EP1079950A1 - Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use - Google Patents

Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use

Info

Publication number
EP1079950A1
EP1079950A1 EP99923562A EP99923562A EP1079950A1 EP 1079950 A1 EP1079950 A1 EP 1079950A1 EP 99923562 A EP99923562 A EP 99923562A EP 99923562 A EP99923562 A EP 99923562A EP 1079950 A1 EP1079950 A1 EP 1079950A1
Authority
EP
European Patent Office
Prior art keywords
metal
carboxylic acid
aqueous
alloy powder
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99923562A
Other languages
German (de)
French (fr)
Other versions
EP1079950B1 (en
Inventor
Bernd Mende
Gerhard Gille
Benno Gries
Peter Aulich
Jörg MÜNCHOW
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of EP1079950A1 publication Critical patent/EP1079950A1/en
Application granted granted Critical
Publication of EP1079950B1 publication Critical patent/EP1079950B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to metal powder consisting of one or more of the elements Fe, Ni, Co, Cu, Sn and possible additions of Al, Cr, Mn, Mo and W, a process for their preparation and their use.
  • Alloy powders have diverse applications for the production of sintered materials by powder metallurgy.
  • the main feature of powder metallurgy is that corresponding powdered alloy or metal powder is pressed and then sintered at an elevated temperature.
  • This method has been introduced on an industrial scale for the production of complicated molded parts that can otherwise only be produced with a high degree of elaborate finishing.
  • the sintering can be carried out as solid phase sintering or to form a liquid phase, e.g. with hard or heavy metals.
  • a very important application of alloy and pure metal powders are tools for metal, stone and wood processing. In these cases, it is a matter of two-phase materials, whereby the hardness carriers (e.g. carbides or diamonds) are embedded in a metallic matrix, which ensures the required toughness properties of these
  • the element cobalt plays a special role because it is used as a metallic matrix
  • Diamond and carbide tools have some special properties. Because it wets tungsten carbide and diamonds particularly well, it is traditionally preferred for both types of tools.
  • the use of cobalt for the metallic binder phase in composite materials based on tungsten carbide or diamond achieves particularly good adhesion of the hardness carrier in the metallic binder phase. What is important here is the fact that in the case of cobalt the tendency for the formation of carbides of the type Co3W3C ("eta phases"), which lead to embrittlement in hard metals, is less pronounced than, for example, in the case of iron. Co also attacks diamonds less than, for example, iron, which easily forms Fe 3 C. For these technical reasons, cobalt is traditionally used in the carbide and diamond tool industry.
  • cobalt metal powders 0.8 to 2 ⁇ m FSSS (ASTM B330) are generally used, which together with the hard materials, pressing aids and a grinding fluid are subjected to mixed grinding in air gates or ball mills, which contain hard metal balls as grinding media become.
  • the suspension obtained is then separated from the grinding media, spray-dried, and the granules obtained are pressed into molds.
  • the subsequent liquid phase sintering at temperatures above the melting point of the W-Co-C eutectic results in dense sintered bodies (hard metals).
  • An important property of the hard metals produced in this way is their strength
  • Porosity is weakened.
  • Industrial hard metals have a porosity better than or equal to A02B00C00 according to ASTM B276 (or DIN ISO 4505).
  • the A-porosity is the microporosity
  • the B-porosity is the macroporosity.
  • cobalt metal powders are ductile and are not crushed during mixed grinding, but plastically deformed or the existing agglomerates disassembled. If the cobalt metal powder used contains large, sintered, large agglomerates, they are transferred into the spray granules in deformed form and result in A and B porosity in the sintered hard metal, often associated with local enrichment of the binder phase.
  • Diamond tools as a second important application group contain sintered parts (segments) as cutting or grinding active components, which consist mainly of diamonds, embedded in a metallic binder phase, mainly cobalt.
  • sintered parts consist mainly of diamonds, embedded in a metallic binder phase, mainly cobalt.
  • hard materials or other metal powders are optionally added to match the wear behavior of the bond on the diamond and the materials to be machined.
  • segments Metal powder, diamonds and possibly hard material powder mixed, optionally granulated and densely sintered in hot presses at elevated pressure and temperature.
  • the requirements placed on the binder metal powder in addition to the necessary chemical purity are: good compactibility, the highest possible sintering activity, one that is tailored to the diamond and the medium to be processed
  • the porosity decreases with increasing sintering temperature, i.e. the density of the
  • Binding after sintering is very inhomogeneous, since the sintering temperature and time at Homogenization is not enough.
  • high pressing forces occur, which wear out the pressing tools and lead to low strengths of the green compacts (eg edge breakouts).
  • This is also due to the cubic, body-centered grating type of iron, which has fewer sliding planes than the cubic, face-centering types of cobalt and
  • Nickel or copper metal powder contains high amounts of carbon, which can lead to a loss of strength in the segment.
  • Atomized metal powders or alloys do not have sufficient sintering activity, so that the temperatures that are acceptable for diamonds are still insufficiently compacted.
  • the object of the invention is to provide metal and alloy powders containing at least one of the metals iron, copper, tin, cobalt or nickel which meet the requirements mentioned for binder metals for hard metals and diamond tools.
  • the metal and alloy powders according to the invention can be modified by doping with the elements Al, Cr, Mn, Mo and / or W in a minor amount and adapted to special requirements.
  • the invention firstly relates to a method for producing the metal
  • Alloy powder by mixing aqueous metal salt solutions with a carboxylic acid solution, separating the precipitate from the mother liquor and
  • the precipitate is preferably washed with water and dried.
  • the precipitation product is preferably reduced in a hydrogen-containing atmosphere at temperatures between 400 and 600 ° C.
  • the reduction can take place in the indirectly heated rotary kiln or in the push-through furnace with little bed cover.
  • Other options for carrying out the reduction are readily known to the person skilled in the art, such as in the deck oven or in the fluidized bed.
  • the dried precipitation product is calcined at temperatures between 250 and 500 ° C. before the reduction in an oxygen-containing atmosphere.
  • the calcination has the effect that the precipitation product consisting of polycrystalline particles or agglomerates is comminuted by the gases released during the decomposition of the carboxylic acid residue by decrepitation, so that a larger surface area is available for the subsequent gas phase reaction (reduction) and a finer end product is obtained.
  • calcination in an oxygen-containing atmosphere results in the formation of a metal or alloy powder which has a significantly reduced porosity compared to direct reduction.
  • the (mixed) metal carboxylic acid salt is converted to the metal or alloy powder, there is a considerable reduction in the volume of the particles, which leads to the inclusion of pores.
  • the (mixed) metal carboxylic acid salt is first converted into the (mixed) metal oxide and annealed, so that pre-compression takes place with the healing of lattice defects.
  • the subsequent reduction in a hydrogen-containing atmosphere only the volume shrinkage from oxide to metal has to be overcome.
  • the intermediate calcination step leads to a gradual volume shrinkage achieved, each with structural stabilization of the crystals after each shrinkage stage.
  • Suitable carboxylic acids are aliphatic or aromatic, saturated or unsaturated mono- or dicarboxylic acids, in particular those with 1 to 8 carbon atoms. Because of their reducing effect, formic acid, oxalic acid, acrylic acid and crotonic acid are preferred, and because of their availability, formic and oxalic acid in particular. Oxalic acid is particularly preferably used. The excess of reducing carboxylic acids prevents the formation of Fe (III) ions, which would lead to problems during the precipitation.
  • the carboxylic acid is preferably used in a 1.1- to 1.6-fold stoichiometric excess, based on the metals. A 1.2- to 1.5-fold excess is particularly preferred.
  • the carboxylic acid solution is used as a suspension which contains undissolved carboxylic acid in suspension.
  • the preferably used carboxylic acid suspension contains a deposit of undissolved carboxylic acid, from which the carboxylic acid withdrawn by precipitation of the solution is replaced, so that a high concentration of carboxylic acid is maintained in the mother liquor throughout the precipitation reaction.
  • the concentration of dissolved carboxylic acid in the mother liquor should preferably be at least 20% of the saturation concentration of the carboxylic acid in water at the end of the precipitation reaction.
  • the concentration of dissolved carboxylic acid in the mother liquor should particularly preferably still be 25 to 50% of the saturation concentration of the carboxylic acid in water.
  • a chloride solution is preferably used as the metal salt solution.
  • the concentration of the metal salt solution is preferably about 1.6 to 2.5 mol per liter.
  • the metal salt solution preferably has a content of 10 to 90% by weight of iron, based on the total metal content and at least one further of the elements Copper, tin, nickel or cobalt.
  • the content of iron in the metal salt solution is particularly preferably at least 20% by weight, more preferably at least 25% by weight, very particularly preferably at least 50% by weight, but less than 80% by weight, very particularly preferably less than 60 wt .-%, each based on the total metal content.
  • the metal salt solutions further preferably contain 10 to 70% by weight, particularly preferably up to 45% by weight, of cobalt, based on the total metal content.
  • the nickel content of the metal salt solution is preferably 0 to 50% by weight, particularly preferably up to 16% by weight.
  • Copper and / or tin can be used in amounts of up to 30% by weight, preferably up to 10% by weight, based on the total metal content.
  • the metal salt solution is gradually added to the carboxylic acid suspension in the
  • the metal salt solution is particularly preferably added gradually such that the concentration of dissolved carboxylic acid does not fall below 80% of the solubility in until the suspended carboxylic acid has dissolved
  • a concentrated carboxylic acid solution has "activity 1", and only a half-concentrated carboxylic acid solution has "activity 0.5".
  • the activity of the mother liquor should accordingly preferably not fall below 0.8 during the addition of the metal salt solution.
  • the solubility of the oxalic acid which is preferably used in water is approximately 1 mol per liter of water (room temperature), corresponding to 126 g of oxalic acid (2 molecules of water of crystallization).
  • the oxalic acid should be introduced as an aqueous suspension which contains 2.3 to 4.5 mol of oxalic acid per liter of water.
  • This suspension contains about 1.3 to 3.5 moles of undissolved oxalic acid per liter of water.
  • the content of oxalic acid in the mother liquor should still be 20 to 55 g / l of water.
  • the oxalic acid consumed for the precipitation is constantly replaced by the dissolution of suspended oxalic acid.
  • the mother liquor is constantly stirred to homogenize it.
  • the metal salt solution is added gradually such that the oxalic acid concentration in the mother liquor does not drop below 75 g, particularly preferably not less than 100 g, per liter of mother liquor during the addition. This has the effect that a sufficiently high supersaturation is constantly achieved during the addition of the metal salt solution
  • Nucleation i.e. is sufficient to generate further precipitation particles. This on the one hand ensures a high nucleation rate, which leads to correspondingly small particle sizes, and on the other hand largely prevents agglomeration of the particles due to dissolution due to the low metal ion concentration present in the mother liquor.
  • the high carboxylic acid concentration, which is preferred according to the invention, during the precipitation also has the effect that the precipitation product has the same composition as the metal salt solution in terms of the relative contents of metals, i.e. that there is a homogeneous precipitation product with respect to its composition and thus alloy metal powder.
  • the invention further relates to metal and alloy powders which contain at least one of the elements iron, copper, tin, nickel or cobalt and which can optionally be doped in a minor amount by one or more of the elements Al, Cr, Mn, Mo, W. , and the average grain size according to ASTM B330 (FSSS) from 0.5 to 5 ⁇ , preferably below 3 ⁇ m.
  • the alloy powders according to the invention are characterized in that they have no fracture surfaces produced by grinding. They are available with this grain size immediately after reduction.
  • Preferred metal or alloy particles according to the invention have a very low carbon content of less than
  • Metal or alloy powders preferred according to the invention furthermore have an oxygen content of less than 1% by weight, preferably less than 0.5% by weight.
  • the preferred composition of the alloy powders according to the invention corresponds to the preferred relative metal contents of the metal salt solutions used, as stated above.
  • the metal and alloy powders according to the invention are outstandingly suitable as binder metals for hard metals or diamond tools. They are also suitable for the powder metallurgical production of components.
  • the metal and alloy powders according to the invention show higher sintering activity, more complete alloy formation and better wetting with the hardness carrier in the production of hard metals due to their finely dispersed distribution and thus lead to non-porous hard metals.
  • the metal and alloy powders according to the invention are also distinguished by the fact that they can be sintered to very dense sintered bodies even at a comparatively low temperature.
  • the invention accordingly also relates
  • Metal and alloy powders which, after sintering at a temperature of 650 ° C and exposure to a pressure of 35 MPa for 3 minutes, form a sintered body which has more than 96%, preferably more than 97%, of the theoretical material density.
  • Particularly preferred alloy powders according to the invention already achieve more than 97% of the theoretical material density at a sintering temperature of 620 ° C.
  • “theoretical material density” is to be understood as the density of an alloy with a corresponding composition produced by melting in a vacuum.
  • a hard metal test was carried out on this metal powder under identical conditions as in Examples 1 to 4.
  • the oxalate precipitation was carried out as in Example 5, but a chloride solution with 42.7 g / 1 Co and 56.3 g / 1 Fe was used.
  • the calcination in the muffle furnace was carried out at 250 ° C.
  • the three-stage reduction under hydrogen was carried out at 520/550/570 ° C.
  • An iron-cobalt-copper oxalate was precipitated, washed and dried analogously to Example 1, using a metal chloride solution containing about 45 g / 1 Fe, 45 g / 1 Co and 10 g / 1 Cu.
  • the metal powders had the properties shown in Table 3. Table 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A process is described for the production of metal powder and alloy powders containing at least one of the metals iron, copper, tin, cobalt or nickel, by mixing aqueous metal salt solutions with an aqueous carboxylic acid solution, separating the precipitation product from the mother liquor and reducing the precipitation product to the metal.

Description

Sinteraktive Metall- und Legierungspulver für pulvermetallurgische Anwendungen und Verfahren zu deren Herstellung und deren VerwendungSintered metal and alloy powders for powder metallurgical applications and processes for their production and their use
Die vorliegende Erfindung betrifft Metallpulver, bestehend aus einem oder mehreren der Elemente Fe, Ni, Co, Cu, Sn und möglichen Zusätzen von AI, Cr, Mn, Mo und W, ein Verfahren zu ihrer Herstellung sowie deren Verwendung.The present invention relates to metal powder consisting of one or more of the elements Fe, Ni, Co, Cu, Sn and possible additions of Al, Cr, Mn, Mo and W, a process for their preparation and their use.
Legierungspulver haben vielfältige Anwendungen zur Herstellung von Sinterwerk- Stoffen auf pulvermetallurgischem Wege. Hauptmerkmal der Pulvermetallurgie ist es, daß entsprechende pulverformige Legierungs- oder Metallpulver gepreßt und anschließend bei erhöhter Temperatur gesintert werden. Diese Methode ist in industriellem Maßstab zur Herstellung von komplizierten Formteilen eingeführt, die sich sonst nur mit einem hohen Maß an aufwendiger Endbearbeitung herstellen lassen. Die Sinterung kann als Festphasensinterung oder unter Bildung einer flüssigen Phase, wie z.B. bei den Hart- oder Schwermetallen, erfolgen. Eine sehr wichtige Anwendung von Legierungs- und reinen Metallpulvern sind Werkzeuge zur Metall-, Stein- und Holzbearbeitung. In diesen Fällen handelt es sich um zweiphasige Werkstoffe, wobei die Härteträger (z.B. Karbide oder Diamanten) in eine metallische Matrix eingebettet sind, welche für die erforderlichen Zähigkeitseigenschaften dieserAlloy powders have diverse applications for the production of sintered materials by powder metallurgy. The main feature of powder metallurgy is that corresponding powdered alloy or metal powder is pressed and then sintered at an elevated temperature. This method has been introduced on an industrial scale for the production of complicated molded parts that can otherwise only be produced with a high degree of elaborate finishing. The sintering can be carried out as solid phase sintering or to form a liquid phase, e.g. with hard or heavy metals. A very important application of alloy and pure metal powders are tools for metal, stone and wood processing. In these cases, it is a matter of two-phase materials, whereby the hardness carriers (e.g. carbides or diamonds) are embedded in a metallic matrix, which ensures the required toughness properties of these
Verbundwerkstoffe verantwortlich ist. Die so hergestellten Hartmetalle (im Falle von Karbiden oder Karbonitriden) oder Diamantwerkzeuge (im Fall von Diamanten) sind von erheblicher wirtschaftlicher Bedeutung.Composites is responsible. The hard metals produced in this way (in the case of carbides or carbonitrides) or diamond tools (in the case of diamonds) are of considerable economic importance.
Eine besondere Rolle spielt das Element Kobalt, da es als metallische Matrix inThe element cobalt plays a special role because it is used as a metallic matrix
Diamant- und Hartmetallwerkzeugen einige besondere Eigenschaften hat. Da es Wolframkarbid und Diamanten besonders gut benetzt, wird es traditionell für beide Werkzeugarten vorzugsweise verwendet. Mittels der Verwendung von Kobalt für die metallische Binderphase in Verbundwerkstoffen auf Wolframkarbid- oder Diamant- basis wird eine besonders gute Haftung des Härteträgers in der metallischen Binderphase erreicht. Wichtig ist dabei die Tatsache, daß im Falle des Kobalts die Tendenz zur Bildung von Karbiden des Typs Co3W3C ("eta-Phasen"), die in Hartmetallen zur Versprödung führen, weniger ausgeprägt ist als z.B. beim Eisen. Auch greift Co Diamanten weniger an als z.B. Eisen, welches leicht Fe3C bildet. Aus diesen technischen Gründen wird Kobalt in der Hartmetall- und Diamantwerkzeugindustrie traditionell eingesetzt.Diamond and carbide tools have some special properties. Because it wets tungsten carbide and diamonds particularly well, it is traditionally preferred for both types of tools. The use of cobalt for the metallic binder phase in composite materials based on tungsten carbide or diamond achieves particularly good adhesion of the hardness carrier in the metallic binder phase. What is important here is the fact that in the case of cobalt the tendency for the formation of carbides of the type Co3W3C ("eta phases"), which lead to embrittlement in hard metals, is less pronounced than, for example, in the case of iron. Co also attacks diamonds less than, for example, iron, which easily forms Fe 3 C. For these technical reasons, cobalt is traditionally used in the carbide and diamond tool industry.
Bei der Herstellung von Hartmetallen geht man im allgemeinen von Kobaltmetallpulvern 0,8 bis 2 μm FSSS (ASTM B330) aus, die zusammen mit den Hartstoffen, Preßhilfsmitteln und einer Mahlflüssigkeit in Atrittoren oder Kugel- mühlen, welche Hartmetallkugeln als Mahlkörper enthalten, einer Mischmahlung unterzogen werden. Die erhaltene Suspension wird anschließend von den Mahlkörpern getrennt, sprühgetrocknet, und das erhaltene Granulat in Formen gepreßt. Die nachfolgende Flüssigphasen- Sinterung bei Temperaturen oberhalb des Schmelzpunktes des W-Co-C-Eutektikums ergibt dichte Sinterkörper (Hartmetalle). Eine wichtige Eigenschaft der so erzeugten Hartmetalle ist deren Festigkeit, die durchIn the production of hard metals, cobalt metal powders 0.8 to 2 μm FSSS (ASTM B330) are generally used, which together with the hard materials, pressing aids and a grinding fluid are subjected to mixed grinding in air gates or ball mills, which contain hard metal balls as grinding media become. The suspension obtained is then separated from the grinding media, spray-dried, and the granules obtained are pressed into molds. The subsequent liquid phase sintering at temperatures above the melting point of the W-Co-C eutectic results in dense sintered bodies (hard metals). An important property of the hard metals produced in this way is their strength
Porosität geschwächt wird. Industrielle Hartmetalle haben eine Porosität von besser oder gleich A02B00C00 gemäß ASTM B276 (oder DIN ISO 4505). Als A-Porosität bezeichnet man die Mikroporosität, während B-Porosität die Makroporosität darstellt. Kobaltmetallpulver sind im Gegensatz zu Hartstoffen duktil und werden bei der Mischmahlung nicht zerkleinert, sondern plastisch verformt oder die vorhandenen Agglomerate zerlegt. Falls die verwendeten Kobaltmetallpulver kompakt versinterte, große Agglomerate enthalten, werden diese in deformierter Form in das Sprühgranulat überführt und ergeben im gesinterten Hartmetall A- und B-Porosität, häufig vergesellschaftet mit lokaler Anreicherung der Binderphase.Porosity is weakened. Industrial hard metals have a porosity better than or equal to A02B00C00 according to ASTM B276 (or DIN ISO 4505). The A-porosity is the microporosity, while the B-porosity is the macroporosity. In contrast to hard materials, cobalt metal powders are ductile and are not crushed during mixed grinding, but plastically deformed or the existing agglomerates disassembled. If the cobalt metal powder used contains large, sintered, large agglomerates, they are transferred into the spray granules in deformed form and result in A and B porosity in the sintered hard metal, often associated with local enrichment of the binder phase.
Diamantwerkzeuge als zweite wichtige Anwendungsgruppe enthalten als schneid- oder schleifaktive Bauteile Sinterteile (Segmente), welche hauptsächlich aus Diamanten, eingebettet in einer metallischen Binderphase, hauptsächlich Kobalt, bestehen. Daneben werden gegebenenfalls noch Hartstoffe oder andere Metallpulver zum Abstimmen des Verschleißverhaltens der Bindung auf den Diamanten und den zu bearbeitenden Werkstoffen zugesetzt. Zur Herstellung von Segmenten werden Metallpulver, Diamanten und gegebenenfalls Hartstoffpulver vermischt, gegebenenfalls granuliert und in Heißpressen bei erhöhtem Druck und Temperatur dicht gesintert. Die hierbei gestellten Anforderungen an die Bindermetallpulver neben der notwendigen chemischen Reinheit sind: gute Verdichtbarkeit, möglichst hohe Sinter- aktivität, eine auf den Diamanten und das zu bearbeitende Medium abgestimmteDiamond tools as a second important application group contain sintered parts (segments) as cutting or grinding active components, which consist mainly of diamonds, embedded in a metallic binder phase, mainly cobalt. In addition, hard materials or other metal powders are optionally added to match the wear behavior of the bond on the diamond and the materials to be machined. For the production of segments Metal powder, diamonds and possibly hard material powder mixed, optionally granulated and densely sintered in hot presses at elevated pressure and temperature. The requirements placed on the binder metal powder in addition to the necessary chemical purity are: good compactibility, the highest possible sintering activity, one that is tailored to the diamond and the medium to be processed
Härte, eingestellt durch die Korngröße und die Tendenz zur Gefügevergröberung beim Sintern, sowie geringer Angriff auf den bei Sintertemperatur metastabilen Diamanten (Graphitisierung).Hardness, adjusted by the grain size and the tendency to coarsen the structure during sintering, as well as little attack on the diamond which is metastable at sintering temperature (graphitization).
Generell nimmt mit steigender Sintertemperatur die Porosität ab, d.h. die Dichte desIn general, the porosity decreases with increasing sintering temperature, i.e. the density of the
Sinterstücks nähert sich seinem theoretischen Wert. Aus Gründen der Festigkeit wird daher die Sintertemperatur so hoch wie möglich gewählt. Andererseits fällt die Härte der metallischen Matrix oberhalb einer optimalen Temperatur wieder ab, da es zu einer Vergröberung des Gefüges kommt. Zusätzlich ist zu beachten, daß es bei höherer Temperatur zu einem verstärkten Angriff auf den Diamanten kommt. Aus diesen Gründen sind für Segmente solche Binderpulver vorzuziehen, die bei möglichst niedrigen Sintertemperaturen bereits ihre theoretische Dichte erreichen und sich leicht verdichten lassen.Sinterstücks approaches its theoretical value. For reasons of strength, the sintering temperature is therefore chosen to be as high as possible. On the other hand, the hardness of the metallic matrix drops again above an optimal temperature because the structure becomes coarser. In addition, it should be noted that at higher temperatures there is an increased attack on the diamond. For these reasons, binder powder is preferred for segments that already reach their theoretical density at the lowest possible sintering temperatures and that can be easily compacted.
Die nur begrenzte Verfügbarkeit von Kobalt, starke Preisschwankungen, Umweltaspekte und der Wunsch nach technischer Verbesserung haben zu zahlreichen Aktivitäten geführt, Kobalt in der Hartmetall- und Diamantwerkzeugindustrie zu ersetzen.The limited availability of cobalt, strong price fluctuations, environmental aspects and the desire for technical improvement have led to numerous activities to replace cobalt in the hard metal and diamond tool industry.
So gibt es bereits eine Reihe von Vorschlägen, als Bindermetall Kobalt zumindest teilweise durch Eisen und/oder Nickel oder deren Legierungen zu ersetzen (Metall,There are already a number of proposals to replace cobalt as a binder metal at least partially by iron and / or nickel or their alloys (metal,
40 (1986), 133 bis 140); Int. J. of Refractory Metals & Hard Materials 15 (1997), 139 bis 149).40: 133-140 (1986); Int. J. of Refractory Metals & Hard Materials 15 (1997) 139-149).
Nachteilig bei der Herstellung von Diamantwerkzeugen unter Einsatz von Metall- pulvern der Einzelelemente sowie von Bronzepulvern ist, daß die metallischeA disadvantage of the production of diamond tools using metal powders of the individual elements and bronze powders is that the metallic
Bindung nach dem Sintern sehr inhomogen ist, da die Sintertemperatur und -zeit zur Homogenisierung nicht ausreichen. Außerdem treten bei der Verwendung von Eisenmetallpulvern hohe Preßkräfte auf, die die Preßwerkzeuge verschleißen, und zu niedrigen Festigkeiten der Grünlinge führen (z.B. Kantenausbrüche). Auch dies ist auf den kubisch-raumzentrierten Gittertyp des Eisens zurückzuführen, welcher weniger Gleitebenen besitzt als die kubisch-flächenzentrierten Typen der Kobalt- undBinding after sintering is very inhomogeneous, since the sintering temperature and time at Homogenization is not enough. In addition, when using ferrous metal powders, high pressing forces occur, which wear out the pressing tools and lead to low strengths of the green compacts (eg edge breakouts). This is also due to the cubic, body-centered grating type of iron, which has fewer sliding planes than the cubic, face-centering types of cobalt and
Nickel- oder Kupfermetallpulver. Zusätzlich enthalten die verfügbaren feineren Carbonyl-Eisenpulver hohe Mengen an Kohlenstoff, welche zu Festigkeitsverlusten des Segmentes führen können. Verdüste Metallpulver oder Legierungen weisen keine ausreichende Sinteraktivität auf, so daß bei den für Diamanten vertretbaren Tempe- raturen noch keine ausreichende Verdichtung erfolgt.Nickel or copper metal powder. In addition, the finer carbonyl iron powders available contain high amounts of carbon, which can lead to a loss of strength in the segment. Atomized metal powders or alloys do not have sufficient sintering activity, so that the temperatures that are acceptable for diamonds are still insufficiently compacted.
Bei der Herstellung von Hartmetallen unter Verwendung von Carbonyleisenpulvern gibt es Probleme mit der Binderverteilung (A- und/oder B-Porosität). Kompensiert werden kann dies durch eine intensivere Mahlung. Dies führt jedoch zu einer uner- wünschten Verbreiterung der Korngrößenverteilung.When producing hard metals using carbonyl iron powders there are problems with the binder distribution (A and / or B porosity). This can be compensated for by more intensive grinding. However, this leads to an undesirable broadening of the grain size distribution.
Dementsprechend gibt es auch eine Reihe von Vorschlägen, metallische Legierungspulver durch Fällung, z.T. in Gegenwart von organischen Phasen, und anschließende Reduktion herzustellen (WO 92/18 656, WO 96/04 088, WO 97/21 844).Accordingly, there are also a number of proposals for metallic alloy powder by precipitation, in some cases. in the presence of organic phases, and subsequent reduction (WO 92/18 656, WO 96/04 088, WO 97/21 844).
Aufgabe der Erfindung ist es, Metall- und Legierungspulver, enthaltend mindestens eines der Metalle Eisen, Kupfer, Zinn, Kobalt oder Nickel, die die genannten Anforderungen an Bindermetalle für Hartmetalle und Diamantwerkzeuge erfüllen, zur Verfügung zu stellen. Die erfmdungsgemäßen Metall- und Legierungspulver können durch Dotierungen mit den Elementen AI, Cr, Mn, Mo und/oder W in untergeordneter Menge modifiziert und an spezielle Anforderungen angepaßt werden.The object of the invention is to provide metal and alloy powders containing at least one of the metals iron, copper, tin, cobalt or nickel which meet the requirements mentioned for binder metals for hard metals and diamond tools. The metal and alloy powders according to the invention can be modified by doping with the elements Al, Cr, Mn, Mo and / or W in a minor amount and adapted to special requirements.
Gegenstand der Erfindung ist zunächst ein Verfahren zur Herstellung der Metall- undThe invention firstly relates to a method for producing the metal and
Legierungspulver durch Vermischen von wäßrigen Metallsalzlösungen mit einer Carbonsäurelösung, Abtrennen des Fällungsproduktes von der Mutterlauge undAlloy powder by mixing aqueous metal salt solutions with a carboxylic acid solution, separating the precipitate from the mother liquor and
Reduktion des Fällungsproduktes zum Metall, das dadurch gekennzeichnet ist, daß die Carbonsäure überstöchiometrisch und als konzentrierte wäßrige Lösung eingesetzt wird.Reduction of the precipitate to the metal, which is characterized in that the carboxylic acid is used overstoichiometrically and as a concentrated aqueous solution.
Vorzugsweise wird das Fällungsprodukt nach Abtrennung von der Mutterlauge mit Wasser gewaschen und getrocknet.After separation from the mother liquor, the precipitate is preferably washed with water and dried.
Die Reduktion des Fällungsproduktes erfolgt vorzugsweise in einer wasserstoff- haltigen Atmosphäre bei Temperaturen zwischen 400 und 600°C. Die Reduktion kann im indirekt beheizten Drehrohrofen oder im Durchschubofen bei geringer Bettüberdeckung erfolgen. Weitere Möglichkeiten zur Durchführung der Reduktion sind dem Fachmann ohne weiteres geläufig, wie z.B. im Etagenofen oder in der Wirbelschicht.The precipitation product is preferably reduced in a hydrogen-containing atmosphere at temperatures between 400 and 600 ° C. The reduction can take place in the indirectly heated rotary kiln or in the push-through furnace with little bed cover. Other options for carrying out the reduction are readily known to the person skilled in the art, such as in the deck oven or in the fluidized bed.
Nach einer bevorzugten Ausführungsform der Erfindung wird das getrocknete Fällungsprodukt vor der Reduktion in sauerstoffhaltiger Atmosphäre bei Temperaturen zwischen 250 und 500°C kalziniert. Die Kalzination bewirkt einerseits, daß das aus polykristallinen Teilchen bzw. Agglomeraten bestehende Fällungsprodukt durch die bei Zersetzung des Carbonsäurerestes freigesetzten Gase durch Dekrepitation zerkleinert wird, so daß für die anschließende Gasphasenreaktion (Reduktion) eine größere Oberfläche zur Verfügung steht und ein feineres Endprodukt erhalten wird.According to a preferred embodiment of the invention, the dried precipitation product is calcined at temperatures between 250 and 500 ° C. before the reduction in an oxygen-containing atmosphere. The calcination, on the one hand, has the effect that the precipitation product consisting of polycrystalline particles or agglomerates is comminuted by the gases released during the decomposition of the carboxylic acid residue by decrepitation, so that a larger surface area is available for the subsequent gas phase reaction (reduction) and a finer end product is obtained.
Zum anderen wird durch die Kalzination in sauerstoffhaltiger Atmosphäre bewirkt, daß ein Metall- bzw. Legierungspulver entsteht, das gegenüber der Direktreduktion eine erheblich reduzierte Porosität aufweist. Bei der Überführung des (Misch)metall- carbonsäuresalzes zum Metall- bzw. Legierungspulver tritt eine erhebliche Volumen- reduktion der Teilchen auf, die zum Einschluß von Poren führt. Durch den zwischengeschalteten Kalzinierungsschritt in sauerstoffhaltiger Atmosphäre wird das (Misch)- metallcarbonsäuresalz zunächst in das (Misch)metalloxid überführt und getempert, so daß eine Vorverdichtung unter Ausheilung von Gitterstörungen erfolgt. Bei der anschließenden Reduktion in wasserstoffhaltiger Atmosphäre ist demgemäß nur noch die Volumenschrumpfung vom Oxid zum Metall zu überwinden. Durch die zwischengeschaltete Kalzinationsstufe wird eine stufenweise Volumenschrumpfung erzielt, jeweils unter struktureller Stabilisierung der Kristalle nach jeder Schrumpfungsstufe.On the other hand, calcination in an oxygen-containing atmosphere results in the formation of a metal or alloy powder which has a significantly reduced porosity compared to direct reduction. When the (mixed) metal carboxylic acid salt is converted to the metal or alloy powder, there is a considerable reduction in the volume of the particles, which leads to the inclusion of pores. Through the intermediate calcination step in an oxygen-containing atmosphere, the (mixed) metal carboxylic acid salt is first converted into the (mixed) metal oxide and annealed, so that pre-compression takes place with the healing of lattice defects. In the subsequent reduction in a hydrogen-containing atmosphere, only the volume shrinkage from oxide to metal has to be overcome. The intermediate calcination step leads to a gradual volume shrinkage achieved, each with structural stabilization of the crystals after each shrinkage stage.
Als Carbonsäuren sind aliphatische oder aromatische, gesättigte oder ungesättigte Mono- oder Dicarbonsäuren, insbesondere solche mit 1 bis 8 Kohlenstoffatomen, geeignet. Aufgrund ihrer reduzierenden Wirkung sind Ameisensäure, Oxalsäure, Acryl- säure und Crotonsäure bevorzugt, aufgrund ihrer Verfügbarkeit insbesondere Ameisen- und Oxalsäure. Besonders bevorzugt wird Oxalsäure eingesetzt. Der Überschuß reduzierender Carbonsäuren verhindert die Ausbildung von Fe(III)-Ionen, die zu Problemen bei der Fällung führen würde.Suitable carboxylic acids are aliphatic or aromatic, saturated or unsaturated mono- or dicarboxylic acids, in particular those with 1 to 8 carbon atoms. Because of their reducing effect, formic acid, oxalic acid, acrylic acid and crotonic acid are preferred, and because of their availability, formic and oxalic acid in particular. Oxalic acid is particularly preferably used. The excess of reducing carboxylic acids prevents the formation of Fe (III) ions, which would lead to problems during the precipitation.
Vorzugsweise wird die Carbonsäure mit 1,1- bis 1,6-fach stöchiometrischem Überschuß bezogen auf die Metalle eingesetzt. Insbesondere bevorzugt ist ein 1,2- bis 1,5-facher Überschuß.The carboxylic acid is preferably used in a 1.1- to 1.6-fold stoichiometric excess, based on the metals. A 1.2- to 1.5-fold excess is particularly preferred.
Nach einer weiter bevorzugten Ausführungsform der Erfindung wird die Carbonsäurelösung als Suspension eingesetzt, die ungelöste Carbonsäure suspendiert enthält. Die bevorzugt eingesetzte Carbonsäuresuspension enthält ein Depot an nicht gelöster Carbonsäure, aus dem durch Fällung der Lösung entzogene Carbonsäure ersetzt wird, so daß während der gesamten Fällungsreaktion eine hohe Konzentration an Carbonsäure in der Mutterlauge aufrechterhalten wird. Vorzugsweise soll die Konzentration an gelöster Carbonsäure in der Mutterlauge am Ende der Fällungsreaktion noch mindestens 20 % der Sättigungskonzentration der Carbonsäure in Wasser betragen. Besonders bevorzugt soll am Ende der Fällungsreaktion die Kon- zentration an gelöster Carbonsäure in der Mutterlauge noch 25 bis 50 % der Sättigungskonzentration der Carbonsäure in Wasser betragen.According to a further preferred embodiment of the invention, the carboxylic acid solution is used as a suspension which contains undissolved carboxylic acid in suspension. The preferably used carboxylic acid suspension contains a deposit of undissolved carboxylic acid, from which the carboxylic acid withdrawn by precipitation of the solution is replaced, so that a high concentration of carboxylic acid is maintained in the mother liquor throughout the precipitation reaction. The concentration of dissolved carboxylic acid in the mother liquor should preferably be at least 20% of the saturation concentration of the carboxylic acid in water at the end of the precipitation reaction. At the end of the precipitation reaction, the concentration of dissolved carboxylic acid in the mother liquor should particularly preferably still be 25 to 50% of the saturation concentration of the carboxylic acid in water.
Als Metallsalzlösung wird vorzugsweise eine Chloridlösung eingesetzt. Vorzugsweise beträgt die Konzentration der Metallsalzlösung etwa 1,6 bis 2,5 Mol pro Liter. Vorzugsweise weist die Metallsalzlösung einen Gehalt von 10 bis 90 Gew.-% Eisen bezogen auf den Gesamtmetallgehalt und mindestens ein weiteres der Elemente Kupfer, Zinn, Nickel oder Kobalt auf. Insbesondere bevorzugt beträgt der Gehalt an Eisen in der Metallsalzlösung mindestens 20 Gew.-%, weiter bevorzugt mindestens 25 Gew.-%, ganz besonders bevorzugt mindestens 50 Gew.-%, jedoch weniger als 80 Gew.-%, ganz besonders bevorzugt weniger als 60 Gew.-%, jeweils bezogen auf den Gesamtmetallgehalt.A chloride solution is preferably used as the metal salt solution. The concentration of the metal salt solution is preferably about 1.6 to 2.5 mol per liter. The metal salt solution preferably has a content of 10 to 90% by weight of iron, based on the total metal content and at least one further of the elements Copper, tin, nickel or cobalt. The content of iron in the metal salt solution is particularly preferably at least 20% by weight, more preferably at least 25% by weight, very particularly preferably at least 50% by weight, but less than 80% by weight, very particularly preferably less than 60 wt .-%, each based on the total metal content.
Weiter bevorzugt enthalten die Metallsalzlösungen 10 bis 70 Gew.-%, insbesondere bevorzugt bis 45 Gew.-%, Kobalt bezogen auf den Gesamtmetallgehalt. Der Nickelgehalt der Metallsalzlösung beträgt vorzugsweise 0 bis 50 Gew.-%, insbesondere bevorzugt bis 16 Gew.-%.The metal salt solutions further preferably contain 10 to 70% by weight, particularly preferably up to 45% by weight, of cobalt, based on the total metal content. The nickel content of the metal salt solution is preferably 0 to 50% by weight, particularly preferably up to 16% by weight.
Kupfer und/oder Zinn können in Mengen von bis zu 30 Gew.-%, bevorzugt bis zu 10 Gew.-%, bezogen auf den Gesamtmetallgehalt, eingesetzt werden. Nach der besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens folgt die Zugabe der Metallsalzlösung zur Carbonsäuresuspension allmählich in derCopper and / or tin can be used in amounts of up to 30% by weight, preferably up to 10% by weight, based on the total metal content. According to the particularly preferred embodiment of the process according to the invention, the metal salt solution is gradually added to the carboxylic acid suspension in the
Weise, daß der Gehalt an gelöster Carbonsäure in der Mutterlauge während der Zuführung der Metallsalzlösung einen Wert von 50 % der Löslichkeit von Carbonsäure in Wasser nicht unterschreitet. Insbesondere bevorzugt erfolgt die Zugabe der Metallsalzlösung derart allmählich, daß bis zur Auflösung der suspendierten Carbon- säure die Konzentration an gelöster Carbonsäure nicht unter 80 % der Löslichkeit inThat the content of dissolved carboxylic acid in the mother liquor during the supply of the metal salt solution does not fall below 50% of the solubility of carboxylic acid in water. The metal salt solution is particularly preferably added gradually such that the concentration of dissolved carboxylic acid does not fall below 80% of the solubility in until the suspended carboxylic acid has dissolved
Wasser unterschritten wird. Die Zugabegeschwindigkeit der Metallsalzlösung zur Carbonsäuresuspension erfolgt also in der Weise, daß der Entzug von Carbonsäure aus der Mutterlauge einschließlich Konzentrationsherabsetzung durch Verdünnung durch das mit der Metallsalzlösung zugefuhrte Wasser durch die Auflösung von nicht gelöster, suspendierter Carbonsäure weitgehend kompensiert wird.Water falls below. The rate of addition of the metal salt solution to the carboxylic acid suspension thus takes place in such a way that the withdrawal of carboxylic acid from the mother liquor, including concentration reduction, is largely compensated for by dilution with the water supplied with the metal salt solution by dissolving undissolved, suspended carboxylic acid.
In bezug auf die Fällung der Metallsalze besitzt eine konzentrierte Carbonsäurelösung die "Aktivität 1", eine nur halb konzentrierte Carbonsäurelösung die "Aktivität 0,5". Erfindungsgemäß bevorzugt soll demgemäß die Aktivität der Mutter- lauge während der Zugabe der Metallsalzlösung nicht unter 0,8 fallen. Beispielsweise beträgt die Löslichkeit der bevorzugt eingesetzten Oxalsäure in Wasser ca. 1 Mol pro Liter Wasser (Raumtemperatur), entsprechend 126 g Oxalsäure (2 Moleküle Kristallwasser). Nach dem erfindungsgemäßen bevorzugten Verfahren soll die Oxalsäure als wäßrige Suspension, die 2,3 bis 4,5 Mol Oxalsäure pro Liter Wasser enthält, vorgelegt werden. Diese Suspension enthält ca. 1,3 bis 3,5 Mol ungelöste Oxalsäure pro Liter Wasser. Nach Einleitung der Metallsalzlösung und beendeter Fällung soll der Gehalt an Oxalsäure in der Mutterlauge noch 20 bis 55 g/1 Wasser betragen. Während der Einleitung der Metallsalzlösung in die Oxalsäuresuspension wird die zur Fällung verbrauchte Oxalsäure ständig durch Auflösung suspendierter Oxalsäure ersetzt. Zur Homogenisierung der Mutterlauge wird diese ständig gerührt. Nach der bevorzugten Ausführungsforrn erfolgt die Zugabe der Metallsalzlösung derart allmählich, daß die Oxalsäurekonzentration in der Mutterlauge während der Zugabe nicht unter 75 g, besonders bevorzugt nicht unter 100 g pro Liter Mutterlauge absinkt. Dadurch wird bewirkt, daß während der Zugabe der Metallsalzlösung ständig eine ausreichend hohe Übersättigung erzielt wird, die zurWith regard to the precipitation of the metal salts, a concentrated carboxylic acid solution has "activity 1", and only a half-concentrated carboxylic acid solution has "activity 0.5". According to the invention, the activity of the mother liquor should accordingly preferably not fall below 0.8 during the addition of the metal salt solution. For example, the solubility of the oxalic acid which is preferably used in water is approximately 1 mol per liter of water (room temperature), corresponding to 126 g of oxalic acid (2 molecules of water of crystallization). According to the preferred method according to the invention, the oxalic acid should be introduced as an aqueous suspension which contains 2.3 to 4.5 mol of oxalic acid per liter of water. This suspension contains about 1.3 to 3.5 moles of undissolved oxalic acid per liter of water. After the metal salt solution has been introduced and the precipitation has ended, the content of oxalic acid in the mother liquor should still be 20 to 55 g / l of water. During the introduction of the metal salt solution into the oxalic acid suspension, the oxalic acid consumed for the precipitation is constantly replaced by the dissolution of suspended oxalic acid. The mother liquor is constantly stirred to homogenize it. According to the preferred embodiment, the metal salt solution is added gradually such that the oxalic acid concentration in the mother liquor does not drop below 75 g, particularly preferably not less than 100 g, per liter of mother liquor during the addition. This has the effect that a sufficiently high supersaturation is constantly achieved during the addition of the metal salt solution
Keimbildung, d.h. zur Erzeugung weiterer Fällungspartikel ausreicht. Hierdurch wird einerseits eine hohe Keimbildungsrate, die zu entsprechend kleinen Partikelgrößen führt, gewährleistet und andererseits aufgrund der geringen, in der Mutterlauge vorhandenen Metallionenkonzentration eine Agglomeration der Teilchen durch Anlösen weitgehend verhindert.Nucleation, i.e. is sufficient to generate further precipitation particles. This on the one hand ensures a high nucleation rate, which leads to correspondingly small particle sizes, and on the other hand largely prevents agglomeration of the particles due to dissolution due to the low metal ion concentration present in the mother liquor.
Die erfindungsgemäß bevorzugt hohe Carbonsäurekonzentration während der Fällung bewirkt ferner, daß das Fällungsprodukt hinsichtlich der relativen Gehalte an Metallen dieselbe Zusammensetzung aufweist wie die Metallsalzlösung, d.h. daß ein bezüglich seiner Zusammensetzung homogenes Fällungsprodukt und damit Legierungsmetallpulver entsteht.The high carboxylic acid concentration, which is preferred according to the invention, during the precipitation also has the effect that the precipitation product has the same composition as the metal salt solution in terms of the relative contents of metals, i.e. that there is a homogeneous precipitation product with respect to its composition and thus alloy metal powder.
Gegenstand der Erfindung sind ferner Metall- und Legierungspulver, die mindestens eines der Elemente Eisen, Kupfer, Zinn, Nickel oder Kobalt enthalten und gegebe- nenfalls durch eines oder mehrere der Elemente AI, Cr, Mn, Mo, W in untergeordneter Menge dotiert sein können, und die eine mittlere Korngröße nach ASTM B330 (FSSS) von 0,5 bis 5 μ, vorzugsweise unterhalb 3 μm aufweisen. Die erfindungsgemäßen Legierungspulver sind dadurch gekennzeichnet, daß sie keine durch Mahlung erzeugten Bruchflächen aufweisen. Sie sind unmittelbar nach der Reduktion mit dieser Korngröße erhältlich. Bevorzugte erfindungsgemäße Metall- bzw. Legierungsteilchen weisen einen sehr geringen Kohlenstoffgehalt von weniger alsThe invention further relates to metal and alloy powders which contain at least one of the elements iron, copper, tin, nickel or cobalt and which can optionally be doped in a minor amount by one or more of the elements Al, Cr, Mn, Mo, W. , and the average grain size according to ASTM B330 (FSSS) from 0.5 to 5 μ, preferably below 3 μm. The alloy powders according to the invention are characterized in that they have no fracture surfaces produced by grinding. They are available with this grain size immediately after reduction. Preferred metal or alloy particles according to the invention have a very low carbon content of less than
0,04 Gew.-%, vorzugsweise weniger als 0,01 Gew.-%, auf. Dies ist auf die zwischen Fällung und Reduktion durchgeführte Temperaturbehandlung in sauerstoffhaltiger Atmosphäre zurückzuführen, bei der der nach der Fällung vorhandene organische Kohlenstoff entfernt wird. Erfindungsgemäß bevorzugte Metall- bzw. Legierungs- pulver weisen ferner einen Sauerstoffgehalt von unter 1 Gew.-%, vorzugsweise weniger als 0,5 Gew.-%, auf. Die bevorzugte Zusammensetzung der erfindungsgemäßen Legierungspulver entspricht den bevorzugten relativen Metallgehalten der eingesetzten Metallsalzlösungen, wie oben angegeben. Die erfindungsgemäßen Metall- und Legierungspulver sind in hervorragender Weise geeignet als Bindermetall für Hartmetalle oder Diamantwerkzeuge. Ferner sind sie zur pulvermetallurgischen Herstellung von Bauteilen geeignet.0.04% by weight, preferably less than 0.01% by weight. This is due to the temperature treatment carried out between precipitation and reduction in an oxygen-containing atmosphere, in which the organic carbon present after the precipitation is removed. Metal or alloy powders preferred according to the invention furthermore have an oxygen content of less than 1% by weight, preferably less than 0.5% by weight. The preferred composition of the alloy powders according to the invention corresponds to the preferred relative metal contents of the metal salt solutions used, as stated above. The metal and alloy powders according to the invention are outstandingly suitable as binder metals for hard metals or diamond tools. They are also suitable for the powder metallurgical production of components.
Die erfindungsgemäßen Metall- und Legierungspuler zeigen bei der Herstellung von Hartmetallen aufgrund ihrer feindispersen Verteilung höhere Sinteraktivität, voll- ständigere Legierungsbildung und bessere Benetzung mit dem Härteträger und führen so zu porenfreien Hartmetallen.The metal and alloy powders according to the invention show higher sintering activity, more complete alloy formation and better wetting with the hardness carrier in the production of hard metals due to their finely dispersed distribution and thus lead to non-porous hard metals.
Die erfindungsgemäßen Metall- und Legierungspulver zeichnen sich auch dadurch aus, daß sie bereits bei vergleichsweise niedriger Temperatur zu sehr dichten Sinter- körpern versintert werden können. Gegenstand der Erfindung sind demgemäß auchThe metal and alloy powders according to the invention are also distinguished by the fact that they can be sintered to very dense sintered bodies even at a comparatively low temperature. The invention accordingly also relates
Metall- und Legierungspulver, die nach Versinterung bei einer Temperatur von 650°C und Einwirkung eines Preßdruckes von 35 MPa über 3 Minuten einen Sinterkörper ausbilden, der mehr als 96 %, vorzugsweise mehr als 97 %, der theoretischen Materialdiche aufweist. Besonders bevorzugte erfindungsgemäße Legierungspulver erreichen bereits bei einer Sintertemperatur von 620°C mehr als 97 % der theoretischen Materialdichte. Dabei soll unter „theoretische Materialdichte" die Dichte einer durch Schmelzen im Vakuum erzeugten Legierung mit entsprechender Zusammensetzung verstanden werden.Metal and alloy powders which, after sintering at a temperature of 650 ° C and exposure to a pressure of 35 MPa for 3 minutes, form a sintered body which has more than 96%, preferably more than 97%, of the theoretical material density. Particularly preferred alloy powders according to the invention already achieve more than 97% of the theoretical material density at a sintering temperature of 620 ° C. In this context, “theoretical material density” is to be understood as the density of an alloy with a corresponding composition produced by melting in a vacuum.
Die Erfindung wird nachfolgend anhand der beigefügten Beispiele 1 bis 7 näher erläutert. The invention is explained in more detail below with the aid of the attached examples 1 to 7.
Beispiele 1 bis 4Examples 1 to 4
Jeweils 6,3 1 einer Metallchloridlösung, enthaltend 75 g/1 Fe, 15 g/1 Ni und 10 g/1 Co, wurden unter Rühren in eine Suspension von 1954 g Oxalsäure (die 1,4-fache stöchiometrische Menge bezogen auf die Metallsalze) in der in Tabelle 1 angegebenen Menge Wasser allmählich eindosiert. Nach beendeter Fällung wurde noch 30 Minuten gerührt, anschließend das Präzipitat abfiltriert und mit Wasser gewaschen. Das Oxalat wurde bei 105°C bis zur Gewichtskonstanz getrocknet. Die Teilchengrößen (FSSS) des getrockneten Mischoxalates sind in Tabelle 1 angegeben. Das Mischoxalat wurde anschließend im Muffelofen 3 Stunden bei 300°C kalziniert und danach im Durchschubofen bei 500°C unter Wasserstoff zum Legierungsmetallpulver reduziert.In each case 6.3 l of a metal chloride solution containing 75 g / 1 Fe, 15 g / 1 Ni and 10 g / 1 Co were stirred into a suspension of 1954 g oxalic acid (1.4 times the stoichiometric amount based on the metal salts ) gradually metered in in the amount of water specified in Table 1. After the precipitation had ended, the mixture was stirred for a further 30 minutes, then the precipitate was filtered off and washed with water. The oxalate was dried at 105 ° C. to constant weight. The particle sizes (FSSS) of the dried mixed oxalate are given in Table 1. The mixed oxalate was then calcined in the muffle furnace at 300 ° C. for 3 hours and then reduced to the alloy metal powder in a push-through furnace at 500 ° C. under hydrogen.
Je 27 g des Mischmetallpulvers wurden mit 273 g WC (Sorte DS80 mit 0,15 % VC, Hersteller HCSt, Goslar) unter Zuschlag von 0,3 g Ruß im Attritor unter Hexan vermählen. Nach Abtrennen der Mahlkugeln und Trocknung des Mahlgutes wurde ein Grünkörper hergestellt und wie folgt mit einem Preßdruck von 1500 kg/cm2 gesintert: 20°C/min auf 1100°C, 60 min Halten bei dieser Temperatur, weiter Aufheizen mit einer Rate von 20°C/min auf 1400°C, 45 min Halten bei dieser Tempe- ratur, Abkühlung auf 1100°C, 60 min Halten bei dieser Temperatur und Abkühlung auf Raumtemperatur. Der Sinterkörper wies die in Tabelle 1 angegebenen Eigenschaften auf. 27 g of the mixed metal powder were ground with 273 g of WC (grade DS80 with 0.15% VC, manufacturer HCSt, Goslar) with the addition of 0.3 g of soot in the attritor under hexane. After the grinding balls had been separated off and the ground material had been dried, a green body was produced and sintered as follows with a pressure of 1500 kg / cm 2 : 20 ° C./min to 1100 ° C., holding at this temperature for 60 minutes, further heating at a rate of 20 ° C / min to 1400 ° C, 45 min hold at this temperature, cooling to 1100 ° C, 60 min hold at this temperature and cooling to room temperature. The sintered body had the properties given in Table 1.
Tabelle 1Table 1
* klare Lösung ** ungleichmäßige Teilchengrößenverteilung Beispiel 5* clear solution ** uneven particle size distribution Example 5
Es wurden 39 1 einer Metallchloridlösung mit 50 g/1 Fe, 42,3 g/1 Co und 7,7 g/1 Ni bei Raumtemperatur unter ständigem Rühren über eine Zeit von 30 min in eine Suspension aus 12,877 kg Oxalsäure in 45 1 Wasser eindosiert und anschließend weitere 60 min gerührt. Danach wurde filtriert, gewaschen und das Oxalat bei 110°C bis zur Gewichtskonstanz getrocknet. Das Oxalat wurde im Muffelofen 3 h bei 300°C kalziniert und das so produzierte Oxid nachfolgend im Durchschubofen in 3 aufeinanderfolgenden Heizzonen bei 480/500/530°C in insgesamt 130 min unter Wasserstoff (Taupunkt 10°C) zum Metallpulver reduziert. Am Metallpulver wurden ein FS SS-Wert von 0,71 μm, eine physikalische Dichte von 7,76 g/cm3 und eine Fülldichte von 0,24 g/cm3 gemessen; der Gehalt an Sauerstoff wurde mit 0,71 % bestimmt.There were 39 1 of a metal chloride solution with 50 g / 1 Fe, 42.3 g / 1 Co and 7.7 g / 1 Ni at room temperature with constant stirring over a period of 30 min in a suspension of 12.877 kg oxalic acid in 45 1 water metered in and then stirred for a further 60 min. It was then filtered, washed and the oxalate was dried to constant weight at 110 ° C. The oxalate was calcined in the muffle furnace at 300 ° C for 3 h and the oxide thus produced was subsequently reduced to metal powder in a row in three successive heating zones at 480/500/530 ° C in 130 min under hydrogen (dew point 10 ° C). An FS SS value of 0.71 μm, a physical density of 7.76 g / cm 3 and a bulk density of 0.24 g / cm 3 were measured on the metal powder; the oxygen content was determined to be 0.71%.
Mit diesem Metallpulver wurde unter identischen Bedingungen wie in Beispielen 1 bis 4 ein Hartmetalltest durchgeführt. Am Testkörper wurden eine Dichte von 14,54 g/cm3, eine Vickershärte HV30 = 1817 kg/mm2 und eine Porosität <A02B00C00 nach ASTM B276 (unter dem Lichtmikroskop bei 200-facher Vergrößerung keine sichtbare Mikroporosität) gemessen.A hard metal test was carried out on this metal powder under identical conditions as in Examples 1 to 4. A density of 14.54 g / cm 3 , a Vickers hardness HV 30 = 1817 kg / mm 2 and a porosity <A02B00C00 according to ASTM B276 (no visible microporosity under the light microscope at 200 × magnification) were measured on the test body.
Beispiel 6Example 6
Die Oxalatfällung wurde wie in Beispiel 5 durchgeführt, jedoch wurde eine Chloridlösung mit 42,7 g/1 Co und 56,3 g/1 Fe eingesetzt.The oxalate precipitation was carried out as in Example 5, but a chloride solution with 42.7 g / 1 Co and 56.3 g / 1 Fe was used.
Die Kalzination im Muffelofen erfolgte bei 250°C. Die dreistufige Reduktion unter Wasserstoff erfolgte bei 520/550/570°C.The calcination in the muffle furnace was carried out at 250 ° C. The three-stage reduction under hydrogen was carried out at 520/550/570 ° C.
Je 25 g dieses Fe-Co-Legierungspulvers wurden in einer Graphitmatrize im Vakuum (Heißpresse der Fa. Dr. Fritsch, Typ TSP) bei einem Preßdruck von 35 MPa über eine Preßzeit von 3 min bei unterschiedlicher Temperatur gesintert. Es wurden die in Tabelle 2 dargestellten Ergebnisse erzielt.25 g each of this Fe-Co alloy powder were sintered in a graphite matrix in a vacuum (hot press from Dr. Fritsch, type TSP) at a pressure of 35 MPa over a pressing time of 3 min at different temperatures. The results shown in Table 2 were achieved.
Tabelle 2Table 2
*) theor. Dichte = Mittelwert der Dichten von Co und Fe entsprechend ihrem prozentualen Anteil = 8,37 g/cm3 *) Theoretical density = mean value of the densities of Co and Fe according to their percentage = 8.37 g / cm 3
Beispiel 7Example 7
Analog Beispiel 1 wurde ein Eisen-Kobalt-Kupfer-Oxalat gefällt, gewaschen und getrocknet, wobei eine Metallchloridlösung, enthaltend etwa 45 g/1 Fe, 45 g/1 Co und 10 g/1 Cu, eingesetzt wurde.An iron-cobalt-copper oxalate was precipitated, washed and dried analogously to Example 1, using a metal chloride solution containing about 45 g / 1 Fe, 45 g / 1 Co and 10 g / 1 Cu.
Ein Teil des erhaltenen Mischmetalloxalates wurde direkt im Wasserstoffstrom überPart of the mixed metal oxalate obtained was transferred directly into the hydrogen stream
6 Stunden bei 520°C reduziert (Charge A). Ein weiterer Teil des Materials wurde zunächst unter atmosphärischer Luft über 3 Stunden bei 300°C behandelt und anschließend über 130 Minuten bei 520°C im Wasserstoffstrom reduziert (Charge B).Reduced for 6 hours at 520 ° C (Charge A). Another part of the material was first treated under atmospheric air for 3 hours at 300 ° C and then reduced over 130 minutes at 520 ° C in a hydrogen stream (Batch B).
Die Metallpulver hatten die in Tabelle 3 dargestellten Eigenschaften. Tabelle 3The metal powders had the properties shown in Table 3. Table 3
Mit den Metallpulvern wurden Heißpreßtests wie in Beispiel 6 durchgeführt. Die Ergebnisse sind in Tabelle 4 angegeben (HBR = Rockwell Härte B, SD = Sinterdichte g/cm3, % TD = % der theoretischen Dichte):Hot press tests as in Example 6 were carried out on the metal powders. The results are given in Table 4 (HBR = Rockwell hardness B, SD = sintered density g / cm 3 ,% TD =% of the theoretical density):
Tabelle 4Table 4

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Metall- und Legierungspulvern, enthaltend mindestens eines der Metalle Eisen, Kupfer, Zinn, Kobalt oder Nickel, durch Vermischen von wäßrigen Metallsalzlösungen mit einer wäßrigen Carbonsäurelösung, Abtrennen des Fällungsproduktes von der Mutterlauge und Reduktion des Fällungsproduktes zum Metall.1. A process for the preparation of metal and alloy powders containing at least one of the metals iron, copper, tin, cobalt or nickel, by mixing aqueous metal salt solutions with an aqueous carboxylic acid solution, separating the precipitate from the mother liquor and reducing the precipitate to the metal.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Fällungs- produkt vor der Reduktion zum metallischen Legierungspulver einer thermischen Zersetzung bei 200 bis 1000°C in sauerstoffhaltiger Atmosphäre unterzogen wird.2. The method according to claim 1, characterized in that the precipitation product is subjected to a thermal decomposition at 200 to 1000 ° C in an oxygen-containing atmosphere prior to the reduction to the metallic alloy powder.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine ge- sättigte wäßrige Carbonsäurelösung eingesetzt wird.3. The method according to claim 1 or 2, characterized in that a saturated aqueous carboxylic acid solution is used.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die wäßrige Carbonsäurelösung feste Carbonsäure in einer solchen Menge enthält, daß die Mutterlauge nach Beendigung der Fällung noch zu mindestens 10 % gesättigt ist, bezogen auf metallsalzfreie wäßrige Lösung.4. The method according to claim 3, characterized in that the aqueous carboxylic acid solution contains solid carboxylic acid in such an amount that the mother liquor is still at least 10% saturated after completion of the precipitation, based on metal salt-free aqueous solution.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Metallsalzlösung in vorgelegte wäßrige Carbonsäurelösung eingeleitet wird.5. The method according to any one of claims 1 to 4, characterized in that the metal salt solution is introduced into an aqueous carboxylic acid solution.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß wäßrige Metallsalzlösung und Carbonsäure kontinuierlich in einen Fällungsreaktor eingeleitet werden und kontinuierlich eine das Fällungsprodukt enthaltende Mutterlauge abgezogen wird. 6. The method according to any one of claims 1 to 4, characterized in that aqueous metal salt solution and carboxylic acid are continuously introduced into a precipitation reactor and continuously withdrawing a mother liquor containing the precipitation product.
7. Metall- bzw. Legierungspulver, enthaltend mindestens eines der Elemente7. Metal or alloy powder containing at least one of the elements
Eisen, Kupfer, Zinn, Nickel oder Kobalt, mit einer mittleren Korngröße nach ASTM B 330 von weniger als 7 μm.Iron, copper, tin, nickel or cobalt, with an average grain size according to ASTM B 330 of less than 7 μm.
8. Metall- bzw. Legierungspulver nach Anspruch 7 mit einem Kohlenstoffgehalt von weniger als 0,04 Gew.-%.8. metal or alloy powder according to claim 7 with a carbon content of less than 0.04 wt .-%.
9. Metall- bw. Legierungspulver nach Anspruch 7 oder 8, das nach Sintern bei einem Druck von 35 MPa bei 650°C über 3 Minuten einen Sinterkörper einer Dichte von mindestens 96 % der theoretischen physikalischen Dichte des9. Metal or Alloy powder according to claim 7 or 8, which after sintering at a pressure of 35 MPa at 650 ° C for 3 minutes a sintered body with a density of at least 96% of the theoretical physical density of the
Metalls bzw. der Legierung bildet.Metal or the alloy forms.
10. Verwendung des Metall- oder Legierungspulvers nach einem der Ansprüche 1 bis 9 als Bindermetall für Hartmetalle oder Diamantwerkzeuge oder als Legierungspulver zur pulvermetallurgischen Herstellung von Bauteilen. 10. Use of the metal or alloy powder according to one of claims 1 to 9 as a binder metal for hard metals or diamond tools or as an alloy powder for powder metallurgical production of components.
EP99923562A 1998-05-20 1999-05-08 Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use Expired - Lifetime EP1079950B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19822663A DE19822663A1 (en) 1998-05-20 1998-05-20 Sintered metal and alloy powders for powder metallurgical applications and processes for their production and their use
DE19822663 1998-05-20
PCT/EP1999/003170 WO1999059755A1 (en) 1998-05-20 1999-05-08 Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use

Publications (2)

Publication Number Publication Date
EP1079950A1 true EP1079950A1 (en) 2001-03-07
EP1079950B1 EP1079950B1 (en) 2003-08-13

Family

ID=7868428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99923562A Expired - Lifetime EP1079950B1 (en) 1998-05-20 1999-05-08 Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use

Country Status (10)

Country Link
US (1) US6554885B1 (en)
EP (1) EP1079950B1 (en)
JP (2) JP4257690B2 (en)
KR (1) KR100543834B1 (en)
CN (1) CN1254339C (en)
AT (1) ATE246976T1 (en)
AU (1) AU4039399A (en)
CA (1) CA2332889C (en)
DE (2) DE19822663A1 (en)
WO (1) WO1999059755A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006045339B3 (en) * 2006-09-22 2008-04-03 H.C. Starck Gmbh metal powder
DE102007004937A1 (en) 2007-01-26 2008-07-31 H.C. Starck Gmbh metal formulations

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE521488C2 (en) 2000-12-22 2003-11-04 Seco Tools Ab Coated cutting with iron-nickel-based bonding phase
DE60301069T2 (en) * 2002-03-29 2006-06-01 Umicore PRESERVED BINDEX POWDER
US7799141B2 (en) * 2003-06-27 2010-09-21 Lam Research Corporation Method and system for using a two-phases substrate cleaning compound
US7575603B2 (en) * 2004-05-28 2009-08-18 Smith & Nephew, Inc. Fluted intramedullary stem
CN1868637B (en) * 2005-05-25 2010-04-21 成都平和同心金属粉末有限公司 Copper alloy coated composite powder and its preparation method
CN100509219C (en) * 2005-10-10 2009-07-08 中国科学院金属研究所 Method for preparing iron-based diffusion-alloyed powder
FR2892957B1 (en) * 2005-11-09 2009-06-05 Eurotungstene Poudres Soc Par POLYMETALLIC POWDER AND SINTERED PART MANUFACTURED THEREFROM
CN100393454C (en) * 2005-11-25 2008-06-11 河南卡斯通科技有限公司 Coprecipitation method for preparing special prealloy powder for diamand tool
CN101096053B (en) * 2006-06-29 2010-05-26 王世荣 Preparation method of ferro-cobalt ultra-fine powder
DE102006045481B3 (en) 2006-09-22 2008-03-06 H.C. Starck Gmbh metal powder
DE102006057004A1 (en) * 2006-12-02 2008-06-05 H.C. Starck Gmbh metal powder
DE102007047312A1 (en) * 2007-10-02 2009-04-09 H.C. Starck Gmbh Tool
EP2128287B1 (en) * 2008-05-21 2011-01-19 Sandvik Intellectual Property AB Method of making a composite diamond body
CN101428348B (en) * 2008-07-29 2010-09-08 张建玲 Process for producing spherical submicron metal with hydro-thermal treatment
DE102008052559A1 (en) 2008-10-21 2010-06-02 H.C. Starck Gmbh Use of binder alloy powder containing specific range of molybdenum (in alloyed form), iron, cobalt, and nickel to produce sintered hard metals based on tungsten carbide
EP2436793A1 (en) 2008-10-20 2012-04-04 H.C. Starck GmbH Metal powder
JP5546120B2 (en) * 2008-11-26 2014-07-09 京セラ株式会社 Cermet throwaway tip
US8216340B2 (en) * 2009-03-03 2012-07-10 E. I. Du Pont De Nemours And Company Method for producing dispersed, crystalline, stable to oxidation copper particles
JP5530270B2 (en) * 2010-06-29 2014-06-25 Jx日鉱日石金属株式会社 Cobalt powder and method for producing the same
PL2527480T3 (en) 2011-05-27 2017-12-29 H.C. Starck Gmbh NiFe binder with universal application
CN102218709B (en) * 2011-06-03 2013-01-09 福建万龙金刚石工具有限公司 Anti-drop diamond brad and manufacturing process thereof
CN102419076B (en) * 2011-11-29 2013-07-17 济南沃德汽车零部件有限公司 Valve dryer
US20130178360A1 (en) * 2012-01-06 2013-07-11 California Institute Of Technology Nickel-based electrocatalytic photoelectrodes
JP5991645B2 (en) * 2012-12-28 2016-09-14 住友電気工業株式会社 Method for producing metal powder
CA2972974C (en) * 2014-05-13 2021-07-13 University Of Utah Research Foundation Production of substantially spherical metal powders
CN104874807A (en) * 2015-06-17 2015-09-02 北京科技大学 Preparation method for nanometer iron-cobalt solid solution alloy powder with body-centered cubic structure
PL232405B1 (en) 2015-07-27 2019-06-28 Akademia Gorniczo Hutnicza Im Stanislawa Staszica W Krakowie Easily sintered iron based alloy powder, method of producing it and application, and the sintered product
CN106180744A (en) * 2016-08-25 2016-12-07 董晓 A kind of preparation method of diamond composition pre-alloyed powder

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB419953A (en) * 1933-05-22 1934-11-22 Telegraph Constr & Maintenance Manufacture of nickel iron alloys
GB610514A (en) * 1943-03-01 1948-10-18 Electro Chimie Metal Improvements in or relating to the manufacture of iron powder and products produced therefrom
US3923496A (en) * 1945-04-26 1975-12-02 Us Energy Nickel powder and a process for producing it
US3855016A (en) * 1971-03-24 1974-12-17 Graham Magnetics Inc Acicular cobalt powders having high squarenesss ratios
FR2587989B1 (en) * 1985-09-30 1987-11-13 Centre Nat Rech Scient PARTICULATE COMPOSITIONS OF FERROMAGNETIC METAL OXALATES, IN THE FORM OF ACIDULAR SUBMICRON PARTICLES, THEIR PREPARATION AND THEIR APPLICATION
DE3802811A1 (en) * 1988-01-30 1989-08-10 Starck Hermann C Fa AGGLOMERED METAL COMPOSITE POWDER, METHOD FOR THE PRODUCTION AND USE THEREOF
AU657753B2 (en) * 1991-04-10 1995-03-23 Eurotungstene Poudres S.A. Method of making cemented carbide articles
FR2723015B1 (en) 1994-07-29 1996-09-13 Commissariat Energie Atomique PROCESS FOR OBTAINING IRON OR IRON POWDERS BY ORGANIC LIQUID PHASE PRECIPITATION
DE19540076C1 (en) * 1995-10-27 1997-05-22 Starck H C Gmbh Co Kg Ultrafine cobalt metal powder, process for its preparation and use of the cobalt metal powder and the cobalt carbonate
BE1009811A3 (en) * 1995-12-08 1997-08-05 Union Miniere Sa Prealloyed POWDER AND ITS USE IN THE MANUFACTURE OF DIAMOND TOOLS.
EP0990056B1 (en) * 1997-04-29 2002-03-13 n.v. Umicore s.a. Pre-alloyed copper containing powder, and its use in the manufac ture of diamond tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9959755A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006045339B3 (en) * 2006-09-22 2008-04-03 H.C. Starck Gmbh metal powder
DE102007004937A1 (en) 2007-01-26 2008-07-31 H.C. Starck Gmbh metal formulations
DE102007004937B4 (en) * 2007-01-26 2008-10-23 H.C. Starck Gmbh metal formulations

Also Published As

Publication number Publication date
EP1079950B1 (en) 2003-08-13
CN1301205A (en) 2001-06-27
JP2002515543A (en) 2002-05-28
KR20010052366A (en) 2001-06-25
DE19822663A1 (en) 1999-12-02
JP4257690B2 (en) 2009-04-22
DE59906598D1 (en) 2003-09-18
US6554885B1 (en) 2003-04-29
ATE246976T1 (en) 2003-08-15
CA2332889C (en) 2010-04-06
JP2009001908A (en) 2009-01-08
AU4039399A (en) 1999-12-06
CN1254339C (en) 2006-05-03
CA2332889A1 (en) 1999-11-25
WO1999059755A1 (en) 1999-11-25
KR100543834B1 (en) 2006-01-23

Similar Documents

Publication Publication Date Title
EP1079950B1 (en) Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use
EP1242642B1 (en) method for production of powder mixture or composite powder
DE69231381T2 (en) METHOD FOR PRODUCING CEMENTED CARBIDE ITEMS
DE69113966T2 (en) COMPOSITE POWDER MADE OF ALUMINUM OXIDE / METAL, CERMETS THEREOF AND METHOD FOR THE PRODUCTION THEREOF.
EP0326861B1 (en) Composite agglomerated metal powder, process for manufacturing it an its use
DE69511537T2 (en) METHOD FOR PRODUCING METAL COMPOSITE POWDER
AT394188B (en) METHOD FOR THE PRODUCTION OF FINE-GRINED, SINTER-ACTIVE NITRIDE AND CARBONITRIDE POWDERS OF TITANIUM
DE2833015A1 (en) ALLOY CONTAINING MOLYBDA AND TUNGSTEN IN POWDER FORM AND USE OF THIS ALLOY
DE69932148T2 (en) MICRONOON METAL POWDER BASED ON 3D TRANSITION METALS
DE69603876T3 (en) PRE-ALLOY POWDER AND ITS APPLICATION FOR PRODUCING DIAMOND TOOLS
EP2097549A2 (en) Metal powder
DE60223463T2 (en) Fine tungsten carbide powder and process for its preparation
DE102018116728A1 (en) SINTER POWDER AND SINTER CARBIDE COMPOSITIONS
EP1140698A1 (en) Method for producing wolfram carbides by gas-phase carburetion
DE69804220T2 (en) PRE-ALLOY COPPER-CONTAINING POWDER AND ITS USE IN THE PRODUCTION OF DIAMOND TOOLS
DE68917446T2 (en) Alloy powder and process for its manufacture.
DE1758400A1 (en) Dispersion hardened chromium alloys and process for their manufacture
DE3830111C2 (en)
DE2122499C3 (en) Process for the production of tungsten and tungsten carbide in powder form
AT393178B (en) PERMANENT MAGNET (MATERIAL) AND METHOD FOR PRODUCING THE SAME
DE2115999A1 (en) Process for the production of sintered cemented carbide
AT9143U1 (en) METHOD FOR PRODUCING A HARDMETAL PRODUCT
AT209061B (en) Process for the production of hard material particles coated with metal
AT209060B (en) Process for the production of a composite metal powder containing at least two metals
DE102009017346A1 (en) Process for the preparation of fine precious metal particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FI FR GB GR IT NL SE

17Q First examination report despatched

Effective date: 20010323

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: H.C. STARCK GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FI FR GB GR IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59906598

Country of ref document: DE

Date of ref document: 20030918

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030403990

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031027

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040514

BECH Be: change of holder

Owner name: H.C. STARCK G.M.B.H.

Effective date: 20090923

BECN Be: change of holder's name

Owner name: H.C. STARCK G.M.B.H.

Effective date: 20090923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110526

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120426

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130515

Year of fee payment: 15

Ref country code: GB

Payment date: 20130508

Year of fee payment: 15

Ref country code: SE

Payment date: 20130513

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130412

Year of fee payment: 15

Ref country code: BE

Payment date: 20130531

Year of fee payment: 15

Ref country code: FI

Payment date: 20130513

Year of fee payment: 15

Ref country code: IT

Payment date: 20130517

Year of fee payment: 15

Ref country code: FR

Payment date: 20130531

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906598

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 246976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140508

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140509

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141203

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20030403990

Country of ref document: GR

Effective date: 20141203

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906598

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531