EP1101155A1 - An intelligent electronic device for monitoring non-electrical characteristics - Google Patents

An intelligent electronic device for monitoring non-electrical characteristics

Info

Publication number
EP1101155A1
EP1101155A1 EP00937765A EP00937765A EP1101155A1 EP 1101155 A1 EP1101155 A1 EP 1101155A1 EP 00937765 A EP00937765 A EP 00937765A EP 00937765 A EP00937765 A EP 00937765A EP 1101155 A1 EP1101155 A1 EP 1101155A1
Authority
EP
European Patent Office
Prior art keywords
electrical characteristic
signal
electronic device
intelligent electronic
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00937765A
Other languages
German (de)
English (en)
French (fr)
Inventor
Esteban Santos
Robert M. Ricci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1101155A1 publication Critical patent/EP1101155A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold

Definitions

  • the present invention relates generally to intelligent electronic devices, e.g., electronic trip units, protective relays, energy meters, power analyzers, motor control center controllers and programmable logic controllers. More specifically, the present invention relates to a method of monitoring nonelectrical characteristics in an intelligent electronic device.
  • intelligent electronic devices e.g., electronic trip units, protective relays, energy meters, power analyzers, motor control center controllers and programmable logic controllers. More specifically, the present invention relates to a method of monitoring nonelectrical characteristics in an intelligent electronic device.
  • An electronic trip unit typically comprises voltage and current sensors, which provide analog signals indicative of the power line signals.
  • the analog signals are converted by an A/D (analog/digital) converter to digital signals which are processed by a microprocessor.
  • the trip unit further includes RAM (random access memory), ROM (read only memory) and EEPROM (electronic erasable programmable read only memory) all of which interface with the microprocessor.
  • the ROM includes trip unit application code, e.g., main functionality firmware, including initializing parameters, and boot code.
  • the EEPROM includes operational parameters for the application code.
  • Intelligent electronic devices protect various types of loads, e.g., electric motors, electric motor drives, transformers, and furnaces. Intelligent electronic devices typically monitor electrical characteristics of the protected loads via their voltage and current sensors. In a large facility, e.g., a manufacturing plant, many hundreds of intelligent electronic devices may be used to protect an even larger number of loads. Often the intelligent electronic devices are connected together though a communications network, e.g., a power management control system such as General Electric's Power Leader, to a computer or other remote monitoring device.
  • a communications network e.g., a power management control system such as General Electric's Power Leader
  • the intelligent electronic device determines a protective action based on preset programming. For example, the intelligent electronic device may initiate a circuit breaker trip, trigger an alarm, display the status of the load via local display monitor or send an event message to a remote monitoring device.
  • a protective action based on preset programming. For example, the intelligent electronic device may initiate a circuit breaker trip, trigger an alarm, display the status of the load via local display monitor or send an event message to a remote monitoring device.
  • safety and/or functionality of a protected load often depends on monitoring and maintaining non-electrical characteristics, e.g., temperature, humidity, and pressure, within acceptable threshold limits.
  • non-electrical characteristics e.g., temperature, humidity, and pressure
  • protected loads are often rated to operate at less than 85 "centigrade and 90% relative humidity.
  • monitoring non-electrical characteristics are useful for analysis purposes as well, e.g., predicting most likely future nonelectrical faults, prioritizing maintenance requirements of protected loads or determining load life and load component wear.
  • Prior art intelligent electronic devices are unable to monitor nonelectrical characteristics. Therefore they cannot analyze non-electrical characteristics, nor can they protect a load from non-electrical fault conditions, e.g., a non-electrical characteristic reaching a predetermined threshold. Consequently, additional protective devices, e.g., temperature controllers and dehumidifiers, are required to separately communicate with the protected load and/or an operator. In a large facility, these additional protective devices would require a separate communications network independent of the intelligent electronic devices' network.
  • a method of monitoring a non-electrical characteristic in an intelligent electronic device is presented.
  • the method generates a non-electrical characteristic signal indicative of a non-electrical characteristic of a protected load.
  • the method compares a relationship of the non-electrical characteristic signal with a predetermined threshold indicative of a non-electrical fault condition.
  • the method generates a protective action signal when the predetermined threshold is reached.
  • an intelligent electronic device for monitoring non-electrical characteristics comprises a sensor and a signal processor.
  • the sensor generates a non-electrical characteristic signal indicative of the non-electrical characteristic of a protected load.
  • the signal processor is responsive to the non-electrical characteristic signal, and has a memory for storing signals including program signals defining an executable program.
  • the program compares a relationship of the non-electrical characteristic signal with a predetermined threshold indicative of a non-electrical fault condition.
  • the program generates a protective action signal when the predetermined threshold is reached.
  • Trip unit 30 comprises a voltage sensor 32 which provides analog signals indicative of voltage measurements on a signal line 34 and a current sensor 36 which provides analog signals indicative of a current measurements on a signal line 38.
  • the analog signals on lines 34 and 38 are presented to an A/D (analog/digital) converter 40, which converts these analog signals to digital signals.
  • the digital signals are transferred over a bus 42 to a microprocessor (signal processor) 44, such being commercially available from the Hitachi Electronics Components Group (Hitachi's H8/300 family of microprocessors).
  • Trip unit 30 further includes RAM (random access memory) 46, ROM (read only memory) 48 and EEPROM (electronic erasable programmable read only memory) 50 all of which communicate with the microprocessor 44 over a control bus 52.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electronic erasable programmable read only memory
  • A/D converter 40, ROM 48, RAM 46, or any combination thereof may be internal to microprocessor 44, as is well known.
  • EEPROM 50 is non-volatile so that system information and programming will not be lost during a power interruption or outage.
  • Data typically status of the circuit breaker, is displayed by a display 54 in response to display signals received from microprocessor 44 over control bus 52.
  • An output control device 56 in response to control signals received from microprocessor 44 over control bus 52, controls a trip module 58 via a line 60.
  • Trip module 58 controls separable contacts of a circuit breaker (not shown). When trip unit 30 detects a fault condition, trip module 58 will separate the contacts (a circuit breaker trip event) to interrupt current to a protected circuit such as load 68. Calibration, testing, programming and other features are accomplished through a communications I/O port 62, which communicates with microprocessor 44 over control bus 52.
  • a power supply 63 which is powered by the service electricity, provides appropriate power over a line 64 to the components of trip unit 30.
  • ROM 48 includes trip unit application code, e.g., main functionality firmware, including initializing parameters, and boot code.
  • the application code includes code for a monitoring method (algorithm) in accordance with the present invention.
  • EEPROM 50 includes operational parameter code, e.g., code for setting user defined parameters such as non-electrical fault condition thresholds, or action paths such as trip, alarm or status. These parameters may be stored in the trip unit at the factory and are selected to meet customers' requirements, but can also be remotely downloaded as described hereinafter.
  • the monitoring algorithm is run in real-time and is initiated preferably from the boot code at start up.
  • Non-electronic sensor 66 is mounted to a protected load 68 which is external to the electronic trip unit 30.
  • Sensor 66 monitors a desired nonelectrical characteristic, e.g., temperature, pressure or humidity, at the load.
  • Sensor 66 provides analog signals indicative of the non-electrical characteristic on a signal line 70.
  • the analog signals on line 70 are presented to an isolation buffer 72 which performs various protective functions, i.e., noise isolation protection, or protection from voltage swings outside of the operating parameters of low voltage components such as the microprocessor 44.
  • buffer 72 is shown external to trip unit 30. However, it will be understood by one skilled in the art that buffer 72 may also be internal to trip unit 30 as well.
  • Buffer 72 provides a buffered analog signal indicative of the non-electrical characteristic on a signal line 74.
  • the buffered analog signal is presented to the A D converter 40, which converts this analog signal to a digital signal indicative of the non- electrical characteristic.
  • the digital non-electrical characteristic signal is transferred over bus 42 to microprocessor 44 for further processing.
  • microprocessor 44 compares a relationship (processed) of the non-electrical characteristic signal to user defined thresholds to detect non-electrical fault conditions. For example, such non-electrical fault conditions may be to not exceed 85 °C or 90% relative humidity.
  • a defined threshold of the non-electrical fault condition is reached, the microprocessor 44 generates a signal to initiate a pre-programmed protective action.
  • a protective action may include initiating a circuit breaker trip event, triggering an alarm, displaying the status of the protected load on a monitor, or sending an event message to a remote monitoring device.
  • the relationship of the non-electrical characteristic is processed by microprocessor 44 for analysis purposes.
  • the data is analyzed within the electronic trip unit itself, or alternatively communicated to a remote monitoring device, e.g., a computer, through communications I/O port 62.
  • a remote monitoring device e.g., a computer
  • communications I/O port 62 may communicate through a network, e.g., a power management control system such as General Electric's Power Leader, to the remote monitoring device.
  • EEPROM 50 All of the aforementioned limits or settings are preferably stored in EEPROM 50 and can be altered by downloading desired settings via communications I/O port 62. This would include remotely downloading such data when the unit is connected to a system computer (not shown), either directly, over telephone lines, or any other suitable connection. It may also be preferred that EEPROM 50 comprises a flash memory whereby such data is flashed, as is well known.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
EP00937765A 1999-05-28 2000-05-25 An intelligent electronic device for monitoring non-electrical characteristics Withdrawn EP1101155A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US322757 1994-10-13
US32275799A 1999-05-28 1999-05-28
PCT/US2000/014409 WO2000073866A1 (en) 1999-05-28 2000-05-25 An intelligent electronic device for monitoring non-electrical characteristics

Publications (1)

Publication Number Publication Date
EP1101155A1 true EP1101155A1 (en) 2001-05-23

Family

ID=23256272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00937765A Withdrawn EP1101155A1 (en) 1999-05-28 2000-05-25 An intelligent electronic device for monitoring non-electrical characteristics

Country Status (3)

Country Link
EP (1) EP1101155A1 (ja)
JP (1) JP2003502001A (ja)
WO (1) WO2000073866A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330886B2 (en) 1999-10-27 2008-02-12 American Power Conversion Corporation Network appliance management
US8271626B2 (en) 2001-01-26 2012-09-18 American Power Conversion Corporation Methods for displaying physical network topology and environmental status by location, organization, or responsible party
ES2340478T3 (es) 2002-05-03 2010-06-04 American Power Conversion Corporation Procedimiento y aparato para recoger y mostrar la informacion de un dispositivo de red.
EP1616237B1 (en) 2003-04-14 2017-10-25 Schneider Electric IT Corporation Environmental monitoring device
US7627651B2 (en) 2003-10-27 2009-12-01 American Power Conversion Corporation System and method for network device communication
US7711814B1 (en) 2004-12-13 2010-05-04 American Power Conversion Corporation Method and system for remote monitoring of a power supply device with user registration capability
US8145748B2 (en) 2004-12-13 2012-03-27 American Power Conversion Corporation Remote monitoring system
US7647202B2 (en) * 2006-07-05 2010-01-12 Arizona Public Service Company Method for exception-based notification of the condition of an apparatus
US20090138313A1 (en) 2007-05-15 2009-05-28 American Power Conversion Corporation Methods and systems for managing facility power and cooling
US8554739B2 (en) * 2011-01-13 2013-10-08 Schweitzer Engineering Laboratories Inc. Systems and methods for IED design templates
US8990536B2 (en) 2011-06-01 2015-03-24 Schneider Electric It Corporation Systems and methods for journaling and executing device control instructions
US9952103B2 (en) 2011-12-22 2018-04-24 Schneider Electric It Corporation Analysis of effect of transient events on temperature in a data center
WO2016105505A1 (en) 2014-12-23 2016-06-30 Revive Electronics, LLC Apparatuses and methods for controlling power to electronic devices
BR112016000539A2 (pt) * 2013-07-10 2017-07-25 Revive Electronics Llc Aparelho para conectar um dispositivo eletrônico a uma fonte de alimentação elétrica, dispositivo de alimentação elétrica, e, método para fabricar um conector elétrico
US9479393B2 (en) 2014-08-04 2016-10-25 Schweitzer Engineering Laboratories, Inc. Relay configuration systems and methods
CN115032491B (zh) * 2022-08-12 2022-11-01 国网山东省电力公司电力科学研究院 一种变压器非电量保护测试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291355A (en) * 1979-07-30 1981-09-22 General Electric Company Programmable overload circuit
ATE103427T1 (de) * 1990-01-17 1994-04-15 Siemens Ag Schutzeinrichtung fuer elektrische maschinen.
US5399993A (en) * 1993-08-26 1995-03-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High input impedance amplifier
US5502435A (en) * 1994-04-06 1996-03-26 Ralston; Douglas E. Method and system for monitoring circuit breaker gas pressure
FR2750246B1 (fr) * 1996-06-20 1998-09-04 Gec Alsthom T & D Sa Procede de surveillance d'un disjoncteur haute tension a circuit hydraulique de commande
US5907491A (en) * 1996-08-23 1999-05-25 Csi Technology, Inc. Wireless machine monitoring and communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0073866A1 *

Also Published As

Publication number Publication date
WO2000073866A1 (en) 2000-12-07
JP2003502001A (ja) 2003-01-14

Similar Documents

Publication Publication Date Title
US6434715B1 (en) Method of detecting systemic fault conditions in an intelligent electronic device
WO2000073866A1 (en) An intelligent electronic device for monitoring non-electrical characteristics
US8355234B2 (en) Condition monitor for an electrical distribution device
US6121886A (en) Method for predicting fault conditions in an intelligent electronic device
US6231227B1 (en) Method of determining contact wear in a trip unit
EP1057132A2 (en) Method of statistical analysis in an intelligent electronic device
US8289146B2 (en) System for testing NAC operability using reduced operating voltage
EP1058957A1 (en) Method for event analysis at an intelligent electronic device
JPH06506101A (ja) リモートプログラマブル電子引外しシステム
US11283275B2 (en) Smart uninterruptible power supply and method
EP2380154A1 (en) Fire alarm
KR101721235B1 (ko) 통합 센싱 모듈을 이용한 사고 감지 시스템
US20190286090A1 (en) Intelligent Power Distribution Management System and Method Of Use
JP2005228732A (ja) 故障検出装置
KR20200059388A (ko) 전기정보 관리시스템
US9097772B2 (en) Battery test and condensation prevention method, system and apparatus
KR20180003857A (ko) 온도와 전압을 감지하여 조절하는 수배전반
US20010000355A1 (en) Electronic trip unit having software download capabilities
KR100602011B1 (ko) 지능형 전자식 전력량계의 네트워크 시스템
KR100396394B1 (ko) 전기설비의 원격감시 방법
KR20060082707A (ko) 래더 로직 다운로드 가능한 디지털 모터 보호 제어 장치
KR20220133048A (ko) 전력기기 자가진단 시스템 및 방법
RU106997U1 (ru) Устройство контроля, защиты и мониторинга электроустановки
KR100882786B1 (ko) 전력설비용 열화보호 계전시스템
KR20200136295A (ko) 누전차단기의 원격제어관리 시스템

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010607

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20011115