EP1080313B1 - Radial bearing with a sliding bearing-type construction - Google Patents

Radial bearing with a sliding bearing-type construction Download PDF

Info

Publication number
EP1080313B1
EP1080313B1 EP99923599A EP99923599A EP1080313B1 EP 1080313 B1 EP1080313 B1 EP 1080313B1 EP 99923599 A EP99923599 A EP 99923599A EP 99923599 A EP99923599 A EP 99923599A EP 1080313 B1 EP1080313 B1 EP 1080313B1
Authority
EP
European Patent Office
Prior art keywords
bearing
end faces
radial
region
carrying element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99923599A
Other languages
German (de)
French (fr)
Other versions
EP1080313A1 (en
Inventor
Ralf Diederich
Horst SCHÄFER
Anna Usbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB AG
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Publication of EP1080313A1 publication Critical patent/EP1080313A1/en
Application granted granted Critical
Publication of EP1080313B1 publication Critical patent/EP1080313B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/143Tappets; Push rods for use with overhead camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/16Silencing impact; Reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0465Ceramic bearing designs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/16Sliding surface consisting mainly of graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/26Brasses; Bushes; Linings made from wire coils; made from a number of discs, rings, rods, or other members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/28Brasses; Bushes; Linings with embedded reinforcements shaped as frames or meshed materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings

Definitions

  • the invention relates to a radial bearing in sliding bearing design, in particular for use in centrifugal pumps, with one arranged on a shaft, transmitting torque designed bearing sleeve, which rotating within a bearing bush is arranged, wherein between the sliding parts a gap for a lubricant of low viscosity is located, the bearing sleeve of a Supporting element and a bearing element attached thereto and bearing thereon, and the support element in the area of the system of the bearing element different Has wall thicknesses.
  • the invention is therefore based on the problem of a fragile materials to develop using shaft bearing, the one occurring in storage Angular offset allows.
  • the solution to this problem provides that a predominantly arranged in a matrix fiber structure with ceramic or arranged therein Carbon parts, the bearing element forms that a ceramic or carbon matrix the fiber structure forms that the support element is equal to or longer than the bearing element is formed and that of a wall thickness maximum in the middle Area of the support element, the wall thickness in the direction of the end faces of the bearing element is formed decreasing.
  • the support element has a wall thickness curve, the has a maximum in the middle area and from there to both sides is designed decreasing.
  • the dimensions and tolerances of individual parts are chosen so that when temperature influences the bearing element remains firmly connected to the support element.
  • the combination of such a bearing element with a support element having an elasticity gives the advantage that when an angular offset occurs, both parts react elastically yielding and thus a risk of breakage on the bearing element is prevented.
  • the predominantly matrix-like arranged fiber structure which is formed as a ceramic or carbon matrix is, in which ceramic or carbon parts are embedded, in contrast to a monolithic component a compliance against bending loads on.
  • a ceramic or carbon matrix both ceramic and carbon parts are arranged. same for also for a ceramic matrix.
  • a shrunk bearing bush with its predominantly matrix-like fiber composite for example made of Siliziumkarbidfasem or carbon fibers, thus has a slightly convex surface, which compensates for angular deviations of a shaft bearing equipped therewith supported.
  • the rotating part of the radial bearing, the bearing sleeve, form the support element and the bearing element mounted thereon.
  • the support element is provided with a wall thickness maximum, wherein the dimensions are chosen so that thus a secure transmission of forces is ensured.
  • the area of the wall thickness maximum serves to accommodate rotary movements transmitting means between shaft and support element.
  • wall thickness minima are provided on the support element. They support the spring action of the support element and the training a spherical shape of the bearing surface.
  • the support element In the area of the end faces of the support element, at least one thick-walled, on provided the shaft zoomed end portion, said end portion is arranged at a distance from the end face of the bearing element. In between is the Wall of the support element as an elastically resilient, thin-walled section educated. The arranged in the region of the end face of the support element thick-walled End section can also torque-transmitting or force-transmitting Embodiments have. To bear the bearing element, the support element have an end bearing surface.
  • Fig. 1 shows in longitudinal section a support element 1, which metallic or non-metallic May be of the mid-range as Section 2 with maximum Wall thickness is formed.
  • This section 2 is for transmitting torques trained and used for this known means 3, for example, tongue and groove connections.
  • Such a wall thickness course has a course without sharp-edged transitions.
  • On the outside diameter of the support element 1, a bearing element 6 is fixed, which consists of consists of a predominantly matrix-like arranged fiber structure, wherein a ceramic or carbon matrix forming the fiber structure. Embedded in the matrix Ceramic or carbon parts.
  • the axial length of the bearing element 6 is the same or shorter than the axial length of the support element 1 is formed.
  • the end faces 7, 8 of the bearing element 6 are opposite the end faces 4, 5 of the support element. 1 set back. Such a measure prevents the transition between these two parts the occurrence of voltage spikes.
  • the middle section 2 of the support element 1 provides a web-like connection to Wave forth.
  • Starting from the section 2 is the wall thickness of the support element. 1 designed decreasing towards the front sides 4,5.
  • a free space between a surface 9 of a shaft and the support element 1 produces, can in simple manner, for example by machining, be generated.
  • FIGs. 2 and 3 other embodiments are shown which are also elastic Ensure properties of a bearing sleeve thus formed. You can at larger radial forces to be used.
  • the axial length of the support element 1 is enlarged compared to the embodiment of FIG.
  • the area the end faces 4, 5 of the support element 1 was designed so that an approximation to the surface 9 of a shaft, not shown, takes place.
  • the shaft surface 9 opposite surfaces 10, 11 of the end faces 4, 5 of the Supporting element 1 are arranged in Fig. 2 to form a gap. That exists the possibility of bending under the influence of radial forces of the support element 1 by the game shown between the surfaces 10, 11th and the surface 9 to influence. By suitable selection of the dimensions for a clearance to be provided between these parts is simply a Limiting the deflection possible.
  • a thin-walled section 12, 13 of Supporting element 1, between the end faces 7, 8 of the bearing element 6 and the End faces 4, 5 of the support element 1 is arranged, ensures the suspension properties a bearing sleeve of a radial bearing thus formed. By means of such Measure is the formation of a progressive spring characteristic possible.
  • Fig. 2 is on the right side in the region of the end face 4 a another course of the opposite with a surface 11 of the shaft surface 9 End of the support element 1 drawn.
  • the transition 13 is drawn here conically, but there are also other transitions in the form of sheets o. The like. Possible. Such a design is advantageous in a mounting of such a warehouse and allows easier insertion.
  • the left side is the front side 5 designed so that the support element on the for a torque transmission necessary means 3 can be pushed.
  • Fig. 3 provides torque transmitting means 3 only in the area the front side 5 of the support element 1 in front.
  • To transfer to the bearing element 6 acting bearing forces is the support element 1 in the area 2 and with the surfaces 10, 11 on the surface 9 of a shaft. It is essential that between the length of the bearing element 6 limiting end faces 7, 8 and the Surfaces 10, 11 of the support element 1, a thin-walled portion 12, 13 exists.
  • One such section ensures the compliance such a unit.
  • FIGS. 1 to 3 show an identical length of the bearing element 6; however, the invention is not limited thereto. Their advantages can be achieved by other lengths of the bearing element 6.
  • Fig. 4 is a mounted bearing design exemplified using the Components of Figure 1 shown.
  • a support member 1 due to Means 3 arranged to transmit torque.
  • a shrunk on the support element 1 Bearing element 6 cooperates with a bearing bush 15. It is shown as the end, thin-walled ends of the support element 1 under the Influence of the shrinkage forces obtained a spherical shape and extend to the shaft 14 out. Furthermore, it will become thinner in connection with the front side Wall thickness course allows elastic compliance and thus the prerequisite for a compensation of an angular offset of the shaft 14 against the bushing 15 ensures.
  • Figs. 5 and 6 show a radial bearing according to the invention and the compensation of angular deviations.
  • Fig. 5 is opposite to a stationary bearing bush 15 inclined by the angle ⁇ , from support element 1 and bearing element. 6 existing bearing sleeve shown, which rotates with a shaft 14.
  • FIG. 6 a plan view of an under force deformed bearing sleeve, shows a large contact surface 16. This is between the bearing bush 15 and the bearing element 6 is formed.
  • the deformation leads at lighter Inclination to an adaptation of the adjacent sliding surfaces.
  • FIGS. 7 and 8 show, analogously to the illustration to FIGS. 5 and 6, a bearing according to FIG the state of the art.
  • angular displacement
  • angular displacement
  • angular displacement
  • angular displacement
  • angular displacement
  • angular displacement
  • angular displacement
  • angular displacement
  • angular displacement
  • angular displacement of a monolithic ceramic Bearing sleeve 18 results in an inclined position only shown in Fig. 8 very narrow storage area 17.
  • the on the camp acting radial force is thus distributed over a much smaller area. Consequently, the surface pressure acting on the bearing element and / or exceeds the local friction power the permissible values.
  • the previously used for such storage monolithic bearing sleeves in the form of ceramic materials due to their shredding sensitivity neither shrunk nor otherwise under tension may be set are overloaded in such an operating condition. In order to their purpose is considerably limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

The invention relates to a radial bearing which can be used for bearing problems in which an angular displacement occurs during operation by virtue of the elastically flexible shaping of a bearing sleeve on which an elastically flexible bearing element with an essentially matrix-type fibrous structure is arranged.

Description

Die Erfindung betrifft ein Radiallager in Gleitlagerbauart, insbesondere zur Verwendung in Kreiselpumpen, mit einer auf einer Welle angeordneten, drehmomentübertragend gestalteten Lagerhülse, die innerhalb einer Lagerbuchse rotierend angeordnet ist, wobei zwischen den aufeinander gleitenden Teilen ein Spalt für ein Schmiermedium geringer Viskosität befindlich ist, die Lagerhülse aus einem Tragelement und einem darauf befestigten und daran anliegenden Lagerelement besteht, und das Tragelement im Bereich der Anlage des Lagerelementes unterschiedliche Wandstärken aufweist.The invention relates to a radial bearing in sliding bearing design, in particular for use in centrifugal pumps, with one arranged on a shaft, transmitting torque designed bearing sleeve, which rotating within a bearing bush is arranged, wherein between the sliding parts a gap for a lubricant of low viscosity is located, the bearing sleeve of a Supporting element and a bearing element attached thereto and bearing thereon, and the support element in the area of the system of the bearing element different Has wall thicknesses.

Bei Kreiselpumpen sind verschiedene Ausführungsformen von Wellenlagerungen bekannt, wobei in Abhängigkeit vom Fördermedium verschiedene Lagermaterialien Verwendung finden. Keramische Lagermaterialien haben sich als besonders vorteilhaft bei Lagern erwiesen, die mit einem Fördermedium geringer Viskosität, beispielsweise mit Wasser oder Alkohol, geschmiert werden. Nachteilig bei derartigen Keramiklagem ist deren Empfindlichkeit gegen Überhitzungen durch Mangelschmierung und stoßartige Belastungen. Eine solche existiert im Mischreibungsgebiet, wenn beispielsweise durch zu hohe Radiallasten die Gleitflächen einander berühren. Durch einen zu hohen lokalen Eintrag von Reibungswärme in die keramischen Oberflächen können sich dabei innerhalb der Keramik Wärmespannungsrisse bilden. Dadurch besteht die Gefahr einer lokalen starken Materialüberlastung, wodurch als Folge an dem Keramikteil Risse oder Ausplatzungen entstehen und mit Folgeschäden zu rechnen ist.In centrifugal pumps are various embodiments of shaft bearings known, depending on the medium to be transported various storage materials Find use. Ceramic bearing materials have proven to be particularly advantageous In bearings proved that with a medium of low viscosity, for example with water or alcohol, to be lubricated. A disadvantage of such Keramiklagem is their sensitivity to overheating due to lack of lubrication and jerky loads. Such exists in mixed friction area, if, for example, due to excessive radial loads, the sliding surfaces touch each other. Due to an excessive local entry of frictional heat into the ceramic Surfaces can form thermal stress cracks within the ceramic. As a result, there is a risk of a local heavy material overload, which as Result on the ceramic part cracks or pits arise and consequential damage is to be expected.

Eine zusätzliche Belastung wirkt auf eine solche, aus einer stillstehenden Lagerbuchse und einer rotierenden Lagerhülse bestehenden Lagerung, wenn zwischen diesen Teilen ein Winkelversatz auftritt. Beispielsweise durch die DE-A-1 528 640 ist es bei solchen Lagerungen bekannt, die Lagerbuchse gegenüber einem Gehäuse mittels O-Ringen elastisch anzuordnen, um eine leichte Beweglichkeit zu erreichen.An additional load acts on such, from a stationary bearing bush and a rotating bearing sleeve existing storage, if between these parts, an angular offset occurs. For example, by DE-A-1 528 640 it is known in such bearings, the bushing against a housing To be arranged elastically by means of O-rings in order to achieve easy mobility.

Eine andere Lösung ist durch die EP 0 492 605 A bekannt, von der als nächstliegender Stand der Technik ausgegangen wird. Diese zeigt ein keramisches Lagerelement, welches unter Zwischenschaltung eines im Bereich des Innendurchmessers befestigten Gummielementes formschlüssig mit einer profilierten Welle verbunden ist. Die Welle kann ein Querschnittsprofil aufweisen, welches als Vielkeil, Sechskant, Zweiflach oder dergleichen ausgebildet ist. Zur formschlüssigen Kräfteübertragung verfügt das Gummielement im Bereich seines Innendurchmessers über eine Formgebung, die quasi der Negativform der Welle entspricht. Somit besteht das Gummielement gewissermaßen aus aneinander liegenden Zylinderabschnitten, wobei jeder Zylinderabschnitt einen zwar anderen Querschnitt aufweist, aber in Längsrichtung der Welle konstant bleibt. Da an beiden Stirnseiten der Wellenbuchse Scheiben angeordnet sind, ist das Gummielement zwischen der Keramikbuchse, den Scheiben und der Profilwelle gekammert angeordnet.Another solution is known from EP 0 492 605 A, from the nearest State of the art is assumed. This shows a ceramic bearing element, which with the interposition of a in the range of the inner diameter attached rubber element positively connected to a profiled shaft is. The shaft may have a cross-sectional profile, which as a wedge, hexagon, Zweiflach or the like is formed. For positive force transmission has the rubber element in the region of its inner diameter over a Shaping, which corresponds to the negative shape of the wave. Thus, that exists Rubber element in a sense of adjacent cylinder sections, wherein each cylinder section has a different cross section, but in the longitudinal direction the wave remains constant. As on both ends of the shaft bushing Disks are arranged, the rubber element between the ceramic bush, the Discs and the profiled shaft chambered arranged.

Bei großen mehrstufigen Pumpen oder langen Wellen mit dazwischen angeordneten Lagern, beispielsweise bei großen Speisepumpen, bei Bohrlochwellenpumpen oder bei fliegenden Lagerungen mit einseitigem Wellenüberhang, treten aufgrund der im Betrieb vorherrschenden Kräfte Schrägstellungen oder Durchbiegungen der Welle auf. Als Folge davon nimmt die mit der Welle rotierende Lagerhülse ebenfalls eine Schrägstellung ein. Eine daraus resultierende einseitige Lagerbelastung stellt eine weitere Gefährdung für gegen Schlag- oder Stoßbelastungen empfindliche keramische Lager dar.For large multi-stage pumps or long shafts with interposed Storage, for example, in large feed pumps, borehole pumps or on flying bearings with unilateral shaft overhang, occur due to the Operation prevailing forces inclinations or deflections of the shaft on. As a result, the bearing sleeve rotating with the shaft also takes one Inclination. A resulting one-sided bearing load represents a further endangerment for ceramic materials which are sensitive to impact or shock loads Stock.

Der Erfindung liegt daher das Problem zugrunde, eine bruchempfindliche Materialien verwendende Wellenlagerung zu entwickeln, die einen in der Lagerung auftretenden Winkelversatz zuläßt.The invention is therefore based on the problem of a fragile materials to develop using shaft bearing, the one occurring in storage Angular offset allows.

Die Lösung dieses Problems sieht vor, daß eine überwiegend matrixartig angeordnete Faserstruktur mit darin angeordneten Keramik- oder Kohlenstoffteilen das Lagerelement bildet, daß eine Keramik- oder Kohlenstoff-Matrix die Faserstruktur bildet, daß das Tragelement gleich oder länger als das Lagerelement ausgebildet ist und daß von einem Wandstärkenmaximum im mittleren Bereich des Tragelementes die Wandstärke in Richtung zu den Stirnseiten des Lagerelementes abnehmend ausgebildet ist. The solution to this problem provides that a predominantly arranged in a matrix fiber structure with ceramic or arranged therein Carbon parts, the bearing element forms that a ceramic or carbon matrix the fiber structure forms that the support element is equal to or longer than the bearing element is formed and that of a wall thickness maximum in the middle Area of the support element, the wall thickness in the direction of the end faces of the bearing element is formed decreasing.

Im Längsschnitt betrachtet weist das Tragelement einen Wandstärkenverlauf auf, der im mittleren Bereich ein Maximum hat und davon ausgehend zu beiden Seiten hin abnehmend gestaltet ist. Auf das Tragelement ist das eine überwiegende matrixartige Faserstruktur aufweisende keramische oder kohlenstoffliche Lagerelement mit einem Schrumpf- oder Preßsitz aufgepreßt. Die Abmessungen und Toleranzen der einzelnen Teile sind so gewählt, daß bei Temperatureinwirkungen das Lagerelement fest mit dem Tragelement verbunden bleibt. Die Kombination eines solchen Lagerelementes mit einem eine Elastizität aufweisenden Tragelement ergibt den Vorteil, daß beim Auftreten eines Winkelversatz beide Teile elastisch nachgiebig reagieren und somit eine Bruchgefahr am Lagerelement verhindert wird. Die überwiegend matrixartig angeordnete Faserstruktur, die als Keramik- oder Kohlenstoffmatrix ausgebildet ist, in welche Keramik- oder Kohlenstoffteile eingebettet sind, weist im Gegensatz zu einem monolithischen Bauteil eine Nachgiebigkeit gegenüber Biegebelastungen auf. Je nach gewünschter Lagerpaarung können dabei in einer Kohlenstoffmatrix sowohl Keramik- als auch Kohlenstoffteile angeordnet werden. Gleiches gilt auch für eine Keramikmatrix.Viewed in longitudinal section, the support element has a wall thickness curve, the has a maximum in the middle area and from there to both sides is designed decreasing. On the support element that is a predominantly matrix-like Fiber structure having ceramic or carbon bearing element with pressed a shrink or press fit. The dimensions and tolerances of individual parts are chosen so that when temperature influences the bearing element remains firmly connected to the support element. The combination of such a bearing element with a support element having an elasticity gives the advantage that when an angular offset occurs, both parts react elastically yielding and thus a risk of breakage on the bearing element is prevented. The predominantly matrix-like arranged fiber structure, which is formed as a ceramic or carbon matrix is, in which ceramic or carbon parts are embedded, in contrast to a monolithic component a compliance against bending loads on. Depending on the desired bearing pairing can be in a carbon matrix both ceramic and carbon parts are arranged. same for also for a ceramic matrix.

Somit kann an solchen, an sich bruchempfindlichen und als Sinterteile erstellten Lagerelementen, eine bei Biegebelastungen auftretenden Zugspannungen beständigere Eigenschaft erzeugt werden. Die bei einer Biegebelastung in einem Hülsenquerschnitt eines solchen Lagerelementes auftretenden, bruchgefährdenden Zugspannungen werden durch die matrixartig angeordneten Fasern gegenüber einem reinen Sintermaterial um den Faktor 10 verbessert. Damit lassen sich Winkelabweichungen der Lagerung kompensieren.Thus, it is possible for such bearing elements which are intrinsically susceptible to breakage and which have been produced as sintered parts, a more resistant to tensile stresses occurring during bending loads Property to be generated. The at a bending load in a sleeve cross-section such a bearing element occurring, fracture-end tensile stresses are compared to a pure by the fibers arranged like a matrix Sintered material improved by a factor of 10. This allows angular deviations compensate the storage.

Ist das Lagerelement durch eine Schrumpfverbindung mit dem Tragelement verbunden, so bewirken die Schrumpfkräfte des Lagerelementes die Ausbildung einer leicht balligen Form im gefügten Zustand. Da das Tragelement nach einer Ausgestaltung der Erfindung in demjenigen Bereich, in dem sich die Enden des Lagerelementes befinden, eine wesentlich dünnere Wandstärke aufweist als in seinem mittleren Bereich, bewirken die Schrumpfkräfte im Bereich der dünneren Wandstärken eine Durchmesserreduzierung. Eine aufgeschrumpfte Lagerbuchse mit ihrem überwiegend matrixartig aufgebauten Faserverbund, beispielsweise aus Siliziumkarbidfasem oder Kohlenstoffasern, verfügt damit über eine leicht ballig ausgebildete Oberfläche, welche den Ausgleich von Winkelabweichungen einer damit ausgerüsteten Wellenlagerung unterstützt. Die Kombination des mit einer matrixartigen Faserstruktur ausgestatteten Lagerelementes mit dem Tragelement, dessen Formgebung zu einer Federkennlinie um die radiale Achse führt, gewährleistet eine Winkelfehler ausgleichende Elastizität. Bei aufgepreßten Lagerelementen gewährleistet nur die elastische Nachgiebigkeit den Ausgleich von Winkelabweichungen.Is the bearing element connected by a shrink connection with the support element, Thus, the shrinking forces of the bearing element cause the formation of a light crowned shape in the joined state. As the support element according to an embodiment the invention in that area in which the ends of the bearing element have a substantially thinner wall thickness than in its middle region, cause the shrinkage forces in the range of thinner wall thicknesses Diameter reduction. A shrunk bearing bush with its predominantly matrix-like fiber composite, for example made of Siliziumkarbidfasem or carbon fibers, thus has a slightly convex surface, which compensates for angular deviations of a shaft bearing equipped therewith supported. The combination of the equipped with a matrix-like fiber structure Bearing element with the support element whose shape to a Spring characteristic leads around the radial axis, ensures an angle error compensating Elasticity. When pressed bearing elements ensures only the elastic Yielding the compensation of angular deviations.

Weitere Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben. Den rotierenden Teil des Radiallagers, die Lagerhülse, bilden das Tragelement und das darauf befestigte Lagerelement. In einem mittleren Bereich des Lagerelementes ist das Tragelement mit einem Wandstärkenmaximum versehen, wobei die Abmessungen so gewählt sind, daß damit eine sichere Kräfteübertragung gewährleistet ist. Weiterhin dient der Bereich des Wandstärkenmaximum zur Aufnahme von Drehbewegungen übertragenden Mitteln zwischen Welle und Tragelement. Im Bereich von den Stirnseiten des Lagerelementes sind am Tragelement Wandstärkenminima vorgesehen. Sie unterstützen die Federwirkung des Tragelementes sowie die Ausbildung einer balligen Formgebung der Lagerfläche.Further embodiments of the invention are described in the subclaims. The rotating part of the radial bearing, the bearing sleeve, form the support element and the bearing element mounted thereon. In a middle area of the bearing element the support element is provided with a wall thickness maximum, wherein the dimensions are chosen so that thus a secure transmission of forces is ensured. Furthermore, the area of the wall thickness maximum serves to accommodate rotary movements transmitting means between shaft and support element. In the range of the end faces of the bearing element wall thickness minima are provided on the support element. They support the spring action of the support element and the training a spherical shape of the bearing surface.

Im Bereich der Stirnseiten des Tragelementes kann mindestens ein dickwandiger, an die Welle herangeführter Endabschnitt vorgesehen sein, wobei dieser Endabschnitt mit Abstand zur Stirnseite des Lagerelementes angeordnet ist. Dazwischen ist die Wand des Tragelementes als ein elastisch nachgiebiger, dünnwandiger Abschnitt ausgebildet. Der im Bereich der Stirnseite des Tragelementes angeordnete dickwandige Endabschnitt kann auch drehmomentübertragende oder kräfteübertragende Ausgestaltungen aufweisen. Zur Anlage des Lagerelementes kann das Tragelement über eine stirnseitige Anlagefläche verfügen.In the area of the end faces of the support element, at least one thick-walled, on provided the shaft zoomed end portion, said end portion is arranged at a distance from the end face of the bearing element. In between is the Wall of the support element as an elastically resilient, thin-walled section educated. The arranged in the region of the end face of the support element thick-walled End section can also torque-transmitting or force-transmitting Embodiments have. To bear the bearing element, the support element have an end bearing surface.

Das Merkmal, wonach die Stirnseiten des Tragelementes über die Stirnseiten des Lagerelementes hinausragen, reduziert das Auftreten von Spannungsspitzen und erlaubt eine positive Beeinflussung der Federkennlinie. Aufgrund der Anordnung eines Freiraumes zwischen der Welle und dem Tragelement im Bereich einer oder beider Stirnseiten des Lagerelementes wird ein Platz für den elastischen Ausgleich von Winkelfehlern geschaffen.The feature according to which the end faces of the support element over the end faces of the Outstanding bearing element, reduces the occurrence of voltage spikes and allows a positive influence on the spring characteristic. Due to the arrangement of a Free space between the shaft and the support element in the area of one or Both end faces of the bearing element is a place for elastic compensation created by angle errors.

Ausgestaltungen der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen die

Fig. 1 - 3
verschiedene Ausführungsformen des Tragelementes, die
Fig. 4
die Anordnung eines solchen Tragelementes in einem Lager ohne Win- kelversatz, die
Fig. 5 u. 6
die Anordnung eines Tragelementes beim Auftreten eines Winkel- versatzes sowie ein zugehöriges Tragbild und die
Fig. 7 u. 8
bei einer konventional ausgebildeten Lagerung analoge Darstellungen zu den Fig. 5 und 6.
Embodiments of the invention are illustrated in the drawings and will be described in more detail below. It show the
Fig. 1-3
various embodiments of the support element, the
Fig. 4
the arrangement of such a support element in a bearing without angular misalignment, the
Fig. 5 u. 6
the arrangement of a support element when an angular offset occurs and an associated contact pattern and the
Fig. 7 u. 8th
in a conventionally designed storage analogous representations to FIGS. 5 and 6.

Die Fig. 1 zeigt im Längsschnitt ein Tragelement 1, welches metallischer oder nichtmetallischer Art sein kann, das im mittleren Bereich als Abschnitt 2 mit maximaler Wandstärke ausgebildet ist. Dieser Abschnitt 2 ist zur Übertragung von Drehmomenten ausgebildet und verwendet dafür bekannte Mittel 3, beispielsweise Nut/Federverbindungen. Vom mittleren Abschnitt 2 aus wird die Wandstärke des Tragelementes 1 zu den Stirnseiten 4, 5 hin zunehmend dünner. Ein solcher Wandstärkenverlauf weist einen Verlauf ohne scharfkantige Übergänge auf. Auf dem Außendurchmesser des Tragelementes 1 ist ein Lagerelement 6 befestigt, welches aus einer überwiegend matrixartig angeordneten Faserstruktur besteht, wobei eine Keramik- oder Kohlenstoffmatrix die Faserstruktur bildet. In die Matrix eingebettet sind Keramik- oder Kohlenstoffteile. Die axiale Länge des Lagerelementes 6 ist gleich oder kürzer als die axiale Länge des Tragelementes 1 ausgebildet. Die Stirnseiten 7, 8 des Lagerelementes 6 sind gegenüber den Stirnseiten 4, 5 des Tragelementes 1 zurückversetzt angeordnet. Eine solche Maßnahme verhindert im Übergang zwischen diesen beiden Teilen das Auftreten von Spannungsspitzen.Fig. 1 shows in longitudinal section a support element 1, which metallic or non-metallic May be of the mid-range as Section 2 with maximum Wall thickness is formed. This section 2 is for transmitting torques trained and used for this known means 3, for example, tongue and groove connections. From the middle section 2 from the wall thickness of the support element 1 to the end faces 4, 5 towards increasingly thinner. Such a wall thickness course has a course without sharp-edged transitions. On the outside diameter of the support element 1, a bearing element 6 is fixed, which consists of consists of a predominantly matrix-like arranged fiber structure, wherein a ceramic or carbon matrix forming the fiber structure. Embedded in the matrix Ceramic or carbon parts. The axial length of the bearing element 6 is the same or shorter than the axial length of the support element 1 is formed. The end faces 7, 8 of the bearing element 6 are opposite the end faces 4, 5 of the support element. 1 set back. Such a measure prevents the transition between these two parts the occurrence of voltage spikes.

Der mittlere Abschnitt 2 des Tragelementes 1 stellt eine stegartige Verbindung zur Welle her. Ausgehend von dem Abschnitt 2 ist die Wandstärke des Tragelementes 1 zu den Stirnseiten 4,5 hin abnehmend gestaltet. Ein solche Form, die einen Freiraum zwischen einer Oberfläche 9 einer Welle und dem Tragelement 1 herstellt, kann in einfacher Weise, beispielsweise durch spanabhebende Bearbeitung, erzeugt werden. The middle section 2 of the support element 1 provides a web-like connection to Wave forth. Starting from the section 2 is the wall thickness of the support element. 1 designed decreasing towards the front sides 4,5. Such a form, a free space between a surface 9 of a shaft and the support element 1 produces, can in simple manner, for example by machining, be generated.

In den Fig. 2 und 3 sind andere Ausführungsformen gezeigt, die ebenfalls elastische Eigenschaften einer so gebildeten Lagerhülse gewährleisten. Sie können bei größeren aufzunehmenden Radialkräften Verwendung finden. Die axiale Länge des Tragelementes 1 ist gegenüber der Ausführungsform von Fig. 1 vergrößert. Der Bereich der Stirnseiten 4, 5 des Tragelementes 1 wurde dabei so ausgebildet, daß eine Annäherung an die Oberfläche 9 einer nicht dargestellten Welle erfolgt.In Figs. 2 and 3, other embodiments are shown which are also elastic Ensure properties of a bearing sleeve thus formed. You can at larger radial forces to be used. The axial length of the support element 1 is enlarged compared to the embodiment of FIG. The area the end faces 4, 5 of the support element 1 was designed so that an approximation to the surface 9 of a shaft, not shown, takes place.

Der Wellenoberfläche 9 gegenüberliegende Flächen 10, 11 der Stirnseiten 4, 5 des Tragelementes 1 sind in Fig. 2 unter Bildung eines Spaltes angeordnet. Damit besteht die Möglichkeit, eine unter dem Einfluß von Radialkräften erfolgende Durchbiegung des Tragelementes 1 durch das gezeigte Spiel zwischen den Flächen 10, 11 und der Oberfläche 9 zu beeinflussen. Durch geeignete Auswahl der Abmaße für eine zwischen diesen Teilen vorzusehende Spielpassung, ist in einfacher Weise eine Begrenzung der Durchbiegung möglich. Ein dünnwandiger Abschnitt 12, 13 des Tragelementes 1, der zwischen den Stirnseiten 7, 8 des Lagerelementes 6 und den Stirnseiten 4, 5 des Tragelementes 1 angeordnet ist, gewährleistet die Federungseigenschaften einer so gebildeten Lagerhülse eines Radiallagers. Mittels einer solchen Maßnahme ist die Ausbildung einer progressiven Federkennlinie möglich.The shaft surface 9 opposite surfaces 10, 11 of the end faces 4, 5 of the Supporting element 1 are arranged in Fig. 2 to form a gap. That exists the possibility of bending under the influence of radial forces of the support element 1 by the game shown between the surfaces 10, 11th and the surface 9 to influence. By suitable selection of the dimensions for a clearance to be provided between these parts is simply a Limiting the deflection possible. A thin-walled section 12, 13 of Supporting element 1, between the end faces 7, 8 of the bearing element 6 and the End faces 4, 5 of the support element 1 is arranged, ensures the suspension properties a bearing sleeve of a radial bearing thus formed. By means of such Measure is the formation of a progressive spring characteristic possible.

In der Darstellung von Fig. 2 ist auf der rechten Seite im Bereich der Stirnseite 4 ein anderer Verlauf des mit einer Fläche 11 der Wellenoberfläche 9 gegenüberliegenden Endes des Tragelementes 1 gezeichnet. Der Übergang 13 ist hier kegelförmig gezeichnet, es sind aber auch andere Übergänge in Form von Bögen o. dgl. möglich. Eine solche Gestaltung ist vorteilhaft bei einer Montage eines solchen Lagers und erlaubt ein leichteres Einführen. In der Darstellung der Fig. 2 ist linksseitig die Stirnseite 5 so ausgebildet, daß das Tragelement über die für eine Drehmomentübertragung notwendigen Mittel 3 geschoben werden kann.In the illustration of Fig. 2 is on the right side in the region of the end face 4 a another course of the opposite with a surface 11 of the shaft surface 9 End of the support element 1 drawn. The transition 13 is drawn here conically, but there are also other transitions in the form of sheets o. The like. Possible. Such a design is advantageous in a mounting of such a warehouse and allows easier insertion. In the illustration of FIG. 2, the left side is the front side 5 designed so that the support element on the for a torque transmission necessary means 3 can be pushed.

Die Abwandlung der Fig. 3 sieht drehmomentübertragende Mittel 3 nur im Bereich der Stirnseite 5 des Tragelementes 1 vor. Zur Übertragung der auf das Lagerelement 6 einwirkenden Lagerkräfte liegt das Tragelement 1 im Bereich 2 und mit den Flächen 10, 11 auf der Oberfläche 9 einer Welle auf. Wesentlich ist hierbei, daß zwischen den die Länge des Lagerelementes 6 begrenzenden Stirnseiten 7, 8 und den Flächen 10, 11 des Tragelementes 1 ein dünnwandiger Abschnitt 12, 13 existiert. Ein solcher Abschnitt, wie er auch in Fig. 2 erkennbar ist, gewährleistet die Nachgiebigkeit einer solchen Einheit.The modification of Fig. 3 provides torque transmitting means 3 only in the area the front side 5 of the support element 1 in front. To transfer to the bearing element 6 acting bearing forces is the support element 1 in the area 2 and with the surfaces 10, 11 on the surface 9 of a shaft. It is essential that between the length of the bearing element 6 limiting end faces 7, 8 and the Surfaces 10, 11 of the support element 1, a thin-walled portion 12, 13 exists. One such section, as can also be seen in Fig. 2, ensures the compliance such a unit.

Die Ausführungsformen der Fig. 1 bis 3 zeigen zwar eine identische Länge des Lagerelementes 6; die Erfindung ist darauf aber nicht beschränkt. Deren Vorteile können auch durch andere Baulängen des Lagerelementes 6 erreicht werden.Although the embodiments of FIGS. 1 to 3 show an identical length of the bearing element 6; however, the invention is not limited thereto. Their advantages can be achieved by other lengths of the bearing element 6.

In der Fig. 4 ist eine montierte Lagerausführung unter beispielhafter Verwendung des Bauteiles von Fig.1 gezeigt. Auf einer Welle 14 ist ein Tragelement 1 aufgrund der Mittel 3 drehmomentübertragend angeordnet. Ein auf dem Tragelement 1 aufgeschrumpftes Lagerelement 6 wirkt mit einer Lagerbuchse 15 zusammen. Es ist gezeigt, wie die stimseitigen, dünnwandigen Enden des Tragelementes 1 unter dem Einfluß der Schrumpfkräfte eine ballige Form erhalten und zur Welle 14 hin verlaufen. Weiterhin wird in Verbindung mit dem in Richtung Stirnseite dünner werdenen Wandstärkenverlauf eine elastische Nachgiebigkeit ermöglicht und damit die Voraussetzung für eine Kompensation eines Winkelversatzes der Welle 14 gegenüber der Lagerbuchse 15 gewährleistet.In Fig. 4 is a mounted bearing design exemplified using the Components of Figure 1 shown. On a shaft 14 is a support member 1 due to Means 3 arranged to transmit torque. A shrunk on the support element 1 Bearing element 6 cooperates with a bearing bush 15. It is shown as the end, thin-walled ends of the support element 1 under the Influence of the shrinkage forces obtained a spherical shape and extend to the shaft 14 out. Furthermore, it will become thinner in connection with the front side Wall thickness course allows elastic compliance and thus the prerequisite for a compensation of an angular offset of the shaft 14 against the bushing 15 ensures.

Die Fig. 5 und 6 zeigen ein Radiallager gemäß der Erfindung und beim Ausgleich von Winkelabweichungen. In Fig. 5 ist eine gegenüber einer stillstehenden Lagerbuchse 15 um den Winkel β schräggestellte, aus Tragelement 1 und Lagerelement 6 bestehende Lagerhülse gezeigt, die mit einer Welle 14 rotiert. Die zugehörige perspektivische Darstellung der Fig. 6, eine Draufsicht auf eine unter Krafteinwirkung verformte Lagerhülse, zeigt eine große Kontaktfläche 16. Diese ist zwischen der Lagerbuchse 15 und dem Lagerelement 6 ausgebildet. Infolge der unter Belastung sich ausbildenden balligen Form des Lagerelementes 6, führt die Verformung bei leichter Schrägstellung zu einer Anpassung der aneinanderliegenden Gleitflächen. Durch die Vergrößerung der Lagerfläche 16 wird, bei gleicher Radialkraft, eine auf das Lagerelement 6 einwirkende lokale Flächenpressung in erheblichem Maße reduziert. Infolgedessen ist ein solchermaßen gestaltetes Radiallager wesentlich unempfindlicher gegen stoßartige oder schlagende sowie reibende Belastungen, als ein aus starren Elementen bestehendes Lager.Figs. 5 and 6 show a radial bearing according to the invention and the compensation of angular deviations. In Fig. 5 is opposite to a stationary bearing bush 15 inclined by the angle β, from support element 1 and bearing element. 6 existing bearing sleeve shown, which rotates with a shaft 14. The associated perspective Representation of FIG. 6, a plan view of an under force deformed bearing sleeve, shows a large contact surface 16. This is between the bearing bush 15 and the bearing element 6 is formed. As a result of under stress itself forming spherical shape of the bearing element 6, the deformation leads at lighter Inclination to an adaptation of the adjacent sliding surfaces. By the Enlargement of the bearing surface 16 is, with the same radial force, one on the bearing element 6 local surface pressure significantly reduced. Consequently Such a designed radial bearing is much less sensitive against jerky or beating as well as rubbing loads, as a rigid one Elements existing warehouse.

Die Fig. 7 und 8 zeigen analog der Darstellung zu Fig. 5 und 6 eine Lagerung nach dem Stand der Technik. Bei einem Winkelversatz β einer monolithischen keramischen Lagerhülse 18 ergibt sich bei einer Schrägstellung nur die in Fig. 8 gezeigte sehr schmale Lagerfläche 17. Im Vergleich zu einer ganzflächigen Anlage der Flächen bei einem Betrieb ohne Schrägstellung, bewirkt eine Schrägstellung eine er hebliche Reduzierung der üblicherweise vorhandenen Lagerfläche. Die auf das Lager einwirkende Radialkraft wird also auf eine wesentlich kleinere Fläche verteilt. Folglich übersteigt die auf das Lagerelement einwirkende Flächenpressung und/oder die lokale Reibleistung die zulässigen Werte. Die für solche Lagerungen bisher verwendeten monolitischen Lagerhülsen in Form keramischer Werkstoffe, die wegen ihrer Bruchempfindlichkeit weder aufgeschrumpft, noch anderweitig unter Zugspannung gesetzt werden dürfen, sind in einem solchen Betriebszustand überlastet. Damit ist ihr Einsatzzweck erheblich eingeschränkt.FIGS. 7 and 8 show, analogously to the illustration to FIGS. 5 and 6, a bearing according to FIG the state of the art. At an angular displacement β of a monolithic ceramic Bearing sleeve 18 results in an inclined position only shown in Fig. 8 very narrow storage area 17. Compared to a whole-area installation of the areas in an operation without inclination, causes an inclination he Significant reduction of the usual storage space. The on the camp acting radial force is thus distributed over a much smaller area. Consequently, the surface pressure acting on the bearing element and / or exceeds the local friction power the permissible values. The previously used for such storage monolithic bearing sleeves in the form of ceramic materials due to their shredding sensitivity neither shrunk nor otherwise under tension may be set are overloaded in such an operating condition. In order to their purpose is considerably limited.

Claims (8)

  1. Radial bearing of the sliding-bearing type, in particular for use in centrifugal pumps, with a bearing sleeve arranged on a shaft (14) and designed to transmit torque, the bearing sleeve being arranged rotatably within a bearing bush (15), a gap for a low-viscosity lubricating medium being located between the parts sliding on one another, the bearing sleeve consisting of a carrying element (1) and of a bearing element (6) fastened to and bearing against the latter, and the carrying element (1) having different wall thicknesses in the region of bearing contact of the bearing element (6), characterized in that a fibrous structure arranged predominantly in a matrix-like manner and having ceramic or carbon particles arranged in it forms the bearing element (6), in that a ceramic or carbon matrix forms the fibrous structure, in that the carrying element (1) is designed to be equal to or longer than the bearing element (6), and in that the wall thickness is designed to decrease from a wall-thickness maximum in the middle region (2) of the carrying element (1) in the direction of the end faces (7, 8) of the bearing element (6).
  2. Radial bearing according to Claim 1, characterized in that, in a middle region of the bearing element (6), the carrying element (1) is provided with a wall-thickness maximum.
  3. Radial bearing according to Claim 2, characterized in that force-transmitting means (3) are arranged in the region (2) having a wall-thickness minimum.
  4. Radial bearing according to Claims 1, 2 or 3, characterized in that the carrying element (1) is provided with wall-thickness minima in the region of the end faces (7, 8) of the bearing element (6).
  5. Radial bearing according to one or more of Claims 1 to 4, characterized in that the carrying element (1) has a thin-walled portion (12, 13) between at least one thick-walled end portion (10, 11) in the region of its end faces (4, 5) and an end face (7, 8) of the bearing element (6).
  6. Radial bearing according to one or more of Claims 1 to 5, characterized in that the bearing element (6) bears on an axial face of the carrying element (1).
  7. Radial bearing according to one or more of Claims 1 to 6, characterized in that the end faces (4, 5) of the carrying element (1) project beyond the end faces (7, 8) of the bearing element (6).
  8. Radial bearing according to one or more of Claims 1 to 7, characterized in that one or more free spaces are arranged between the carrying element (1) and a shaft surface (9) in the region of the end faces (7, 8) of the bearing element (6).
EP99923599A 1998-05-29 1999-05-14 Radial bearing with a sliding bearing-type construction Expired - Lifetime EP1080313B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19824128 1998-05-29
DE19824128A DE19824128A1 (en) 1998-05-29 1998-05-29 Radial bearings in plain bearing design
PCT/EP1999/003340 WO1999063239A1 (en) 1998-05-29 1999-05-14 Radial bearing with a sliding bearing-type construction

Publications (2)

Publication Number Publication Date
EP1080313A1 EP1080313A1 (en) 2001-03-07
EP1080313B1 true EP1080313B1 (en) 2005-12-14

Family

ID=7869354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99923599A Expired - Lifetime EP1080313B1 (en) 1998-05-29 1999-05-14 Radial bearing with a sliding bearing-type construction

Country Status (7)

Country Link
US (1) US6467966B1 (en)
EP (1) EP1080313B1 (en)
AT (1) ATE313020T1 (en)
BR (1) BR9910517A (en)
DE (2) DE19824128A1 (en)
ES (1) ES2253891T3 (en)
WO (1) WO1999063239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109623290A (en) * 2019-02-14 2019-04-16 昆山日晟轴承有限公司 A kind of production technology of the water pump shaft connecting bearings pump housing

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035753B4 (en) * 2000-07-22 2011-06-16 Zf Friedrichshafen Ag Cylindrical bearing bush
DE10058499A1 (en) * 2000-11-24 2002-05-29 Ksb Ag Plain bearings for a centrifugal pump
DE10215843A1 (en) * 2002-04-10 2003-10-30 Kuesters Eduard Maschf Treatment device for a textile web
DE10332390A1 (en) * 2003-07-11 2005-02-24 M&T Verbundtechnologie Gmbh Multi-surface sliding bearing for machine tools, comprises a bearing sleeve which is constituted as fiber-reinforced composite ceramic component with at least three inner surface grooves
DE10360003A1 (en) * 2003-12-19 2005-07-14 Brueninghaus Hydromatik Gmbh Piston engine, shaft and rolling bearing for a piston engine
DE102004024056B4 (en) * 2004-05-14 2013-10-31 Arvin Technologies, Inc. Valve for an exhaust pipe
EP2078872B1 (en) 2008-01-08 2019-03-13 Grundfos Management A/S Bearing arrangement
US8308366B2 (en) * 2009-06-18 2012-11-13 Eaton Industrial Corporation Self-aligning journal bearing
ES2683371T3 (en) * 2013-05-03 2018-09-26 Grundfos Holding A/S Pre-assembled sliding bearing unit for easy mounting on a shaft
US11098459B1 (en) 2015-07-03 2021-08-24 Infiltrator Water Technologies Llc Drainage units wrapped in sunlight-impeding wrapping
CN107461403B (en) * 2017-05-12 2019-05-31 中信重工机械股份有限公司 A kind of bearing support structure of ball mill pinion shaft

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426013A2 (en) * 1989-11-01 1991-05-08 The Spectranetics Corporation Unlubricated bearings for gas lasers
EP0598923A1 (en) * 1992-06-16 1994-06-01 Mitsubishi Kasei Corporation Method of manufacturing carbon fiber-reinforced composite carbon material, carbon fiber-reinforced composite carbon material, and sliding material

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE145109C (en) *
DE1528640B2 (en) 1965-08-31 1976-04-22 Allweiler Ag, 7760 Radolfzell STORAGE OF A RUNNER OF A PLUG-LESS HEATING CIRCULATION PUMP
US3675980A (en) * 1970-08-20 1972-07-11 Avco Corp Bearing
DE2223721A1 (en) * 1971-11-29 1973-06-07 Thaelmann Schwermaschbau Veb ADJUSTABLE SLIDING BEARING
FR2266820A1 (en) 1974-04-05 1975-10-31 Aerospatiale Self-aligning bearing for rotating or sliding shaft - has flexible inner shell to accommodate bending of shaft
US3993371A (en) * 1974-07-22 1976-11-23 The B. F. Goodrich Company Thin rubber surfaced bearings
AT347984B (en) * 1975-08-14 1979-01-25 Voest Ag SLIDING JOINT BEARINGS, IN PARTICULAR FOR TILTING CONVERTER
DE7836469U1 (en) * 1978-12-08 1979-05-17 Franz Klaus Union Armaturen Pumpen Gmbh & Co, 4630 Bochum FILM SLIDING BEARINGS, IN PARTICULAR FOR CHEMICAL PUMPS
DE3103868A1 (en) * 1981-02-05 1982-09-09 Vdo Adolf Schindling Ag, 6000 Frankfurt Bearing for the magnetic shaft of an eddy current measuring mechanism
DE3113004A1 (en) * 1981-04-01 1982-10-21 Schunk & Ebe Gmbh, 6301 Heuchelheim Sliding body
DE3143384A1 (en) * 1981-04-01 1983-05-11 Schunk & Ebe Gmbh, 6301 Heuchelheim Sliding element
US4717268A (en) * 1981-04-20 1988-01-05 Kamatics Corporation Bearing construction
JPS6344588A (en) * 1986-08-11 1988-02-25 Toho Yakuhin Kogyo Kk Lactase-type isomer of lipid a monosaccharide analog
DE3602132A1 (en) * 1986-01-24 1987-07-30 Glyco Metall Werke Slide or friction element with functional part of ceramic material with incorporated stabiliser and process for its production
US4880319A (en) * 1986-05-05 1989-11-14 The B. F. Goodrich Company Bearing assembly
JPH01220717A (en) 1988-02-29 1989-09-04 Toshiba Corp Bearing device for hydraulic machine
JPH0443622Y2 (en) * 1988-03-04 1992-10-15
CH677818A5 (en) 1988-05-30 1991-06-28 Sulzer Ag
JPH0276927A (en) 1988-09-08 1990-03-16 Toshiba Corp Ceramic bearing
US5056938A (en) * 1990-10-04 1991-10-15 The Torrington Company Track roller bearing floating sleeve system
DE9016728U1 (en) 1990-12-11 1992-01-16 Hanning Elektro-Werke Gmbh & Co, 4811 Oerlinghausen, De
ATE135448T1 (en) * 1990-12-27 1996-03-15 Ebara Corp CERAMIC SHAFT BUSHING
JP2862389B2 (en) * 1991-03-29 1999-03-03 鬼怒川ゴム工業 株式会社 Automotive hood seal
US5112146A (en) * 1991-07-17 1992-05-12 Rockwell International Corporation Functionally gradated rolling element bearing races
EP0561391B1 (en) * 1992-03-18 1998-06-24 Hitachi, Ltd. Bearing unit, drainage pump and hydraulic turbine each incorporating the bearing unit, and method of manufacturing the bearing unit
JPH06147228A (en) 1992-11-11 1994-05-27 Hitachi Ltd Ceramic bearing device
DE4239938C1 (en) * 1992-11-27 1994-04-21 Glyco Metall Werke Rolled bearing bush
DE4327474C2 (en) * 1993-08-16 1997-07-31 Lemfoerder Metallwaren Ag Plain bearings for chassis parts in motor vehicles
JP2733736B2 (en) * 1993-12-22 1998-03-30 大同メタル工業株式会社 Copper-lead alloy bearings
JPH07224836A (en) 1994-02-15 1995-08-22 Mitsubishi Heavy Ind Ltd Bearing
JP3378404B2 (en) * 1994-05-26 2003-02-17 株式会社荏原製作所 Sliding material
US5716143A (en) * 1995-07-12 1998-02-10 Allegheny Ludlum Corporation Spherical plain bearing
US5941647A (en) * 1996-08-19 1999-08-24 Citizen Watch Co., Ltd. Guide bush and method of forming hard carbon film over the inner surface of the guide bush
DE19651094C2 (en) * 1996-12-09 2002-01-31 Man Technologie Gmbh tribosystem
JPH10205539A (en) * 1997-01-22 1998-08-04 Daido Metal Co Ltd Copper base slide bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426013A2 (en) * 1989-11-01 1991-05-08 The Spectranetics Corporation Unlubricated bearings for gas lasers
EP0598923A1 (en) * 1992-06-16 1994-06-01 Mitsubishi Kasei Corporation Method of manufacturing carbon fiber-reinforced composite carbon material, carbon fiber-reinforced composite carbon material, and sliding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109623290A (en) * 2019-02-14 2019-04-16 昆山日晟轴承有限公司 A kind of production technology of the water pump shaft connecting bearings pump housing
CN109623290B (en) * 2019-02-14 2019-11-26 昆山日晟轴承有限公司 A kind of production technology of the water pump shaft connecting bearings pump housing

Also Published As

Publication number Publication date
ATE313020T1 (en) 2005-12-15
DE19824128A1 (en) 1999-12-02
US6467966B1 (en) 2002-10-22
BR9910517A (en) 2001-09-04
EP1080313A1 (en) 2001-03-07
WO1999063239A1 (en) 1999-12-09
DE59912935D1 (en) 2006-01-19
ES2253891T3 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
EP1080313B1 (en) Radial bearing with a sliding bearing-type construction
EP2397694B1 (en) Method for assembling a drive unit for a reciprocating pump
EP0021030B1 (en) Shaft of oxide ceramics
DE2454263A1 (en) CLUTCH, IN PARTICULAR FOR USE IN TURBOGEN GENERATORS
DE2755131C2 (en) Coupling for rigidly connecting two coaxial machine parts suitable for transmitting torque
DE2902429A1 (en) DRIVE UNIT
EP1178232B1 (en) Driving flange for a cardan joint and articulated shaft
DE2715638B1 (en) Storage arrangement for universal joint
DE2152125A1 (en) Roll for a roller bearing
EP1552149B1 (en) Stator for a progressive cavity pump
DE3109388A1 (en) "HIGHLY ELASTIC SHAFT COUPLING"
EP1719928A2 (en) Axial retention arrangement for the bearing bush of a Hooke's joint
WO2011007016A1 (en) Transport roller having improved running smoothness
WO2006063638A1 (en) End profile on slide bearing complementary elements for reducing surface pressure
DE2932248A1 (en) ARRANGEMENT FOR FIXING AND / OR STARTING MACHINE PARTS
EP1001182B1 (en) Universal joint assembly for an articulated shaft
EP2329161B1 (en) Universal joint arrangement for an articulated shaft
EP0903494B1 (en) Hydraulic pump
DE4301178C2 (en) Cross pin joint of a universal joint shaft suitable for the transmission of high torques
EP1020654B1 (en) Axle bearing device with lash adjustment
EP0924338B1 (en) Drive unit with a moving torque support for rolls
DE4111542C2 (en) Mehrgleitflächenlager
EP1530685B1 (en) Connecting element for connecting articulated spindles to connection assemblies, particularly a coupling holding device with conical centering
DE2522108A1 (en) TELESCOPIC SHAFT
DE102004017104A1 (en) Universal joint system esp. for heavy-duty cardan shafts has yoke parts with foot part formed as full flange and connected smoothly to bearing part, for compact construction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59912935

Country of ref document: DE

Date of ref document: 20060119

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060314

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2253891

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060915

BERE Be: lapsed

Owner name: KSB A.G.

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59912935

Country of ref document: DE

Owner name: KSB SE & CO. KGAA, DE

Free format text: FORMER OWNER: KSB AG, 67227 FRANKENTHAL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180517

Year of fee payment: 20

Ref country code: ES

Payment date: 20180618

Year of fee payment: 20

Ref country code: DE

Payment date: 20180619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180531

Year of fee payment: 20

Ref country code: FR

Payment date: 20180517

Year of fee payment: 20

Ref country code: NL

Payment date: 20180517

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59912935

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20190513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190513

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190515