EP1095255A1 - Methode und apparat zur lokalisierung versteckter leichen durch detektion flüchtiger gas-kombinationen - Google Patents

Methode und apparat zur lokalisierung versteckter leichen durch detektion flüchtiger gas-kombinationen

Info

Publication number
EP1095255A1
EP1095255A1 EP99956754A EP99956754A EP1095255A1 EP 1095255 A1 EP1095255 A1 EP 1095255A1 EP 99956754 A EP99956754 A EP 99956754A EP 99956754 A EP99956754 A EP 99956754A EP 1095255 A1 EP1095255 A1 EP 1095255A1
Authority
EP
European Patent Office
Prior art keywords
ambient air
location
locating device
methane
portable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99956754A
Other languages
English (en)
French (fr)
Inventor
Douglas F. Copp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1095255A1 publication Critical patent/EP1095255A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0047Specially adapted to detect a particular component for organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N2001/002Devices for supplying or distributing samples to an analysing apparatus
    • G01N2001/007Devices specially adapted for forensic samples, e.g. tamper-proofing, sample tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/021Correlating sampling sites with geographical information, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention involves a method and apparatus for locating a corpse (especially a human corpse) after a drowning, building or mine collapse, mudslide, earthquake, or similar accident or disaster, or after a murder. This is accomplished by using portable sensors which can detect a combination of volatile chemicals that are generated and released during bacterial decomposition of tissue. 5
  • sonar- type and other electronic devices operated from surface craft usually can 5 only try to locate solid debris which might indicate the presence of a corpse nearby (such as the wreckage of a plane or boat), or they require clear water to function properly for visual inspection using a video-type monitor which remains on the surface. It is common for submerged victims of boating accidents, or airplanes which have crashed into water, to be located only after extended, costly, time-consuming searches, and many such victims are 0 never located.
  • one object of this invention is to disclose a faster, more accurate, more efficient method for locating the remains of people who have been killed in accidents (such as drowning victims who are submerged in lakes, oceans, or other bodies of water) or disasters (such as buried victims of mine collapses, earthquakes, mudslides, floods, etc.), or who are victims of crimes such as kidnaping and murder.
  • accidents such as drowning victims who are submerged in lakes, oceans, or other bodies of water
  • disasters such as buried victims of mine collapses, earthquakes, mudslides, floods, etc.
  • Another object of this invention is to disclose a method and device for locating decomposing remains of people by employing a selection of chemical sensors to detect the simultaneous presence of at least three volatile chemicals that are released by bacterial decomposition of tissue, in the ambient air above the water, soil, or rubble which hold the remains of the person who died.
  • Another object of this invention is to disclose a device for locating the decomposing remains of accident, disaster, or crime victims, which contains a proper selection of chemical sensors that have been combined with each other, and with alarm-type indicators and certain other components, in a convenient, hand-held, battery-powered portable device that can easily be used in the field by a single operator who has been properly trained in the use of the device.
  • This invention discloses a portable, hand-held device to assist in locating the remains of people who have been killed in accidents, disasters, or crimes.
  • This device works by sensing a combination of volatile gases which are released during bacterial decomposition of tissue.
  • One such combination of volatile gases includes methane, ammonia, and a volatile organic compound such as a ketone.
  • Portable sensors which can detect each of these chemicals in ambient air at "parts per million” (ppm) levels are known and are commercially available. These have been developed for safety purposes such as fire prevention, and to reduce the exposure of people and sensitive manufacturing processes to potentially harmful chemicals; they have not previously been used to locate decomposing corpses.
  • Each chemical sensor is coupled to at least one type of output indicator which can generate a signal, such as a horn, siren, flashing light, or a visual display such as a digital or analog readout.
  • the portable unit preferably should be battery-powered, and preferably should contain an air conduit with a fan, so that it can draw ambient air across the sensor surfaces, for improved detection of the volatile gases.
  • the device is carried and moved around the general area above the location where a corpse is suspected of being hidden; for example, it can be held by an operator on the deck of a boat, preferably upwind of the boat's engine exhaust outlet, as the boat traverses the area being searched.
  • a first signal output (preferably a loud audio signal, such as a horn or siren) indicates that a peak reading of a volatile organic compound such as a ketone has been detected
  • the operator can inspect the visual display outputs from the methane and ammonia sensors. If the outputs of all three sensors indicate elevated levels of all three volatile compounds in the ambient air at a certain location, the combination of all three gaseous compounds indicates a strong likelihood that a decomposing corpse is hidden in the water, mud, rubble, soil, or other material at or near that location.
  • the portable device can also contain a locating component, such as a "Global Positioning System” (GPS) unit which can receive and process GPS satellite transmissions, and a recording or printing component, to make it easier for the operator to record the exact location where the elevated gaseous readings occurred.
  • GPS Global Positioning System
  • This invention also discloses a method for searching for and locating a decomposing corpse, using a combination of portable sensors which can detect ppm levels of selected volatile gases in ambient air, as described above.
  • a preferred method relies on the location of "peak" readings (which occur when a local maximum concentration of a certain gas, in ambient air, begins to decline), rather than relying on absolute concentrations or threshold values. Because numerous uncontrollable factors alter and distort the absolute concentration of each volatile gas in the vicinity of a decomposing corpse, it has been found that peak concentrations provide better and more reliable indicators than absolute concentrations. Accordingly, the locating device disclosed herein preferably should include one or more microprocessor controls that can generate output signals to indicate the presence of peak gas concentrations, regardless of the absolute concentrations of those gases.
  • FIGURE 1 is a block diagram of a locator device as disclosed herein, showing three volatile gas sensors (for methane, ammonia, and a volatile organic compound) combined in a holding device which contains an air conduit and a fan to draw ambient air through the device, and having electronic signal-processing components.
  • FIGURE 2 is a block diagram of a locator device as shown in Fig. 1, which also contains a "Global Positioning System” (GPS) unit to indicate the locations where peak readings of the volatile gases are encountered.
  • GPS Global Positioning System
  • Fig. 1 refers to a portable sensing device according to the present invention.
  • This sensing device 10 includes a housing 12 which encloses volatile gas sensors 14, 16, and 18.
  • Housing 12 also contains a blower device 20 (this term is used herein to include a fan blade, a compressor, a gas-pumping scroll device, or any other pumping device which is suitable for moving air through a conduit) which draws ambient air into and through an air conduit 22, via air inlet 22a and outlet 22b. While passing through conduit 22, the air contacts the exposed detector surfaces of the gas sensors 14, 16, and 18, which are mounted in the housing frame 12 in a manner causing their detector surfaces to be directly exposed to air passing through the conduit 22.
  • a blower device 20 this term is used herein to include a fan blade, a compressor, a gas-pumping scroll device, or any other pumping device which is suitable for moving air through a conduit
  • Housing 12 also contains a signal processor 30 which is coupled to a loudspeaker or horn 32 and a display unit 40.
  • Housing 40 preferably should be equipped to hold batteries, or to be coupled to some other suitable power supply, to drive the electronic components of the device.
  • display unit 40 contains three digital readouts (or analog dials) 42, each of which can indicate the concentration of one of the three volatile gases being measured.
  • Display unit 40 also contains three alarm indicators 44, each of which can be programmed to emit an alarm signal (such as a blinking light, or a beeping, warbling, or similar noise) when a condition of interest is detected by the sensor which detects the corresponding volatile gas.
  • an alarm signal such as a blinking light, or a beeping, warbling, or similar noise
  • the preferred selection and combination of three different volatile gases which are detected by a gas detection unit as disclosed herein can be varied if desired, so long as each of the three selected volatile gases is generated and released in substantial quantities during bacterial decomposition of dead tissue.
  • volatile organic compound (abbreviated herein as VOC) is used in its usual sense, but is limited herein to exclude methane, ethane, and carbon dioxide.
  • organic indicates that a VOC contains carbon atoms; the word “volatile” indicates that it has a vapor pressure of at least about 0.1 millimeters of mercury at typical ambient temperatures.
  • CO 2 carbon dioxide
  • locator devices containing CO 2 sensors can be tested, under field conditions, to evaluate their suitability for use as disclosed herein.
  • CO 2 sensors were not selected and are not preferred for use in locators as disclosed herein, since they are believed to be much more likely to suffer from unwanted positive readings, when compared to sensors designed to detect other, less common volatile organic compounds, such as the types of ketones generated by decomposing livers. If CO 2 detectors are used, interference from ambient sources of CO 2 are highly likely, since CO 2 is a byproduct of breathing and of any internal combustion engine, and is also a natural component of ambient air.
  • Suitable gas detectors which can detect "ppm" (parts-per-million) levels of each of the three volatile gases preferred herein (methane, ammonia, and ketones of the type generated during decomposition of livers) are commercially available, and are manufactured by several companies. As one example, Crowcon Detection Instruments Ltd. (Oxfordshire, United Kingdom and Milford, Ohio; www.crowcon.com) manufactures all three detectors. These can be installed, as interchangeable modules, in a frame and housing unit which also contains an air conduit and fan device, and a fairly sophisticated microprocessor and display/ alarm system, in a device which is called the "TRIPLE PLUS" system by Crowcon.
  • Display unit 40 can comprise any suitable type of signal-generating display device which can be interpreted by a human operator, and which can indicate absolute or peak concentrations (which will vary, depending on time and location) of a volatile gas of interest.
  • a panel of three digital numerical displays 42 can be provided, as illustrated in Fig. 1, wherein each display indicates the concentration of a certain volatile gas being measured by a corresponding sensor.
  • analog devices can be used, in which a needle moves across a scale in a dial-type device.
  • a row of lights preferably using light-emitting diodes, LED's, which require less electrical power than conventional bulbs
  • the number of LED's or bulbs which are lit at a given moment indicate the strength of the signal.
  • an audible signal (such as a beep, horn, or siren) or similar alarm-type signal, corresponding to each gas being measured, can be generated by means of three alarm devices 44, as shown in Fig. 1.
  • At least one relatively loud audible alarm should be provided, such as by means of loudspeaker 32, to minimize the risk that a human operator might fail to notice an important reading.
  • a single audible alarm which can be activated, in one preferred embodiment, by the VOC sensor
  • it will reliably alert the operator to pay careful attention to any visual displays on the device, in a manner which will lead rapidly to a successful conclusion of the search if indeed the locator has approached the general location of a hidden corpse.
  • an operator hears an audible alarm he can, if appropriate, slow down the speed at which the device is being moved, and take any other suitable precautions.
  • the boat can be slowed down, and the operator can lean over a railing and extend his arms downward, to hold the device closer to the water surface.
  • an operator who is walking and carrying the device can kneel down and hold the device close to the soil, rubble, or other surface material while he sweeps it across the surface area being examined.
  • the volume (loudness), pitch, or other variable trait of one or more audible signals can be used to indicate the strength of a reading (such as the absolute concentration of a gas, or the existence of a peak concentration of a gas).
  • the three gas sensors can be coupled to three different horns or other audible alarms which have different and preferably dissonant pitches. This approach may be preferable, for example, for a person who is steering a small boat or walking across an uneven and potentially dangerous surface while also trying to monitor the signals and outputs of the device.
  • an alarm-type output (such as a loud siren or horn) can be programmed to be emitted in a loud, warbling, intermittently beeping, or otherwise distinct manner if and when a peak gas concentration has been detected.
  • Peak readings are qualitative; a peak reading either does or does not exist, at a specific location. Since absolute concentration levels are highly variable and are heavily affected by weather and other factors during a search, a peak alarm preferably should be qualitative (i.e., on/off) rather than quantitative.
  • processor 30 continuously processes the output (or samples of the output, taken periodically) of each of the three gas sensors 14, 16, and 18.
  • processor 30 Upon detection of a localized peak concentration (i.e., when the output of a sensor begins to decline, after reaching a local maximum), processor 30 asserts a set of one or more alarm signals. In response to the alarm signal(s), loudspeaker 32 emits sound, and the alarm component 44 which corresponds to that specific gas emits a signal such as a blinking light or beeping noise.
  • the processor 30 continues to process the outputs (or samples of the outputs) of sensors 14, 16, and 18, and causes display unit 40 to display continuously or frequently updated indications of the output signal from each of the three gas sensors.
  • the user responds to the audible or visual alarm by reading the sensor output level displays on display unit 40, to determine whether and when the outputs of all three gas sensors 14, 16, and 18 indicate the presence of all three volatile gases that are being measured.
  • the operator interprets the combined results of all three indicators as indicating a high likelihood that a decomposing corpse is located either: (1) directly below the location where the peak readings are highest, or (2) in a location which 0 is roughly below the location where the peak readings are highest, and which is adjusted to accommodate for local factors (underwater currents, breezes or winds in the area, etc.) which would affect the travel path of gaseous bubbles or molecules which are rising through water, mud, rubble, or other material which covers and hides the decaying corpse.
  • the locating device disclosed herein will be used to help recovery workers 5 identify one or more probable and productive locations where they should begin searching for a corpse.
  • a locator carried on a boat on a lake or ocean surface typically will indicate where scuba divers should begin looking for one or more corpses on the lakebed or ocean floor.
  • a locator device used on land typically will indicate where workers (using tools such as shovels and picks, and possibly using heavy equipment such as 0 backhoes, bulldozers, etc.) should begin digging, tunnelling, or carrying out similar operations to uncover a buried corpse.
  • a single sensor performs the function of two or more of sensors 14, 16, and 18.
  • two or more sensors are employed to sense different VOC's or classes of VOCs (rather than a single sensor such as sensor 14 of Fig. 1). For most applications, it is sufficient for each sensor of this device to have 1 ppm ("part per million") resolution; however, even lower o resolutions can be used, if desired.
  • the apparatus of the invention is used with a GPS system (or other positioning system).
  • the user can manually log position data (output from the positioning system) which indicates the position (latitude and longitude) of the inventive chemical sensing apparatus each time that a corpse is located.
  • a locator device which does not contain a GPS-type positioning unit, to determine the precise location of the device when it encounters peak readings indicating a corpse, will be adequate in nearly all situations.
  • GPS devices In boats, GPS devices have become extremely common. Therefore, when a corpse locator is being used on the surface of a lake or ocean, the person who is handling the locator can use vocal communication or hand signals to indicate peak readings to another person who is in a cabin, bridge, or other sheltered location where the GPS device is located. When the person next to the GPS receives a handwave or other signal, he or she simply records the location indicated on the GPS at that moment.
  • a digging or tunnelling operation usually is commenced as soon as the likely location of a corpse is determined, so typically, there is no need to record the coordinates of the location for subsequent use.
  • most land operations are sufficiently close to various landmarks to allow an operator to make descriptive notes, which can subsequently be used to determine a preferred location fo a digging or tunnelling operation.
  • a portable hand-carried GPS system can be easily purchased as a separate unit, and carried alongside a corpse locator device as disclosed herein.
  • the location indicated by the accompanying GPS device can be written down by any trained operator, if and when the signals from a locator indicate that a decomposing corpse is likely to be hidden somewhere below that position.
  • a GSP unit or other position-identifying device can be incorporated into a corpse locator system as disclosed herein.
  • a locator device 70 is illustrated in FIG. 2, which illustrates an electronic GPS subsystem 60 (i.e., a positioning subsystem which is configured to receive and process satellite transmissions and generate therefrom position data which indicates the location of the apparatus).
  • This locator device 70 also includes an electronic memory register 62.
  • the GPS unit 60 and the memory register 62 will each interact with electronic processor 64.
  • Processor 64 will handle the same functions as processor 30, but which will also require additional functions which are necessary for processor 64 to interact with the GPS unit 60 (to determine the positional reading of the GPS unit 60 (preferably at each moment when a control button or switch is actuated by the operator, to record the coordinates of a site) and with the memory register 62 (to cause register 62 to enter, store, and subsequently retrieve positional data generated by the GPS unit 60). All other components shown in Fig. 2 have the same layout and function as the system illustrated in FIG. 1. If desired, a memory register 64 can be provided within the circuitry of processor 64, in a manner analogous to providing cache memory in a computer processor.
  • this invention discloses a portable locating device for locating hidden decomposing corpses, comprising (a) a portable housing; (b) a plurality of chemical sensors mounted in the housing, wherein the sensors, acting together, have been selected to detect at least three volatile gases in ambient air, wherein each of said three volatile gases is generated and released in substantial quantities during bacterial decomposition of human tissue, and wherein each chemical sensor is designed to emit an electronic signal when one of said three volatile gases is detected by one of said chemical sensors; (c) an electronic processor coupled to the housing and capable of receiving electronic signals from the sensors, wherein the processor is configured to generate an output signal set which indicates sensing of all of three volatile gases in ambient air, in a single location; and, (d) at least one output device which emits a signal or combination of signals that can be interpreted by a human operator as indicating decomposition of a corpse in a hidden location positioned below the ambient air being tested; wherein, the plurality of chemical sensors is
  • this invention also discloses a method of searching for complete or partial corpses which are hidden and decomposing.
  • One preferred method uses one or more chemical sensors (preferably but not necessarily housed together in a single housing unit, such as disclosed herein) which, acting together, are capable of detecting, at ppm levels in ambient air, each of three selected volatile gases which are generated and released in substantial quantities during bacterial decomposition of dead tissue.
  • a preferred combination of such gases includes methane, ammonia, and at least one volatile organic compound, such as a ketone which is generated during decomposition of human livers.
  • These chemical sensors are carried or otherwise traversed, while exposed to ambient air, across a region of water or land which is suspected of containing a hidden decomposing corpse.
  • the sensor can be held or mounted on any suitable surface of a boat which moves across the surface of the water.
  • the boat should move at a suitable speed, such as in the range of about 1 knot up to about 20 knots, or faster if conditions permit. Based on field tests conducted to date, is it believed that a boat carryuing this type of locator device preferably should move through the water at a relatively rapid speed, such as at least about 5 to 10 knots, rather than very slowly, during an initial sweep of the area.
  • the boat to cover more area, and it also appears to enhance the ability of gas sensors to accurately detect local peaks in concentrations of a selected volatile gas.
  • simultaneous detection of methane, ammonia, and a selected volatile organic compound indicates that a decomposing corpse is likely to be located below the boat (or in a generally ascertainable direction with respect to the boat, considering relevant wind, current, and other conditions).
  • the device should be positioned upwind of the exhaust pipe(s) of the vehicle, and upwind of any other boats, vehicles, or other chemical emitters operating in the vicinity.
  • a sensor output which indicates an elevated or peak concentration of a volatile gas in one of the sensed categories is continuously monitored while the locator device is being traversed along a search path.
  • the device Upon detecting a peak in that volatile gas, the device will issue an audible and/or visible alarm.
  • the user responds to the alarm by checking whether the other sensor outputs indicate the presence of chemicals in both of the other two chemical categories (e.g., ammonia and methane). If so, the user interprets the alarm as indicating a probable location or vicinity of a decomposing corpse.
  • this invention discloses a method for locating a hidden dead victim of an accident, disaster, or crime, including the steps of (a) monitoring levels of methane, ammonia, and at least one volatile organic compound which is generated and released in a substantial quantity during bacterial decomposition of tissue, in ambient air along a search path, using chemical sensors; and, (b) identifying a surface location which is above and proximate to the location of the hidden dead victim, by sensing all of methane, ammonia, and said at least one volatile organic compound at one location along the search path.
  • one preferre dmethod for carrying out the invention comprises the steps of (i) identifying a location of a localized peak in the concentration of one of the three volatile gases being detected, and (ii) determining that both of the other two gases are present in non-zero concentrations at essentially the same location.
EP99956754A 1998-10-28 1999-10-28 Methode und apparat zur lokalisierung versteckter leichen durch detektion flüchtiger gas-kombinationen Withdrawn EP1095255A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18179398A 1998-10-28 1998-10-28
US181793 1998-10-28
PCT/US1999/025343 WO2000025108A1 (en) 1998-10-28 1999-10-28 Method and apparatus for locating hidden corpses by detecting volatile gas combinations

Publications (1)

Publication Number Publication Date
EP1095255A1 true EP1095255A1 (de) 2001-05-02

Family

ID=22665832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99956754A Withdrawn EP1095255A1 (de) 1998-10-28 1999-10-28 Methode und apparat zur lokalisierung versteckter leichen durch detektion flüchtiger gas-kombinationen

Country Status (4)

Country Link
EP (1) EP1095255A1 (de)
AU (1) AU1329100A (de)
CA (1) CA2347870A1 (de)
WO (1) WO2000025108A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773019B2 (ja) 1999-11-08 2011-09-14 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド 薬物の服薬遵守を監視するためのマーカー検出の方法および器具
US20070167853A1 (en) 2002-01-22 2007-07-19 Melker Richard J System and method for monitoring health using exhaled breath
DE10255705A1 (de) * 2002-11-29 2004-06-17 Robert Bosch Gmbh Verfahren zur Erfassung von Gerüchen
US20050191757A1 (en) * 2004-01-20 2005-09-01 Melker Richard J. Method and apparatus for detecting humans and human remains
US7914460B2 (en) 2006-08-15 2011-03-29 University Of Florida Research Foundation, Inc. Condensate glucose analyzer
US8726719B2 (en) 2010-07-31 2014-05-20 Ut-Battelle, Llc Light-weight analyzer for odor recognition
WO2012165182A1 (ja) * 2011-05-27 2012-12-06 株式会社 エヌ・ティ・ティ・ドコモ 生体ガス検知装置及び生体ガス検知方法
DE102014111364A1 (de) * 2014-08-08 2016-02-11 entera GbR (vertretungsber. Gesellsch. Dr. Michael C. Albrecht, 30167 Hannover) Verfahren zur Bestimmung des Verwesungszustands einer in einer Grabstelle erdbestatteten Person, Verwesungszustandsmesseinrichtung und Computerprogramm dafür
AU2014405050B2 (en) * 2014-08-27 2020-06-25 The Commonwealth Of Australia Methods and systems for chemical vapour sensing
JP6290771B2 (ja) 2014-11-14 2018-03-07 日本特殊陶業株式会社 計測装置
TW202024599A (zh) * 2018-08-20 2020-07-01 耶魯大學 肩部安裝式即時空氣品質量測裝置及空氣品質裝置校準系統
US10935531B2 (en) 2018-10-12 2021-03-02 Hamilton Sundstrand Corporation Integrated sensor packages
AU2020269633A1 (en) * 2019-05-09 2021-11-04 Q.E.D Environmental Systems Limited Portable gas analyzer
USD929539S1 (en) 2019-05-31 2021-08-31 Graco Minnesota Inc. Electrostatic spray gun
USD934383S1 (en) 2019-05-31 2021-10-26 Graco Minnesota Inc. Electrostatic spray gun

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195513A (en) * 1969-06-18 1980-04-01 Franklin Gno Corporation Methods of monitoring the presence or movements of humans
US4410632A (en) * 1979-04-12 1983-10-18 Board Of Trustees Operating Michigan State University Gas sensing apparatus and method
US4600557A (en) * 1983-05-31 1986-07-15 Spitz Werner U System for deodorizing and decontaminating autopsy rooms
US4847783A (en) * 1987-05-27 1989-07-11 Richard Grace Gas sensing instrument
FR2710153B1 (fr) * 1993-09-17 1995-12-01 Alpha Mos Sa Procédés et appareils de détection des substances odorantes et applications.
US5588398A (en) * 1995-05-15 1996-12-31 II Harvey S. Allen Remotely controlled dog muzzle
US5907111A (en) * 1997-04-08 1999-05-25 Lockheed Martin Idaho Technologies Company Remotely controlled sensor apparatus for use in dig-face characterization system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0025108A1 *

Also Published As

Publication number Publication date
AU1329100A (en) 2000-05-15
WO2000025108A1 (en) 2000-05-04
CA2347870A1 (en) 2000-05-04

Similar Documents

Publication Publication Date Title
WO2000025108A1 (en) Method and apparatus for locating hidden corpses by detecting volatile gas combinations
US6532801B1 (en) Portable apparatus and method for tracing a gas leak
USRE42192E1 (en) Volatile organic compound sensor system
Madsen Point intercept and line intercept methods for aquatic plant management
US8466799B2 (en) Apparatus for detecting carbon dioxide concentration in unsaturated zone, and carbon dioxide concentration monitoring method
US8074490B2 (en) Clandestine grave detector
EP2909598B1 (de) Verfahren zur leckerkennung und -ortung in wohngebiete mittels horizontaler analyse
US20120024042A1 (en) Light-Weight Analyzer For Odor Recognition
KR100972024B1 (ko) 초음파발신기가 부착된 수중 이동체의 위치파악 장치
JP2002119951A (ja) 土壌及び地下水浄化の管理システム並びに浄化の管理方法
CA2176065C (en) Aerial pipeline surveillance system
US20140274804A1 (en) Organic molecule sensor for detecting, differentiating, and measuring organic compounds
Drummond On-the-fly calibration of direct reading photoionization detectors
Nutmagul et al. Determination of selected atmospheric aromatic hydrocarbons at remote continental and oceanic locations using photoionization/flame-ionization detection
EP0859931A1 (de) Verfahren und vorrichtung zum auffinden von gas mit infrarot
Maciolek et al. Outfall benthic monitoring report
Hwang et al. ASSESSING HYDROCARBON PRESENCE IN THE WATERS OF PORT AU PORT BAY, NEWFOUNDLAND AND LABRADOR, FOR AUV OIL SPILL DELINEATION TESTS.
GB2391312A (en) Underwater detection of a decomposing life form
Barcelona Sampling frequency for ground-water quality monitoring
TW202117307A (zh) 隧道空間紅外線光譜儀氣體量測方法
EP4105628A1 (de) Verfahren und system zum suchen von lecks in rohrleitungen für den transport von kohlenwasserstoffen oder von kohlenwasserstoffhaltigen substanzen auf der basis sekundärer kosmischer strahlungsmessungen
Nali et al. Clean Sea Platform: Development of a Seabed Environmental Guard E-Pod
Hori et al. Development of a new respirator for organic vapors with a breakthrough detector using a semiconductor gas sensor
Spencer et al. Water-Quality and Water-Level Data for a Freshwater Tidal Wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland, October 1998-September 1999
Chadwick et al. New techniques for evaluating water and contaminant exchange at the groundwater-surface water interface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040501