TW202024599A - 肩部安裝式即時空氣品質量測裝置及空氣品質裝置校準系統 - Google Patents

肩部安裝式即時空氣品質量測裝置及空氣品質裝置校準系統 Download PDF

Info

Publication number
TW202024599A
TW202024599A TW108129713A TW108129713A TW202024599A TW 202024599 A TW202024599 A TW 202024599A TW 108129713 A TW108129713 A TW 108129713A TW 108129713 A TW108129713 A TW 108129713A TW 202024599 A TW202024599 A TW 202024599A
Authority
TW
Taiwan
Prior art keywords
sensor
air quality
gas
air
calibration system
Prior art date
Application number
TW108129713A
Other languages
English (en)
Inventor
德魯 根特納
馥荔子 熊
Original Assignee
耶魯大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 耶魯大學 filed Critical 耶魯大學
Publication of TW202024599A publication Critical patent/TW202024599A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N2001/222Other features
    • G01N2001/2223Other features aerosol sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • G01N2001/2276Personal monitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一種空氣品質量測裝置包括一殼體,該殼體經組配來擱在一使用者之一肩部上。該殼體包括指向該使用者之一呼吸區的一空氣入口,及一空氣出口。該殼體內的一空氣品質感測器及一空氣泵線內連接在該空氣入口與該空氣出口之間。一種用於一空氣品質量測裝置的校準系統包括一氣體感測器、一顆粒物質感測器及校準元件:經組配來校準該顆粒物質感測器的一顆粒物質歸零元件、用以校準該(等)氣體感測器之零位響應的一氣體感測器歸零元件,及用以校準該(等)氣體感測器之濃度響應的一氣體感測器已知濃度元件。

Description

肩部安裝式即時空氣品質量測裝置及空氣品質裝置校準系統
已知低成本空氣污染物裝置在其零位變化、響應因數以及對相對濕度及溫度對於零位或響應因數之影響之敏感性方面很問題。此已導致對其用於研究或監測目的之資料之信賴有所降低,其中常見的校準解決方案為:重複地造訪以使用氣體鋼瓶或其他裝置來現場校準監測器,或週期性地移除裝置以便在實驗室中進行校準/特性分析。此顯著地降低了用於都市或非都市區域中之高時空解析度污染量測之大型分佈式監測器網路的實用性及可行性,此係全球的高優先權研究之主要領域。
此外,對於空氣污染的人員曝露係由存在於呼吸區中的空氣污染物來判定,但自此區域進行量測係困難的,尤其在不太突出的情況下。在許多當前應用中,需要人們穿戴大的且常常較重的背包(從而降低順應性),該等背包含具有通往他們的呼吸區域之管道之量測設備。長的管道線路係成問題的,因為它們可導致小粒子(該等小粒子天然帶電)或反應性污染物在將污染物一直運輸至儀器所必需的短時間內丟失至管道壁。
雖然考慮到低成本污染物量測裝置對於在研究地區中部署大範圍監測器之可能性,該等低成本污染物量測裝置係非常有吸引力的,但其量測通常受到對校準裝置(例如,大型氣體鋼瓶、調節器、零位空氣產生系統、具有催化劑之污染物移除裝置)之需求的限制,該等校準裝置比裝置本身顯著更昂貴且大得多。在大型感測器網路中進行空氣污染物之準確的高時空解析度量測係困難的,因為低成本感測器尤其易於發生漂移、單元至單元可變性,及其校準隨時間推移的其他變化,諸如對相對濕度及溫度之變化之響應。當前修正為:不定期實地造訪以利用鋼瓶或參考單元來現場校準單元,或將多個低成本單元聚集在一起。此等方法在人員時間或成本方面效率低下,且在不頻繁校準的情況下仍然僅產生邊際利益。
曝露於空氣污染與升高的健康風險(諸如心肺發炎響應及氧化應激)相關聯。每年,戶外空氣污染在全世界導致大約330萬過早死亡。公眾健康風險及管制標準之評估需要對空氣污染等級之準確量測。然而,用於空氣污染物量測之傳統分析技術(諸如光譜法、化學發光法及質譜法)為昂貴的,此限制了向稀疏定位的全國及當地空氣品質監測站部署儀器。因此,由當地交通及個別點源引起之都市曝露之時空變化未得到良好地表徵,從而需要利用更密集的環境觀察網路進行都市內監測。
雖然低成本感測器很有可能以更高的時空解析度提供空氣品質資料且補充現有監測站,但是多項研究已報道了由歸因於環境變數及老化的感測器漂移引起之量測偏差。因此,仔細的感測器特性分析、校準及資料處理對於確保量測準確度很重要。
此項技術中所需要的係一種無干擾且不需要使用背包之個人可攜式污染監測裝置,該個人可攜式污染監測裝置允許量測呼吸區中的大範圍重要空氣污染物。亦需要一種可用來校準小型低成本量測裝置之改良的校準系統及方法。本發明滿足此需求。
在一個實施例中,一種空氣品質量測裝置包括:殼體,該殼體經組配來擱在使用者之肩部上,該殼體包括指向該使用者之呼吸區的空氣入口,及空氣出口;空氣品質感測器及空氣泵,該空氣品質感測器及該空氣泵在該殼體內且線內連接在該空氣入口與該空氣出口之間。在一個實施例中,該殼體包含適形的新月形形狀。在一個實施例中,該殼體包含附接機構,該附接機構經組配來附接至服裝之肩部區域或肩帶。在一個實施例中,該肩帶為包帶、背包帶及套帶中之一者。在一個實施例中,該空氣入口朝向在使用者之面部前面的區域且該空氣出口指向在該使用者後面的區域。在一個實施例中,該空氣品質感測器為氣體感測器及顆粒物質感測器中之至少一者。在一個實施例中,該裝置包括至外部電池組及電池板的連接。在一個實施例中,一種空氣品質量測系統包括該裝置以及電池組及電池板單元,該電池組及電池板單元經組配來使用與該殼體分離的附接機構附接至使用者。
在一個實施例中,一種用於空氣品質量測裝置的校準系統包括氣體感測器、顆粒物質感測器及顆粒物質歸零元件,該顆粒物質歸零元件經組配來校準該顆粒物質感測器。在一個實施例中,該系統包括至裝載該氣體感測器的歧管之出口,該出口連接至該顆粒物質歸零元件。在一個實施例中,該系統包括三通閥,該三通閥經組配來在該顆粒物質歸零元件與顆粒物質感測器入口之間切換來自該出口的空氣流。在一個實施例中,該系統進一步包含氣相歸零元件,該氣相歸零元件包含混合的催化劑及/或吸附劑之填充床,該填充床經組配來過濾掉污染物。在一個實施例中,該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨中之至少一者。在一個實施例中,該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨中之至少兩者。在一個實施例中,該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨中之至少三者。在一個實施例中,該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨。在一個實施例中,該氣相歸零元件包含鋼瓶,該鋼瓶包含純淨空氣或具有零位濃度之所量測污染物(及交叉響應污染物)的空氣。
在一個實施例中,該氣相已知濃度校準元件包含鋼瓶,該鋼瓶包含氣體標準。在一個實施例中,該氣相校準元件包含UV產生燈,該UV產生燈經組配來產生恆定濃度之臭氧。在一個實施例中,該系統經組配來提供跨一系列相對濕度及溫度點的已知濃度校準量測。在一個實施例中,該系統經組配來提供跨一系列相對濕度及溫度點的零位校準量測。在一個實施例中,該系統進一步包含水蒸汽滲透裝置,該水蒸汽滲透裝置經組配來維持該歧管內部之大體上恆定的相對濕度。在一個實施例中,該系統經組配來提供對複數個污染物的空氣品質量測。
相關申請案之交互參照
本申請案主張2018年8月20日申請的美國臨時專利申請案第62/719,806號及2018年11月6日申請的美國臨時專利申請案第62/756,373號之優先權,該等美國臨時專利申請案皆以全文引用的方式併入本文中。
應理解,本發明之圖及描述已經簡化以說明對於對本發明之更清楚理解而言為相關的要素,同時,出於清晰之目的,消除見於空氣品質量測裝置及校準系統中的許多其他要素。此項技術中之一般技藝人士可認識到其他要素及/或步驟在實施本發明中係合乎需要及/或必需的。然而,因為此等要素及步驟係此項技術中熟知的,且因為它們不促進對本發明之更好的理解,所以本文中不提供對此等要素及步驟之論述。本文中之揭示內容係針對熟習此項技術者已知的此等要素及方法之所有此等變化及修改。
除非另外定義,否則本文所使用之所有技術及科學術語皆與本發明所屬之技術中之一般技藝人士通常所理解具有相同含義。儘管與本文所描述之方法及材料類似或等效的任何方法及材料可用於本發明之實踐或測試中,但描述了較佳的方法及材料。
如本文所使用,以下術語中之每一者在此部分中具有與其相關聯之含義。
在本發明之一些態樣中,執行本文所提供之指令的軟體可儲存在非暫性電腦可讀媒體上,其中該軟體當在處理器上執行時進行本發明之步驟中之一些或全部。
本發明之態樣係關於在電腦軟體中執行之演算法。儘管某些實施例可被描述為以特定程式設計語言撰寫,或在特定作業系統或計算平台上執行,但是應理解,本發明之系統及方法不限於任何特定計算語言、平台或其組合。執行本文所描述之演算法的軟體可以此項技術中已知的任何程式設計語言撰寫、編譯或解譯,該程式設計語言包括但不限於C、C++、C#、Objective-C、Java、JavaScript、Python、PHP、Perl、Ruby或Visual Basic。應進一步理解,本發明之要素可在任何可接受的計算平台上執行,該計算平台包括但不限於伺服器、雲端實例、工作站、精簡型客戶端、行動裝置、嵌入式微控制器、電視或此項技術中已知之任何其他適合的計算裝置。
本發明之各部分被描述為在計算裝置上運行之軟體。儘管本文所描述之軟體可被揭示為在一個特定計算裝置(例如,專用伺服器或工作站)上操作,但在此項技術中應理解,軟體本質上為可攜式的,且在專用伺服器上運行的大多數軟體亦可出於本發明之目的在大範圍裝置中之任一者上運行,該等裝置包括桌上型或行動裝置、膝上型電腦、平板電腦、智慧電話、手錶、可穿戴電子設備或其他無線數位/蜂巢式電話、電視、雲端實例、嵌入式微控制器、精簡型客戶端裝置或此項技術中已知之任何其他適合的計算裝置。
類似地,本發明之各部分被描述為經由各種無線或有線電腦網路來通訊。出於本發明之目的,單詞「網路」、「網路化」及「網路連接」應被理解為涵蓋有線乙太網路、光纖連接、無線連接(包括各種802.11標準、諸如3G或4G/LTE網路之蜂巢式WAN基礎結構、Bluetooth®、Bluetooth® Low Energy (BLE)或Zigbee®通訊鏈路中之任一者),或一個電子裝置能夠藉以與另一個電子裝置通訊的任何其他方法。在一些實施例中,本發明之網路化部分之要素可經由虛擬私有網路(VPN)實施。
本發明之一些態樣可使用積層製造(AM)過程來製作。其中積層製造之最常見形式為屬於「3D印刷」之範圍的各種技術,包括但不限於立體微影術(SLA)、數位光處理(DLP)、熔融沈積模製(FDM)、選擇性雷射燒結(SLS)、選擇性雷射熔化(SLM)、電子束熔化(EBM)及層疊式物件製造(LOM)。此等方法一次一個層地不同地「建造」零件之三維實體模型,從而在快速原型設計及小批量製造方面提供顯著的效率。AM亦使得製造具有習知消減性製造技術(例如CNC銑削)不能創建的特徵之零件成為可能。
冠詞「一(個/種)」在本文中用於指代一個(種)或一個(種)以上(亦即,至少一個(種))的該冠詞之語法客體。舉例而言,「一要素」意謂一個要素或一個以上的要素。
如本文所使用之「約」在涉及諸如量、持續時間等可量測值時,意欲涵蓋從指定值發生的±20%、±10%、±5%、±1%或±0.1%之變化,因為此等變化係適當的。
範圍:在本發明全篇中,本發明之各種態樣可以範圍形式來呈現。應理解,以範圍形式進行之描述僅僅為了方便及簡明並且不應被視為對於本發明之範疇之不可改變的限制。在適當的情況下,對範圍之描述應被視為已具體揭示所有可能的子範圍以及在該範圍內之個別數值。舉例而言,對諸如1至6之範圍之描述應被視為已具體揭示子範圍,諸如1至3、1至4、1至5、2至4、2至6、3至6等,以及在該範圍內之個別數值,例如1、2、2.7、3、4、5、5.3及6。不論範圍之廣度如何,此皆適用。
現在詳細地參考圖式,其中相同參考數字貫穿若干視圖指示相同零件或要素,在各種實施例中,本文所呈現的係空氣品質量測裝置及校準系統。
此處所描述之肩部安裝式即時空氣品質量測裝置之實施例係自動化的、體積小的、低成本的,且藉由直接自呼吸區量測以得到人員曝露之更好量測來改良對於一或多種污染物的量測之真實性。校準系統之實施例改良量測準確度,且裝置可用來針對低成本量測裝置中之若干主要問題進行校正,該等主要問題包括但不限於:零位濃度儀器回應(亦即「零位」)、校準響應因數,及其對相對濕度及溫度的敏感性。裝置之實施例亦使用其他偵測器上的化學交叉響應(亦即交叉敏感性)來針對比小鋼瓶中所包括之污染物更多的污染物進行校準。因為由校準元件及裝置溫度引起之相對濕度隨環境條件而改變,所以其提供跨一系列相對濕度及溫度點的零位量測,該等零位量測允許使用者判定零位因數以及對相對濕度及壓力的響應因數且校正其量測值。因此,本文所描述之實施例使得能夠更好地量測引起與空氣污染相關聯的許多健康效應之大範圍污染物。
在一些實施例中,本發明之可攜式裝置可包括與其他行動裝置(例如智慧電話或平板電腦)之連繫功能性。至智慧電話或其他可攜式電子裝置之無線通訊鏈路可提供資料登錄與傳輸手段,以及利用存在於可攜式電子裝置中的額外感測器(例如GPS、加速度計、迴轉儀等)來校對所收集資料之方法。
有利地,裝置之實施例能夠利用位於肩部上的污染物量測感測器進行使用者實際上曝露(而非在身體上其他地方或在最近的固定取樣部位處)的污染物之濃度之準確量測。裝置之實施例不需要背包,並且體積小且容易安裝至肩部。有利地,裝置之實施例經組配以使得所有空氣量測及監測元件安置於單個殼體內,該殼體完全安裝於使用者之肩部上。另外,裝置之實施例能夠單獨或以組合方式量測大範圍污染物,包括但不限於顆粒物質(大小包括但不限於PM10 、PM2.5 及PM1 )、臭氧、一氧化碳、二氧化碳、二氧化氮、二氧化硫及一氧化氮。根據本文所描述之實施例之低成本污染物量測裝置相比習知裝置提供了顯著的優點,且可以更低的成本來提供,從而得到增加準確地量測污染之裝置之可獲得性的可能。該等低成本污染物量測裝置亦為更小的、更便攜的,且舒適的,從而為各種實體(包括公民、研究機構、監測OSHA曝露的公司,及政府代理機構)提供改良之有成本效益的工具。
本發明之一些實施例指代污染監測裝置之網路,該等污染監測裝置可包含可攜式多污染物監測器、固定式多污染物監測器或其組合。此等裝置之網路增加了對研究品質資料之存取,該研究品質資料可由行業內的研究者及政策制定者、學術界以及地區、國家及國際代理機構使用——全部具有前所未有的時空及化學解析度之資料,該資料極其強大,以破譯跨化學、空間、時間標度之空氣污染問題之固有複雜性。
本文所描述之污染量測裝置校準系統及架構之實施例允許對小型低成本量測裝置之校準。此等裝置之實施例使得使用者能夠頻繁地(例如,一天或一週多次)在遠端且自動地校準其感測器。該等實施例相對簡單且可與現有微控制器系統(例如Arduino)整合。
現在參考圖1A及圖1B,在一個實施例中,肩部安裝式即時空氣品質量測系統包括見於空氣品質量測裝置中的組件,諸如電池組、處理板及一或多個感測器或微感測器。感測器及泵安裝於肩部裝置10上、靠近使用者之呼吸區(亦即鼻子/嘴巴)。裝置10包括殼體20,該殼體經成形或可調整以直接安裝於肩部上或安裝至另一物件(諸如服裝或肩帶)上。殼體10包括開口30以允許空氣穿過系統,以便偵測空氣品質。空氣入口12、14可定位成靠近使用者之吸入呼吸區域,排氣出口16組配成遠離此區域,例如瞄準使用者之頭部後面。
在一個實施例中,肩部裝置10為包括肩帶(亦即小錢包、背包、皮套或其他肩帶)的現有肩部裝置上之夾子,或其可安裝至肩部套帶式帶子(與「GoPro」可攜式視訊記錄器所使用的帶子類似)。在一個實施例中,監測器附接至使用者穿戴在他們的衣服下之套帶。肩部裝置外部殼體之實體形狀可採取多個形式,如對於此項技術中之一般技藝人士將顯而易見的。在一個實施例中,適形的新月形擱在肩部上且更不顯眼。在其他實施例中,外部殼體採取更明顯的凸起外掛包之形狀。在一些實施例中,代替定位在使用者之一個肩部上之單個小殼體,裝置之組件可跨定位在使用者之任一肩部上之兩個更小的殼體散佈。在一些此等實施例中,兩個殼體可彼此連接,而在其他實施例中該等兩個殼體不彼此連接。
現在參考圖2A及圖2B,展示另一例示性肩部安裝的多污染物監測裝置201。所描繪之肩部裝置包括氣相樣本進氣口202,該氣相樣本進氣口由惰性材料(例如PTFE)製成且含有過濾器,該過濾器亦可由PTFE製成,以便防止PM進入氣相通道且使反應性氣相污染物(例如臭氧)之損失最小化。過濾器亦經組配來收集PM樣本以用於更詳細的離線化學分析。裝置201亦包括電路板203,及用於排氣管道及任何必要的佈線之出口204。空氣入口202將空氣引導至惰性歧管207,該惰性歧管流體連接至一或多個污染物感測器205、206、211及212。在一些實施例中,惰性歧管207具有非常小的內部體積,以便將來自外部空氣之污染物快速輸送至感測器205、206、211及212。外部殼體209在一些實施例中可包括連接點,例如,以容易地附接至肩帶。肩部安裝的監測裝置之實施例可安裝至使用者之背包、小錢包、包、套帶或肩部。在一些實施例中,可藉由積層製造來生產肩部安裝的監測裝置之一些或所有零件。在一個實施例中,藉由3D印刷來生產外部殼體。
裝置可進一步包括小泵210,該小泵流體連接至歧管207且經組配來抽吸空氣穿過歧管207。在一些實施例中,歧管207包括用於一或多個環境感測器(例如相對濕度及/或溫度感測器)之插入點213,該一或多個環境感測器可用來對歸因於環境條件之任何感測器變化進行校正。
在一些實施例中,裝置包括用於PM感測器208之專用入口214。專用入口214可包括遮光罩以保護PM感測器之光學組件免受干擾,同時亦減少歸因於入口中之碰撞的任何PM損失。在一些實施例中,感測器208恰好置放在入口214後面以減少儀器內的損失。PM感測器可包括內部泵及/或排氣通道,該內部泵及/或排氣通道將排氣引導至裝置之後部。在一些實施例中,專用排氣口併入歧管207中。
在一個實施例中,可充電及/或拋棄式電池組及電池板附接至下部帶中之一者(或置放在使用者之現有包中),且所有電源線路及通訊線路可捆束在電纜中且一直延伸至肩部,其中殼體容納裝置之元件之其餘部分,包括但不限於例如定製的可印刷殼體中之感測器、小板及泵。在一些實施例中,電池組及電池板併入肩部安裝的裝置中,從而減輕對副殼體之需求。在一個實施例中,殼體符合肩部的形狀,或替代地包括可調整附件(例如360度球形接頭)。為收集額外資料,可將攝影機安裝至使用者之胸部以獲取可與其空氣品質資料連接的即時影片。收集單元可連接至使用者之智慧電話以登錄資料。
在一個實施例中,經由積層製造來生產本發明之裝置之零件中之一些或全部。可使用此項技術中已知的任何積層製造製造過程,且在一些實施例中,可利用積層製造製造過程以某種方式製造本發明之裝置之零件,以使得該等零件將無法合理地使用習知消減性製造來製造。在一個實施例中,本發明之裝置之所有元件可經組裝至進一步最小化之肩部安裝的裝置中。在一個實施例中,本發明之裝置之所有元件可組裝至不同之適形的或另外在結構上有利的殼體中。涵蓋進一步小型化成可穿戴墜飾或項鍊之大小。
現在參考圖3,展示固定式多污染物監測器301。所描繪之固定式監測器組裝至耐風雨殼體302(例如聚碳酸酯殼體)中。監測器包括小體積氣體鋼瓶303及閥304,以及用於PM量測之入口(305)及用於氣相之入口(306)。PM入口305可電接地,以防止損失帶電粒子,且篩除灰塵,且允許PM自由流動至感測器中。氣相入口306可包括定位在歧管307上游之低剖面PTFE過濾器支架及PTFE過濾器。歧管307係密閉的且流體連接至一或多個感測器308。感測器308電連接至子板,該等子板轉而電連接至主控制板309,該主控制板包括蜂巢式模組或其他通訊電路。在一些實施例中,歧管307由惰性材料製成。固定式監測器可單獨使用或在網路內與如本文所涵蓋之其他固定式監測器及/或可攜式監測器一起使用。在一些實施例中,固定式監測器經組配來量測且收集關於廣泛多種污染物之資料,該等污染物包括但不限於大小解析的顆粒物質、臭氧、NO2 、NO、SO2 、CO、CO2 、CH4 。固定式監測器(如圖3中所示的監測器)可經設計以供使用者在進行最低限度的不頻繁維護之情況下長期固定式使用。
現在參考圖4,展示根據一個實施例之校準系統。系統圖展示了用以對位於「歧管」中的氣體感測器之混合進行校準(歸零及已知濃度檢查)的系統400之實施方案。除了對410中之氣體感測器進行「歸零」的可能性之外,還存在對於顆粒物質感測器436之「歸零」能力。歧管中的進入空氣已預先過濾掉粒子,且利用閥420之開關,可為粒子感測器436提供零流量,由於需要防止粒子污染氣體感測器410,該粒子感測器與其他感測器分離。系統400可包括1-2個非常小的輕型氣體鋼瓶422,該(等)氣體鋼瓶充滿準確濃度的校準氣體(裝置所量測之校準氣體)之混合物。具有純「零位」空氣的另一鋼瓶可用於校準,或可具有混合的催化劑及吸附劑(例如鹼石灰、鹼石綿、活性碳、分子篩、鋼絲絨或其他氧化或還原材料)之填充床(在管材中)430,該填充床可過濾掉所量測之污染物。在一些實施例中,小型UV產生燈(裝載在例如密封的特氟隆(teflon)管系三通中)用來為流動至氣體感測器殼體中之氣體產生恆定濃度之臭氧。在一些實施例中,釋放或產生校準劑(calibrant)氣體的固體材料可用來校準感測器。
系統400可使用此等工具來一天多次、每天或每幾天自動進行校準。其可適用於大範圍污染物量測裝置,並且適用於可穩定地儲存在鋼瓶或類似容器中的任何東西,或亦適用於將由於交叉干擾而對不同化學化合物做出響應(亦即,其中用於第一化合物的偵測器將對標準混合物中所包含之高濃度第二化合物做出響應)的裝置。在圖5中之照片501中展示例示性零位校準系統,其展示了閥及零位捕集器。在圖5之照片502中展示例示性小型校準鋼瓶及調節器。
在一個實施例中,本發明之零位調整元件可與一或多個濕度及溫度感測器一起用來更準確地計算各種感測器之對溫度及濕度的響應因數之變化(常見問題)。在一個實施例中,本發明之量測裝置可在單一天的過程中獲得多個零位量測值,記錄每次量測時的溫度及濕度,以便更準確地表徵本發明之一或多個感測器。在一些實施例中,本發明之量測裝置可使用主動冷卻、加熱、增濕或除濕手段,以便引起溫度及/或濕度之變化且自不同條件下的感測器獲得量測值。在一些實施例中,對某些感測器使用主動增濕,該等感測器需要空氣中的一定量的濕氣以便起作用,其中含有此感測器之量測裝置置放在有時達到零位或近零位相對濕度之位置中。
在一些實施例中,本發明之量測裝置包含用於水的滲透裝置,例如可滲透性材料之薄膜,該滲透裝置經組配來允許水以緩慢速率跨越界面以升高校準氣體之相對濕度。在一些實施例中,本發明之量測裝置可包括移動經過可滲透膜或者一或多個擴散或滲出裝置(包括但不限於縮窄部或針孔)的氣流,該氣流經組配來提供跨小距離之受控速率的氣體轉移。
本發明之量測裝置之某些實施例包括顆粒物質監測通道及單獨的氣相通道,該氣相通道流體連接至氣溶膠通道但包括移除顆粒物質之過濾器。例如,一定量的引入空氣可首先穿過顆粒物質通道,然後穿過移除顆粒之過濾器,從而僅將用於感測之氣體留在氣相通道中。在一些實施例中,來自氣相通道之已過濾空氣可被泵送回至顆粒物質通道中以用作歸零參考。此閉環組態有利地為有效的且使流動體積最小化。
在一些實施例中,本發明之多污染物監測裝置包括用於歧管之非常小的內部體積,該歧管容納感測器且將該等感測器曝露於真空空氣流。某些實施例包括泵,該泵可利用特別設置的埠暫時關閉,該埠逆向沖洗標準,持續時間較短,此係完全沖洗腔室所必需的(例如,4e倍壽命或交換體積)。在一些實施例中,校準系統包括用於產生正在量測之污染物之零位濃度的多床填充管材,該多床填充管材經設計以過濾掉對裝置進行校準所針對的污染物之混合。在一些實施例中,校準系統包括小鋼瓶,該小鋼瓶連接至具有臨界孔口(窄直徑管道)之調節器以利用閥精確地計量流量,其中系統精確地計時打開該閥的持續時間。
參考圖4,在一個實施例中,系統400包括利用最小化內部體積容納感測器之歧管410,該歧管經由顆粒物質過濾器404連接至樣本空氣402。容納感測器之歧管410可具有第一埠406及第二埠408。第二埠408線內連接至流量縮窄裝置414、雙通閥416、壓力調節器418、手動閥420及含有氣體標準的鋼瓶422。第一埠406線內連接至用來產生零位空氣之多床捕集器430及第一三通閥426。在一個方向上,第一三通閥426經由泵412連接至容納感測器之歧管410。在另一方向上,第一三通閥426連接至第二三通閥428。第二三通閥428在一個方向上連接至排氣埠442,且在另一方向上連接至顆粒物質感測器入口434。在本發明之裝置中使用的閥可為此項技術中已知之任何適合的閥,且可經電致動或使用某種其他致動手段。顆粒物質感測器入口434通向顆粒物質感測器436,該顆粒物質感測器然後通向排氣埠440。經由系統入口及出口與樣本空氣的連通係由儀器殼體444中的開口提供。
有利地,系統400組合獨特的特徵以提供準確且有成本效益的結果。容納感測器且將該等感測器曝露於強制空氣流的歧管410係利用小的內部體積實現。泵412可利用特別設置的埠暫時關閉,該埠逆向沖洗標準,持續時間較短。此係完全沖洗腔室所必需的(例如,4e倍壽命)。多床填充管材430產生正在量測之污染物之零位濃度,該多床填充管材經設計來過濾掉校準所針對之污染物之混合。本發明之多床捕集器有利地包括各自由不同材料製成之複數個床,該複數個床各自經組配來移除、吸收或吸收不同的化合物或化合物集合。例如,多床捕集器中之第一床經組配來移除NO,而第二床可經組配來移除CO。第三床可經組配來移除CO2 。不同的床可由各種還原或氧化材料製成。在一些實施例中,可使用各自經組配來按順序進行化學反應的多個床。例如,第一床可經組配來經歷與第一化合物的化學反應,得到第二化合物,而第二床可經組配來隔離、過濾或以其他方式移除第二化合物。可將額外的床添加至鏈,從而允許對所需化合物之更完全吸收。儘管此處包括床之所列組態,但應理解,亦涵蓋床及材料之另外的組合。
小鋼瓶422連接至具有臨界孔口(窄直徑管道)的壓力調節器418以利用閥精確地計量流量,且精確地計時打開閥的持續時間。有利地,系統包括用於氣相感測器410及顆粒物質感測器436兩者的校準方法。校準可包括饋送至行動系統或基於雲端之系統的感測器輸入,該行動系統或基於雲端之系統讀取量測值以便分析系統校準,且將回饋提供至系統以做出調整。可實施利用策略性猜測或機器學習的軟體來判定系統之狀態及效能,且做出或建議任何調整。
可使用任何適合的資料類型或登錄頻率自本文所揭示之監測器登錄資料。在一些實施例中,可以1 Hz、2 Hz、5 Hz或更大的頻率登錄來自一些或所有感測器之資料。在其他實施例中,可以更慢的速率登錄來自一些或所有感測器之資料,例如每分鐘一次、每五分鐘一次、每十分鐘一次,或每十五分鐘一次。
圖6中展示本發明之多污染物監測器之例示性簡化流動及電子設備圖。系統600包括兩個空氣引入路徑:穿過PM過濾器601的第一空氣引入路徑及穿過接地入口608的第二空氣引入路徑,該接地入口具有針對大的(亦即直徑>10 µm)灰塵之粗篩。第一引入路徑穿過含有氣體感測器之低體積歧管602,由泵604向外驅動、穿過排氣口609。第二空氣攝入路徑被驅動穿過PM感測器+泵606、穿過排氣口606。主電路板605電連接至歧管602中的氣體感測器及感測器泵606。主電路板605電連接至蜂巢式通訊模組607,該蜂巢式通訊模組至少用於將所記錄資料傳達回至中央伺服器。固定式多污染物監測器可另外包括校準系統603,該校準系統具有連接至歧管氣體感測器及第二空氣入口路徑608的輸入。
圖7中展示例示性固定式多污染物監測器原型。所描繪之固定式監測器具有用於氣體的專用通道及用於顆粒量測的專用通道。PM入口特別地設計成具有定製的入口及殼體以減少由帶電入口(入口電接地)或粒子碰撞引起之粒子損失。氣體感測器保持在單獨的殼體中,該殼體在定製的低剖面PTFE過濾器支架、PTFE管道及定製的3-D印刷惰性感測器歧管之後,其中感測器配置成大多數反應性氣體係在歧管前方附近量測。系統亦含有在本發明中其他地方描述之零位校準系統。所描繪之例示性監測器包括用於大小解析的顆粒物質(質量及數量濃度量測)以及各種污染物氣體之感測器。外殼可由任何適合的材料製成,且在一些實施例中可包含聚碳酸酯或其他耐風雨或抗風雨的材料。在一些實施例中,外殼為完全或大體上氣密的。
圖8中展示替代性固定式多污染物監測器。圖8之監測器之主要的突出特性為添加了氣體鋼瓶及其輸送系統,以用於在感測器對標準鋼瓶中之化學成分中之任一者沒有響應的情況下檢查監測器之感測器之已知濃度響應或零位響應。圖7之監測器並未使用氣體鋼瓶來進行校準。
圖9中展示又一例示性原型多污染物監測器,圖9包含照片901及902。圖9之監測器具有小的外觀尺寸,且形狀被設定成在每條邊上量測為七吋之正方形且具有5吋之高度。在一些實施例中,可藉由移除校準系統來達成更小的外觀尺寸。
在一些實施例中,本發明之多污染物監測器可包括即時監測介面,例如圖10中所示之介面。圖10中所示之介面或類似介面可經由網路連接(例如,經由自有線或無線網路連接至監測器中的控制器之HTTP或HTTPS連接)來存取。資料可呈現為每種污染物一個圖表,或可將多種污染物組合在單個圖表上。在一些實施例中,介面即時地更新,而在其他實施例中,例如為節省功率,介面可以更低的頻率更新或僅在需要時更新。在一些實施例中,網路連接式即時監測介面亦可包括一或多個遠端控制功能,包括但不限於運行校準常式、啟用或停用特定感測器,或開啟或關閉監測。
在一個實施例中,本發明之校準方法或系統可計算關於正在量測之一或多種污染物的響應因數。例如,感測器信號可響應於不同污染物而以不同速率改變或具有不同曲線形狀。在一個實施例中,在各種不同的溫度及濕度條件下進行使用各種感測器之校準量測,以便產生用於污染量測裝置之感測器之更準確的校準模型。圖11中展示經校準且RH/T校正之資料之實例。本發明之某些實施例可使用來自第二感測器之次要響應來進一步改善感測器校準。例如,在一個實施例中,用於監測第一化合物的第一感測器流體連接至歧管中之用於監測第二化合物的第二感測器。除了對第二化合物之主要響應之外,第二感測器還具有對第一化合物之已知的次要響應。在一些實施例中,來自第二感測器之對第一化合物之計算出的次要響應可用來改善或校準由第一感測器取得之量測值。在一個實例中,第二感測器為CO感測器且第一感測器為NO2 感測器,且第二感測器已知亦對NO2 有響應。
在一些實施例中,PM感測器包括單獨的零位調整系統,該零位調整系統包含泵或閥,該泵或閥經組配來對PM感測器入口通道加壓,從而沖掉可能會影響結果的任何碎屑。 實驗實例
藉由參考以下實驗實例更詳細地描述本發明。僅出於說明目的提供此等實例,並且此等實例不欲具有限制性,除非另外規定。因此,本發明決不應理解為限於以下實例,而是應理解為涵蓋由於本文中提供之教導而變得明顯的任何及所有變化。
無需進一步描述,咸信此項技術中之一般技藝人士可使用先前的描述及以下說明性實例來製造且利用本發明之系統及方法。因此,以下工作實例具體指出本發明之例示性實施例,並且不應理解為以任何方式限制本發明之其餘部分。
將一系列感測器建構於多污染物監測器中以量測一氧化碳(CO)、二氧化氮(NO2 )、一氧化氮(NO)、二氧化硫(SO2 )、二氧化碳(CO2 )、甲烷(CH4 )、臭氧(O3 )及顆粒物質(PM)之濃度,以及溫度及相對濕度,以在現場部署期間針對溫度及相對濕度對感測器響應之影響進行校正。進行對可利用的商業感測器技術之調查,選擇表現最好的感測器來整合至完全定製的電氣及實體系統中。監測器之一個例示性實施例含有NO感測器及其餘七個感測器,而監測器之另一例示性實施例含有SO2 感測器及其餘七個感測器。含有SO2 感測器的監測器可例如在與來自煤燃燒之排放物有關的應用中使用。含有NO感測器的監測器與來自CO、CO2 、NO2 、O3 及PM感測器的量測值一起將提供對交通排放物及相關光化學過程的更多瞭解。併入CH4 感測器以用於涉及甲烷排放物及順應性的未來研究,且CH4 感測器與CO2 感測器一起可用來評估溫室氣體排放物。
選擇來自Alphasense (http://www.alphasense.com)的4電極電化學CO、NO2 、NO及SO2 感測器來用於多污染物監測器。由Alphasense製造的不同型號之電化學感測器已經過測試且對於在都市周圍環境中進行量測已顯示出很好的前景。選擇4電極組態,而捨棄3電極感測器,因為額外的輔助電極(AE)提供背景電極響應且減少溫度、相對濕度(RH)及壓力對感測器信號之影響,其中該輔助電極具有與工作電極(WE)相同的建構但不曝露於分析物。4電極電化學感測器具有兩種形式:A4及B4,兩者皆經設計用於十億分之幾(PPB)等級上的環境監測。根據Alphasense產品說明書,B4系列中的CO、NO2 及NO感測器具有比其A4對應物高80%、35%及50%且與SO2 感測器相當的敏感性。然而,B4感測器為A4感測器之大小的大約四倍。儘管其敏感性更低,但是緊湊的A4系列電化學感測器被選擇用於多污染物監測器以使裝置之總大小最小化。
利用Alphasense NDIR感測器進行CO2 量測,該NDIR感測器具有1 ppm之估計偵測極限。NDIR感測器具有寬頻帶光源,以及以4.26 µm及3.95 µm為中心的兩個帶通濾波器。4.26 µm的濾波器與以4.2 µm為中心的CO2 吸收頻帶一致。3.95 µm的光並未由CO2 吸收,且用作參考,以考慮到由燈老化及電源供應變化引起之可能的光強度漂移。CO2 感測器具有與A4電化學感測器類似的尺寸。
選擇Figaro TGS2600氣體感測器來量測甲烷濃度。製造商之說明書表明,此感測器亦對諸如CO、氫氣(H2 )及揮發性有機化合物(VOC) (包括乙醇及異丁烷)的分析物敏感。來自CO的交叉敏感性可藉由來自機載CO感測器之CO量測值進行校正。可藉由在感測器之頂部上添加一或多個木炭布層以移除VOC來解決VOC效應。藉由在感測器之頂部上添加一個烴布層以吸收且阻擋VOC來移除VOC效應。在連續曝露於實驗室室內空氣VOC一個月之後,在打開的乙醇小瓶置放在感測器前面時,烴布仍然可有效地移除乙醇蒸汽,並且不會觀察到信號變化。
由於其低成本及小大小(5 mm x 7 mm x 1.55 mm),選擇MiCS-2614感測器來用於O3 量測。先前研究發現,MiCS感測器在20 ppb至100 ppb之臭氧濃度範圍內與2B技術臭氧監測器一致,並且MiCS感測器在20 ppb以下量測值過高且在100 ppb以上量測值顯著過低。此處亦可使用Alphasense Ox感測器。
利用由Plantower (http://www.plantower.com)製造之小型PM感測器PMS A003 (35 mm x 38 mm x 11.8 mm)來量測顆粒物質。感測器具有內部雷射且使用散射光來區分大小且對粒子進行計數。裝置報告PM1 、PM2.5 及PM10 之質量密度(精度為1 µg/m3 ),以及針對大於0.3 µm、0.5 µm、1 µm、2.5 µm、5 µm及10 µm的粒子大小之粒子數密度。先前研究表明,在實驗室及周圍環境中測試的此感測器之較早版本PMS 1003及PMS 3003具有PMS感測器與參考儀器之間的在0.7至0.93範圍內之量測相關係數。
用於多污染物監測器之一個實施例的電氣系統經設計成具有個別電路板上的模組化功能。每一感測器具有指定之類比電路,用來供應功率,放大信號,且過濾電子雜訊。將類比信號饋送至機載類比至數位轉換器(ADC),且僅將數位資料自感測器板傳輸至微控制器以避免導線拾取雜訊。
Alphasense電化學感測器由恆電位電路供電,該等恆電位電路具有用於CO、NO2 及SO2 感測器之零偏壓及用於NO感測器之200-mV偏壓。應特別注意匹配用於NO恆電位電路之輸入阻抗以使雜訊最小化。電路放大經設計以針對100 ppb的NO、SO2 、NO2 及10 ppm的CO輸出大約1伏特的類比訊號,但可針對其他環境/條件進行調整。每一板具有一個機載類比至數位轉換器(ADC),且僅自感測器板傳輸數位資料。機載ADC順序地轉換由輔助電極(AE)及工作電極(WE)產生之經放大且過濾的信號。將AE電壓記錄為背景信號,且WE電壓與AE電壓之間的差動信號用作用於校準及量測目的之感測器信號。在一個實施例中,電化學感測器電路板之最終尺寸為24 mm x 36 mm。
利用藉由MEMS(微機電系統)振盪器時控的2 Hz 5V 50%工作循環波形驅動CO2 感測器。CO2 感測器之輸出為來自參考通道及作用中通道之兩個DC偏壓正弦波,且實施後續電路來移除DC偏移且放大正弦信號。應用兩個峰值偵測電路來取樣且保持將由ADC順序地讀取的兩個經放大之正弦波之峰值高度。與經由軟體進行的連續取樣及峰值偵測相比,此設計使用顯著更少的處理資源。
CH4 及O3 感測器以及支援電路置放在單個電路板上以節省空間且適應機械要求。CH4 及O3 感測器藉由在曝露於其對應分析物時改變其電阻來工作。因此,應用具有低溫度係數負載電阻器之分壓器,且藉由經由ADC取樣負載電阻器兩端的電壓來導出感測器電阻。CH4 -O3 板之最終大小為15 mm x 15 mm。
濕度/溫度(RH/T)感測器置放在單獨的小電路板(8 mm x 9 mm)上,使得在存在其他組件的情況下由電路板跡線兩端的電壓降產生之熱不會影響感測器之溫度量測。RH/T感測器及PM感測器皆輸出數位信號,且信號由微控制器直接獲取。
中央控制板經組配來逐步升高或降低輸入電壓,使組件通電或斷電,並且讀取、處理、儲存且傳輸感測器資料。利用Cypress 68插腳PSoC 5lp微控制器達成控制過程,該微控制器經由數位通訊周邊設備(I2 C及UART)與感測器介接。資料獲取頻率設定如下:每160 ms對NO2 、NO、SO2 、CO感測器取樣,其中AE及WE信號各自順序地佔據80 ms。亦每160 ms對CH4 及O3 感測器取樣,且該等CH4 及O3 感測器皆具有僅一個信號通道。順序地針對RH資料或溫度資料每160 ms對RH/T感測器取樣,從而使其實際取樣週期為320 ms。針對作用中通道及參考通道兩者,根據輸入驅動頻率以2 Hz頻率對CO2 感測器取樣。每640 ms對PM感測器取樣,以適應其低資料輸出速率。
將所有獲取之感測器資料寫入至SD卡,且每10.24 s將過去10.24 s內的平均資料經由機載4G蜂巢式模組傳輸至代管在雲端伺服器上之資料庫。ADC轉換及蜂巢式通訊皆涉及在數毫秒至一秒範圍內的顯著等待時間。為達成快速且連續的感測器資料收集而維持同時的蜂巢式資料傳輸,在微控制器軟體內設計任務排程器以追蹤感測器及蜂巢式模組之狀態,且以預設之時間間隔利用諸如讀取、寫入、發送及接收之過程為組件服務。儲存在SD卡及雲端伺服器上之資料串流包括:用於電化學感測器及CO2 感測器的參考信號及差動信號、CH4 及O3 感測器之電阻、相對濕度、溫度、PM1 、PM2.5 、PM10 、針對超過0.3 µm、0.5 µm、1 µm、2.5 µm、5 µm及10 µm的粒子直徑之粒子數密度,加上輸入電源電壓及微控制器晶粒溫度。最後兩個項目為用於檢查正常操作條件的系統參數。除了為感測器服務之外,控制板亦週期性地啟動電磁閥來進行校準及背景量測,且為壓電鼓風機供電以使周圍空氣循環以用於氣體感測器。 儀器設計及測試
用於多污染物監測器的電氣系統經設計成具有個別電路板上的模組化功能。每一感測器具有其指定之電路,用來為感測器供電且產生類比感測器信號,該等類比感測器信號經饋送至機載類比至數位轉換器,且數位信號由微控制器獲取且處理。傳輸數位感測器信號而非類比感測器信號可更好地保護信號完整性以對抗沿著資料導線之雜訊干擾。將微控制器接收到之感測器資料中繼傳遞至蜂巢式模組且傳輸至代管在雲端伺服器上的資料庫以用於線上資料視覺化。
用於實驗目的之整體系統設計遵循圖6中的簡化電子設備及流動圖。用於CO及SO2 及NO2 感測器之電子電路經設計且測試以在0 – 100 ppb、0 – 100 ppb及0 – 10 ppm的動態範圍中量測其對應分析物。所設計之電路板具有與感測器節點(直徑為20 mm)相當的尺寸(24 mm x 36 mm),因此該等板不會在最終裝置之總成中佔據顯著的額外空間。甲烷、臭氧及濕度/溫度感測器全部具有緊湊尺寸。該等感測器置放在兩個單獨的電路板上,並且濕度/溫度感測器係獨立的,因為實驗室及現場測試表明,靠近其他感測器及電路致使溫度量測值偏高。顆粒物質(PM)感測器輸出數位信號,且導線直接焊接至與感測器插座配對的小型連接器。為節省空間,並未對PM感測器應用外部電路。
氣體感測器經校準且測試以判定線性度、動態範圍及偵測極限。敏感性及零位濃度偏移可在感測器間變化,且個別感測器上之校準係確保準確的定量結果所必需的。對於甲烷感測器,其電阻隨甲烷濃度非線性地改變,且利用其當前雜訊等級,其可辨別接近周圍甲烷濃度的0.1 ppm變化。已知甲烷感測器對於乙醇及異丁烷有響應。因此,向感測器添加烴布以過濾掉大氣中的此等有機組分。當甲烷感測器置放在充滿2%乙醇之腔室中時,其信號不會改變,直至烴布被移除。
在本文所涵蓋之多污染物監測器系統之一個實施例中,取樣歧管經設計以支撐氣體感測器且將其感測區域與裝置之其餘部分隔離。歧管係利用WaterShed XC來3D印刷而成,其具有氣密修整層。使用O形環來將感測器密封且緊固至歧管。為使可能的臭氧損失最小化,將臭氧感測器定位成接近於歧管入口。歧管之出口連接至壓電鼓風機。歧管之內部體積為大約9 ml。
使進入歧管之周圍空氣穿過2 µm 47 mm的特氟隆膜,以移除粒子且保持歧管內部清潔。過濾器支架由兩個機械加工之特氟隆部分組成,該等部分經設計成具有用來配合商業KF 40夾具之幾何形狀以便進行壓縮。退出過濾器支架之周圍空氣流過特氟隆襯裡以進入歧管,從而使臭氧向印刷材料的可能損失最小化。
歧管內部的CH4 感測器覆蓋有藉由3D印刷ABS圓筒殼來緊固的木炭布層。此木炭布層經組配來過濾掉對於感測器的VOC干擾。例如,當由木炭布覆蓋時,CH4 感測器不對高達2%的乙醇濃度做出響應。即使在連續曝露於戶外VOC達3個月之後,對乙醇的抵抗力繼續存在。當覆蓋有所使用之木炭布的CH4 感測器直接置放在打開的乙醇小瓶上方時,感測器電阻降低了大約5 kΩ,其等效於0.3 ppm的甲烷。然而,在周圍環境下,不可能遭遇如此高度濃縮之VOC蒸汽。儘管有木炭布之彈性及有效性,但良好的維護實踐要求按季度更換。
入口及出口外殼經設計來用於PM感測器以引導空氣流。具體而言,入口外殼含有3D印刷塑膠支架以支撐感測器及鋁導管,空氣將經由該鋁導管流動至感測器入口中。選擇鋁而捨棄3D印刷塑膠材料作為入口導管,以避免靜電荷在塑膠表面上積累,該等靜電荷可使粒子偏轉。鋁導管之前面覆蓋有置放在其上方1/8’’處的鋁圓盤,其間安裝了32 x 32目不銹鋼金屬絲布以阻擋昆蟲及大灰塵粒子。當PM感測器電力開啟時,周圍空氣將在圓盤周圍流動,穿過金屬絲布,且進入鋁導管及感測器入口。鋁圓盤置放在入口上方以阻擋日光及其他直射光,該日光及其他直射光已顯示會干擾正常操作且致使感測器輸出超過3000 µg/m3 的PM質量濃度。
在本文所涵蓋之多污染物監測器之另一實施例中,氣體感測器安裝於如圖12中所示的歧管中。1201為例示性歧管之3D模型,且1202為根據3D模型1201的其中安裝有感測器之例示性歧管之照片。在圖12之歧管中,空氣藉由安裝在該歧管之末端處的微壓電鼓風機主動地泵送穿過。歧管具有大約10 ml之內部體積,從而將在0.3 SLPM之入口流動速率下的空氣停留時間減少至2 s。此快速交換速率將確保最小樣本損失及對於環境變化的快速感測器響應。過濾器支架安裝在歧管前面以移除PM,且保持歧管清潔。PM感測器具有沿著氣體取樣歧管置放的單獨入口。在圖6中的系統圖中展示感測器及電子設備總成。在市區利用多污染物監測器進行之簡單的路旁測試捕獲由交通引起之升高的CO及PM濃度。系統以0.2 s的頻率收集用於NO2 、SO2 、CO、甲烷、臭氧、濕度、溫度的資料,且以1 s的頻率收集用於PM的資料。微控制器收集10 s的感測器資料且將10 s平均數發送至雲端伺服器。同時,所有原始感測器資料之複本保留在SD卡上。線上平台經佈局來經由PC及智慧電話網頁瀏覽器使資料視覺化,且已經開發指令碼以自伺服器下載該資料以用於進一步分析。 校準及零位系統
為在現場部署期間改良資料品質且為更好地表徵感測器效能,設計且測試了校準及零位系統。
其中已藉由特氟隆膜過濾掉粒子的來自壓電鼓風機之排氣被引導至PM感測器之鋁入口以檢查其基線零位信號。圖13中展示了圖表,該圖表展示PM感測器零位調整過程之效應。如所示,響應於鼓風機清潔入口且將無粒子空氣流提供至感測器,PM2.5 及PM10 等級皆降低至零位。在一個實施例中,可利用來自氣體量測系統之經過濾之排氣沖洗入口。
為獲得各種氣體感測器之零位濃度信號,對一系列洗滌材料進行測試以移除氣相分析物。在一個例示性實施例中,鹼石灰、鋼絲絨及活性碳由於其移除CO2 、O3 及NO2 的功效而被選擇。為獲得NO2 、CO2 及O3 感測器之零位濃度信號,使壓電鼓風機之排氣穿過填充的鹼石灰且經由歧管上靠近入口的側埠將其引導至氣體感測器。穿過填充管材的流動速率為50-400 sccm。在9 ml內部體積的情況下,使歧管內部的空氣重新循環且穿過填充管材以達成有效的分析物移除。
氣體輸送系統經設計來使歧管充滿已知濃度之氣體標準以評估感測器敏感性跨時間的漂移。使用小型氣體鋼瓶(2’’ OD x 5.5’’)。主閥及壓力調節器經調整以在鼓風機關閉的情況下經由壓電鼓風機之排氣埠將30 sccm的標準氣體流輸送至歧管中。相關感測器信號穩定需要大約1分鐘或更少的時間。
將水滲透裝置添加至標準氣體輸送線路以維持歧管內部的濕度且防止感測器乾燥。藉由將特氟隆膜裝配在充滿水的特氟隆管道之末端與接頭套管管材連接器之間來建構水滲透裝置。特氟隆材料薄膜幫助容納水且防止洩漏。水蒸汽可滲透穿過特氟隆膜以增加標準氣體之RH。
將三個3通電磁閥置放在系統中以使取樣情形在正常周圍取樣、PM零位、氣體零位及氣體校準之間交替。 結果
在Baltimore, MD的戶外現場試驗中藉由固定式多污染物監測器收集資料。在Old Town參考量測部位取得量測值,並且至少每10 s自監測器收集資料。圖14中展示所得資料之圖表,包括圖表1401-1404。圖表1401展示在相同時間週期期間隨時間推移的所量測CO濃度(紅色實線)以及區域性EPA參考量測值(虛線)。圖表1402展示在相同時間週期期間隨時間推移的所量測臭氧濃度(紅色實線)以及區域性EPA參考量測值(虛線)。圖表1403展示在相同時間週期期間隨時間推移的所量測NO2 濃度(紅色實線)以及EPA參考量測值(虛線)。最後的圖表1404展示在與圖表1401-1403相同的時間週期內以攝氏度為單位的溫度(紅色)及相對濕度(藍色)。圖11亦含有來自此試驗的資料。
在New Haven, CT的戶外現場試驗中收集額外資料,圖15中的圖表1501-1506中展示該額外資料。以10 s的間隔或更快地收集資料。圖表1501展示隨時間推移的PM10 濃度,圖表1502展示隨時間推移的PM2.5 濃度,且圖表1503展示隨時間推移的PM1 濃度。圖表1504展示隨時間推移的一氧化碳濃度(紅色)及參考量測值(黑色)。圖表1505展示隨時間推移的NO濃度,且圖表1506展示所量測之隨時間推移的臭氧濃度(紅色)及參考量測值(黑色)。
現在參考圖16,展示自緊挨著道路定位的固定式多污染物監測器收集之資料之圖表。資料指示高時間解析度(大約10 s) 煙流,其中多污染物監測器在高排放車輛經過時捕獲升高的CO (紅色)及PM1 (黑色)濃度。
圖17中展示自個人可攜式多污染物監測器收集之例示性資料。當使用者在Manhattan (New York City)到處行進時,隨時間推移用圖表展示資料,其沿著頂部標注有收集該資料之位置。圖表用紅色展示所量測PM1 濃度,且用黑色展示所量測PM2.5 濃度。
圖18中展示來自另一個人可攜式多污染物監測器試驗之例示性資料,圖18包括指示可攜式監測器之使用者在Baltimore, MD選取之路徑的地圖,以及在路徑期間隨時間推移的所量測PM2.5 質量濃度。
現在參考圖19A及圖19B,展示跨多個多污染物監測器之比較資料,從而證明監測器在其量測值上係一致的。五個監測器置放成靠近彼此且在18天的週期內以十分鐘的間隔取得量測值。量測PM1 、PM2.5 及PM10 等級且對結果進行比較。圖19B中展示所得相關係數。跨五個監測器,相關係數在0.94與0.98之間變化。 感測器響應時間
圖20中展示感測器響應時間之圖表,經由使用高取樣流動速率及感測器歧管之最小化內部體積,已減少該感測器回應時間。圖表2001之x軸展示以秒為單位的時間,而y軸展示各種顆粒及氣體污染物之所量測濃度。該圖展示在戶外觀察到的在污染物煙流結束之後的濃度變化。插入圖表2002展示例示性煙流,亦即,釋放至各種感測器正在量測之環境中的氣體之濃度。如所示,取決於感測器,對氣體濃度之下降的響應時間為大約數秒至數十秒。 校準結果
圖21中展示了圖表,該等圖表展示鋼瓶單元內的線上校準系統及特徵之效能。
圖表2101展示2000 ppm的二氧化碳及5 ppm的一氧化碳之氣體標準校準在五次運行內的重複性。x軸展示以秒為單位的時間,而y軸不同地展示相對濕度(黃色)及電化學感測器電壓。利用氣體鋼瓶進行的此等校準亦充當NO及NO2 的零位。圖表2102展示零位捕集器系統分別使用活性碳、鹼石灰及不鏽鋼絲絨來排除NO2 及CO2 的能力。如所預期,CO不對零位捕集器之當前構成做出響應且在此處被展示來證明其濃度在實驗過程中之一致性。應注意,CO2 電壓響應在圖表2101及2012中皆與取樣濃度成反比,且在每一校準週期期間及在每一校準週期之間的NO及NO2 信號變化係由於RH之變化。x軸展示時間,而y軸不同地展示相對濕度(黃色)及電化學感測器電壓。
圖22A中展示在New Haven, CT在兩週內進行的臭氧校準實驗之結果。圖表2201展示所量測臭氧濃度(紅色)及參考感測器(黑色)。圖表2202展示原始感測器信號與2-B Tech參考監測器之比較。圖表2203及2204展示在所觀察的相對濕度及溫度之範圍內對於大於及小於10 ppb之濃度的所揭示多污染物監測器之經校準感測器與參考量測值之比率,其不具有濕度相依性且具有輕微的溫度相依性。在大於10 ppb的濃度下,多污染物監測器之量測值準確得多,並且1分種平均資料之70%落入參考值之±10%內。圖表2205展示對於大於10 ppb之濃度的所量測資料與參考資料之間的差異的概率密度圖。
如圖22B中所示,來自New Haven, CT實驗的路旁NO及O3 資料展示大的NO煙流(圖表2211)。NO之存在藉由O3 至零位(參見圖表2212)之滴定(亦即NO+O3 反應)及CO(燃燒共同污染物)之大的增強兩者得到確認。值得注意的是,所使用的NO感測器對O3 或CO沒有顯著的交叉響應。
本文所引用之每個專利案、專利申請案及公開案之揭示內容由此以全文引用的方式併入本文中。雖然已參照特定實施例來揭示本發明,但是顯而易知本發明之其他實施例及變化可由熟習此項技術者設計而不脫離本發明之真實精神及範圍。
10:肩部裝置 12:空氣入口 14:空氣入口 16:排氣出口 20:殼體 30:開口 201:肩部安裝的多污染物監測裝置 202:氣相樣本進氣口 203:電路板 204:出口 205,206,211,212:污染物感測器 207:惰性歧管 208:PM感測器 209:外部殼體 210:小泵 213:插入點 214:專用入口 301:固定式多污染物監測器 302:耐風雨殼體 303:小體積氣體鋼瓶 304:閥 305:PM入口 306:氣相入口 307:歧管 308:感測器 309:主控制板 400:系統 402:樣本空氣 404:顆粒物質過濾器 406:第一埠 408:第二埠 410:氣體感測器 412:泵 414:流量縮窄裝置 416:雙通閥 418:壓力調節器 420:手動閥 422:氣體鋼瓶 426:第一三通閥 428:第二三通閥 430:填充床 434:顆粒物質感測器入口 436:顆粒質感測器 440:排氣埠 442:排氣埠 444:儀器殼體 501,502,901,902,1202:照片 600:系統 601:PM過濾器 602:氣體感測器 603:校準系統 604:泵 605:主電路板 606:感測器泵 607:蜂巢式通訊模組 608:接地入口 609:排氣裝置 1101,1102:圖表 1201:3D模型 1401~1404,1501~1506,2001,2101,2012,2201~2205,2211,2212:圖表 2002:插入圖表
參考以下描述及附圖,先前目的及特徵以及其他目的及特徵將變得顯而易見,該等圖被包括來提供對本發明之理解且構成說明書之一部分,其中相同數字表示相同要素,且其中: 圖1A為根據一個實施例之肩部安裝式即時空氣品質量測裝置的透視圖; 圖1B為根據一個實施例之肩部安裝式即時空氣品質量測裝置的替代透視圖; 圖2A及圖2B為根據另一實施例之肩部安裝式即時空氣品質量測裝置的視圖; 圖3為根據一個實施例之具有內在校準系統之固定式即時空氣品質量測裝置的視圖; 圖4為根據一個實施例之校準系統的圖; 圖5為根據一個實施例之固定式空氣品質量測裝置的兩張照片; 圖6為根據一個實施例之空氣品質量測裝置的簡化電氣及流動圖; 圖7為根據一個實施例之原型固定式空氣品質量測裝置的照片; 圖8為根據一個實施例之原型固定式空氣品質量測裝置的照片; 圖9為根據一個實施例之原型固定式空氣品質量測裝置的兩張照片; 圖10為根據一個實施例的即時資料追蹤介面; 圖11為展示與經由政府儀器收集之參考資料相比之與空氣品質量測裝置有關的戶外資料的一組圖表; 圖12為與根據一個實施例之多污染物監測裝置一起使用的歧管; 圖13為用於使用PM零位調整通道之PM感測器之零位校準資料的圖表; 圖14為來自多污染物監測裝置之實驗量測資料的圖表; 圖15為來自多污染物監測裝置之實驗量測資料的圖表; 圖16為來自多污染物監測裝置之實驗量測資料的圖表; 圖17為來自可攜式多污染物監測裝置之實驗量測資料的圖表; 圖18為來自可攜式多污染物監測裝置之實驗量測資料的圖表及指示量測值係在何處取得的地圖; 圖19A及圖19B為來自多個共同定位之空氣品質監測裝置之相關資料的圖表; 圖20為來自空氣品質感測器之空氣濃度資料響應時間的圖表; 圖21為來自用於空氣品質量測裝置之校準系統操作之例示性資料的兩個圖表;以及 圖22A及圖22B為用於空氣品質量測裝置之戶外資料及與參考量測值之比較的圖表。
10:肩部裝置
12:空氣入口
14:空氣入口
16:排氣出口
20:殼體
30:開口

Claims (24)

  1. 一種空氣品質量測裝置,其包含: 一殼體,該殼體經組配來擱在一使用者之一肩部上,該殼體包含指向該使用者之一呼吸區的一空氣入口,及一空氣出口; 一空氣品質感測器及一空氣泵,該空氣品質感測器及該空氣泵在該殼體內且線內連接在該空氣入口與該空氣出口之間。
  2. 如請求項1之空氣品質量測裝置,其中該殼體包含一適形的新月形形狀。
  3. 如請求項1之空氣品質量測裝置,其中該殼體包含一附接機構,該附接機構經組配來附接至服裝之一肩部區域或一肩帶。
  4. 如請求項3之空氣品質量測裝置,其中該肩帶為一包帶、一背包帶及一套帶中之一者。
  5. 如請求項1之空氣品質量測裝置,其中該空氣入口朝向在一使用者之面部前面的一區域且該空氣出口指向在該使用者後面的一區域。
  6. 如請求項1之空氣品質量測裝置,其中該空氣品質感測器為一氣體感測器及一顆粒物質感測器中之至少一者。
  7. 如請求項1之空氣品質量測裝置,其進一步包含至一外部電池組及一外部電池板的一連接。
  8. 如請求項1之空氣品質量測裝置,其進一步包含一內含式電池組及一內含式電池板。
  9. 一種空氣品質量測系統,其包含: 如請求項8項之裝置;以及 一電池組及電池板單元,該電池組及電池板單元經組配來使用與該殼體分離的一附接機構附接至一使用者。
  10. 一種用於一空氣品質量測裝置的校準系統,其包含: 一氣體感測器、一顆粒物質感測器,及顆粒物質歸零元件,該顆粒物質歸零元件經組配來校準該顆粒物質感測器。
  11. 如請求項10之校準系統,其中至一歧管之一出口連接至該顆粒物質歸零元件,該歧管裝載該氣體感測器且在一主要入口處過濾掉粒子。
  12. 如請求項11之校準系統,其進一步包含: 一三通閥,該三通閥經組配來在該顆粒物質歸零元件與一顆粒物質感測器入口之間切換來自該出口的空氣流。
  13. 如請求項10之校準系統,其進一步包含一氣相歸零元件,該氣相歸零元件包含混合的催化劑及吸附劑之一填充床,該填充床經組配來過濾掉污染物。
  14. 如請求項13之校準系統,其中該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨中之至少一者。
  15. 如請求項13之校準系統,其中該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨中之至少兩者。
  16. 如請求項13之校準系統,其中該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨中之至少三者。
  17. 如請求項13之校準系統,其中該填充床包含鹼石灰、鹼石綿、活性碳、分子篩及鋼絲絨。
  18. 如請求項13之校準系統,其中該氣相歸零元件包含一鋼瓶,該鋼瓶包含純淨空氣。
  19. 如請求項13之校準系統,其中該氣相歸零元件包含一鋼瓶,該鋼瓶包含一氣體標準,該氣體標準不含有該氣體感測器有響應的任何氣體。
  20. 如請求項13之校準系統,其中該氣相歸零元件包含一UV產生燈,該UV產生燈經組配來產生恆定濃度之臭氧。
  21. 如請求項11之校準系統,其中該系統經組配來提供跨一系列相對濕度及溫度點的零位校準量測。
  22. 如請求項21之校準系統,其進一步包含一水蒸汽滲透裝置,該水蒸汽滲透裝置經組配來在氣體感測器校準期間維持該歧管內部之至少最小的相對濕度。
  23. 如請求項10之校準系統,其中該系統經組配來提供對於複數種污染物的空氣品質量測。
  24. 如請求項10之校準系統,其進一步包含一氣相校準系統,該氣相校準系統包含: 一氣體鋼瓶,該氣體鋼瓶含有一已知氣體混合物;以及 一受控分配系統,該受控分配系統經組配來使該氣體感測器曝露於固定量之該已知氣體混合物; 其中該氣體感測器對直接作為一感興趣之所量測分析物或間接作為一交叉響應氣體之該已知氣體混合物有響應。
TW108129713A 2018-08-20 2019-08-20 肩部安裝式即時空氣品質量測裝置及空氣品質裝置校準系統 TW202024599A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862719806P 2018-08-20 2018-08-20
US62/719,806 2018-08-20
US201862756373P 2018-11-06 2018-11-06
US62/756,373 2018-11-06

Publications (1)

Publication Number Publication Date
TW202024599A true TW202024599A (zh) 2020-07-01

Family

ID=69591488

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129713A TW202024599A (zh) 2018-08-20 2019-08-20 肩部安裝式即時空氣品質量測裝置及空氣品質裝置校準系統

Country Status (5)

Country Link
US (1) US20210239667A1 (zh)
EP (1) EP3841372A4 (zh)
CN (1) CN112703385A (zh)
TW (1) TW202024599A (zh)
WO (1) WO2020041224A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721579B (zh) * 2019-09-27 2021-03-11 研能科技股份有限公司 人工智能物聯網處理空氣品質系統
WO2022234261A1 (en) * 2021-05-05 2022-11-10 Elta Group Limited In-room air quality sensing apparatus, air quality control system, and air quality sensor device
EP4109006A1 (en) * 2021-06-25 2022-12-28 Carrier Corporation Indoor air quality monitor
CN113702434A (zh) * 2021-09-16 2021-11-26 北京软通智慧科技有限公司 一种臭氧传感器基线校准系统及校准方法
WO2023129644A1 (en) * 2021-12-29 2023-07-06 Airanswers, Inc. Use of output of real time sensors to automatically trigger devices
CN114659828B (zh) * 2022-03-18 2022-12-20 河南理工大学 煤矿井下煤层瓦斯含量测定定点保压取样装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2347870A1 (en) * 1998-10-28 2000-05-04 Douglas F. Copp Method and apparatus for locating hidden corpses by detecting volatile gas combinations
US7947503B2 (en) * 2005-06-17 2011-05-24 The United States Of America As Represented By The Department Of Health And Human Services Monitor and methods for characterizing airborne particulates
BR112012021866A2 (pt) * 2010-03-01 2020-07-07 Provtagaren sistema de regulação de fluxo para manter um fluxo de gás estavel, agrupamentos de sistema de regulação de fluxo método para medir um fluxo com o uso de um sistema de regulação de fluxo
GB2479731B (en) * 2010-04-19 2013-05-22 Hany Agaiby Gas analysers and a method of making gas analysers
CN202204805U (zh) * 2011-07-27 2012-04-25 湖北乐派电器有限公司 环境空气质量自动监测系统
GB2505925A (en) * 2012-09-14 2014-03-19 A 1 Envirosciences Ltd Gas detection device with removable flow restrictor
US10006858B2 (en) * 2015-04-22 2018-06-26 TZOA/Clad Innovations Ltd. Portable device for monitoring environmental conditions
CN105699264B (zh) * 2016-03-17 2019-04-26 佛山市南华仪器股份有限公司 滤纸式颗粒物检测的走纸机构和滤纸式颗粒物检测方法
CN205494723U (zh) * 2016-04-05 2016-08-24 新呼吸(厦门)环保科技有限公司 一种空气净化过滤器
CN105757824B (zh) * 2016-05-16 2018-08-31 中国计量大学 衣领式可穿戴智能空气净化器
CN109716128B (zh) * 2016-12-06 2022-05-10 曾宁 一种网络化的环境监测系统、方法和计算机可读存储介质
CN206339465U (zh) * 2016-12-28 2017-07-18 广州铭沁环保科技有限公司 一种双通道空气检测仪
CN206540883U (zh) * 2017-01-16 2017-10-03 清华大学 一种气体传感器评测与校准系统
CN107315069A (zh) * 2017-06-29 2017-11-03 北京竹青世纪科技有限公司 一种零气发生装置及空气质量监测系统
CN207051063U (zh) * 2017-08-28 2018-02-27 济宁职业技术学院 肩背式建筑工地粉尘采样器

Also Published As

Publication number Publication date
EP3841372A1 (en) 2021-06-30
EP3841372A4 (en) 2022-08-03
WO2020041224A1 (en) 2020-02-27
CN112703385A (zh) 2021-04-23
US20210239667A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
TW202024599A (zh) 肩部安裝式即時空氣品質量測裝置及空氣品質裝置校準系統
Piedrahita et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
Chojer et al. Development of low-cost indoor air quality monitoring devices: Recent advancements
Kumar et al. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings
US20170023509A1 (en) Crowdsourced wearable sensor system
Narayana et al. Establishing a sustainable low-cost air quality monitoring setup: A survey of the state-of-the-art
Cai et al. Validation of MicroAeth® as a black carbon monitor for fixed-site measurement and optimization for personal exposure characterization
Buehler et al. Stationary and portable multipollutant monitors for high-spatiotemporal-resolution air quality studies including online calibration
Saad et al. Indoor air quality monitoring system using wireless sensor network (WSN) with web interface
US11474005B2 (en) Sampling device for exposure measurement of particles and gases
JP2016218033A (ja) 複合環境センサー
US20120109583A1 (en) Logistically Enabled Sampling System
Omidvarborna et al. Low-cost air quality sensing towards smart homes
WO2016105555A1 (en) Portable airborne particle counting systems and methods
Hernández-Gordillo et al. Recent advancements in low-cost portable sensors for urban and indoor air quality monitoring
Aashiq et al. An IoT-based handheld environmental and air quality monitoring station
Spinazzè et al. Combined and modular approaches for multicomponent monitoring of indoor air pollutants
CN207424625U (zh) 一种用于环境监测、修复的工程机器人
WO2019154779A1 (en) Ozone and/or nitrogen dioxide sensing apparatus
Hall et al. A portable wireless particulate sensor system for continuous real-time environmental monitoring
Anitha et al. Development of an IoT-enabled air pollution monitoring and air purifier system
Li Recent advances in low-cost particulate matter sensor: calibration and application
CN206410975U (zh) 一种颗粒物检测装置及其系统
EP3745038A1 (en) Device, system and method for monitoring air quality in a closed environment
CN205567843U (zh) 带空气检测装置的衣物