EP1085941A2 - Combinational method for microgram-scale production and characterization of crystalline and amorphous libraries of materials - Google Patents

Combinational method for microgram-scale production and characterization of crystalline and amorphous libraries of materials

Info

Publication number
EP1085941A2
EP1085941A2 EP99924959A EP99924959A EP1085941A2 EP 1085941 A2 EP1085941 A2 EP 1085941A2 EP 99924959 A EP99924959 A EP 99924959A EP 99924959 A EP99924959 A EP 99924959A EP 1085941 A2 EP1085941 A2 EP 1085941A2
Authority
EP
European Patent Office
Prior art keywords
solids
library
materials
reaction
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99924959A
Other languages
German (de)
French (fr)
Inventor
Wilhelm-Friedrich Maier
Jens Klein
Christian Lehmann
Hans-Werner Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HTE AG HIGH THROUGHPUT EXPERIM
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of EP1085941A2 publication Critical patent/EP1085941A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B80/00Linkers or spacers specially adapted for combinatorial chemistry or libraries, e.g. traceless linkers or safety-catch linkers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/04Pressure vessels, e.g. autoclaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00599Solution-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/0063Other, e.g. van der Waals forces, hydrogen bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/00747Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/00745Inorganic compounds
    • B01J2219/0075Metal based compounds
    • B01J2219/00754Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/08Methods of screening libraries by measuring catalytic activity
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/18Libraries containing only inorganic compounds or inorganic materials
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/08Liquid phase synthesis, i.e. wherein all library building blocks are in liquid phase or in solution during library creation; Particular methods of cleavage from the liquid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the present invention relates to a process for the wet chemical production of material libraries consisting of a large number of solids, the solids being separated from reaction mixtures in microreaction chambers on a base plate which also serves as a library substrate.
  • reaction plates With minimal amounts of material (reaction volumes of 2 ⁇ L or less) can be produced by wet chemistry.
  • the z. B. are introduced in the form of holes in a plate ("reaction plate"), brought a large number of reaction mixtures of different composition to react simultaneously, the solids produced being deposited on the reactor bottom plate underneath. The solids are then freed from the supernatant liquid phase , calcined and then adheres locally to the base plate.
  • the material of the reactor base plate this can simultaneously serve as a library substrate.
  • the solids, or a part thereof in each case can be transferred to this by means of a film provided with an adhesive layer, so that a copied material library with another library substrate is created.
  • the reflective micro-range X-ray diffraction if the base plate consists of X-rays elastically scattering material that causes little scattering. Suitable materials for this are single-crystalline plates, preferably made of Si, Cu, quartz, rutile, anatase, zirconium dioxide, Ge, Al, sapphire, Fe, Ti, Zr, Co, Ni, or Sn, particularly preferably a (711) Si single crystal disk.
  • radiatable materials are suitable, e.g. B.
  • the reactor for generating the material libraries is built up in layers: above the reactor base plate, which can serve as a library substrate, there are at least two reaction plates made of inert material with bores of 0.05 - 20 mm in diameter, which serve as microreaction chambers.
  • the top reaction plate consists of hard material, e.g. B. steel.
  • reaction temperatures of up to approx. 1000 ° C are possible; if Teflon is used for sealing, a maximum of 350 ° C is possible.
  • the reactor can be dimensioned very small with extremely small reactor volumes and meets the highest safety requirements.
  • the reactor can also be easily handled in glove boxes under inert gas and, with appropriate modification, can be charged with reactive gases such as ammonia, chlorine, methane, borane, HCl, hydrogen, oxygen or fluorine, hermetically sealed and thus used to synthesize new materials deploy.
  • reactive gases such as ammonia, chlorine, methane, borane, HCl, hydrogen, oxygen or fluorine, hermetically sealed and thus used to synthesize new materials deploy.
  • An automated examination of all solids in a material library produced in this way is e.g. B. by the phase identification of the individual materials using the commercial GADDS microdiffractometer from Bruker-AXS (M. Schuster, H. Goebel, Appl. Phys. 28 (1995) A270-A275; H. Goebel, PCT Int. Appl WO 9522758 A1) possible.
  • This concept enables direct identification of the substances formed. There is no separate sample preparation for the measurement.
  • the complete library is available for further investigations such as catalytic activity via thermal difference images (Maier, Holzwarth, DE A19757 754.7 from December 23, 1997), luminescence, magnetic resistance and other characterizations.
  • the method relates in particular to the preparation or deposition of crystalline and amorphous solids from the liquid phase, such as solutions, emulsions, suspensions or sols.
  • sol-gel synthesis CJ Brinker, GW Scherrer "Sol-Gel Science, the Physics and Chemistry of the Sol-Gel Process", Academic Press, New York 1990
  • hydrothermal syntheses Kirk- Othmer (3.) 6, 321
  • hydrometallurgy decomposition of preceramic materials to produce hard materials
  • D. Segal Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, New York 1989
  • the inventive method is suitable for. B. for the discovery of new materials in the field of inorganic solids, in particular in the field of mixed oxides, mixed carbides, mixed nitrides and mixed borides. These materials are used in many areas of daily life and industrial production as lead structures for catalysts, light guides, coatings, semiconductors, superconductors, ferromagnetic materials, magnetic resistors, optical materials, hard materials, luminescent and fluorescent materials, sensors, NLO materials, special materials and a lot more.
  • the substance class of crystalline, porous materials such as that of the zeolites or the amorphous porous mixed oxides, mixed carbides or mixed nitrides, is of great interest to industry.
  • Figure 1 shows the construction drawing of the pressure-tight reactor.
  • a cylindrical pressure vessel made of steel (total diameter: 40 mm, inner diameter: 24.5 mm) with a height of 22.7 mm is a silicon single crystal disc with a diameter of 22 mm.
  • a steel plate with Teflon insert is pressed onto this Si single-crystal wafer by 3 screws, the holes of which represent the reaction spaces.
  • Figure 2 shows the grid with the corresponding distances.
  • the various reaction solutions are pipetted into this mask using a robot or by hand (1 to 2 ⁇ L).
  • a further Teflon disc follows as a seal for the reaction, which in turn is pressed on with a thick steel plate using 3 screw connections, so that the entire arrangement is sealed pressure-tight.
  • D2 AI Ti: NEt 4 OH
  • G2 AI Si: NPr 4 OH
  • D3 AI Ti: NEt 4 OH
  • G3 AI Si: NPr 4 OH
  • Table 1 Composition of the material points of the library in Fig. 2.
  • the "mixture” shows the molar ratio of the metal alkoxides used (and thus the oxidic materials in the product being formed) to the template molecule used.
  • A1 and F1 each contain the original approach described above. Holes A1 - G3 (Fig. 2) are filled with 1 to 2 ⁇ L of the batches from Table 1.
  • the reaction takes place in a closed reactor at a temperature of 200 ° C over a period of 36 h.
  • the upper steel and Teflon plate are lifted off, the products in the microreaction chambers are removed from the mother liquor by removing the supernatant liquid using conventional techniques, e.g. porous magnesia stick, separated. Ideally, of course, this is done in one operation using appropriate tools. Following this, the substances are washed several times with 2 ⁇ L dist. Washed water in the same way. The open reactor with the products can then be dried and, if Teflon is used as the reactor plate, calcined to a maximum of 350 ° C., preferably at 130 ° C., which leads to good adhesion of the solids formed to the reactor base.
  • Teflon is used as the reactor plate
  • the resulting material library (original base plate) can be further processed or examined.
  • the material library was annealed in an oven at 600 ° C. for 10 h. If the products are to be analyzed in a vertical arrangement, the adhesion of the samples can be improved by spraying a suitable amorphous lacquer on the library. This can then be evaporated again at elevated temperatures or removed by oxidation.
  • the Si plate was attached to an xyz sample table and then, after entering the grid parameters and storing the points to be measured, measured automatically in reflection.
  • the powder diffractograms were recorded integrally over the entire "spot" area with a 500 ⁇ m collimator.
  • the X-ray beam can be focused to 50 ⁇ m with high X-ray intensity by means of a curved Göbel mirror. Individual particles in the micrometer range are therefore accessible for X-ray analysis. No reflections from the silicon sample carrier are found under the selected measurement conditions .. If a thin film is used as the reactor bottom or if the library is transferred to a thin film which is provided with an adhesive layer, the diffractogram can also be recorded in the transmission mode later evaluation saved and can be identified manually or fully automatically with comparison libraries.
  • the evaluation of the diffractograms showed that the dots with a gray background in Fig. 2 contain crystalline components, while all the dots not highlighted contain amorphous materials.
  • the structure of the crystalline phases was identified by comparing their diffractograms with a diffractogram library.
  • the reaction mixtures for producing the solids in points A1 and F1 correspond to the classic synthesis.
  • Fig. 3 the powder uptake of the conventionally produced zeolite (top) is compared with the diffractograms of points A1 and F1.
  • the figure shows that the same material as in conventional synthesis was generated with microgram quantities from the material library.
  • Figure 1 Special version of the reactor as used in the exemplary embodiment.
  • FIG. 1 Identification of the material library. The composition of the individual sample points are summarized in Table 1.
  • Figure 3 This figure shows an example of the X-ray diffraction diagram of a conventionally produced TS-1 zeolite and below it the X-ray scatter images identical to it, as obtained from the material library at the specified points of total substance amounts in the ⁇ g range, and thus confirms that crystalline inorganic materials such as zeolites can be produced and identified by the specified method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for wet chemical production of a plurality of libraries of materials consisting of solids, whereby the solids are separated from reaction mixtures in microreaction chambers on a base plate serving at the same time as substrate for the library. Depending on the material chosen for the substrate of the library, solids can be subsequently investigated in a non-destructive manner, e.g. by means of reflecting or penetrating microarea X-ray scattering.

Description

Kombinatorisches Verfahren zur Herstellung und Charakterisierung von kristallinen und amorphen Materialbibliotheken im Mikrogramm- Combinatorial process for the production and characterization of crystalline and amorphous material libraries in microgram
Maßstabscale
Die vorliegende Erfindung betrifft ein Verfahren zur naßchemischen Herstellung von aus einer Vielzahl von Feststoffen bestehenden Materialbibliotheken, wobei die Feststoffe aus Reaktionsmischungen in Mikroreaktionskammem auf einer Bodenplatte abgeschieden werden, die zugleich als Bibliothekssubstrat dient.The present invention relates to a process for the wet chemical production of material libraries consisting of a large number of solids, the solids being separated from reaction mixtures in microreaction chambers on a base plate which also serves as a library substrate.
Der größte Engpaß in der Entwicklung neuer Wirkstoffe, Polymere und Materialien ist die Entdeckung geeigneter neuer Leitstrukturen. In Bereichen der organischen, biochemischen und pharmazeutischen Chemie hat sich die Kombinatorik als ein wichtiges Werkzeug zur Entwicklung neuer Verbindungen innerhalb weniger Jahre etabliert (z.B. Special issue: Combinatorial Chemistry, Acc. Chem. Res., 1996, 29; G. Löwe, Chemical Society Reviews, 1995, 24 (5), 309; S. R. Wilson, A. W. Czarnik, Combinatorial Chemistry - Synthesis and Applikation, John Wiley & Sons, 1997). Im Gegensatz dazu sind auf dem Gebiet der anorganischen Festkörpersynthese bzw. Materialforschung oder der technischen Katalysatorentwicklung nur wenige Beispiele bekannt, bei denen die kombinatorische Materialsuche zum Einsatz kommt. Berichtet wurde die Herstellung von Materialbibliotheken durch kombinatorische Synthesen, mit dem Ziel neue supraleitende Materialien (X.-D. Xiang et al. Science, 1995, 268, 1738), neue magnetoresistente Materialien (G. Briceno et al., Science, 1995, 270, 273) und neue lumineszierende Materialien (E. Danielson et al., Science, 1998, 279, 837) zu finden. Allen diesen Verfahren ist gemeinsam, daß die Applikation der Substanzen als dünne Filme über Elektronenstrahlverdampfung oder RF-Sputtern unter reduziertem Druck zur Bildung einer Materialbibliothek führt. Formgebend wirkt dabei eine physikalische Maske, was bereits zu Bibliotheken von bis zu 25000 Materialien geführt hat. Die erste kombinatorische Erzeugung einer Materialbibliothek auf naßchemischen Weg durch Einsatz von Ink-Jet-Technologie führte zur Entwicklung lumineszierender Materialien (D. Sun et al., Adv. Mater. 9, 1046-1049, 1997). Nachteilig ist, daß dieses Verfahren nur bei Normaldruck und niederen Temperaturen eingesetzt werden kann.The greatest bottleneck in the development of new active ingredients, polymers and materials is the discovery of suitable new lead structures. In the fields of organic, biochemical and pharmaceutical chemistry, combinatorics has established itself as an important tool for the development of new compounds within a few years (e.g. Special issue: Combinatorial Chemistry, Acc. Chem. Res., 1996, 29; G. Löwe, Chemical Society Reviews, 1995, 24 (5), 309; SR Wilson, AW Czarnik, Combinatorial Chemistry - Synthesis and Application, John Wiley & Sons, 1997). In contrast, only a few examples are known in the field of inorganic solid-state synthesis or material research or technical catalyst development, in which the combinatorial material search is used. The production of material libraries by combinatorial syntheses has been reported, with the aim of new superconducting materials (X.-D. Xiang et al. Science, 1995, 268, 1738), new magnetoresistant materials (G. Briceno et al., Science, 1995, 270, 273) and new luminescent materials (E. Danielson et al., Science, 1998, 279, 837). All these processes have in common that the application of the substances as thin films via electron beam evaporation or RF sputtering under reduced pressure leads to the formation of a material library. A physical mask has a formative effect, which has already led to libraries of up to 25,000 materials. The first combinatorial generation of a material library using the wet-chemical method using ink-jet technology led to the development of luminescent materials (D. Sun et al., Adv. Mater. 9, 1046-1049, 1997). The disadvantage is that this method can only be used at normal pressure and low temperatures.
Viele der bisher bekannten Materialien, speziell die für die Katalyse wichtigen porösen Stoffe, können ausschließlich naßchemisch, häufig nach dem Hydrothermalverfahren (z.B. M.W. Anderson et al., Angew. Chem., 1995, 107, 1115; D. P. Serrtano et al., Microporous Materials, 4 (1995), 273) hergestellt werden. Die Verfahren unterscheiden sich dabei lediglich durch die gewählten Temperatur- und Druckbereiche, die Variation der stöchiometrischen Verhältnisse der gewählten Vorstufen sowie in der Wahl der Templatmoleküle (L. D. Rollmann, Inorganic Compounds with unusual Properties-Il, 1979, 387). Je nach Probenvolumen und Versuchsführung dauert eine Synthese unter hydrothermalen Bedingungen 2 Stunden bis mehrere Wochen. Hinzu kommen Aufarbeitung und Charakterisierung des Produktes. Wichtigste Analysenmethode ist hier die Pulverdiffraktion zur Aufklärung der Phasenstruktur. Von besonderer Bedeutung für die Anwendung solcher Materialien in Gebieten wie der Katalyse oder der Sensorik ist deren Porenarchitektur, die durch Zugabe von Templatmolekülen in der Hydrothermalsynthese steuerbar ist. Der große Zeitaufwand pro Synthese und die Vielfalt möglicher Mischoxide und Templatmoleküle hat bisher hier jede systematische und erschöpfende Untersuchung dieser Materialklassen unmöglich gemacht. Aufgrund der Vielzahl an Möglichkeiten polynärer Mischungen oxydischer Materialien sowie der generell möglichen Templatmoleküle zur Beeinflussung der Porenarchitektur solcher Stoffe ist eine Übertragung der Methoden der kombinatorischen Chemie auf die Hydrothermalsynthese attraktiv.Many of the previously known materials, especially the porous substances important for catalysis, can only be wet-chemically, often by the hydrothermal method (e.g. MW Anderson et al., Angew. Chem., 1995, 107, 1115; DP Serrtano et al., Microporous Materials , 4 (1995), 273). The methods differ only in the selected temperature and pressure ranges, the variation in the stoichiometric ratios of the selected precursors and in the choice of template molecules (L. D. Rollmann, Inorganic Compounds with unusual Properties-Il, 1979, 387). Depending on the sample volume and the test procedure, a synthesis under hydrothermal conditions takes 2 hours to several weeks. The product is also refurbished and characterized. The most important analytical method here is powder diffraction to clarify the phase structure. Of particular importance for the use of such materials in areas such as catalysis or sensor technology is their pore architecture, which can be controlled by adding template molecules in hydrothermal synthesis. The large amount of time per synthesis and the variety of possible mixed oxides and template molecules has made any systematic and exhaustive investigation of these material classes impossible. Due to the multitude of possibilities of polynary mixtures of oxidic materials as well as the generally possible template molecules for influencing the pore architecture of such substances, it is attractive to transfer the methods of combinatorial chemistry to hydrothermal synthesis.
Über die erstmalige Anwendung kombinatorischer Methoden in der Hydrothermalsynthese berichteten Akporiaye, Karlsson und Wendelbo (D. E. Akporiaye, I. M. Dahl, A. Karlsson, R. Wendelbo, Angew. Chem., 1998, 110, Nr. 5, 629; D. E. Akporiaye, I. M. Dahl, A. Karlsson, R. Wendelbo, zum Patent angemeldet, norwegische Antragsnummer 97.0788). Sie entwickelten einen Autoklaven, mit dem gleichzeitig 100 Hydrothermalsynthesen (Reaktionsvolumina von je 500 mL) bei Temperaturen bis zu 200°C durchgeführt werden können. Nachteilig ist, daß dieses Verfahren keine Materialbibliothek erzeugt, sondern die entstandenen Feststoffe müssen den einzelnen Minireaktoren entnommen und einzeln standardmäßig charakterisiert werden. Diese Handhabung der Proben nach der Synthese erweist sich als sehr umständlich und limitiert entscheidend die Stärke dieses kombinatorischen Ansatzes.Akporiaye, Karlsson and Wendelbo (DE Akporiaye, IM Dahl, A. Karlsson, R. Wendelbo, Angew. Chem., 1998, 110, No. 5, 629; DE Akporiaye, IM Dahl) reported on the first use of combinatorial methods in hydrothermal synthesis , A. Karlsson, R. Wendelbo, patent pending, Norwegian application number 97.0788). They developed an autoclave with which 100 hydrothermal syntheses (reaction volumes of 500 mL each) can be carried out at temperatures up to 200 ° C. The disadvantage is that this process does not generate a material library, but the resulting solids must be removed from the individual mini-reactors and individually characterized by default. This handling of the samples after synthesis proves to be very cumbersome and crucially limits the strength of this combinatorial approach.
Wir haben nun gefunden, daß sich Materialbibliotheken mit minimalsten Materialmengen (Reaktionsvolumina von 2 μL oder weniger) auf naßchemischem Wege herstellen lassen. Hierzu werden in Mikroreaktionskammem die z. B. in Form von Bohrungen in eine Platte („Reaktionsplatte") eingebracht sind, eine Vielzahl von Reaktionsmischungen unterschiedlicher Zusammensetzung gleichzeitig zur Reaktion gebracht, wobei sich die erzeugten Feststoffe auf der darunter befindlichen Reaktorbodenplatte abscheiden. Anschließend werden die Feststoffe von der überstehenden flüssigen Phase befreit, kalziniert und haften dann örtlich separiert auf der Bodenplatte. Durch geeignete Wahl des Materials der Reaktorbodenplatte kann diese gleichzeitig als Bibliothekssubstrat dienen. Alternativ können die Feststoffe, oder jeweils ein Teil davon mittels einer mit einer Klebeschicht versehenen Folie auf diese übertragen werden, so daß eine kopierte Materialbibliothek mit anderem Bibliothekssubstrat entsteht.We have now found that material libraries with minimal amounts of material (reaction volumes of 2 μL or less) can be produced by wet chemistry. For this purpose, the z. B. are introduced in the form of holes in a plate ("reaction plate"), brought a large number of reaction mixtures of different composition to react simultaneously, the solids produced being deposited on the reactor bottom plate underneath. The solids are then freed from the supernatant liquid phase , calcined and then adheres locally to the base plate. By suitable choice of the material of the reactor base plate, this can simultaneously serve as a library substrate. Alternatively, the solids, or a part thereof in each case, can be transferred to this by means of a film provided with an adhesive layer, so that a copied material library with another library substrate is created.
Je nach Wahl des Materials der Reaktorbodenplatte bzw. der Folie können unterschiedliche Analysenverfahren zur Charakterisierung der Feststoffe eingesetzt werden, so z. B. die reflektierende Mikrobereichs-Röntgenbeugung, wenn die Bodenplatte aus Röntgenstrahlen elastisch streuendem Material besteht, das wenig Streuuntergrund verursacht. Geeignete Materialien hierfür sind einkristalline Platten, vorzugsweise aus Si, Cu, Quarz, Rutil, Anatas, Zirkondioxid, Ge, AI, Saphir, Fe, Ti, Zr, Co, Ni, oder Sn, besonders bevorzugt eine (711) Si-Einkristallscheibe. Für eine Untersuchung mit durchdringender Mikrobereichs-Röntgenbeugung eignen sich durchstrahlbare Materialien, z. B. Kapton, Kevlar, Teflon, Mylar, PVC, Polyethylen, Polypropylen, Polycarbonat, AI, Be oder Mg in Schichtdicken < 100 μm, bevorzugt < 10 μm. Der Reaktor zur Erzeugung der Materialbibliotheken ist schichtweise aufgebaut: Über der Reaktorbodenplatte, die als Bibliothekssubstrat dienen kann, befinden sich mindestens zwei Reaktionsplatten aus inertem Material mit Bohrungen von 0,05 - 20 mm Durchmesser, die als Mikroreaktionskammem dienen. Die oberste Reaktionsplatte besteht aus Hartmaterial, z. B. Stahl. Darüber befindet sich eine Abdichtungsschicht ohne Bohrungen, z. B. aus Teflon, darüber nochmals eine Schicht aus Hartmaterial, mit der über geeignete Vorrichtungen die Reaktorschichten zusammengepreßt und abgedichtet werden. Bei geeigneter Wahl der eingesetzten Materialien sind Reaktionstemperaturen bis ca. 1000 °C möglich; wird Teflon zur Abdichtung verwendet, sind maximal 350 °C möglich.Depending on the choice of the material of the reactor base plate or the film, different analytical methods can be used to characterize the solids. B. the reflective micro-range X-ray diffraction, if the base plate consists of X-rays elastically scattering material that causes little scattering. Suitable materials for this are single-crystalline plates, preferably made of Si, Cu, quartz, rutile, anatase, zirconium dioxide, Ge, Al, sapphire, Fe, Ti, Zr, Co, Ni, or Sn, particularly preferably a (711) Si single crystal disk. For an examination with penetrating micro-range X-ray diffraction, radiatable materials are suitable, e.g. B. Kapton, Kevlar, Teflon, Mylar, PVC, polyethylene, polypropylene, polycarbonate, Al, Be or Mg in layer thicknesses <100 microns, preferably <10 microns. The reactor for generating the material libraries is built up in layers: above the reactor base plate, which can serve as a library substrate, there are at least two reaction plates made of inert material with bores of 0.05 - 20 mm in diameter, which serve as microreaction chambers. The top reaction plate consists of hard material, e.g. B. steel. There is a sealing layer without holes, e.g. B. made of Teflon, over it again a layer of hard material with which the reactor layers are compressed and sealed using suitable devices. With a suitable choice of the materials used, reaction temperatures of up to approx. 1000 ° C are possible; if Teflon is used for sealing, a maximum of 350 ° C is possible.
Der Reaktor kann sehr klein dimensioniert werden mit extrem kleinen Reaktorvolumina und entspricht den höchsten Sicherheitsanforderungen. Die sinnvolle und praktikable Miniaturisierung der Materialbibliothek wird derzeit lediglich zum einen durch die Fokussierbarkeit des Röntgenstrahls bei der Messung der Röntgenbeugung und zum anderen durch die Dimensionierung der Flüssigdosierung limitiert. Während mit einem kleinsten Röntgenstrahl- durchmesser von 50 μm bereits 10 Proben pro mm analysiert werden könnten (= 10.000 Proben / cm2), sind bei einer dosierbaren Probenmenge von 0,5 μL nur 5 Proben pro mm bei einer Mikroreaktorhöhe von 10 mm realisierbar (= 2.500 Proben/cm2 = 2.500.000 Proben /dm2).The reactor can be dimensioned very small with extremely small reactor volumes and meets the highest safety requirements. The sensible and practicable miniaturization of the material library is currently limited on the one hand by the focusability of the X-ray beam when measuring the X-ray diffraction and on the other hand by the dimensioning of the liquid dosage. While 10 samples per mm could already be analyzed with a smallest x-ray diameter of 50 μm (= 10,000 samples / cm 2 ), only 5 samples per mm with a microreactor height of 10 mm can be realized with a dose quantity of 0.5 μL ( = 2,500 samples / cm 2 = 2,500,000 samples / dm 2 ).
Durch die Anwendung der kombinatorischen Techniken auf Syntheseoptimierungen, systematische Variationen der Zusammensetzungen und Herstellungsbedingungen lassen sich Feststoffsynthesen schnell optimieren und die Entdeckung neuer Feststoffe drastisch beschleunigen. Damit kann die Materialentwicklung im normalen Labor ohne zusätzliche Sicherheitsmaßnahmen kostengünstig durchgeführt werden. Der Reaktor läßt sich aufgrund der geringen Dimensionen auch problemlos in Handschuhboxen unter Inertgas handhaben und bei entsprechender Modifizierung mit Reaktivgasen wie Ammoniak, Chlor, Methan, Boran, HCI, Wasserstoff, Sauerstoff oder Fluor beschicken, hermetisch verschließen und so zur Synthese neuer Materialien einsetzen.By applying combinatorial techniques to synthesis optimization, systematic variations in composition and manufacturing conditions, solid synthesis can be quickly optimized and the discovery of new solids can be drastically accelerated. This allows material development in the normal laboratory to be carried out cost-effectively without additional safety measures. Due to its small dimensions, the reactor can also be easily handled in glove boxes under inert gas and, with appropriate modification, can be charged with reactive gases such as ammonia, chlorine, methane, borane, HCl, hydrogen, oxygen or fluorine, hermetically sealed and thus used to synthesize new materials deploy.
Eine automatisierte Untersuchung aller Feststoffe einer so hergestellten Materialbibliothek ist z. B. durch die Phasenidentifikation der einzelnen Materialien mit Hilfe des kommerziellen GADDS-Mikrodiffraktometers der Fa. Bruker-AXS (M. Schuster, H. Goebel, Appl. Phys. 28 (1995) A270-A275; H. Goebel, PCT Int. Appl. WO 9522758 A1 ) möglich. Durch dieses Konzept wird die direkte Identifizierung der gebildeten Substanzen ermöglicht. Eine gesonderte Probenpräparation für die Messung entfällt. Neben der Phasenidentifikation durch die zerstörungsfreie Mikrobereichsröntgenbeugung steht die komplette Bibliothek für weitere Untersuchungen wie katalytische Aktivität über Wärmdifferenzbilder (Maier, Holzwarth, DE A19757 754.7 vom 23.12.97), Lumineszenz, Magnetwiderstand und andere Charakterisierungen zur Verfügung.An automated examination of all solids in a material library produced in this way is e.g. B. by the phase identification of the individual materials using the commercial GADDS microdiffractometer from Bruker-AXS (M. Schuster, H. Goebel, Appl. Phys. 28 (1995) A270-A275; H. Goebel, PCT Int. Appl WO 9522758 A1) possible. This concept enables direct identification of the substances formed. There is no separate sample preparation for the measurement. In addition to the phase identification through the non-destructive micro-area X-ray diffraction, the complete library is available for further investigations such as catalytic activity via thermal difference images (Maier, Holzwarth, DE A19757 754.7 from December 23, 1997), luminescence, magnetic resistance and other characterizations.
Das Verfahren bezieht sich im besonderen auf die Darstellung oder Abscheidung von kristallinen und amorphen Feststoffen aus der flüssigen Phase wie Lösungen, Emulsionen, Suspensionen oder Solen. Geeignet sind vor allem die Bereiche der Sol-Gel-Synthese (C.J. Brinker, G.W. Scherrer "Sol-Gel-Science, the Physics and Chemistry of the Sol-Gel-Process", Academic Press, New York 1990), Hydrothermalsynthesen (Kirk-Othmer (3.) 6, 321), Hydrometallurgie, Zersetzung von präkeramischen Stoffen zur Erzeugung von Hartstoffen (D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, New York 1989) und Polymerisationen.The method relates in particular to the preparation or deposition of crystalline and amorphous solids from the liquid phase, such as solutions, emulsions, suspensions or sols. The areas of sol-gel synthesis (CJ Brinker, GW Scherrer "Sol-Gel Science, the Physics and Chemistry of the Sol-Gel Process", Academic Press, New York 1990), hydrothermal syntheses (Kirk- Othmer (3.) 6, 321), hydrometallurgy, decomposition of preceramic materials to produce hard materials (D. Segal, Chemical Synthesis of Advanced Ceramic Materials, Cambridge University Press, New York 1989) and polymerizations.
Das erfindungsgemäße Verfahren eignet sich z. B. zur Entdeckung neuer Materialien auf dem Gebiet der anorganischen Feststoffe, insbesondere auf dem Gebiet der Mischoxide, Mischcarbide, Mischnitride und Mischboride. Diese Stoffe finden Anwendung auf vielen Gebieten des tägliche Lebens und der industriellen Produktion als Leitstrukturen für Katalysatoren, Lichtleiter, Beschichtungen, Halbleiter, Supraleiter, ferromagnetische Stoffe, magnetische Widerstände, optische Materialien, Hartstoffe, lumineszierende und fluoreszierende Materialien, Sensoren, NLO-Materialien, Spezialwerkstoffe und vieles mehr. Insbesondere ist die Substanzklasse kristalliner, poröser Materialien, wie die der Zeolithe oder der amorphen porösen Mischoxide, Mischcarbide oder Mischnitride, von großem Interesse für die Industrie. Sie werden als Katalysatoren zur Ölraffination in der Petrochemie ebenso wie zu Herstellung von Pharmaka, Fein- und Großchemikalen technisch eingesetzt. Eine breite Vielfalt von Oxidationsreaktionen wird von ihnen katalysiert: aromatische Hydroxy- lierung, Olefin-Epoxidation, Keton-Ammoximation, Alkoholoxidation und Alkanoxyfunktionalisierung, um nur einige Beispiele zu nennen. Ähnlich vielversprechend sind die stabilen amorphen Mischoxide, deren Eigenschaften gleichermaßen bedeutend sind wie die der kristallinen Stoffe, deren Herstellung aber meist einfacher ist als die der kristallinen wohldefinierten Materialien.The inventive method is suitable for. B. for the discovery of new materials in the field of inorganic solids, in particular in the field of mixed oxides, mixed carbides, mixed nitrides and mixed borides. These materials are used in many areas of daily life and industrial production as lead structures for catalysts, light guides, coatings, semiconductors, superconductors, ferromagnetic materials, magnetic resistors, optical materials, hard materials, luminescent and fluorescent materials, sensors, NLO materials, special materials and a lot more. In particular, the substance class of crystalline, porous materials, such as that of the zeolites or the amorphous porous mixed oxides, mixed carbides or mixed nitrides, is of great interest to industry. They are used industrially as catalysts for oil refining in petrochemicals as well as for the production of pharmaceuticals, fine and large chemicals. They catalyze a wide variety of oxidation reactions: aromatic hydroxylation, olefin epoxidation, ketone ammoximation, alcohol oxidation and alkanoxy functionalization, to name just a few examples. The stable amorphous mixed oxides are similarly promising, their properties are just as important as those of crystalline substances, but their production is usually simpler than that of crystalline, well-defined materials.
Ausführunαsbeispiel:Execution example:
Wir zeigen am Beispiel der kombinatorischen Modifikation einer herkömmlichen, laborüblichen Titansilicalit-Synthese unter hydrothermalen Bedingungen (UK Patent 2071071 B), wie mit minimalem Zeitaufwand eine Materialbibliothek von kristallinen und amorphen Materialien hergestellt und analysiert werden kann.Using the example of the combinatorial modification of a conventional, customary titanium silicalite synthesis under hydrothermal conditions (UK Patent 2071071 B), we show how a material library of crystalline and amorphous materials can be produced and analyzed with minimal expenditure of time.
Der eingesetzte Reaktor:The reactor used:
Figur 1 zeigt die Konstruktionszeichnung des druckdichten Reaktors. In einem zylindrischen Druckbehälter aus Stahl (Gesamtdurchmesser: 40 mm, Innendurchmesser: 24,5 mm) der Höhe 22,7 mm liegt eine Silicium-Einkristallscheibe von 22 mm Durchmesser. Durch 3 Schrauben wird auf diesen Si-Einkristall- scheibe eine Stahlplatte mit Teflon-Einsatz gepreßt, deren Bohrungen die Reaktionsräume darstellen. Figur 2 zeigt das Raster mit den entsprechenden Abständen. In diese Maske werden die verschiedenen Reaktionslösungen mittels eines Roboters oder von Hand pipettiert (1 bis 2μL). Als Abdichtung für die Reaktion folgt nun eine weitere Teflonscheibe, die wiederum mit einer dicken Stahlplatte über 3 Verschraubungen angepreßt wird, so daß die gesamte Anordnung druckdicht abgeschlossen ist. Experimenteller Ansatz:Figure 1 shows the construction drawing of the pressure-tight reactor. In a cylindrical pressure vessel made of steel (total diameter: 40 mm, inner diameter: 24.5 mm) with a height of 22.7 mm is a silicon single crystal disc with a diameter of 22 mm. A steel plate with Teflon insert is pressed onto this Si single-crystal wafer by 3 screws, the holes of which represent the reaction spaces. Figure 2 shows the grid with the corresponding distances. The various reaction solutions are pipetted into this mask using a robot or by hand (1 to 2μL). A further Teflon disc follows as a seal for the reaction, which in turn is pressed on with a thick steel plate using 3 screw connections, so that the entire arrangement is sealed pressure-tight. Experimental approach:
In einem typischen Ansatz wird dazu 2,27g (10,9 mmol) Tetraethylorthosilikat (TEOS) in einem 10mL-Gefäß mit 75 mg (0,33 mmol) Tetraethyltitanat gemischt. Zu dieser Lösung werden unter Rühren 4 g (5 mmol) einer 25 Gew.- %igen Lösung von Tetrapropylammoniumhydroxid zugegeben und 1 h gerührt. Nachdem nach 5-6 h Erhitzen auf 80-90°C der entstehende Alkohol vollständig abgedampft ist, wird die Lösung mit dest. Wasser auf 7,5 ml aufgefüllt und stellt eine typische Reaktionslösung dar.In a typical batch, 2.27 g (10.9 mmol) of tetraethyl orthosilicate (TEOS) is mixed in a 10 ml vessel with 75 mg (0.33 mmol) of tetraethyl titanate. 4 g (5 mmol) of a 25% by weight solution of tetrapropylammonium hydroxide are added to this solution with stirring and the mixture is stirred for 1 hour. After the alcohol formed has been completely evaporated after heating for 5-6 hours at 80-90 ° C., the solution is distilled with dist. Water made up to 7.5 ml and represents a typical reaction solution.
37 kombinatorische Modifikationen des experimentellen Ansatzes wurde gemäß den Angaben in Tabelle 1 vorbereitet.37 combinatorial modifications of the experimental approach were prepared according to the information in Table 1.
Loch Mischung Loch MischungHole mixture hole mixture
A1 Si : Ti : NPr4OH D5 AI : Ti : CTAB 1 : 0,03 : 0,45 1 : 0,05 : 0,1A1 Si: Ti: NPr 4 OH D5 AI: Ti: CTAB 1: 0.03: 0.45 1: 0.05: 0.1
A2 Si : Ti : NBu4OH D6 AI : Zr : NBu4OH 1 : 0,03 : 0,45 1 : 0,2 : 0,4A2 Si: Ti: NBu 4 OH D6 AI: Zr: NBu 4 OH 1: 0.03: 0.45 1: 0.2: 0.4
A3 Si : Ti : NEt4OH D7 AI : Zr : NMe4OH 1 : 0,03 : 0,45 1 : 0,2 : 0,4A3 Si: Ti: NEt 4 OH D7 AI: Zr: NMe 4 OH 1: 0.03: 0.45 1: 0.2: 0.4
B1 Si : Ti : NMe4OH E1 AI : Zr : NEt4OH 1 : 0,03 : 0,45 1 : 0,2 : 1B1 Si: Ti: NMe 4 OH E1 AI: Zr: NEt 4 OH 1: 0.03: 0.45 1: 0.2: 1
B2 Si : Ti : C4H9N E2 AI : Zr : CTAB 1 : 0,03 : 0,45 1 : 0,2 : 0,1B2 Si: Ti: C 4 H 9 N E2 AI: Zr: CTAB 1: 0.03: 0.45 1: 0.2: 0.1
B3 Si : Ti : CTAB E3 Ti : Zr : NBu4OH 1 : 0,03 : 0,045 1 : 1 : 0,4B3 Si: Ti: CTAB E3 Ti: Zr: NBu 4 OH 1: 0.03: 0.045 1: 1: 0.4
B4 Si : Ti : Hexadecylamin E4 Ti : Zr NBu4OH 1 : 0,03 : 0,045 1 : 1 : 0,4B4 Si: Ti: hexadecylamine E4 Ti: Zr NBu 4 OH 1: 0.03: 0.045 1: 1: 0.4
B5 Si:Ti:Hexadecylamin:NaO E5 Ti : Zr : NMe4OHB5 Si: Ti: hexadecylamine: NaO E5 Ti: Zr: NMe 4 OH
H 1 : 1 : 0,4H 1: 1: 0.4
1 : 0,03 : 0,045 : 0,451: 0.03: 0.045: 0.45
C1 Si : AI : NPr4OH E6 Ti : Zr : NEt4OH 1 : 0,033 : 0,43 1 : 1 : 1 C2 Si : AI : NPr4OH E7 Ti : Zr : CTABC1 Si: AI: NPr 4 OH E6 Ti: Zr: NEt 4 OH 1: 0.033: 0.43 1: 1: 1 C2 Si: AI: NPr 4 OH E7 Ti: Zr: CTAB
1 : 0,066 : 0,43 1 : 1 : 0,11: 0.066: 0.43 1: 1: 0.1
C3 Si : Zr : NPr4OH F1 Si : Ti : NPr4OHC3 Si: Zr: NPr 4 OH F1 Si: Ti: NPr 4 OH
1 : 0,03 : 0,98 1 : 0,03 : 0,451: 0.03: 0.98 1: 0.03: 0.45
C4 Si : V : NPr4OH F2 Si : V : NPr4OHC4 Si: V: NPr 4 OH F2 Si: V: NPr 4 OH
1 : 0,03 : 0,45 1 : 0,03 : 0,451: 0.03: 0.45 1: 0.03: 0.45
C5 Si : Zr : NBu4OH F3 Si : Ti : NEt4OHC5 Si: Zr: NBu 4 OH F3 Si: Ti: NEt 4 OH
1 : 0,03 : 0,4 1 : 0,03 : 0,451: 0.03: 0.4 1: 0.03: 0.45
C6 Si : Zr : NMe4OH F4 Si : Zr : NPr4OHC6 Si: Zr: NMe 4 OH F4 Si: Zr: NPr 4 OH
1 : 0,03 : 0,4 1 : 0,01 : 0,981: 0.03: 0.4 1: 0.01: 0.98
C7 AI : Ti : NBu4OH F5 Si : AI : NPr4OHC7 AI: Ti: NBu 4 OH F5 Si: AI: NPr 4 OH
1 : 0,05 : 0,4 1 : 0,1 : 0,431: 0.05: 0.4 1: 0.1: 0.43
D1 AI : Ti : NMe4OH G1 Si : Ti : NPr4OHD1 AI: Ti: NMe 4 OH G1 Si: Ti: NPr 4 OH
1 : 0,05 : 0,4 1 : 0,03 : 0,451: 0.05: 0.4 1: 0.03: 0.45
D2 AI : Ti : NEt4OH G2 AI : Si : NPr4OHD2 AI: Ti: NEt 4 OH G2 AI: Si: NPr 4 OH
1 : 0,05 : 1 1 : 0,2 : 0,431: 0.05: 1 1: 0.2: 0.43
D3 AI : Ti : NEt4OH G3 AI : Si : NPr4OHD3 AI: Ti: NEt 4 OH G3 AI: Si: NPr 4 OH
1 : 0,05 : 1 1 : 0,1 : 0,431: 0.05: 1 1: 0.1: 0.43
D4 AI : Ti : CTABD4 AI: Ti: CTAB
1 : 0,05 : 0,11: 0.05: 0.1
Tabelle 1 : Zusammensetzung der Materialpunkte der Bibliothek in Abb. 2. Die „Mischung" gibt dabei das molare Verhältnis der eingesetzten Metallalkoxide (und somit der oxidischen Materialien im sich bildenden Produkt) zum eingesetzten Templatmolekül wieder. Als Quellen für SiO2, TiO2, ZrO2 und AI2O3 wurden Tetraethoxsilan (Si(OEt)4, TEOS), Ti(OEt)4, Ti(O'Pr)4 oder Ti(OnPr)4, Zr(OnPr)4 und AI(OsecBu)3 verwendet. Da nach Abdampfen der Alkohole die extern dargestellten Proben mit dest. Wasser auf 7,5 mL aufgefüllt wurden, liegt in allen Proben zur Hydrothermalsynthese ein Wasserüberschuß Wasser : Metall = 40 : 1 vor.Table 1: Composition of the material points of the library in Fig. 2. The "mixture" shows the molar ratio of the metal alkoxides used (and thus the oxidic materials in the product being formed) to the template molecule used. As sources for SiO 2 , TiO 2 , ZrO 2 and AI 2 O 3 became tetraethoxysilane (Si (OEt) 4 , TEOS), Ti (OEt) 4 , Ti (O'Pr) 4 or Ti (O n Pr) 4 , Zr (O n Pr) 4 and AI (O sec Bu) 3. Since after the evaporation of the alcohols the externally presented samples were filled up to 7.5 mL with distilled water, an excess of water: metal = 40: 1 is present in all samples for hydrothermal synthesis.
A1 und F1 enthalten je den oben beschriebenen Originalansatz. Die Löcher A1 - G3 (Abb. 2) werden mit 1 bis 2 μL der Ansätze aus Tabelle 1 gefüllt. Die „Mischung" gibt dabei das molare Verhältnis der eingesetzten Metallalkoxide (und somit der oxidischen Materialien im sich bildenden Produkt) zum eingesetzten Templatmolekül wieder. Da nach Abdampfen der Alkohole die extern dargestellten Proben mit dest. Wasser auf 7,5 ml aufgefüllt wurden, liegt in allen Proben zur Hydrothermalsynthese ein Wasserüberschuß Metall : Wasser = 1 : 40 vor.A1 and F1 each contain the original approach described above. Holes A1 - G3 (Fig. 2) are filled with 1 to 2 μL of the batches from Table 1. The “Mixture” represents the molar ratio of the metal alkoxides used (and thus the oxidic materials in the product being formed) to the template molecule used. Since the alcohols had been evaporated, the externally shown samples were made up to 7.5 ml with distilled water Excess water: metal: water = 1:40 before all samples for hydrothermal synthesis.
Die Reaktion erfolgt im geschlossenen Reaktor bei einer Temperatur von 200°C über einen Zeitraum von 36 h.The reaction takes place in a closed reactor at a temperature of 200 ° C over a period of 36 h.
Nachbehandlung der Materialbibliothek:Post-treatment of the material library:
Nach der Reaktion erfolgt das Abheben der oberen Stahl- und Teflonplatte, die Produkte in den Mikroreaktionskammem werden von der Mutterlauge durch Entfernen der überstehenden Flüssigkeit mittels herkömmlicher Techniken, wie z.B. poröser Magnesiastäbchen, abgetrennt. Dies erfolgt idealerweise natürlich mittels entsprechender Werkzeuge in einem Arbeitsgang. Im Anschluß daran werden die Substanzen mehrfach mit 2 μL dest. Wasser auf dieselbe Weise gewaschen. Danach kann der offene Reaktor mit den Produkten getrocknet und bei Verwendung von Teflon als Reaktorplatte bis maximal 350 °C kalziniert, vorzugsweise bei 130°C, werden, was zu einer guten Haftung der entstandenen Feststoffe auf dem Reaktorboden führt. Nach Abnahme der beiden Reaktionsplatten aus Stahl und dem Tefloneinsatz kann die so entstandene Materialbibliothek (ursprüngliche Bodenplatte) weiterbehandelt oder untersucht werden. Im Falle der hier angestrebten Zeolithsynthese wurde die Materialbibliothek bei 600°C für 10 h in einem Ofen getempert. Falls die Produkte in vertikaler Anordnung analysiert werden sollen, kann die Haftung der Proben durch Aufsprühen eines geeigneten amorphen Lackes auf der Bibliothek verbessert werden. Dieser läßt sich anschließend bei erhöhten Temperaturen wieder abdampfen bzw. oxidativ entfernen.After the reaction, the upper steel and Teflon plate are lifted off, the products in the microreaction chambers are removed from the mother liquor by removing the supernatant liquid using conventional techniques, e.g. porous magnesia stick, separated. Ideally, of course, this is done in one operation using appropriate tools. Following this, the substances are washed several times with 2 μL dist. Washed water in the same way. The open reactor with the products can then be dried and, if Teflon is used as the reactor plate, calcined to a maximum of 350 ° C., preferably at 130 ° C., which leads to good adhesion of the solids formed to the reactor base. After removing the two steel reaction plates and the Teflon insert, the resulting material library (original base plate) can be further processed or examined. In the case of the zeolite synthesis sought here, the material library was annealed in an oven at 600 ° C. for 10 h. If the products are to be analyzed in a vertical arrangement, the adhesion of the samples can be improved by spraying a suitable amorphous lacquer on the library. This can then be evaporated again at elevated temperatures or removed by oxidation.
Identifizierung der Feststoffe:Identification of the solids:
Die Identifizierung der Phasen der entstandenen Produkte erfolgte mit einemThe phases of the resulting products were identified with a
GADDS-Mikrobereichsröntgendiffraktometer mit Göbelspiegel und einem HI- STAR-Detektor. Die Si-Platte wurde auf einem xyz-Probentisch befestigt und anschließend, nach Eingabe der Rasterparameter und Speicherung der zu messenden Punkte, vollautomatisch in Reflexion gemessen. Die Pulverdiffrak- togramme wurden mit einem 500μm-Kollimator integral über die gesamte „spot"- Fläche aufgenommen, mittels gebogener Göbelspiegel ist eine Fokussierung des Röntgenstrahls bis auf 50μm mit hoher Röntgenintensität möglich. Somit sind einzelne Partikel im Mikrometer-Bereich einer röntgenanalytischen Untersuchung zugänglich. Unter den gewählten Meßbedingungen werden keine Reflexe des Siliziumprobenträgers gefunden. Bei Verwendung einer dünnen Folie als Reaktorboden oder beim Übertragen der Bibliothek auf eine dünne Folie, die mit einer Klebschicht versehen ist, läßt sich das Diffraktogramm auch im Transmissionsmodus aufzeichnen. Die erhaltenen Diffraktogramme werden zweckmäßigerweise zur späteren Auswertung abgespeichert und können von Hand oder vollautomatisch mit Vergleichsbibliotheken identifiziert werden.GADDS micro-range X-ray diffractometer with Göbel mirror and a HI STAR detector. The Si plate was attached to an xyz sample table and then, after entering the grid parameters and storing the points to be measured, measured automatically in reflection. The powder diffractograms were recorded integrally over the entire "spot" area with a 500μm collimator. The X-ray beam can be focused to 50μm with high X-ray intensity by means of a curved Göbel mirror. Individual particles in the micrometer range are therefore accessible for X-ray analysis. No reflections from the silicon sample carrier are found under the selected measurement conditions .. If a thin film is used as the reactor bottom or if the library is transferred to a thin film which is provided with an adhesive layer, the diffractogram can also be recorded in the transmission mode later evaluation saved and can be identified manually or fully automatically with comparison libraries.
Die Auswertung der Diffraktogramme ergab, daß die in Abb.2 grau unterlegten Punkte kristalline Anteile, während alle nicht unterlegten Punkte amorphe Materialien enthalten. Die Struktur der kristallinen Phasen wurde durch Vergleich ihrer Diffraktogramme mit einer Diffraktogrammbibliothek identifiziert. Die Reaktionsmischungen zur Erzeugung der Feststoffe in den Punkten A1 und F1 entsprechen der klassischen Synthese. In Abb. 3 wird die Pulveraufnahme des konventionell erzeugten Zeolithen (oben) mit den Diffraktogrammen der Punkte A1 und F1 verglichen. Die Abbildung belegt, daß mit Mikrogramm- mengen der Materialbibliothek das identische Material erzeugt wurde wie in der konventionellen Synthese. The evaluation of the diffractograms showed that the dots with a gray background in Fig. 2 contain crystalline components, while all the dots not highlighted contain amorphous materials. The structure of the crystalline phases was identified by comparing their diffractograms with a diffractogram library. The reaction mixtures for producing the solids in points A1 and F1 correspond to the classic synthesis. In Fig. 3 the powder uptake of the conventionally produced zeolite (top) is compared with the diffractograms of points A1 and F1. The figure shows that the same material as in conventional synthesis was generated with microgram quantities from the material library.
Abbildung 1 : Spezielle Ausführung des Reaktors, wie er im Ausführungsbeispiel eingesetzt wurde.Figure 1: Special version of the reactor as used in the exemplary embodiment.
Abbildung 2: Identifikation der Materialbibliothek. Die Zusammensetzung der einzelnen Probenpunkte sind in Tabelle 1 zusammengefaßt.Figure 2: Identification of the material library. The composition of the individual sample points are summarized in Table 1.
Abbildung 3: Diese Abbildung zeigt oben exemplarisch das Röntgenbeugungs- diagramm eines konventionell hergestellten TS-1-Zeolithen und darunter die damit identischen Röntgenstreubilder, wie sie von der Materialbibliothek an den angegebenen Punkten von Gesamtsubstanzmengen im μg-Bereich erhalten wurden und belegt damit, daß kristalline anorganische Materialen wie Zeolithe nach dem angegebenen Verfahren hergestellt und identifiziert werden können. Figure 3: This figure shows an example of the X-ray diffraction diagram of a conventionally produced TS-1 zeolite and below it the X-ray scatter images identical to it, as obtained from the material library at the specified points of total substance amounts in the μg range, and thus confirms that crystalline inorganic materials such as zeolites can be produced and identified by the specified method.

Claims

Patentansprüche claims
1. Verfahren zur naßchemischen Herstellung einer eine Vielzahl von Feststoffen umfassenden Materialbibliothek aus Reaktionsmischungen unterschiedlicher Zusammensetzung, dadurch gekennzeichnet, daß die Reaktionsmischungen örtlich separiert in Mikroreaktionskammem in entfernbaren Reaktionsplatten in einen Reaktor eingebracht sind und zur Reaktion gebracht werden, wobei sich die bei den Reaktionen erzeugten Feststoffe örtlich separiert auf einer entfernbaren Reaktorbodenplatte abscheiden.1. A process for the wet chemical production of a material library comprising a large number of solids from reaction mixtures of different compositions, characterized in that the reaction mixtures are introduced into a reactor and brought to reaction in locally separated microreaction chambers in removable reaction plates, the solids produced in the reactions separate on a removable reactor base plate.
2. Verfahren nach Anspruch 1 , wobei die Reaktionsmischungen in Form von Lösungen oder Suspensionen in den Mikroreaktionskammem, die in Form isolierter Hohlräume als Bohrungen in die Reaktionsplatten eingebracht sind, bei Temperaturen bis zu 1000 °C und Innendrucken bis zu 1000 bar zur Reaktion gebracht werden.2. The method according to claim 1, wherein the reaction mixtures in the form of solutions or suspensions in the microreaction chambers, which are introduced in the form of isolated cavities as bores in the reaction plates, are reacted at temperatures up to 1000 ° C. and internal pressures up to 1000 bar .
3. Verfahren nach Anspruch 1 , wobei anschließend die auf der Reaktorbodenplatte abgeschiedenen Feststoffe von der überstehenden flüssigen Phase befreit und kalziniert werden.3. The method according to claim 1, wherein the solids deposited on the reactor base plate are then freed from the supernatant liquid phase and calcined.
4. Verfahren nach Ansprüchen 1 bis 3, wobei die Reaktorbodenplatte, die aus Röntgenstrahlen elastisch streuendem Material besteht, identisch mit dem Bibliothekssubstrat ist, auf dem die Feststoffe haftend abgeschieden werden, und zusammen mit den abgeschiedenen kalzinierten Feststoffen die Materialbibliothek bildet.4. The method according to claims 1 to 3, wherein the reactor base plate, which consists of X-ray elastically scattering material, is identical to the library substrate on which the solids are adhered, and together with the deposited calcined solids forms the material library.
5. Verfahren nach Ansprüchen 1 bis 3, wobei anschließend von allen abgeschiedenen Feststoffen eine Teilmenge auf eine mit einer Klebstoffbe- schichtung versehene Folie abgezogen wird, die aus von Röntgenstrahlen durchstrahibarem Material besteht und als Bibliothekssubstrat zusammen mit den darauf übertragenen Feststoffen eine Materialbibliothek bildet. 5. The method according to claims 1 to 3, wherein a partial amount of all the separated solids is then drawn off onto a film provided with an adhesive coating, which consists of material which can be penetrated by X-rays and forms a library of materials together with the solids transferred thereon.
EP99924959A 1998-05-16 1999-05-12 Combinational method for microgram-scale production and characterization of crystalline and amorphous libraries of materials Withdrawn EP1085941A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19822077 1998-05-16
DE19822077A DE19822077A1 (en) 1998-05-16 1998-05-16 Preparation of library of spatially separted solids by wet-chemical methods on a removable reaction plate, used e.g. to screen for new catalysts or materials
PCT/EP1999/003287 WO1999059716A2 (en) 1998-05-16 1999-05-12 Combinational method for microgram-scale production and characterization of crystalline and amorphous libraries of materials

Publications (1)

Publication Number Publication Date
EP1085941A2 true EP1085941A2 (en) 2001-03-28

Family

ID=7868039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99924959A Withdrawn EP1085941A2 (en) 1998-05-16 1999-05-12 Combinational method for microgram-scale production and characterization of crystalline and amorphous libraries of materials

Country Status (6)

Country Link
US (1) US6825048B1 (en)
EP (1) EP1085941A2 (en)
JP (1) JP2002515327A (en)
CA (1) CA2333178A1 (en)
DE (1) DE19822077A1 (en)
WO (1) WO1999059716A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166470B2 (en) 1994-10-18 2007-01-23 Symyx Technologies, Inc. Formation of combinatorial arrays of materials using solution-based methodologies
US6149882A (en) 1998-06-09 2000-11-21 Symyx Technologies, Inc. Parallel fixed bed reactor and fluid contacting apparatus
EP1113991B1 (en) 1998-09-18 2004-06-09 Symyx Technologies, Inc. Formation of combinatorial arrays of materials using solution-based methodologies
AU2368900A (en) 1998-12-18 2000-07-03 Symyx Technologies, Inc. Apparatus and method for characterizing libraries of different materials using x-ray scattering
US6749814B1 (en) 1999-03-03 2004-06-15 Symyx Technologies, Inc. Chemical processing microsystems comprising parallel flow microreactors and methods for using same
JP4009712B2 (en) * 2000-02-08 2007-11-21 独立行政法人物質・材料研究機構 Chemical reaction processing equipment
US6627571B1 (en) 2000-03-01 2003-09-30 Symyx Technologies, Inc. Method and system for the situ synthesis of a combinatorial library of supported catalyst materials
CA2344946A1 (en) 2000-05-10 2001-11-10 Symyx Technologies, Inc. Polymer libraries on a substrate, method of forming polymer libraries on a substrate and characterization methods with same
DE10117275B4 (en) 2001-04-06 2005-02-24 Hte Ag The High Throughput Experimentation Company Device for archiving and analyzing materials
DE10139553B4 (en) 2001-08-10 2008-04-10 Robert Bosch Gmbh Method for producing a material library
US20030119060A1 (en) 2001-08-10 2003-06-26 Desrosiers Peter J. Apparatuses and methods for creating and testing pre-formulations and systems for same
EP1400280A1 (en) * 2002-09-18 2004-03-24 Corning Incorporated Apparatus and method for operating a microreactor at high pressure
US8084400B2 (en) * 2005-10-11 2011-12-27 Intermolecular, Inc. Methods for discretized processing and process sequence integration of regions of a substrate
US8776717B2 (en) * 2005-10-11 2014-07-15 Intermolecular, Inc. Systems for discretized processing of regions of a substrate
US7544574B2 (en) * 2005-10-11 2009-06-09 Intermolecular, Inc. Methods for discretized processing of regions of a substrate
JP5284108B2 (en) * 2006-02-10 2013-09-11 インターモレキュラー, インコーポレイテッド Method and system for combinatorial change of materials, unit processes and process sequences
US8772772B2 (en) * 2006-05-18 2014-07-08 Intermolecular, Inc. System and method for increasing productivity of combinatorial screening
US8011317B2 (en) * 2006-12-29 2011-09-06 Intermolecular, Inc. Advanced mixing system for integrated tool having site-isolated reactors
JP2013240758A (en) * 2012-05-21 2013-12-05 Tokyo Univ Of Science Reaction apparatus for performing combinatorial synthesis, combinatorial synthesis system, and combinatorial synthesis method
CN103073028B (en) * 2012-12-21 2015-08-19 河南大学 A kind of magnetic Nano Teng Shi is blue and its preparation method and application

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206488C2 (en) * 1992-03-02 1993-12-23 Deutsches Krebsforsch Device for carrying out chemical reactions taking place simultaneously or sequentially
US5688474A (en) * 1993-06-01 1997-11-18 Eduardo E. Wolf Device for treating gases using microfabricated matrix of catalyst
US5985356A (en) * 1994-10-18 1999-11-16 The Regents Of The University Of California Combinatorial synthesis of novel materials
DE19602464B4 (en) * 1996-01-24 2006-05-04 Rapp, Wolfgang, Dr. Device for the multiple, simultaneous and parallel synthesis of chemical compounds and for the discrete further treatment of aliquots
US6063633A (en) * 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
US6468806B1 (en) * 1996-10-02 2002-10-22 Symyx Technologies, Inc. Potential masking systems and methods for combinatorial library synthesis
AU4812097A (en) * 1996-10-09 1998-05-05 Symyx Technologies, Inc. Infrared spectroscopy and imaging of libraries
DE19649359C1 (en) * 1996-11-28 1998-02-12 Thomas Prof Dr Peters Detecting biologically active substances in substance libraries
DE19652823A1 (en) * 1996-12-18 1998-03-26 Guenter Prof Dr Fuhr Three dimension micro-system spacers
NO304355B1 (en) * 1997-02-20 1998-12-07 Sinvent As Multi-autoclave for methodical, automated synthesis of zeolites and other compounds
BR9812909A (en) * 1997-10-10 2002-02-05 Bp Chemical Ltd Process and micro-reactor for rapid classification of potential catalyst collections for catalytic properties
AU2368900A (en) * 1998-12-18 2000-07-03 Symyx Technologies, Inc. Apparatus and method for characterizing libraries of different materials using x-ray scattering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9959716A3 *

Also Published As

Publication number Publication date
US6825048B1 (en) 2004-11-30
JP2002515327A (en) 2002-05-28
CA2333178A1 (en) 1999-11-25
WO1999059716A2 (en) 1999-11-25
DE19822077A1 (en) 1999-11-18
WO1999059716A3 (en) 2000-01-13

Similar Documents

Publication Publication Date Title
EP1085941A2 (en) Combinational method for microgram-scale production and characterization of crystalline and amorphous libraries of materials
Klein et al. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis
Potyrailo et al. Combinatorial and high-throughput screening of materials libraries: review of state of the art
Maier et al. Combinatorial and high‐throughput materials science
DE69534795T2 (en) Screening of organometallic compounds for catalysis
Senkan et al. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry
Scheidtmann et al. Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology
US6645460B2 (en) Titanium hydroxide and photocatalytic coating agent
Esmaeili et al. A highly efficient one-pot multicomponent synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/thiones catalyzed by strontium pyroarsenate nano-plates
Hallaoui et al. Structural, vibrational and photoluminescence properties of Sr (1-x) PbxMoO4 solid solution synthesized by solid state reaction
Arca et al. Epoxidation of propylene on Zn-treated TS-1 catalyst
DE19730126A1 (en) Solid surface containing alumina
Trunschke Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective
Baker et al. Laser-induced fluorescence, far-infrared spectroscopy, and luminescence quenching of europium zeolite Y: Site-selective probes of extraframework cations
Reichenbach et al. Combinatorial synthesis of oxide powders
Wendelbo et al. Combinatorial hydrothermal synthesis and characterisation of perovskites
Erdogan et al. A versatile bio-inspired material platform for catalytic applications: micron-sized “buckyball-shaped” TiO 2 structures
Sun et al. Application of parallel synthesis and high throughput characterization in photocatalyst discovery
Gaskins et al. Room temperature perovskite production from bimetallic alkoxides by ketone assisted oxo supplementation (KAOS)
Gliński et al. A Hands-on Guide to the Synthesis of High-Purity and High-Surface-Area Magnesium Oxide
Ece Hydrothermal synthesis and structural characterization of open-framework metal phosphates templated with organic diamines
Oguma et al. Effects of silica-coating on the photoinduced hole formation and decomposition activity of titanium dioxide photocatalysts under UV irradiation
Selvam et al. A novel efficient synthesis and characterization of crystalline chromium-silicate molecular sieves with MFI structure
Rajalingam Synthesis and Characterization of BiVO4 nanostructured materials: application to photocatalysis
WO2002051546A1 (en) Novel photocatalists and method for the detection thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL SE

17Q First examination report despatched

Effective date: 20020606

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HTE AKTIENGESELLSCHAFT THE HIGH THROUGHPUT EXPERIM

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091201