve Ticaret A.S. Display device and method for rendering a three-dimensional image
CN110706611A (en) * 2019-10-28 2020-01-17 广州粤靓计算机有限责任公司 Stereoscopic display screen, display method of stereoscopic display screen and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764020A (en) * 1993-06-15 1995-03-10 Nikon Corp Three-dimensional display and display method using it
US5793918A (en) * 1997-03-03 1998-08-11 Hogan; Richard J. Movable 3d display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0018141A1 *

Also Published As

Publication number Publication date
CN1319310A (en) 2001-10-24
JP2002525990A (en) 2002-08-13
DE19843296A1 (en) 2000-04-13
CA2344042A1 (en) 2000-03-30
WO2000018141A1 (en) 2000-03-30
AU5746499A (en) 2000-04-10

Similar Documents

Publication Publication Date Title
DE69433842T2 (en) Method for computer generation of autostereoscopic images
DE60103524T2 (en) IMPROVEMENTS ON DMD IMAGE DISPLAY DEVICES
DE19825950C1 (en) Arrangement for three-dimensional representation
DE102004044111B4 (en) Method and device for coding and reconstructing computer-generated video holograms
DE102013113542B4 (en) Multi-view autostereoscopic display and method for controlling optimal viewing distances thereof
DE102005012348B3 (en) Sweet-spot-unit for multi-user display has matrix-shaped deflection elements, which are located between imaging means and picture matrix deflection means, which are arranged periodically in groups vertically
EP0722256B1 (en) Viewer-adaptive autostereoscopic display screen with shutter
EP2027728A2 (en) Method and device for the creation of pseudo-holographic images
DE10359403A1 (en) Autostereoscopic multi-user display
DE4228111C1 (en)
EP0931277A1 (en) Projection system, in particular for three-dimensional representations on a viewing device
EP1964413A1 (en) Method and arrangement for monoscopically representing at least one area of an image on an autostereoscopic display apparatus and information reproduction unit having such an arrangement
DE10252830B3 (en) Autostereoscopic adapter for flat panel display, includes electronic sensor unit with circuitry matching screen-lens-scanning raster configuration
EP0937274A1 (en) Stereo hologram display (holdisp)
EP1104628A1 (en) Device for producing three-dimensional images
DE19500699A1 (en) Personal adaptive stereoscopic picture screen (PASS)
DE102010021550B4 (en) Image display device and method for image reproduction
DE19910157A1 (en) Image reproduction unit for selectively providing monoscopic and stereoscopic images
WO2008095584A1 (en) Autostereoscopic image display appliance for producing a floating real stereo image
DE102010018083A1 (en) Simultaneous reproduction of a plurality of images by means of a two-dimensional image representation matrix
DE102005036744A1 (en) Method and device for autostereoscopic reproduction of 3D representations
DE10145132B4 (en) Autostereoscopic image display device
DE102009051671B4 (en) Arrangement for imaging temporally sequentially displayed images in different directions
DE102008007727A1 (en) Method and arrangement for spatial representation with color-sequential illumination
DE102010022613A1 (en) Method and arrangement for spatial representation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010926

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020725

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE