EP1096219B1 - Method and system for detecting a threat thrown towards a fixed or mobile object - Google Patents

Method and system for detecting a threat thrown towards a fixed or mobile object Download PDF

Info

Publication number
EP1096219B1
EP1096219B1 EP20000402990 EP00402990A EP1096219B1 EP 1096219 B1 EP1096219 B1 EP 1096219B1 EP 20000402990 EP20000402990 EP 20000402990 EP 00402990 A EP00402990 A EP 00402990A EP 1096219 B1 EP1096219 B1 EP 1096219B1
Authority
EP
European Patent Office
Prior art keywords
threat
observation
field
fields
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000402990
Other languages
German (de)
French (fr)
Other versions
EP1096219A1 (en
Inventor
Gérald Lefebvre
Sylvain Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giat Industries SA
Original Assignee
Giat Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giat Industries SA filed Critical Giat Industries SA
Publication of EP1096219A1 publication Critical patent/EP1096219A1/en
Application granted granted Critical
Publication of EP1096219B1 publication Critical patent/EP1096219B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/224Deceiving or protecting means

Definitions

  • the present invention relates to a method and system to detect a threat fired at a fixed or mobile object, in particular an ammunition whose trajectory is close of an armored vehicle.
  • a form of protection may consist in attacking the ammunition physically, for example by mechanical effect, nearby of the armored vehicle and just before impact, by projecting towards it vulgarizing elements such as plates or bars.
  • the purpose of this attack is to reduce sufficient ammunition perforation capacity of so that its residual effect is absorbed by the vehicle armor.
  • a known solution consists in using a radar centimeter or millimeter, but this solution has major drawbacks, namely: few accuracy in locating the threat, and the fact that this speed camera is a non-discreet and expensive active element.
  • FR-2570835-A1 describes a device for optical detection of the passage of a mobile through an area of a plane and of locating the point of crossing of the plane by said mobile.
  • the object of the invention is to design a method of detection of a threat that can overcome the disadvantages on the one hand, and can be implemented by a reliable and inexpensive system on the other hand.
  • the method consists in defining each field of observation from photo-detectors arranged in lines in a substantially vertical plane by on the one hand, and on the other hand part, to define two vertical planes forming a dihedral and delimiting each field of observation in the form of a angular sector.
  • the method consists in defining each dihedral plan of a field of observation from a pair of arrays or arrays of photo-detectors, these two pairs being located at a distance from each other for that the two fields of observation intercept one with the other.
  • the method also includes identifying the type of the threat by calculating its length taking into account between other of the time required for the threat to cross at minus a field of observation.
  • the method consists in measuring the threat surface temperature to identify it with more precision, especially when the threat is a arrow projectile and for this purpose the process consists of use photo-detector arrays sensitive to different wavelengths in the range of thermal infrared.
  • the system for implementing the method presents in particular the advantage of being not very complex, while with good reliability in the treatment of threats likely to attack the armored vehicle and allowing the latter to be able to retaliate in the more appropriate.
  • a vehicle armored vehicle is likely to be attacked by a threat which can be fired from a short distance from this vehicle.
  • the armored vehicle is equipped with a system who is able to detect the arrival of the threat, identify it as such, to precisely determine its trajectory and its speed and, if possible, identify it.
  • the arrival of a threat is detected by a process which consists in defining, from the armored vehicle and in front of an area thereof, fields of observation such that the threat must necessarily cross at at least two of these fields CH 1 and CH 2 before reaching said zone of the armored vehicle according to the embodiment illustrated in FIGS. 1 to 3.
  • each bar associated with its optics defines an observation plane. As the two bars delimiting a field of observation are very close, they can be considered as spatially combined. Under these conditions, each observation field CH 1 and CH 2 is delimited by the two faces of a dihedral corresponding to the two observation planes and by the common edge materialized by the bars.
  • Each detector in the array will be able to react as soon as the threat crosses the observation plane of either bar.
  • the two photo-detector arrays associated with the two faces of a dihedral are placed at the level of the common edge of the dihedral, and the two pairs of photo-detector arrays are supported by the object, each located in a substantially plane vertical to the object and arranged so that the two observation fields CH 1 and CH 2 intercept each other.
  • the two observation fields CH 1 and CH 2 are schematically illustrated in projection in a horizontal plane H (FIG. 1) and in a vertical plane V (FIG. 2).
  • the two bars b ' 1 and b 1 of photo-detectors associated with the observation field CH 1 are located at point B.
  • the bar b' 1 is associated with the face f ' 1 of the dihedron, while the bar b 1 is associated with the face f 1 of the dihedral, these two faces f ' 1 and f 1 forming angles ⁇ ' 1 and ⁇ 1 with respect to the horizontal axis AX (FIG. 1).
  • the two arrays b ' 2 and b 2 of photo-detectors associated with the observation field CH 2 are located at point A.
  • the coordinate along a vertical axis of each of the four points where the threat M crosses the fields of observation CH 1 and CH 2 is deduced from the photo-detectors which have reacted and which are representative of the site of the threat M, knowing that the resolution of the site measurement will be equal to ⁇ / N or N represents the number of photo-detectors contained in a strip.
  • the trajectory and speed in the threat space M are then known, and we can then trigger a responds from the vehicle.
  • This response consisting of a system for projecting offensive elements for example, is triggered after calculating an interception point and the right time for this trigger.
  • One means of identification is to be able to measure the threat M surface temperature which in the case of a arrow projectile, can reach several hundred degrees.
  • the two pairs of photo-detectors will be chosen to work in two length bands of different waves, which will allow us to go back to the true temperature of threat M, these two bands being of 3 to 5 ⁇ m for one and 3 to 12 ⁇ m for the other, for example.
  • a compromise is chosen in the choice of these wavelength bands to be able to identify several types of threats.
  • each dihedral face can be chosen to be as thin as possible to improve the detection accuracy.
  • this finesse is not not essential because it is possible to base only on the beginning of detection by the faces of the dihedral to carry out the calculations described above. Concretely, the only condition to respect is that the energy emitted by the threat is greater than the energy perceived by the photo-detectors.
  • a field of observation CH 3 is added, starting from the roof of the vehicle for example, which is directed towards the ground and which intercepts the two fields of observation CH 1 and CH 2 .
  • the number of unknowns increases (M0 and M'0) but based as before on the principle that the speed of the ammunition is assumed to be constant, the system enriched with a sufficiently large number of equation so that the trajectory is perfectly identifiable in space (and no longer only in a plane projection).
  • the measurement of the site of the crossing points of the observation fields CH 1 and CH 2 by the threat M becomes unnecessary.
  • the number of photo-detectors per strip is no longer dictated by the desired resolution in a vertical plane but by obtaining a sufficient signal / noise ratio in the field observed.
  • FIGS. 5 and 6 three fields of observation CH 1 , CH 2 and CH 3 having conical shapes (which surround the vehicle) are used as shown in FIG. 5 and which, in a horizontal plane H, forming concentric circles C ' 3 -C 3 , C' 2 -C 2 and C ' 1 -C 1 which intercept each other.
  • At least the speed and the trajectory of the threat M are determined by detecting the order in which the fields CH 1 , CH 2 and CH 3 are crossed, and the times measured between each crossing of the field.
  • the resulting equations are non-linear and therefore less simple to solve than the previous embodiments.
  • the photo detectors used are of the photovoltaic type for example, which deliver analog signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

La présente invention concerne un procédé et un système pour détecter une menace tirée sur un objet fixe ou mobile, en particulier une munition dont la trajectoire est proche d'un véhicule blindé.The present invention relates to a method and system to detect a threat fired at a fixed or mobile object, in particular an ammunition whose trajectory is close of an armored vehicle.

On connaít actuellement un grand nombre de munitions, les roquettes ou autres obus. On connaít également des techniques de leurrage, de masquage ou de brouillage pour se protéger contre ces munitions. Cependant, ces techniques ne peuvent pas être utilisées lorsque les munitions ont subi un traitement de durcissement ou lorsque ces munitions sont tirées à des distances trop courtes pour que les moyens de leurrage, de masquage ou de brouillage puissent être orientés et mis en oeuvre à temps.We currently know a large number of ammunition, rockets or other shells. We also know decoy, masking or scrambling techniques for protect themselves against these munitions. However, these techniques cannot be used when the ammunition has undergone a hardening treatment or when these munitions are fired at distances too short for the means of decoy, masking or jamming can be oriented and implemented on time.

Lorsque la munition est tirée à courte distance ou est insensible au brouillage ou au leurrage une forme de protection peut consister à agresser la munition physiquement, par effet mécanique par exemple, à proximité du véhicule blindé et juste avant l'impact, en projetant vers celle-ci des éléments vulnérants tels que des plaques ou des barreaux. Le but de cette agression est de réduire suffisamment la capacité de perforation de la munition de façon à ce que son effet résiduel soit absorbé par le blindage du véhicule.When the ammunition is fired at close range or is insensitive to interference or decoy a form of protection may consist in attacking the ammunition physically, for example by mechanical effect, nearby of the armored vehicle and just before impact, by projecting towards it vulgarizing elements such as plates or bars. The purpose of this attack is to reduce sufficient ammunition perforation capacity of so that its residual effect is absorbed by the vehicle armor.

Concrètement, la mise en oeuvre de ce type de protection nécessite le calcul du point d'interception entre le vecteur de la riposte, qui est tiré à partir du char, et la munition, ce qui nécessite de détecter l'arrivée de la munition, de l'identifier comme telle et de déterminer avec précision sa trajectoire et sa vitesse, sachant :

  • que la vitesse de la munition peut varier de 200 m/s à 1 000m/s pour les missiles et les roquettes, et de 1 000 m/s à 2 000 m/s pour les obus,
  • que le diamètre de la munition peut aller d'environ 1 cm pour les obus type flèche à plus de 20 cm pour les missiles, et
  • que la longueur de la munition est généralement supérieure à 60 cm.
Concretely, the implementation of this type of protection requires the calculation of the interception point between the response vector, which is fired from the tank, and the ammunition, which requires to detect the arrival of the ammunition, to identify it as such and to precisely determine its trajectory and speed, knowing:
  • that the speed of ammunition can vary from 200 m / s to 1000 m / s for missiles and rockets, and from 1000 m / s to 2000 m / s for shells,
  • that the diameter of the ammunition can range from approximately 1 cm for arrow type shells to more than 20 cm for missiles, and
  • that the length of the ammunition is generally greater than 60 cm.

D'une manière générale, le traitement de menaces telles que les missiles est plus aisé que celui des projectiles cinétiques pour des raisons de vitesse, d'approche et de vulnérabilité. En effet, pour les missiles, l'impact d'un ou plusieurs éclats ou de petits projectiles projetés à partir du véhicule blindé peut-être suffisant pour neutraliser ces missiles. Ce type de défense simplifie aussi bien la détection, car il n'est pas nécessaire de connaítre avec précision la trajectoire et le point d'impact, que le traitement de la riposte avec des charges à éclats.Generally speaking, dealing with threats such as that missiles is easier than that of projectiles kinetics for reasons of speed, approach and vulnerability. Indeed, for missiles, the impact of a or several fragments or small projectiles projected at from the armored vehicle may be sufficient to neutralize these missiles. This type of defense simplifies detection as well, as there is no need to know precisely the trajectory and the point of impact, that treating the response with charges with flashes.

Par contre, le traitement de projectiles cinétiques est autrement plus complexe du fait de leur vitesse élevée, de la nécessité d'agresser les projectiles avec une énergie très importante, ce qui impose la connaissance précise de la trajectoire du projectile car on ne peut envisager de projeter à partir d'un véhicule blindé une matière à grande vitesse sur une surface ou un angle très important.On the other hand, the treatment of kinetic projectiles is otherwise more complex due to their high speed, the need to attack projectiles with energy very important, which requires precise knowledge of the trajectory of the projectile because we cannot consider project a large material from an armored vehicle speed over a very large surface or angle.

Il est donc nécessaire de disposer d'un moyen de détection de la menace qui puisse être capable de l'identifier avec une extrême fiabilité pour éviter que de fausses alarmes ne déclenchent des ripostes intempestives à partir du véhicule blindé, de la localiser avec une extrême précision de l'ordre de quelques centimètres, et d'avoir un temps de réponse compatible avec le traitement ultérieur de la menace.It is therefore necessary to have a means of threat detection that may be able to identify it with extreme reliability to avoid false alarms do not trigger unwanted responses to from the armored vehicle, locate it with extreme precision of the order of a few centimeters, and to have a response time compatible with further processing of the threat.

A partir de ces conditions, plusieurs types de solutions ont déjà été envisagés.From these conditions, several types of solutions have already been considered.

Une solution connue consiste à utiliser un radar centimétrique ou millimétrique, mais cette solution présente des inconvénients majeurs, à savoir : peu de précision dans la localisation de la menace, et le fait que ce radar est un élément actif non discret et coûteux.A known solution consists in using a radar centimeter or millimeter, but this solution has major drawbacks, namely: few accuracy in locating the threat, and the fact that this speed camera is a non-discreet and expensive active element.

D'autres solutions connues sont basées sur des capteurs d'imageries associés à des traitements d'image, mais ce type de solution conduit à mettre en oeuvre des capteurs aptes à travailler à des fréquences d'acquisition de plusieurs kHz. Bien que de tels capteurs commencent à exister dans la bande spectrale visible ou proche de l'infrarouge, ils sont peu adaptés à une utilisation passive car il faut éclairer la scène. FR-2570835-A1 décrit un dispositif de détection optique du passage d'un mobile à travers une zone d'un plan et de localisation du point de traversée du plan par ledit mobile.Other known solutions are based on imaging sensors associated with image processing, but this type of solution leads to the use of sensors able to work at acquisition frequencies of several kHz. Although such sensors begin to exist in the visible or near infrared spectral band, they are not very suitable for passive use because it is necessary to light the scene. FR-2570835-A1 describes a device for optical detection of the passage of a mobile through an area of a plane and of locating the point of crossing of the plane by said mobile.

Enfin, on trouve également dans la littérature des solutions faisant état de moyens combinant le radar et l'optronique, mais ces solutions conduisent à des coûts de mise en oeuvre particulièrement élevés.Finally, we also find in the literature solutions showing means combining radar and optronics, but these solutions lead to costs of particularly high implementation.

Le but de l'invention est de concevoir un procédé de détection d'une menace qui puisse pallier les inconvénients précités d'une part, et puisse être mis en oeuvre par un système fiable et peu onéreux d'autre part.The object of the invention is to design a method of detection of a threat that can overcome the disadvantages on the one hand, and can be implemented by a reliable and inexpensive system on the other hand.

A cet effet, l'invention propose un procédé pour détecter une menace tirée vers un objet fixe ou mobile, en particulier une munition à haut pouvoir perforant, à courte distance d'un véhicule blindé, le procédé étant caractérisé en ce qu'il consiste :

  • à définir en avant d'une zone de l'objet au moins deux champs d'observation tels que la menace soit obligée de traverser ces deux champs avant d'atteindre ladite zone de l'objet,
  • à détecter les points d'entrée et de sortie de la menace dans chaque champ d'observation, et leurs coordonnées par rapport à un système de référence,
  • à calculer les temps mis par la menace pour traverser chaque champs d'observation et pour passer d'un champ d'observation à l'autre, et
  • à calculer à partir des coordonnées des points d'entrée et de sortie d'une part, et des temps de traversée de la menace d'autre part, au moins la vitesse et la trajectoire de la menace pour permettre à l'objet de pouvoir déclencher une riposte appropriée contre la menace.
To this end, the invention proposes a method for detecting a threat fired towards a fixed or mobile object, in particular a munition with high perforating power, at a short distance from an armored vehicle, the method being characterized in that it consists :
  • to define in front of an area of the object at least two fields of observation such that the threat is forced to cross these two fields before reaching said area of the object,
  • to detect the entry and exit points of the threat in each field of observation, and their coordinates relative to a reference system,
  • to calculate the time taken by the threat to cross each field of observation and to pass from one field of observation to another, and
  • to calculate from the coordinates of entry and exit points on the one hand, and crossing times of the threat on the other hand, at least the speed and trajectory of the threat to allow the object of power trigger an appropriate response to the threat.

D'une manière générale, le procédé consiste à définir chaque champ d'observation à partir de photo-détecteurs disposés en lignes dans un plan sensiblement vertical par rapport à l'objet d'une part, et d'une optique d'autre part, pour définir deux plans verticaux formant un dièdre et délimitant chaque champ d'observation sous la forme d'un secteur angulaire. Generally, the method consists in defining each field of observation from photo-detectors arranged in lines in a substantially vertical plane by on the one hand, and on the other hand part, to define two vertical planes forming a dihedral and delimiting each field of observation in the form of a angular sector.

En particulier, le procédé consiste à définir chaque plan de dièdre d'un champ d'observation à partir d'une paire de barrettes ou de matrices de photo-détecteurs, ces deux paires étant situées à distance l'une de l'autre pour que les deux champs d'observation s'interceptent l'un avec l'autre.In particular, the method consists in defining each dihedral plan of a field of observation from a pair of arrays or arrays of photo-detectors, these two pairs being located at a distance from each other for that the two fields of observation intercept one with the other.

Le procédé consiste également à identifier le type de la menace en calculant sa longueur en tenant compte entre autre du temps nécessaire à la menace pour traverser au moins un champ d'observation.The method also includes identifying the type of the threat by calculating its length taking into account between other of the time required for the threat to cross at minus a field of observation.

Avantageusement, le procédé consiste à mesurer la température de surface de la menace pour l'identifier avec plus de précision, en particulier lorsque la menace est un projectile flèche et, à cet effet, le procédé consiste à utiliser des barrettes de photo-détecteurs sensibles à des longueurs d'onde différentes dans le domaine de l'infrarouge thermique.Advantageously, the method consists in measuring the threat surface temperature to identify it with more precision, especially when the threat is a arrow projectile and for this purpose the process consists of use photo-detector arrays sensitive to different wavelengths in the range of thermal infrared.

L'invention a également pour objet un système de détection d'une menace tirée vers un objet fixe ou mobile pour la mise en oeuvre du procédé tel que défini précédemment, caractérisé en ce qu'il comprend :

  • des barrettes ou des matrices de photo-détecteurs associées à un dispositif optique pour définir au moins deux champs d'observation en avant d'une zone de l'objet, et
  • des moyens de traitement analogique et numérique qui sont reliés aux dits photo-détecteurs pour détecter l'arrivée d'une menace qui traverse les deux champs d'observation à partir des signaux analogiques délivrés par les photo-détecteurs, et pour calculer au moins la vitesse, la trajectoire et la longueur de la menace.
The subject of the invention is also a system for detecting a threat fired towards a fixed or mobile object for the implementation of the method as defined above, characterized in that it comprises:
  • bars or arrays of photo-detectors associated with an optical device to define at least two fields of observation in front of an area of the object, and
  • analog and digital processing means which are connected to said photo-detectors to detect the arrival of a threat which crosses the two fields of observation on the basis of analog signals delivered by the photo-detectors, and to calculate at least the speed, trajectory and length of the threat.

D'une manière générale :

  • chaque champs d'observation est défini à partir d'une paire de deux barrettes adjacentes de photo-détecteurs montées dans un plan sensiblement vertical par rapport à l'objet, et
  • les deux paires de barrettes de photo-détecteurs sont portées par l'objet et situées à distance l'une de l'autre pour que les deux champs d'observation qu'elles définissent s'interceptent l'un avec l'autre.
In a general way :
  • each field of observation is defined from a pair of two adjacent arrays of photo-detectors mounted in a plane substantially vertical relative to the object, and
  • the two pairs of photo-detector arrays are carried by the object and located at a distance from each other so that the two fields of observation that they define intercept each other.

Le système de mise en oeuvre du procédé présente notamment l'avantage d'être peu complexe, tout en présentant une bonne fiabilité dans le traitement des menaces susceptibles d'agresser le véhicule blindé et en permettant à ce dernier de pouvoir riposter de la façon la plus appropriée.The system for implementing the method presents in particular the advantage of being not very complex, while with good reliability in the treatment of threats likely to attack the armored vehicle and allowing the latter to be able to retaliate in the more appropriate.

D'autres avantages, caractéristiques et détails de l'invention ressortiront plus clairement à la lecture du complément de description qui va suivre en référence aux dessins annexés, donnés uniquement à titre d'exemple et dans lesquels :

  • les figures 1 et 2 représentent respectivement et schématiquement les projections dans un plan horizontal et dans un plan vertical de deux champs d'observation définis en avant de l'objet selon un premier mode de réalisation d'un système de mise en oeuvre du procédé de l'invention,
  • la figure 3 illustre schématiquement dans un plan horizontal la trajectoire d'une menace qui traverse les deux champs d'observation tels que représentés aux figures 1 et 2,
  • la figure 4 est une vue dans un plan vertical des champs d'observation selon un deuxième mode de réalisation, et
  • les figures 5 et 6 représentent schématiquement les projections dans un plan vertical et dans un plan horizontal de deux champs d'observation définis autour de l'objet selon un troisième mode de réalisation.
Other advantages, characteristics and details of the invention will emerge more clearly on reading the additional description which will follow with reference to the appended drawings, given solely by way of example and in which:
  • FIGS. 1 and 2 represent schematically respectively the projections in a horizontal plane and in a vertical plane of two fields of observation defined in front of the object according to a first embodiment of a system for implementing the method of the invention,
  • FIG. 3 schematically illustrates in a horizontal plane the trajectory of a threat which crosses the two fields of observation as represented in FIGS. 1 and 2,
  • FIG. 4 is a view in a vertical plane of the observation fields according to a second embodiment, and
  • Figures 5 and 6 schematically represent the projections in a vertical plane and in a horizontal plane of two fields of observation defined around the object according to a third embodiment.

Comme cela a été évoqué en préambule, un véhicule blindé est susceptible d'être agressé par une menace qui peut être tirée à courte distance de ce véhicule.As mentioned in the preamble, a vehicle armored vehicle is likely to be attacked by a threat which can be fired from a short distance from this vehicle.

Pour pouvoir déclencher une riposte appropriée contre cette menace, le véhicule blindé est équipé d'un système qui est en mesure de détecter l'arrivée de la menace, de l'identifier comme telle, de déterminer avec précision sa trajectoire et sa vitesse et, si possible, de l'identifier. To be able to trigger an appropriate response against this threat the armored vehicle is equipped with a system who is able to detect the arrival of the threat, identify it as such, to precisely determine its trajectory and its speed and, if possible, identify it.

Selon l'invention, l'arrivée d'une menace est détectée par un procédé qui consiste à définir à partir du véhicule blindé et en avant d'une zone de celui-ci des champs d'observation tels que la menace doit nécessairement traverser au moins deux de ces champs CH1 et CH2 avant d'atteindre ladite zone du véhicule blindé selon le mode de réalisation illustré sur les figures 1 à 3.According to the invention, the arrival of a threat is detected by a process which consists in defining, from the armored vehicle and in front of an area thereof, fields of observation such that the threat must necessarily cross at at least two of these fields CH 1 and CH 2 before reaching said zone of the armored vehicle according to the embodiment illustrated in FIGS. 1 to 3.

Chaque barrette associée à son optique délimite un plan d'observation. Comme les deux barrettes délimitant un champ d'observation sont très proches, on peut les considérer comme spatialement confondus. Dans ces conditions, chaque champ d'observation CH1 et CH2 est délimité par les deux faces d'un dièdre correspondant aux deux plans d'observation et par l'arête commune matérialisée par les barrettes.Each bar associated with its optics defines an observation plane. As the two bars delimiting a field of observation are very close, they can be considered as spatially combined. Under these conditions, each observation field CH 1 and CH 2 is delimited by the two faces of a dihedral corresponding to the two observation planes and by the common edge materialized by the bars.

Chaque détecteur de la barrette sera en mesure de réagir dès que la menace traverse le plan d'observation de l'une ou l'autre barrette.Each detector in the array will be able to react as soon as the threat crosses the observation plane of either bar.

Les deux barrettes de photo-détecteurs associées aux deux faces d'un dièdre sont placées au niveau de l'arête commune du dièdre, et les deux paires de barrettes de photo-détecteurs sont supportées par l'objet, situées chacune dans un plan sensiblement vertical par rapport à l'objet et disposées de manière à ce que les deux champs d'observation CH1 et CH2 s'interceptent l'un avec l'autre.The two photo-detector arrays associated with the two faces of a dihedral are placed at the level of the common edge of the dihedral, and the two pairs of photo-detector arrays are supported by the object, each located in a substantially plane vertical to the object and arranged so that the two observation fields CH 1 and CH 2 intercept each other.

Les deux champs d'observation CH1 et CH2 sont schématiquement illustrés en projection dans un plan horizontal H (figure 1) et dans un plan vertical V (figure 2).The two observation fields CH 1 and CH 2 are schematically illustrated in projection in a horizontal plane H (FIG. 1) and in a vertical plane V (FIG. 2).

Les deux barrettes b'1 et b1 de photo-détecteurs associées au champ d'observation CH1 sont situés au point B. La barrette b'1 est associée à la face f'1 du dièdre, alors que la barrette b1 est associée à la face f1 du dièdre, ces deux faces f'1 et f1 formant des angles '1 et 1 par rapport à l'axe horizontal AX (figure 1). D'une manière analogue, les deux barrettes b'2 et b2 de photo-détecteurs associées au champ d'observation CH2 sont situées au point A. The two bars b ' 1 and b 1 of photo-detectors associated with the observation field CH 1 are located at point B. The bar b' 1 is associated with the face f ' 1 of the dihedron, while the bar b 1 is associated with the face f 1 of the dihedral, these two faces f ' 1 and f 1 forming angles ' 1 and  1 with respect to the horizontal axis AX (FIG. 1). In an analogous manner, the two arrays b ' 2 and b 2 of photo-detectors associated with the observation field CH 2 are located at point A.

Les deux faces f'1 et f1 du champ d'observation CH délimitent entre elles un angle α1 dans le plan vertical V (figure 2), alors que les deux faces f'2 et f2 du champ d'observation CH2 délimitent entre elles un angle α2 dans ce plan vertical V (figure 2).The two faces f ' 1 and f 1 of the observation field CH delimit between them an angle α1 in the vertical plane V (FIG. 2), while the two faces f' 2 and f 2 of the observation field CH 2 delimit between them an angle α 2 in this vertical plane V (Figure 2).

Soit une menace M qui a été tirée en direction du véhicule blindé. Supposons que la menace ait une trajectoire suivant une direction D, cette trajectoire étant assimilable à une droite. En effet, on peut admettre que la vitesse de la menace M est sensiblement constante sur l'intervalle de temps considéré qui peut varier de quelques micro-secondes seulement à quelques millisecondes, et que dans cet intervalle de temps le véhicule, même en mouvement, peut être considéré comme étant fixe.Either a threat M which was fired towards the armored vehicle. Suppose the threat has a trajectory in a direction D, this trajectory being comparable to a straight line. Indeed, we can admit that the speed of threat M is substantially constant over the time interval considered which may vary from only a few micro-seconds to a few milliseconds, and that in this time interval the vehicle, even in movement, can be considered to be fixed.

Supposons que la menace M traverse successivement les deux champs d'observation CH2 et CH1. Dans cette hypothèse illustrée sur la figure 3 dans le plan horizontal H (figure 3) :

  • un détecteur de la barrette b'2 va détecter le point d'entrée de la menace M dans le champ d'observation CH2, ce point d'entrée projeté dans un plan horizontal H donnant un point M'2, et,
  • un détecteur de la barrette b2 va détecter le point de sortie de la menace M hors du champ d'observation, ce point de sortie projeté dans le plan horizontal H donnant un point M2.
Suppose that threat M successively crosses the two fields of observation CH 2 and CH 1 . In this hypothesis illustrated in Figure 3 in the horizontal plane H (Figure 3):
  • a detector of the bar b ′ 2 will detect the entry point of the threat M into the observation field CH 2 , this entry point projected into a horizontal plane H giving a point M ′ 2 , and,
  • a detector of the bar b 2 will detect the exit point of the threat M outside the field of observation, this exit point projected in the horizontal plane H giving a point M 2 .

D'une manière semblable, on peut définir les points d'entrée M'1 et de sortie M1 de la menace M qui traverse ensuite le champ d'observation CH1.In a similar way, one can define the entry points M ' 1 and exit M 1 of the threat M which then crosses the field of observation CH 1 .

On va pouvoir ainsi calculer les temps T22, TR2 et T11 mis par la menace M pour traverser le champ CH2, pour passer du champ CH2 au champ CH1 et pour traverser le champ CH1, respectivement.We will thus be able to calculate the times T 22 , TR 2 and T 11 taken by the threat M to cross the field CH 2 , to pass from the field CH 2 to the field CH 1 and to cross the field CH 1 , respectively.

Sachant que les vitesses associées V22, V21 et V11 de la menace M sont les mêmes, on peut en déduire les deux relations suivantes : T21 x M'2M2 = T22 x M2M1 (V22 = V21), T11 x M'2M2 = T22 x M'1M1 (V22 = V11). Knowing that the associated speeds V 22 , V 21 and V 11 of threat M are the same, we can deduce the following two relationships: T 21 x M ' 2 M 2 = T 22 x M 2 M 1 (V 22 = V 21 ) T 11 x M ' 2 M 2 = T 22 x M ' 1 M 1 (V 22 = V 11 ).

Ces deux relations vont donner lieu à quatre équations suivant les projections sur les deux axes du plan horizontal H. Par ailleurs, les quatre points M'2, M2,, M'1 et M1 appartiennent chacun à des droites distinctes du plan horizontal H, ce qui va fournir quatre équations supplémentaires. On disposera donc de huit équations à huit inconnues, ces dernières étant les deux coordonnées de chacun des points M'2, M2, M'1 et M1 dans le plan horizontal H.These two relations will give rise to four equations according to the projections on the two axes of the horizontal plane H. In addition, the four points M ' 2 , M 2 ,, M' 1 and M 1 each belong to distinct lines of the horizontal plane H, which will provide four additional equations. There will therefore be eight equations with eight unknowns, the latter being the two coordinates of each of the points M ' 2 , M 2 , M' 1 and M 1 in the horizontal plane H.

On pourra ainsi calculer la vitesse de la menace M dans le plan horizontal H.We can thus calculate the speed of threat M in the horizontal plane H.

En outre, la coordonnée suivant un axe vertical de chacun des quatre points où la menace M franchit les champs d'observation CH1 et CH2, est déduite à partir des photo-détecteurs qui auront réagi et qui sont représentatifs du site de la menace M, sachant que la résolution de la mesure de site sera égale à α/N ou N représente le nombre de photo-détecteurs contenus dans une barrette.In addition, the coordinate along a vertical axis of each of the four points where the threat M crosses the fields of observation CH 1 and CH 2 , is deduced from the photo-detectors which have reacted and which are representative of the site of the threat M, knowing that the resolution of the site measurement will be equal to α / N or N represents the number of photo-detectors contained in a strip.

A partir de ces coordonnées suivant l'axe vertical, des coordonnées des points M'2, M2, M'1 et M1 dans le plan horizontal H et de la mesure des temps T22, T21 et T11, on peut calculer la vitesse de la menace M suivant l'axe vertical.From these coordinates along the vertical axis, the coordinates of the points M ' 2 , M 2 , M' 1 and M 1 in the horizontal plane H and the measurement of times T 22 , T 21 and T 11 , we can calculate the speed of threat M along the vertical axis.

La trajectoire et la vitesse dans l'espace de la menace M sont alors connues, et on peut alors déclencher une riposte à partir du véhicule. Cette riposte, constituée par un système de projection d'éléments vulnérants par exemple, est déclenchée après avoir calculer un point d'interception et le moment opportun pour ce déclenchement.The trajectory and speed in the threat space M are then known, and we can then trigger a responds from the vehicle. This response, consisting of a system for projecting offensive elements for example, is triggered after calculating an interception point and the right time for this trigger.

D'une manière générale, il est également souhaitable de pouvoir identifier le type de la menace M, en particulier dans le cas d'un projectile flèche.In general, it is also desirable to ability to identify type of threat M, in particular in the case of an arrow projectile.

A partir des signaux délivrés par les photo-détecteurs qui ont été excités par le passage de la menace M, on peut en déduire la longueur de cette menace, mais cela n'est pas suffisant pour l'identifier d'une façon précise. From the signals delivered by the photo-detectors who were excited by the threat threat M we can deduce the length of this threat, but this is not sufficient to identify it precisely.

Un moyen d'identification consiste à pouvoir mesurer la température de surface de la menace M qui, dans le cas d'un projectile flèche, peut atteindre plusieurs centaines de degrés.One means of identification is to be able to measure the threat M surface temperature which in the case of a arrow projectile, can reach several hundred degrees.

A cet effet, les deux paires de photo-détecteurs vont être choisies pour travailler dans deux bandes de longueurs d'ondes différentes, ce qui va permettre de remonter à la température vraie de la menace M, ces deux bandes étant de 3 à 5 µm pour l'un et de 3 à 12 µm pour l'autre, par exemple.For this purpose, the two pairs of photo-detectors will be chosen to work in two length bands of different waves, which will allow us to go back to the true temperature of threat M, these two bands being of 3 to 5 µm for one and 3 to 12 µm for the other, for example.

De préférence, on choisit un compromis dans le choix de ces bandes de longueur d'onde pour pouvoir identifier plusieurs types de menaces.Preferably, a compromise is chosen in the choice of these wavelength bands to be able to identify several types of threats.

D'une manière générale, l'angle correspondant ou chaque champ d'observation de chaque face de dièdre peut être choisi pour être le plus fin possible pour améliorer la précision de la détection. Cependant, cette finesse n'est pas indispensable car il est possible de se baser uniquement sur les débuts de détection par les faces du dièdre pour mener à bien les calculs décrits précédemment. Concrètement, la seule condition à respecter est que l'énergie émise par la menace soit supérieure à l'énergie de fond perçue par les photo-détecteurs.Generally speaking, the corresponding angle or each field of observation of each dihedral face can be chosen to be as thin as possible to improve the detection accuracy. However, this finesse is not not essential because it is possible to base only on the beginning of detection by the faces of the dihedral to carry out the calculations described above. Concretely, the only condition to respect is that the energy emitted by the threat is greater than the energy perceived by the photo-detectors.

Selon un deuxième mode de réalisation illustré schématiquement sur la figure 4 dans un plan vertical V, on ajoute un champ d'observation CH3 partant du toit du véhicule par exemple, qui est dirigé vers le sol et qui intercepte les deux champs d'observation CH1 et CH2.According to a second embodiment illustrated schematically in FIG. 4 in a vertical plane V, a field of observation CH 3 is added, starting from the roof of the vehicle for example, which is directed towards the ground and which intercepts the two fields of observation CH 1 and CH 2 .

Dans ce cas, le nombre d'inconnus augmente (M0 et M'0) mais en se fondant comme précédemment sur le principe que la vitesse de la munition est supposée constante, le système s'enrichit d'un nombre suffisamment grand d'équation pour que la trajectoire soit parfaitement identifiable dans l'espace (et plus seulement dans un plan de projection).In this case, the number of unknowns increases (M0 and M'0) but based as before on the principle that the speed of the ammunition is assumed to be constant, the system enriched with a sufficiently large number of equation so that the trajectory is perfectly identifiable in space (and no longer only in a plane projection).

Avec ce mode de réalisation, la mesure de site des points de franchissement des champs d'observation CH1 et CH2 par la menace M devient inutile. Ainsi, le nombre de photo-détecteurs par barrette n'est plus dicté par la résolution souhaitée dans un plan vertical mais par l'obtention d'un rapport signal/bruit suffisant dans le champ observé.With this embodiment, the measurement of the site of the crossing points of the observation fields CH 1 and CH 2 by the threat M becomes unnecessary. Thus, the number of photo-detectors per strip is no longer dictated by the desired resolution in a vertical plane but by obtaining a sufficient signal / noise ratio in the field observed.

Selon un troisième mode de réalisation illustré schématiquement sur les figures 5 et 6, on utilise trois champs d'observation CH1, CH2 et CH3 ayant des formes coniques (qui entourent le véhicule) comme montré sur la figure 5 et qui, dans un plan horizontal H, formant des cercles concentriques C'3-C3, C'2-C2 et C'1-C1 qui s'interceptent les uns les autres.According to a third embodiment illustrated diagrammatically in FIGS. 5 and 6, three fields of observation CH 1 , CH 2 and CH 3 having conical shapes (which surround the vehicle) are used as shown in FIG. 5 and which, in a horizontal plane H, forming concentric circles C ' 3 -C 3 , C' 2 -C 2 and C ' 1 -C 1 which intercept each other.

Dans cet exemple, on détermine au moins la vitesse et la trajectoire de la menace M en détectant l'ordre dans lequel les champs CH1, CH2 et CH3 sont franchis, et les temps mesurés entre chaque franchissement de champ. Cependant, les équations qui en résultent sont non linéaires et donc moins simple à résoudre que les modes de réalisation précédents.In this example, at least the speed and the trajectory of the threat M are determined by detecting the order in which the fields CH 1 , CH 2 and CH 3 are crossed, and the times measured between each crossing of the field. However, the resulting equations are non-linear and therefore less simple to solve than the previous embodiments.

D'une manière générale, les photo-détecteurs utilisés sont du type photo-voltaïque par exemple, qui délivrent des signaux analogiques.In general, the photo detectors used are of the photovoltaic type for example, which deliver analog signals.

Claims (9)

  1. A process to detect a threat fired at a fixed or mobile object, in particular a piece of ammunition with high penetrating capacities, at a short range from an armoured vehicle, process wherein it consists in:
    defining ahead of a zone of the object at least two fields of observation (CH1, CH2) such that the threat is obliged to pass through these two fields before attaining said zone of the object,
    detecting the points of entry and exit of the threat in each field of observation, and their coordinates with respect to a reference system,
    computing the time taken by the threat to pass through each field of observation to move from one field to another, and
    computing, using the coordinates of entry and exit as well as the time taken by the threat to pass through, at least the velocity and trajectory of the threat to allow the object to be able to trigger an appropriate counter response against the threat.
  2. Detection process according to Claim 1, wherein it consists in firstly defining each field of observation (CH1, CH2) using photo detectors (b1, b'1, b2, b'2) arranged in lines in a substantially vertical plane (V) with respect to the object, and secondly in using an optic, to define two vertical planes forming a dihedron and delimiting each field of observation in the shape of an angular sector.
  3. A process according to Claim 2, wherein it consists in defining each dihedral plane of a field of observation using a pair of arrays or matrices of photo detectors (b1, b'1, b2, b'2), these two pairs being located at a distance from one another so that the two fields of observation (CH1, CH2) intersect each other.
  4. A process according to any one of Claims 1 to 3, wherein it consists in identifying the type of threat by calculating its length given, among other things, the time required for the threat to pass through at least one field of observation.
  5. A detection process according to Claim 4, wherein it consists in measuring the surface temperature of the threat so as to more accurately identify it, in particular when the threat is an APFSDS type projectile.
  6. A process according to Claim 5, wherein it consists in using photo detector arrays having different wave lengths.
  7. A system to detect a threat fired at a fixed or mobile object for the implementation of the process such as defined by any one of the above Claims, wherein it comprises:
    photo detector (b1, b'1, b2, b'2) arrays or matrices associated with an optic device to define at least two fields of observation (CH1, CH2) ahead of a zone of the object, and
    analogical and digital processing means that are connected to said photo detectors to detect the threat passing through the two fields of observation from the analogical signals delivered by the photo detectors, and to calculate at least the velocity, the trajectory and the length of the threat.
  8. A detection system according to Claim 7, wherein each field of observation (CH1, CH2) is defined from a pair of adjacent photo detector (b1, b'1, b2, b'2) arrays mounted in a substantially vertical plane with respect to the object
  9. A detection system according to Claim 8, wherein the two pairs of photo detector arrays are carried by the object and located at a distance from one another.
EP20000402990 1999-10-29 2000-10-27 Method and system for detecting a threat thrown towards a fixed or mobile object Expired - Lifetime EP1096219B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9913633A FR2800452B1 (en) 1999-10-29 1999-10-29 METHOD AND SYSTEM FOR DETECTING THREAT ON A FIXED OR MOBILE OBJECT
FR9913633 1999-10-29

Publications (2)

Publication Number Publication Date
EP1096219A1 EP1096219A1 (en) 2001-05-02
EP1096219B1 true EP1096219B1 (en) 2004-08-04

Family

ID=9551570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000402990 Expired - Lifetime EP1096219B1 (en) 1999-10-29 2000-10-27 Method and system for detecting a threat thrown towards a fixed or mobile object

Country Status (3)

Country Link
EP (1) EP1096219B1 (en)
DE (1) DE60012654T2 (en)
FR (1) FR2800452B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229273B4 (en) 2002-06-28 2007-01-25 Diehl Bgt Defence Gmbh & Co. Kg Object self-protection device
CA2444464A1 (en) 2003-10-15 2005-04-15 Dimitri Petrov Method and aparatus for locating the trajectory of a projectile in motion
US7650256B2 (en) 2004-10-15 2010-01-19 Dimitri Petrov Consultants Inc. Method and apparatus for locating the trajectory of an object in motion
DE102007007403A1 (en) 2007-02-12 2008-08-21 Krauss-Maffei Wegmann Gmbh & Co. Kg Method and device for protection against flying attack ammunition
DE102007007404A1 (en) 2007-02-12 2008-08-14 Krauss-Maffei Wegmann Gmbh & Co. Kg Method and device for remote release of a projectile
DE102008023520C5 (en) * 2008-05-15 2016-12-29 Airbus Defence and Space GmbH Method for classifying RAM bullets
WO2011101459A1 (en) * 2010-02-18 2011-08-25 Norman Lindsay Electro-optical sensor method and system for determining the motion of a projectile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570835B1 (en) * 1984-09-21 1987-12-11 Matra DEVICE FOR OPTICALLY DETECTING THE PASSAGE OF A MOBILE AND LOCATING THE PASSAGE POINT
DE4444635C2 (en) * 1994-12-15 1996-10-31 Daimler Benz Aerospace Ag Self-defense device against missiles

Also Published As

Publication number Publication date
DE60012654T2 (en) 2005-01-05
EP1096219A1 (en) 2001-05-02
FR2800452A1 (en) 2001-05-04
FR2800452B1 (en) 2005-06-24
DE60012654D1 (en) 2004-09-09

Similar Documents

Publication Publication Date Title
EP0028966B1 (en) Method of piloting and guiding missiles in terminal flight
EP0684485B1 (en) Method and system to localize a firearm using an acoustic detection
EP1096219B1 (en) Method and system for detecting a threat thrown towards a fixed or mobile object
FR2722579A1 (en) DEVICE FOR CORRECTING MISSILES TRAJECTORY
FR2719659A1 (en) Method and device for correcting the trajectory of projectiles.
EP0568426A1 (en) Method and device for detection and localisation of objects on a relatively level surface
EP0241374B1 (en) Optronic off-bore sight system for the spatial and spectral discrimination of infrared light sources
FR2729764A1 (en) IMPORTANT INSTANTANEOUS ANGULAR FIELD RADAR AND HIGH INSTANTANEOUS ANGULAR RESOLUTION POWER, ESPECIALLY FOR MISSILE SELF-DIRECTOR
FR2719662A1 (en) Method and device for determining the angular roll position of a rotating missile.
EP2711732A1 (en) Deviation indicator with infrared imaging and system for sighting and automatic tracking of a target
FR2882441A1 (en) Threat tracking and counter measuring device for e.g. transport plane, has head with double prism associated to optical delaying device to introduce difference of optical path between sub beams which is greater than beam`s coherent length
EP2929284B1 (en) Optronic device
FR1464783A (en) Improvements to infrared radiation detection systems
EP1536246A1 (en) Method for the detection of the entry of a target into a zone, detection device and protection device using the method
FR2622964A1 (en) Implementing method and device for a system defending a zone against the penetration of vehicles
JPH0328698A (en) Laser alarm method and laser alarm equipment
FR2671193A1 (en) METHOD AND DEVICE FOR DETECTING SECTORAL PROXIMITY OF A TARGET, AND MUNITION USING THE DEVICE
FR2746495A1 (en) TANDEM MILITARY HEAD FOR ATTACKING ACTIVE TARGETS
FR2726360A1 (en) METHOD FOR PRODUCING AN AUTOMATIC IGNITION ORDER FOR AN ANTICHARNE AND IGNITER TRAP FOR IMPLEMENTING THE PROCESS
EP0308324B1 (en) Doppler speed measurement apparatus for security
FR2618909A1 (en) OPTOELECTRIC DEVICE FOR DETECTING AND LOCATING A RADIANT SOURCE
US5078052A (en) Infrared proximity fuze with double field of view for moving carrier applications
US4027970A (en) Method and apparatus for passive optical fusing and distance measurement
EP0540395B1 (en) Passive artillary fire or analogue detector
FR2968089A1 (en) PANORAMIC LASERS PULSE DETECTION DEVICE.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEFEBVRE, GERALD

Inventor name: MULLER, SYLVAIN

17P Request for examination filed

Effective date: 20010517

AKX Designation fees paid

Free format text: DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60012654

Country of ref document: DE

Date of ref document: 20040909

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060928

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071027