EP1092941B1 - Einrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Lenkgeschosses - Google Patents

Einrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Lenkgeschosses Download PDF

Info

Publication number
EP1092941B1
EP1092941B1 EP00402839A EP00402839A EP1092941B1 EP 1092941 B1 EP1092941 B1 EP 1092941B1 EP 00402839 A EP00402839 A EP 00402839A EP 00402839 A EP00402839 A EP 00402839A EP 1092941 B1 EP1092941 B1 EP 1092941B1
Authority
EP
European Patent Office
Prior art keywords
projectile
fins
trajectory
fuse
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00402839A
Other languages
English (en)
French (fr)
Other versions
EP1092941A1 (de
Inventor
Pascal Thomson-CSF Propriété Intel. Tarayre
Jean-Paul Thomson-CSF Propriété Intel. Labroche
Dominique Thomson-CSF Propriété Intel. Broussoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDA Armements SAS
Original Assignee
TDA Armements SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDA Armements SAS filed Critical TDA Armements SAS
Publication of EP1092941A1 publication Critical patent/EP1092941A1/de
Application granted granted Critical
Publication of EP1092941B1 publication Critical patent/EP1092941B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/22Projectiles of cannelured type
    • F42B10/24Projectiles of cannelured type with inclined grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/02Stabilising arrangements
    • F42B10/14Stabilising arrangements using fins spread or deployed after launch, e.g. after leaving the barrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • the present invention relates to a device for correcting trajectory for gyro-guided guided projectiles.
  • the known path correction systems of projectiles act during the terminal phase of the trajectory.
  • systems with deployable skirts and duck systems There are two types of systems: systems with deployable skirts and duck systems.
  • the first type has a skirt formed of Deployable "petals" to control the trajectory of the projectile by increasing his drag. At an appropriate moment, the rotation of a cam shaft that deploys the petals.
  • the major disadvantage of this type of system is that the correction only affects the errors of scope. Side deviations due to wind or pointing errors are not not corrected.
  • the duck system makes it possible to correct the longitudinal differences and side by creating a force in a fixed plane using fins of ducks arranged on the rocket near and pointed, which are decoupled in roll of the projectile.
  • the relative movement of the duck by compared to the rocket allows to form an electric alternator.
  • This rocket is interchangeable with the projectile.
  • One of the disadvantages of this type known is that the projectile (a shell in this case) equipped with duck becomes incompatible with the firing system existing.
  • the major drawback of duck steering is that it does not allow not to obtain significant load factors since it deports the projectile.
  • the duck significantly reduces the aerodynamic finesse of a projectile, which is very detrimental to the range of a tense shot.
  • a first system consists of two strips of material piezoelectric elements on a rocket near the shell, and acting each on the tension of a small cloth forming a fin.
  • the rocket is interchangeable with the shell and is decoupled in rotation in roll.
  • This system is compatible with the shell loading device in the barrel, and applies in particular to statically unstable shells.
  • a second known system comprises rigid micro-control surfaces placed on the rocket near a shell, and presents the same benefits than the first system.
  • these two known systems not suitable for piloting mortar projectiles stabilized by rotation, as they move in subsonic and transonic flight following a curved trajectory.
  • the efficiency of these micro-control systems is too small to obtain a sufficient load factor for course corrections, because the low load factor leads to the need to detect the target at a distance greater than the detection capabilities of the laser system equipping the proximity rocket.
  • the subject of the present invention is a device for correcting trajectory for projectiles guided and rotated around their axis longitudinal, whether these projectiles are taut or curved, a device significantly improve the correction of precision deviations and accuracy, which is easily adaptable on existing projectiles, and this, without considerably increasing the cost price of these projectiles.
  • the trajectory correction device for guided projectile stabilized in flight by gyroscopic effect by rotation at high speed (for example at least 200 revolutions / second,) around his longitudinal axis, has an empennage arranged at the rear part of the projectile and a duck steering device arranged on the rocket of near this projectile.
  • the device for correcting the trajectory of the invention is set for "gyroscopic" projectiles that is to say stabilized by rotation around their longitudinal axis. These projectiles can be projectiles mortar or artillery shells.
  • the errors of trajectory that we want to correct are precision errors and errors of accuracy.
  • the accuracy refers to random dispersions of impact points inherent to the weapons systems employed, which can not be compensated by a change in the score of these weapons. This error of precision intervenes mainly on range deviations.
  • the accuracy of the shot corresponds to the repetition of the precision error for a certain period of time time, invariable pointing.
  • the errors of accuracy are due to atmospheric disturbances (variations of the wind direction ...) and to pointing errors. These errors can be corrected by a change aiming the shooting weapon. Errors of accuracy translate into longitudinal differences and lateral deviations of the points of impact of projectiles.
  • the type of error correction device mentioned above essentially comprises a navigation control device disposed in the proximity rocket of the projectile, a control device aerodynamic pilot disposed on this rocket and a tail arranged on the base of the projectile.
  • FIGS. 1 to 3 show three embodiments of control surfaces and empennage of the correct course correction device to the invention, for a mortar projectile (FIGS. 1 and 2) and for a shell artillery ( Figure 3).
  • the projectile 1 of FIG. 1 essentially comprises a body 2, a ogive proximity rocket 3 and a base 4 from which the tail exceeds 5.
  • Rocket 3 is only one degree of freedom from the body of the projectile, rotating in roll.
  • An obliquely grooved ring 6 is attached to the front of the base 4. It serves to print the projectile a movement of rotation in roll thanks to corresponding scratches of the mortar barrel.
  • Articulated fins 7, for example four in number, are arranged at the back of the cap 4, and are described in detail below with reference to Figures 4 and 5.
  • FIG. 2 shows another mortar projectile 8, similar to that of Figure 1, but equipped with another correction device according to the invention.
  • the projectile 8 has the same body 2 and the same ring 6 as the projectile 1, and its base 4 'is similar to the base 4, the only difference residing in the fact that the cap 4 'carries at its rear part not articulated fins, but a set 8A fixed micro-fins, for example 32 micro-fins.
  • the "skirt" 9A of the proximity rocket 9 of the projectile 8 covers the anterior part of the body of the projectile to which it is connected by a ball-and-socket device, as shown in FIG.
  • the artillery shell 10 of Figure 3 has at the front of its warhead 11 a rocket of proximity 12 similar or identical to rocket 3, with the same duck system.
  • a rocket of proximity 12 similar or identical to rocket 3, with the same duck system.
  • the projectile is equipped with four fins 7 identical, arranged at 90 ° around the axis of symmetry 16 of the projectile.
  • these fins 7 have an elongation (ratio between their wingspan E and their width L) of 4, their wingspan being 100 mm and their width of 25 mm.
  • These fins 7 have an aerodynamic profile symmetrical adapted to the transonic flight, known profile in itself, to minimize their wave trainee.
  • the cover 17 is ejected, and its fins are deployed by centrifugal effect and are locked at an inclination ensuring an arrow F approximately 15 ° (this arrow F is the angle formed between the leading edge of the fin and the plane P perpendicular to the axis of symmetry 16, and tangent to the edge attacking at its lower part, the leading edge being behind this plane).
  • This arrow F decreases the number of Mach critical to the incidence of operation of the projectile.
  • Each fin 7 is mounted via a device 18 ball-type on a support 19 fixed on a disk 20 common to all fins and which is parallel to the plane P.
  • a locking device 21 of the ball and spring type is mounted cooperating with a suitable notch 21A, formed on the leading edge of the fin, almost at the hinge device 18, to allow the locking of the fin at said inclination ensuring the arrow F.
  • the disc 20 is rotatably mounted about the axis 16 on a self-lubricated ring 22, for example of the "Metapharm" type, resistant to gradients of important temperature.
  • the ring 22 is fixed on a sleeve 23, itself attached to the posterior face of the pellet 4.
  • FIG. 6 is a simplified representation of a portion of the assembly 8A of micro-fins fixed on the base of the projectile 8 of FIG.
  • This set 8A has a ring 24 that is fitted on the part posterior of the pellet 4 '.
  • the outer peripheral surface of the ring 24 is conically shaped, opening towards the front of the projectile.
  • the opening angle A of this conical surface is about 5.7 °.
  • We fix on this conical surface a large number, for example 32, of radial micro-fins, regularly distributed, of which only one, referenced 25, has been shown in FIG. ring 24 and the micro-fins are fixed relative to the projectile.
  • the micro-fins have a shape adapted to subsonic and transonic flight.
  • each micro-fin 25 has, in plan, a shape trapezoidal, with a length L 'of 11 mm and a height H of 9 mm, this which corresponds to an elongation of L / H of approximately 1.2.
  • the arrow F ' (defined in the same way as the arrow F of the Figure 5) is about 15 °.
  • the total span E (measured from the axis of projectile) micro-fins is about 120 mm.
  • FIG. micro-fins Partial and simplified representation of the device 14 of FIG. micro-fins mounted on the posterior portion of the base of the shell 10 and fixed by report to the latter.
  • This device 14 has a large number, for example 32, of micro-fins, of which only one, referenced 26, has been represented.
  • These micro-fins are fixed evenly on a ring 27 whose outer peripheral surface is of conical shape, with an aperture angle A 'of about 7.5 °, for example. They have, like micro-fins 25, a substantially trapezoidal shape, but their great dimension, instead of being directed radially as is the case in FIG. 6, is directed longitudinally.
  • the arrow F "of the leading edge of each micro-fin is approximately 45 °
  • its height H "(height of the opposite side to the leading edge) is about 14 mm
  • the span E "(measured between the axis of symmetry of the shell and the side 26A) is 155 mm.
  • the proximity rocket 28 that can equip the projectiles FIGS. 1 and 3 have been shown in a very simplified manner in FIG. mounted on a bearing 29 centered with respect to the axis of symmetry 30 of the projectile, this bearing being fixed by a screw 31 on the front face of the warhead 32 of the projectile (this warhead is either the warhead 2A of the projectile of FIG. the warhead 11 of the shell of Figure 3).
  • the rocket 28 has a degree of freedom, in rotation around the axis 30.
  • Rocket 28 contains, among other things, a calculator 33 connected to a laser detector 34 and to motors, only one of which, referenced 35, has been represent.
  • the number of these engines is equal to the number of fins duck namely four in the present case. All these engines are, for example, piezoelectric type.
  • the motor 35 controls, via a train gear 36, a "duck" fin 37 and a complementary fin, said "Tab” 38, arranged behind the duck wing.
  • These fins are mobile in rotation in laces and in pitch, the fin 38 being optional.
  • the proximity rocket 9, represented in a very simplified manner in FIG. 9 is that fitted to the projectile of FIG. 2. It is connected to the face front end of the projectile nose 2A by a ball joint 39, the ball joint being centered on the axis of symmetry (and rotation) 40 of the projectile. Because the skirt 9A covers the end of the warhead, the angular movement of the rocket in planes passing through the axis of symmetry 40 is limited. In an example realization, this clearance is ⁇ 20 ° with respect to the central position rocket (the one for which its own axis of symmetry coincides with the axis 40). On the other hand, the rocket can freely roll around the axis 40.
  • the rocket 9 comprises, inter alia, a calculator 41 connected, of a on the one hand, to a laser detector 42, and on the other hand to motors 43, the number is equal to the number of duck wings equipping the rocket, namely four in this case.
  • Each of the motors 43 controls, by through a gear train 44, a duck fin 45, these fins being regularly distributed around the periphery of the rocket.
  • the center of gravity of the rocket may advantageously coincide with the center of the sphere of the patella 39.
  • the rocket of conical shape, has an apex angle of about 24 °, which makes it possible to obtain said deflection of ⁇ 20 °.
  • the focus of each fin duck is conveniently in coincidence with the center of gravity of the rocket.
  • the fins 37 have, in a example of embodiment a span E1 of 10 mm, a rope C1 of 4.5 mm and an arrow F1 of 30 °, which allows the fins to operate at a total impact (ie, the projectile's own impact, plus steering the rocket relative to the axis of the projectile) about 30 °.
  • the piezoelectric motors can be very small example of about 1 cm in diameter).
  • Their gear trains 36 allow to increase the precision of the steering of the rocket and the couple provided by the engines.
  • Tabs 38 are turned in the opposite direction that of the corresponding fins 37, in order to reduce the moment of hinge due to the fins.
  • the tabs 38 have a span (measured as E1) of about 5 to 8 mm and a rope (measured as C1) of about 1 to 1.5 mm. Their distance to the corresponding wing (distance between their edge the leading edge and the trailing edge of the fin) is about 0.5 to 1 mm.
  • the operating principle of the projectile 1 of FIG. breaks down into three phases.
  • the first corresponds to the launch and beginning of the trajectory.
  • the fins 7 are folded and held in position by the protective cover 17.
  • the projectile accelerates in the tube and starts rotating with the stripes of the tube.
  • the projectile and the load carrier 5 are not separated.
  • the stability in flight is ensured by the gyroscopic effect.
  • the load carrier separates from the projectile driving with him the hood of closing.
  • the adettes are driven by friction in rotation. They unfold by centrifugal effect and lock in their position thanks to 21 ball spring system (for example).
  • the projectile During, the second phase the flight, the projectile has a glide-like trajectory with finesse corresponding to the unfolded blade configuration. The winged tail 7 is braked to a stop by the aerodynamic forces.
  • the laser detector 34 identifies the exact position of the goal. The piloting of the projectile begins and continues until the impact of the target. It is possible to treat mobile targets by indicating a future goal at launch. The detector obviously requires a known laser target designation system of the man of the art.
  • Errors in precision and accuracy and variations in initial conditions and atmospheric conditions for a projectile of 120 mm "spinned" (in rotation on itself) are included in a standard deviation equal to 50 m radius. It is estimated that 99% of shots are in a circle with a radius of two standard deviations, that is 100 m for a range of the order of 8 km and a flight time of 40 seconds.
  • the load factor admissible by the projectile makes it possible to correct the trajectory of 100 m on a distance of 530 meters.
  • the detection capacity is of the order of 5 km per clear weather and only 2 km by heavy rain. Therefore, we have much time to perform this course correction.
  • the operating principle of the projectile of Figure 2 is breaks down into two phases: a ballistic phase corresponding to the beginning trajectory, which remains identical to that of the standard projectile, because the drag at zero incidence is identical, and a terminal phase piloted.
  • the performance of this type of projectile can correct the dispersion a mortar projectile over a flight distance of 1200 m. These performance is lower than that of the projectile in Figure 1, but sufficient.
  • the advantage of this projectile lies in the fact that it does not require no changes to the load-carrying tail, and therefore, is a lot less expensive.
  • the operating principle of the projectile of FIG. breaks down into two phases: a ballistic phase corresponding to the beginning of the trajectory, which remains identical to that of the standard projectile and a controlled phase.
  • the performances of this type of projectile make it possible to correct the dispersion of an artillery shell over a distance of 2000 m.
  • the fineness of the projectile being greater than with a projectile, standard, its range can be increased by a glide.
  • the advantage of this type lies in the fact that it does not require modification of the shell artillery, while ensuring good correction capability.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Toys (AREA)
  • Steering Controls (AREA)

Claims (19)

  1. Vorrichtung zur Korrektur der Bahn eines durch Kreiselwirkung mittels Drehung um mindestens etwa 200 Umdrehungen pro Sekunde um seine Längsachse im Flug stabilisierten, gesteuerten Geschosses, mit einem Leitwerk (7, 8A, 14), das im hinteren Bereich des Geschosses angeordnet ist, und mit einer Entenleitwerk-Steuervorrichtung (37, 45), die auf dem Annäherungszünder (3, 9, 12) dieses Geschosses angeordnet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Geschoss ein Mörsergeschoss ist, und dass das Leitwerk angelenkte Flügel (7) aufweist, die bis zum Beginn seiner Bahn zusammengeklappt und dann während des Rests seiner Bahn ausgeklappt sind.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Flügel mit Hilfe einer Haube (17) im zusammengeklappten Zustand gehalten werden.
  4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Flügel von einer Vorrichtung mit Blockierkugel und Feder (21) im ausgeklappten Zustand gehalten werden.
  5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Vorderkante der Flügel eine Pfeilung (F) von etwa 15° aufweist.
  6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Geschoss ein Mörsergeschoss ist, und dass das Leitwerk Mikroflügel (25) aufweist, die an einem Ring (24) befestigt sind, der am Hülsenboden (4') des Geschosses befestigt ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Ring eine kegelförmige Umfangsfläche hat, die sich nach vorne öffnet.
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Vorderkante der Mikroflügel eine Pfeilung (F') von etwa 15° aufweist.
  9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Geschoss eine Artillerie-Granate (10) ist, und dass das Leitwerk Mikroflügel (26) aufweist, die an einem Ring (27) befestigt sind, der auf den Hülsenboden des Geschosses aufgeschoben ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Vorderkante der Mikroflügel eine Pfeilung (F") von etwa 45° aufweist.
  11. Vorrichtung nach einem der Ansprüche 1 bis 5 oder 9 bis 10, dadurch gekennzeichnet, dass der Annäherungs-Zünder (28) über ein Wälzlager (29) an der Stirnseite der Ogive des Geschosses befestigt ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Entenleitwerk-Vorrichtung gleichmäßig auf dem Umfang des Zünders verteilte Flügel (37) aufweist, und dass diese Flügel je von einem im Zünder angeordneten Motor (35) in Gier- und Nickdrehung angetrieben werden.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Entenleitwerk-Vorrichtung durch "Hilfsruder"-Flügel (38) vervollständigt wird, die hinter den Flügeln (37) angeordnet sind und in Gegenrichtung zu diesen letzteren in Drehung angetrieben werden.
  14. Vorrichtung nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass der Motor ein piezoelektrischer Motor ist, und dass er die Flügel mit Hilfe eines Getriebezugs (36) antreibt.
  15. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Annäherungszünder (9) auf ein Kugelgelenk (39) montiert ist, das an der Stirnfläche der Ogive des Geschosses befestigt ist.
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Zünder in seinem hinteren Bereich eine Schürze (9A) aufweist, die das vordere Ende der Ogive bedeckt.
  17. Vorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass die Entenleitwerk-Vorrichtung gleichmäßig auf dem Umfang des Zünders verteilte Flügel (45) aufweist, und dass diese Flügel je von einem im Zünder angeordneten Motor in Gier- und Nickdrehung angetrieben werden.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass der Motor ein piezoelektrischer Motor ist, und dass er den Flügel mit Hilfe eines Getriebezugs (44) antreibt.
  19. Geschoss, dadurch gekennzeichnet, dass es eine Vorrichtung zur Bahnkorrektur nach einem der Ansprüche 1 bis 18 aufweist.
EP00402839A 1999-10-15 2000-10-13 Einrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Lenkgeschosses Expired - Lifetime EP1092941B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9912915 1999-10-15
FR9912915A FR2799833B1 (fr) 1999-10-15 1999-10-15 Dispositif de correction de trajectoire pour projectiles guides gyroscopes

Publications (2)

Publication Number Publication Date
EP1092941A1 EP1092941A1 (de) 2001-04-18
EP1092941B1 true EP1092941B1 (de) 2005-08-10

Family

ID=9551000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00402839A Expired - Lifetime EP1092941B1 (de) 1999-10-15 2000-10-13 Einrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Lenkgeschosses

Country Status (4)

Country Link
EP (1) EP1092941B1 (de)
AT (1) ATE301816T1 (de)
DE (1) DE60021822T2 (de)
FR (1) FR2799833B1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017035126A1 (en) * 2015-08-24 2017-03-02 Leigh Aerosystems Corporation Ground-projectile guidance system
US10280786B2 (en) 2015-10-08 2019-05-07 Leigh Aerosystems Corporation Ground-projectile system
US10295320B2 (en) 2011-05-13 2019-05-21 Gordon L. Harris Ground-projectile guidance system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829593B1 (fr) * 2001-09-07 2003-11-21 Tda Armements Sas Procede de guidage d'un engin, notamment d'une munition
DE102007052938B3 (de) * 2007-11-02 2009-04-16 Jallcom Holdings Ltd. Geschoss mit einen Drall erzeugenden Strömungskanälen
DE102008007435B4 (de) 2008-02-01 2010-04-15 Deutsch Französisches Forschungsinstitut Saint Louis Drallstabilisiertes, lenkbares Geschoss und Verfahren zu seiner Lenkung
SE534614C2 (sv) * 2010-02-25 2011-10-25 Bae Systems Bofors Ab Granat anordnad med utfällbara vingar och styranordning
JP5626768B2 (ja) * 2010-05-28 2014-11-19 株式会社Ihiエアロスペース 飛翔体
DE102015013913A1 (de) * 2015-10-27 2017-04-27 Deutsch Französisches Forschungsinstitut Saint Louis Vollkalibriges, drallstabilisiertes Lenkgeschoss mit einer hohen Reichweite
US11624594B1 (en) 2020-03-31 2023-04-11 Barron Associates, Inc. Device, method and system for extending range and improving tracking precision of mortar rounds
KR102324184B1 (ko) * 2020-06-26 2021-11-09 국방과학연구소 초소형 웨어러블 유도탄 구동장치
DE102022002226A1 (de) 2021-08-21 2023-06-15 Kastriot Merlaku Leucht-System, das ein Stadion beleuchten soll

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439188A (en) * 1964-09-04 1995-08-08 Hughes Missile Systems Company Control system
DE2141744C3 (de) * 1971-08-20 1978-09-14 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Flugkörper mit Schubvektor- und aerodynamischer Steuerung
US4565340A (en) * 1984-08-15 1986-01-21 Ford Aerospace & Communications Corporation Guided projectile flight control fin system
DE8620702U1 (de) * 1986-08-01 1987-01-08 Böhm, Walter, 7000 Stuttgart Weichprojektil
US5505408A (en) * 1993-10-19 1996-04-09 Versatron Corporation Differential yoke-aerofin thrust vector control system
US5775636A (en) * 1996-09-30 1998-07-07 The United States Of America As Represented By The Secretary Of The Army Guided artillery projectile and method
US6126109A (en) * 1997-04-11 2000-10-03 Raytheon Company Unlocking tail fin assembly for guided projectiles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295320B2 (en) 2011-05-13 2019-05-21 Gordon L. Harris Ground-projectile guidance system
WO2017035126A1 (en) * 2015-08-24 2017-03-02 Leigh Aerosystems Corporation Ground-projectile guidance system
US11371814B2 (en) 2015-08-24 2022-06-28 Leigh Aerosystems Corporation Ground-projectile guidance system
US10280786B2 (en) 2015-10-08 2019-05-07 Leigh Aerosystems Corporation Ground-projectile system

Also Published As

Publication number Publication date
FR2799833B1 (fr) 2002-10-25
DE60021822D1 (de) 2005-09-15
EP1092941A1 (de) 2001-04-18
FR2799833A1 (fr) 2001-04-20
DE60021822T2 (de) 2006-06-08
ATE301816T1 (de) 2005-08-15

Similar Documents

Publication Publication Date Title
EP3150957B1 (de) Artillerieprojektil mit einer gesteuerten phase
EP0081421B1 (de) Verfahren zur Endphasenlenkung und dieses Verfahren verwendender Lenkflugkörper
EP1092941B1 (de) Einrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Lenkgeschosses
JP4740125B2 (ja) 奇数の対称的な尾部フィンを有するミサイル
EP0318359B1 (de) Vorrichtung zum Ausspreizen der Leitflügel eines Geschosses
FR2526149A1 (fr) Systeme d'arme et munition de survol
EP0433128B1 (de) Überschallgeschoss mit Lenkung mittels paarweise wirkenden Luftbremsen
FR2864613A1 (fr) Dispositif de deploiement et d'entrainement de gouvernes d'un projectile
FR2657703A1 (fr) Dispositif pour la commande d'attitude en roulis d'un projectile stabilise par empennage.
EP0439392B1 (de) Geschoss und sein Verwendungsverfahren
FR2595809A1 (fr) Dispositif de freinage pour un projectile stabilise par rotation
FR2780774A1 (fr) Dispositif d'autoprotection passive pour engin mobile tel qu'un helicoptere
FR2583868A1 (fr) Sous-munition a tete d'allumage chercheuse.
FR2554577A1 (fr) Systeme de commande pour munition guidee se propageant dans l'air a une vitesse supersonique
EP0316216B1 (de) Einrichtung zur Kreiselstabilisierung eines Geschoss-Steuerorgans
EP2508836B1 (de) Kopf für Zielsuchgerät einer Rakete, und entsprechendes Zielsuchgerät
EP0918205A1 (de) Projektil mit radialer Wirkrichtung
EP0952424B1 (de) Mikroleitwerkeinrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Geschosses
EP0872704B1 (de) Mikroleitwerkeinrichtung zur Veränderung der Flugrichtung eines rotationsstabilisierten Geschosses
FR2523717A1 (fr) Systeme d'arme, notamment antichar
FR2504703A1 (fr) Systeme d'asservissement d'un projectile a une reference axiale pour supprimer l'effet du vent
FR2550329A1 (fr) Missile pour systeme d'arme
FR2916268A1 (fr) Projectile et procede de pilotage associe
FR2736147A1 (fr) Methode d'acquisition d'une cible par un projectile guide et projectile operant selon cette methode
FR2797946A1 (fr) Dispositif de montage d'un appendice rigide sur un engin apte a etre lance depuis le tube, et engin correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011012

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050810

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050810

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60021822

Country of ref document: DE

Date of ref document: 20050915

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051013

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060110

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

26N No opposition filed

Effective date: 20060511

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630

BERE Be: lapsed

Owner name: TDA ARMEMENTS S.A.S.

Effective date: 20051031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131009

Year of fee payment: 14

Ref country code: SE

Payment date: 20131011

Year of fee payment: 14

Ref country code: DE

Payment date: 20131009

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131015

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60021822

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141013

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141013