EP1071161B1 - Antenne à plaques empilées multiples - Google Patents
Antenne à plaques empilées multiples Download PDFInfo
- Publication number
- EP1071161B1 EP1071161B1 EP99114034A EP99114034A EP1071161B1 EP 1071161 B1 EP1071161 B1 EP 1071161B1 EP 99114034 A EP99114034 A EP 99114034A EP 99114034 A EP99114034 A EP 99114034A EP 1071161 B1 EP1071161 B1 EP 1071161B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiator
- layer
- tile
- dielectric
- transitions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
Definitions
- the present invention relates to a radiator tile for use in a phased array antenna, comprising a bottom dielectric layer having a ground plane disposed on an exposed surface, and having first and second via transitions formed through the bottom dielectric layer; a stacked disk radiator comprising a dielectric puck having an active radiator formed on an upper surface, an upper dielectric layer adjacent to the active radiator and a parasitic radiator adjacent to the upper dielectric layer.
- the present invention relates further to an antenna having a plurality of integrated radiator tiles abutting each other that form an array, each integrated radiator tile comprising a bottom dielectric layer having a ground plane disposed on an exposed surface, and having first and second via transitions formed through the bottom dielectric layer, a stacked disk radiator comprising a dielectric puck having an active radiator formed on an upper surface, an upper dielectric layer adjacent to the active radiator and a parasitic radiator adjacent to the upper dielectric layer.
- GB-A-2 261 118 discloses an antenna combination for simultaneous communication with a geostationary satellite and a satellite with a polar orbit.
- the antenna design comprises a concentric stack of circular disc and annular circularly polarized patch radiators which are mounted on a horizontally disposed metallic reflection surface by means of a metallic central body.
- the uppermost resonator is fed by means of a coaxial line led eccentrically through the central body in such a manner that two orthogonal fundamental modes stimulated in phase quadrature are formed.
- the remaining resonators are configured as annular radiators and are stimulated in a higher mode by means of a printed supply network between the lowermost resonator and the plane reflection surface and by means of four supply wires.
- This document relates to an antenna combination that provides two radiation characteristics simultaneously.
- a hemispherical characteristic is provided for communication with orbiting satellites, whereas a characteristic with a zero position in the zenith direction is provided for communication with geostationary satellites (from the European area).
- geostationary satellites from the European area.
- the present invention relates generally to phased array antennas, and more particularly, to planar, low profile phased array antennas employing stacked disc radiators.
- the assignee of the present invention has investigated the development of super high frequency phased array antennas for use in various radar and communication applications.
- Typical applications for such super high frequency phased array antennas include submarine communication systems, ground-based communication systems, radar systems, and satellite communication systems, and the like.
- U.S. Patent No. 5,745,079 entitled “Wide-Scan/Dual-Band stacked disc radiators on stacked dielectric posts phased array antenna” provides for an antenna that exhibits performance over an octave-bandwidth.
- U.S. Patent No. 5,880,694 entitled “Planar, Low Profile, Wide-Band, Wide Scan Phased Array Antenna Using a Stacked-Disc Radiator”, provides for an antenna that exhibits excellent performance while maintaining a planar, low profile.
- an objective of the present invention to provide for an improved antenna element that may be used to construct planar, low profile phased array antennas. It is a further objective of the present invention to provide for an improved antenna employing compact stacked disc radiator elements.
- a radiator tile mentioned at the outset comprising a coupling circuit layer adjacent to the bottom dielectric layer comprising 90 DEG hybrid coupler circuits respectively coupled to the first and second via transitions; a balun layer adjacent to the coupling circuit layer comprising lower and upper ground planes formed on opposite surfaces, 180 DEG hybrid coupler circuits, a plurality of RF transitions selectively connected between the 180 DEG hybrid coupler circuits and the 90 DEG hybrid coupler circuits, and a plurality of radiator to RF transitions coupled to the 180 DEG hybrid coupler circuits; a plurality of grounding vias interconnecting the lower and upper ground planes of the balun layer, a plurality of grounding vias interconnecting the lower ground plane of the balun layer rod the ground plane of the bottom dielectric layer, and a plurality of grounding vias surrounding each of the radiator to RF transitions; wherein the stacked disk radiator is disposed adjacent to the balun layer and a pair of excitation probes is coupled between the radiator to RF transitions
- each radiator tile is one as mentioned in the preceding paragraph.
- the present invention provides for a versatile planar, low-profile, very wide frequency bandwidth, wide-scan, circular-polarized phased array antenna using integrated radiator tiles comprising stacked-disc radiators.
- the present invention comprises a stacked-disc radiator configuration where a lower active radiator is fed by a pair of probes for each linear polarization, and a parasitic radiator separated from the active radiator by dielectric material.
- the stacked-disc radiator is integrated with its feed circuits in a very compact and versatile package.
- the integration of the stacked disc radiator and its compact multilayer feed circuits are described herein.
- the feed circuits may include power combiners, 90° hybrid coupler circuits and 180° hybrid coupler circuits that couple dual linear or dual circular polarized energy to and from the disk radiators.
- the present invention may be employed in ground-based, shipboard, airborne, and radar and satellite communication systems that operate using wide-band, wide scan phased array antennas with dual linear or dual circular polarization.
- the integrated stacked-disc radiator tiles are ideal for use in conformal phased array antenna applications.
- the integrated radiator tiles are planar, low profile, and light weight, can be produced inexpressively using printed circuit technology, and its form factor allows the arrays to be easily maintained.
- the integrated radiator tile lends itsel well to many conformal applications and tile array architectures.
- the present invention integrates the radiator (stacked-disc radiator) with its feed circuits.
- the resulting package, or integrated radiator tile is very wideband (45% bandwidth) and provides a wide-scan and good axial ratio (circular polarization purity).
- the design of the integrated radiator tile provides for polarization diversity.
- changing feed circuits can provide, linear, dual-linear, and dual-circular polarization capability.
- the packaging of the integrated radiator tile is compactly constructed using multilayer laminated printed circuit technology.
- the integrated radiator tiles can be inexpensively constructed.
- the dielectric materials that are laminated to produce the multilayer integrated radiator tile have comparable coefficients of thermal expansion.
- use of the integrated radiator tiles of the present invention greatly improves the assembly and maintainability of phased array antennas that employ them.
- the feed circuits and number of circuit layers in the integrated radiator tile are a function of the application in which the tile is used. These aspects change depending on whether the tile has a linear or circular polarized configuration, whether the stacked disk radiator can be block-fed, whether the design requires an external coaxial connector, and so on.
- the stacked-disc radiator can provide an octave bandwidth.
- the feed circuits that drive the stacked-disc radiator provide a means to achieve this octave bandwidth.
- the integrated radiator tile uses wideband feed circuits that are compactly constructed and that are integrated with the stacked-disc radiator in an low-cost package.
- the bandwidth of the feed circuits and vertical RF transitions essentially determine the overall bandwidth performance of the integrated radiator tile.
- Integrated radiator tiles have been constructed that can cover 45% bandwidth.
- Fig. 1 shows an enlarged partial cross-sectional view of a portion of an integrated radiator tile 10 in accordance with the principles of the present invention and which illustrates its multi-layer construction.
- the integrated radiator tile 10 includes a stripline circuit board 41 having a bottom dielectric layer 20 comprising dielectric material 21 having a dielectric constant of 3.27, for example, and having a conductive ground plane 22 disposed on an exposed surface thereof.
- First and second coaxial connectors 23 (such as commercial SSMP coaxial connectors 23, for example) are attached to the ground plane 22 by means of solder, for example, and have center pins 23a connected to conductive vias 24 formed trough the botton dielectric layer 20 that each comprise stripline to coaxial transitions 24 in the exemplary embodiment.
- a connectorless design is also possible by having a coax-like structure (including either fuzz-button or pin, with outer dielectric shell) coming from below and making direct contact to RF vias 24.
- a 90° coupling circuit layer 30 is attached to the top of bottom dielectric layer 20.
- the coupling circuit layer 30 comprises bottom and top circuits 32, 33 formed on opposite sides of a dielectric layer 31.
- the bottom and top circuits 32, 33 comprise a middle layer of the 90° coupler circuit layer 31.
- a first vertical transitions 24a connects the bottom RF trace 32 to one coaxial connector 23 through the bottom dielectric layer 20.
- the other of the RF trace 33 connects to the other coaxial connector 23 through the bottom dielectric layer 20 and middle dielectric layer 31 by way of a second vertical RF transition 24b.
- the vertical transitions 24a, 24b are substantially perpendicular to the stripline circuit board 41, which helps to produce a compact low profile design.
- the stripline circuit board 41 comprises an intermediate dielectric layer 40 made of dielectric material 45 having a dielectric constant of 3.4, for example, that is disposed between the coupling circuit layer 30 and a balun layer 50.
- the balun layer 50 has a lower ground plane 52 formed on a surface that is adjacent to the intermediate dielectric layer 40, and an upper ground plane 54 that is formed on its upper surface.
- the balun layer 50 is comprised of two dielectric boards. One of the dielectric boards 59a has the bottom ground plane 52. The other dielectric board 59b has the top ground plane 54.
- a plurality of grounding vias 55 are coupled between the lower and upper grottnd planes 52, 54 of the balun layer 50 and also around the RF vias (i.e., vias 24a, 47, 56, or 63).
- the plurality of grounding vias 55 function to provide a coax-like cross-section at the transition and to prevent the excitation of higher-order modes.
- a plurality of grounding vias 34 are also coupled between the lower ground plane 52 of the balun layer 50 and the bottom ground plane 22 disposed on the exposed surface of the bottom dielectric layer 20.
- the plurality of arounding vias 34 serve the same function as the vias 55 relative to layer 50.
- the locations of the grounding vias 55 are shown more clearly in Fig. 5a.
- the balun layer 50 comprises 180° hybrid coupler circuits 53 that are implemented using modified retrace couplers 53a (Fig. 5).
- the balun layer 50 has an upper ground plane 54 formed adjacent to a surface.
- a plurality of RF transitions 47 are coupled between the balun layer 50 and the respective bottom and top stripline circuits 32, 33. The transitions 47 are in the form of vertical transitions which are perpendicular to the stripline circuit board.
- a plurality of RF transitions 56 are coupled between the 180° hybrid coupler circuits 53 and the upper surface of the balun layer 50.
- a plurality of ground vias 57 surround each of the radiator to RF transitions 56 that extend from the upper ground plane 54 to the lower ground plane 52.
- An upper dielectric layer 60 comprising a relatively low dielectric constant material is disposed adjacent to the balun layer 50.
- the dielectric constant of the upper dielectric layer 60 is typically on the order of 1.7, for example. Emerson & Cuming Stycast material may be used as the upper dielectric layer 60.
- the upper dielectric layer 60 may be made of a low-dielectric constant foam material.
- the upper dielectric layer 60 has a plurality of cylindrical recesses 68 formed therein into which a plurality of dielectric pucks 62 are disposed.
- the dielectric pucks 62 may be formed using Rogers TMM 3 dielectric material having a dielectric constant of 3.27, for example. Disposing the dielectric pucks 62 in the recesses 68 reduces the overall thickness of the integrated radiator tile 10. However, it is to be understood that the dielectric pucks 62 need not be disposed in the recesses 68 and surrounded by dielectric material, but may be surrounded entirely or partially by air dielectric for example.
- the dielectric pucks 62 have an active radiator 64 formed on their upper surfaces.
- the plurality of probes 63, comprising metallized vias 63, formed through the dielectric pucks 62 are coupled at one end to the active radiator 64.
- the plurality of radiator to stripline transitions 56 are coupled between the 180° hybrid coupler circuits 53 and the probes 63.
- the dielectric puck 62 is surrounded by dielectric material 61 having a dielectric constant of about 1.70.
- a parasitic radiator 66 or parasitic patch 66, is disposed on an upper surface of the upper dielectric layer 60.
- the parasitic radiator 66 is separated from the active radiator 64 by dielectric material 61.
- the active radiator 64, the parasitic radiator 66, the dielectric puck 62, and the low-dielectric constant upper dielectric layer 60 form a stacked-disc radiator 80.
- a radome layer 70 is disposed over the upper surface of the upper dielectric layer 60 and the parasitic radiator 66 to provide protection from the environment and improve the impedance match.
- a flat foam spacer may be disposed between dielectric puck 62 and the radome 70.
- a plurality of metallized vias 65 surround each of the probes 63 which function to control the radiating pattern of the stacked-disc radiator 80.
- the stacked-disc radiator 80 is disposed over two laminated stripline circuit boards containing the 90° hybrid coupler circuits 30 and the 180° hybrid coupler circuits 53.
- the topmost stripline circuit board is the balun layer 50 containing the 180° hybrid coupler circuits 53 and the lower stripline circuit board is the coupling circuit layer 41 containing the 90° hybrid coupler circuits 32, 33.
- the lower stripline circuit board is the coupling circuit layer 41 containing the 90° hybrid coupler circuits 32, 33.
- more than two laminated stripline circuit boards may be employed, depending upon the application.
- Fig. 2a illustrates an enlarged top view
- Fig. 2b illustrates an enlarged bottom view of the integrated radiator tile 10 of Fig. 1, respectively.
- Fig. 2a shows the relative positions of each of the parasitic patches 66 covered by the radome layer 70.
- the locations of the coaxial connectors 23 on the bottom surface of the integrated radiator tile 10 is shown in Fig 2b.
- a central through hole 75 is disposed through the integrated radiator tile 10 that is used to secure the tile 10 and is shown in both Figs 2a and 2b.
- Invention is not limited to a 2x2 tile, could be any size.
- radiators may also be implemented, as in the case where the radiators are block-fed.
- the figure shows a 2x2 tile.
- the plurality of radiators ion a tile depends on fabrication yield as well as specific application requirements. It is also possible to have designs without coaxial connectors 23.
- Fig. 3 illustrates a feeding arrangement for achieving dual circular polarization using the integrated radiator tile 10 of Fig 1.
- Metallized vias 63 serve as the probes 63 for the stacked-disc radiator 80 and vias 24, 47, 56 (shown in Fig. 1) serve as vertical RF interconnects between the various feed layers.
- the feeding arrangement produces both senses of circular polarization.
- the four probes 63 of each integrated radiator tile 10 are excited in phase sequence in the manner shown in Fig. 3. This may be achieved by feeding two orthogonal pairs of probes 63 using two 180° hybrid coupler circuits 53 and combining the outputs with a 90° hybrid coupler circuit 33.
- the 90° hybrid coupler circuit 33 receives left hand circularly polarized (LHCP) and right hand circularly polarized (RHCP) excitation 10 signals.
- LHCP left hand circularly polarized
- RHCP right hand circularly polarized
- 0° and 90° outputs of the 90° hybrid coupler circuit 33 are coupled to first and second 180° hybrid coupler circuits 53, respectively.
- the 0° output of the 90° hybrid coupler circuit 33 feeds the first 180° hybrid coupler circuit 53, while the 90° output of the 90° hybrid coupler circuit 33 feeds the second 180° hybrid coupler circuit 53.
- 0° and 180° outputs of the first 180° hybrid coupler circuit 53 are coupled to probes 63 located at 0° end 180°, respectively.
- 0° end 180° outputs of the second 180° hybrid coupler circuit 53 are coupled to probes 63 located at 90° and 270°, respectively. Dual linear polarization can also be easily attained by removing the 90° hybrid coupler (hence layer 41) and taking the outputs signals of 57.
- Fig. 4 shows an exploded view of the multilayer feed circuit structure used in the integrated radiator tile 10 of Fig. 1. Selected layers are shown without having apparent thickness and illustrate surface features thereof.
- Fig. 4 shows the radiator tile is constructed as a multilayer laminated structure. Its dielectric materials are carefully chosen to have comparable coefficients of thermal expansion to ensure successful lamination of the boards.
- Fig. 5, 5a illustrates the radiator feed layout for the stacked disc radiator 80 used in the integrated radiator tile 10 of Fig. 1.
- Fig. 5 contains superimposed internal circuit layers.
- the radiator feed layout has a plurality of transmit ports 81 and a plurality of receive ports 82 that are coupled to the coaxial connectors 23.
- the locations of the probes 63 below the active radiators 64 and parasitic patches 66 are shown.
- the configuration of the modified retrace 180° hybrid coupler circuit 53a is shown in Fig. 5.
- the configurations of the bottom and top stripline circuits 32, 33 of the coupling circuit layer 30 are shown in Fig. 5.
- the locations of 180° ratrace to 90° coupler transition comprising the metallized vias 47 are shown in Fig. 5. All circuits (180° hybrid, 90° coupler, and the vertical RF transitions) are designed for wide-band performance.
- Fig 5a shows a plan view of the balun layer 50 and modified ratrace 180° hybrid coupler circuit 53.
- the integrated radiator tile 10 is configured as a 2 by 2 element subarray that is designed to interface directly with transmit/receive (T/R) module tiles.
- the overall thickness of the integrated radiator tile 10 is approximately 10,2mm (0.4") which al-so includes a mechanical support layer (not shown) behind the multi-layer stripline feed.
- the radiator layers make up about half ⁇ 5,1mm ( ⁇ 0.2") of the overall thickness of the integrated radia-tor tile 10.
- Eight commercial SSMP coaxial connectors 23 are connected on the back side of the integrated radiator tile 10 that connect to outputs of the T/R module tiles (which also use mating SSMP connectors). There are two connectors 23 for each stacked-disc radiator 80 that provide for separate transmit and receive paths.
- the radome 70 seals the aperture from the environment.
- the modified ratrace coupler 53a serves as a balun for stacked-disc radiator 80, providing the necessary 180° phase difference between the pair of probes 63.
- the modified ratrace couplers 53a are configured using additional traces that increase the overall bandwidth of the conventional ratrace coupler by about 150 percent.
- the modifcation involves adding an additional loop to the conventional ratrace ring hybrid geometry to increase bandwidth operation.
- Two of the 180° hybrid coupler circuits 53 are packaged on a single layer stripline board 50 under each stacked-disc radiator 80. Since the radiator tile contains four radiators, Figure 5a shows that the 180° layer 50 for the 2x2 tile has a total of 8 ratrace couplers.
- the two outputs of the 180° hybrid circuits transition to 90° hybrid circuits 32, 33 located on the lower coupler stripline circuit board 30.
- Fig. 6 shows a waveguide simulator measurement for the integrated radiator tile 10 of Fig 1.
- a waveguide simulator was used to test the integrated radiator tile 10 and 180° hybrid coupler circuits 53, which produced the test results shown in Fig. 6.
- the two traces shown in Fig. 6 correspond to the two orthogonal orientations of the radiator tile 10. These results agree well with predicted performance. The best performance was obtained between 7 and 9 GHz ( ⁇ 15 dB return loss) with scan performance degrading at higher frequencies as designed due of the large lattice spacing selected for this application.
- Fig. 7 shows insertion loss resulting from the combined 90° and 180° hybrid circuits 41, 50 shown in Fig 3.
- Fig. 8 shows the measured insertion phase resulting from the combined 90° and 180° hybrid circuits 41, 50 shown in Fig. 3.
- Both figures show 4 traces, which correspond to the four outputs of the combined circuit (assume input at one via 24a and output at four vias 56 of each radiator).
- the measured data show excellent performance-no worse than 6° from ideal over the entire frequency bandwidth except at the band edges, where it degrades to about 14°.
- the combined circuits provided both senses of circular polarization.
- the four traces shown in Fig. 7 tracked each other very well.
- the two inputs of the combined circuits (same as the two outputs of the 90° hybrid circuit 30) match with the two outputs of the T/R module for each radiating element.
- the four outputs of the combined circuits (same as the four outputs of the 180° hybrid circuit) were transitioned to the stacked-disc radiator 80 through the four metal probes 63 (vertical RF interconnects).
- the measured 1.6 dB loss for the test circuits was close to expected considering that relatively hard, lossy material (Rogers R4003) was used for the stripline boards 30, 50, and there were three vertical RF transitions 24, 47, 56 in the multi-layer circuit.
- Fig. 9 shows the measured element embedded gain of the integrated radiator tile of Fig. 1.
- the measured embedded element gain is consistent with predicted values except for the large ripples due to small aperture size.
- the measured gain was roughly 2 dB lower than area gain due to the mismatch and line loss.
- FIG. 10a shows an exemplary 6 by 6 test antenna array 90 constructed using a plurality of integrated radiator tiles 10.
- Fig. 10b shows the measured embedded element pattern of a 6 by 6 test antenna array 90 built using integrated radiator tiles 10 to validate aperture performances.
- the integrated radiator tiles 10 are designed to operate from 7 GHz to 11 GHz.
- the embedded element pattern held up well to 45° in all plane cuts up to nearly 9 GHz which is consistent with predictions.
- the predicted and measured performance of the planar, low-profile integrated radiator tile 10 of the present invention meet requirements of conformal phased array applications for radar and satellite communication systems such as those developed by the assignee of the present invention.
- the parasitic radiator 66 is parasitically excited, and is not directly fed by the probes 63.
- the lower active radiator 64 is tuned to operate at a lower frequency band, while the parasitic radiator 66 is tuned to higher frequencies. Consequently, the operational bandwidth of the integrated radiator tile 10 is extended to encompass the lower and higher frequency bands.
- the two pairs of probes 63 provide dual-linear polarization and circular polarization capability. More particularly, the polarization of the integrated radiator tile 10 may be single linear polarization, dual linear polarization, or circular polarization depending on whether a single pair or two pairs of probes 63 are excited.
- Parameters for an exemplary embodiment of the integrated radiator tile are as follows.
- the spacing between each of the stacked-disc radiators 80 may be 19,8mm (0.78") in a rectangular lattice.
- the dielectric puck 62 may have a dielectric constant of 3.27, a diameter of 13,6mm (0.535",) and thickness of 3mm(0.12".)
- the dielectric material 61 may surround puck 62 and have a dielectric constant of about 1.70, and a thickness of 1,5mm (0.061") over puck 62.
- the lower active disc radiator 64 may have a dia-meter of 13,6mm (0.535"); and the upper parasitic radiator 66 may have a diameter of 8,1mm (0.320").
- the radome may have a average dielectric constant of 2.56, and a thickness of 1,5mm (0.060").
- the separation between each pair of probes 63 maybe 8,4mm (0.330).
- the feed circuits and the number of circuit layers in the integrated radiator tile 10 may differ from the exemplary embodiment disclosed herein, depending on the application, i.e., whether it is linear or circular polarized, whether the stacked disk radiator 80 can be block-fed, or whether the design requires an external coaxial connector, for example.
- the stacked-disc radiator 80 used in the integrated radiator tile 10 can provide an octave bandwidth.
- the feed circuits disclosed herein that drive the stacked-disc radiator 80 provide the means to achieve this octave bandwidth.
- the integrated radiator tile 10 uses wideband feed circuits that are compactly constructed and that are integrated with the stacked-disc radiator 80 in a low-cost package.
- the bandwidth of the feed circuits and vertical RF transitions essentially determine the overall bandwidth performance of the integrated radiator tile 10.
- Integrated radiator tiles 10 have been constructed that can cover 45% bandwidth.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Claims (17)
- Dalle de radiateur (10) destinée à être utilisée dans une antenne réseau à commande de phase, comportant :une couche diélectrique inférieure (20) comportant un plan de masse (22) disposé sur une surface exposée, et comportant un premier et un second passage de raccordement (24a, 24b) réalisées à travers la couche diélectrique inférieure ; etun disque de radiateur empilé (80) comportant une pièce diélectrique en forme de palet (62). comportant un radiateur actif (64) réalisé sur une surface supérieure, une couche diélectrique supérieure (60) adjacente au radiateur actif, un radiateur parasite (66) adjacent à la couche diélectrique supérieure,une couche de circuit de couplage (30) adjacente à la couche diélectrique inférieure comprenant des circuits de couplage hybride à 90 degrés (32, 33) reliés respectivement à la première et au second passage de raccordement ;une couche de symétrisation (50) adjacente à la couche de circuit de couplage comprenant des plans de masse inférieur et supérieur (52, 54) réalisés sur des surfaces opposées, des circuits de couplage hybride à 180 degrés (53), une pluralité de passages RF (47) reliés de façon sélective entre les circuits de couplage hybride à 180 degrés et les circuits de couplage hybride à 90 degrés, ainsi qu'une pluralité de radiateurs vers les passages RF (56) couplés aux circuits de couplage hybride à 180 degrés ;une pluralité de raccordements de masse (55) interconnectant les plans de masse inférieurs et supérieurs de la couche de symétrisation, une pluralité de raccordements de masse (34) interconnectant le plan de masse inférieur de la tige de la couche de symétrisation au plan de masse de la couche diélectrique inférieure, ainsi qu'une pluralité de raccordements de masse (57) tout autour de chacun des radiateurs vers les passages RF ;un radiateur disque empilé (80) adjacent à la couche de symétrisation et relié par une paire de sondes d'excitation (63) entre le radiateur vers les passages RF et le radiateur actif.
- Dalle de la revendication 1, caractérisée par un radôme recouvrant le radiateur parasite (66) ainsi que la couche diélectrique supérieure (60).
- Dalle des revendications 1 ou 2, caractérisée par un premier ainsi qu'un second connecteur coaxial (23) reliés au plan de masse (22) et ayant les pointes centrales (23a) reliées au premier et au second passage (24a, 24b).
- Dalle des revendications 1 ou 2, caractérisée par des structures sans connecteur de type coaxial reliées au plan de masse (22) ainsi qu'au premier et au second passage (24a, 24b).
- Dalle de l'une quelconque des revendications 1 à 4, caractérisée en ce que les circuits coupleur hybrides à 180 degrés (53) comprennent des coupleurs ratrace modifiés (53a).
- Dalle de l'une quelconque des revendications 1 à 5, caractérisée par une pluralité de raccordements de masse (34) reliés entre le plan de masse inférieur (52) de la couche de symétrisation (50) et le plan de masse (22) positionné sur la surface exposée de la couche diélectrique inférieure (20), une pluralité de raccordements de masse (55) reliés entre les plans de masse inférieur et supérieur (52, 54) de la couche de symétrisation, ainsi qu'une pluralité de raccordements de masse positionnés autour des raccordements RF.
- Dalle de l'une quelconque des revendications 1 à 6, caractérisée en ce que la couche diélectrique supérieure (60) entoure la pièce diélectrique en forme de palet (62), et la pièce diélectrique en forme de palet est positionnée dans un renforcement (68) réalisé dans la couche diélectrique supérieure.
- Dalle de l'une quelconque des revendications 1 à 7, caractérisée par une entretoise plate en mousse positionnée-entre la pièce diélectrique en forme de palet (62) et le radôme (70).
- Dalle de la revendication 7, caractérisée en ce que la couche diélectrique supérieure (60) entourant la pièce diélectrique en forme de palet (62) comporte un matériau diélectrique présentant une constante diélectrique qui est égale à celle de la pièce diélectrique en forme de palet.
- Dalle de l'une quelconque des revendications 1 à 9, caractérisée en ce que la pièce diélectrique en forme de palet (62) est entièrement entourée par un diélectrique à air.
- Dalle de l'une quelconque des revendications 1 à 9, caractérisée en ce que la pièce diélectrique en forme de palet (62) et partiellement entourée par un diélectrique à air.
- Dalle de l'une quelconque des revendications 1 à 11, caractérisée en ce que la couche de circuit de couplage (30) ainsi que la couche de symétrisation (50) produisent les deux directions de polarisation circulaire.
- Dalle de l'une quelconque des revendications 1 à 11, caractérisée en ce que la couche de circuit de couplage (30) ainsi que la couche de symétrisation (50) produisent une polarisation linéaire double.
- Dalle de l'une quelconque des revendications 1 à 11, caractérisée en ce que la couche de circuit de couplage (30) ainsi que la couche de symétrisation (50) produisent de façon sélective les deux directions de polarisation circulaire ou une polarisation linéaire double.
- Dalle de l'une quelconque des revendications 1 à 14, caractérisée en ce que la couche diélectrique supérieure (60) comprend un matériau de constante diélectrique relativement faible par rapport à la constante diélectrique de la couche de symétrisation (50).
- Dalle de l'une quelconque des revendications 1 à 15, caractérisée en ce que les matériaux diélectriques formant la pièce diélectrique en forme de palet (62), la couche de symétrisation (50), ainsi que la couche de circuit de couplage à 90 degrés (41) présentent des coefficients d'expansion thermique similaires.
- Antenne (90) comportant une pluralité de dalles de radiateur (10) s'aboutant les unes aux autres et formant un réseau, chaque dalle de radiateur comprenant :une couche diélectrique inférieure (20) comportant un plan de masse (22) disposé sur une surface exposée, et comportant un premier et un second passage de raccordement (24a, 24b) réalisées à travers la couche diélectrique inférieure ;un disque de radiateur empilé (80) comportant une pièce diélectrique en forme de palet (62) comportant un radiateur actif (64) réalisé sur une surface supérieure, une couche diélectrique supérieure (60) adjacente au radiateur actif, un radiateur parasite (66) adjacent à la couche diélectrique supérieure,une couche de circuit de couplage (30) adjacente à 1a couche diélectrique inférieure comprenant des circuits de couplage hybride à 90 degrés (32, 33) reliés respectivement au premier et au second passage de raccordement ;une couche de symétrisation (50) adjacente à la couche de circuit de couplage comprenant des plans de masse inférieur et supérieur (52, 54) réalisés sur des surfaces opposées, des circuits de couplage hybride à 180 degrés (53), une pluralité de passages RF (47) reliées de façon sélective entre les circuits de couplage hybride à 180 degrés et les circuits de couplage hybride à 90 degrés, ainsi qu'une pluralité de radiateurs vers les passages RF (56) couplés aux circuits de couplage hybride à 180 degrés ;une pluralité de raccordements de masse (55) interconnectant les plans de masse inférieurs et supérieurs de la couche de symétrisation, une pluralité de raccordements de masse (34) interconnectant le plan de masse inférieur de la tige de la couche de symétrisation au plan de masse de la couche diélectrique inférieure, ainsi qu'une pluralité de raccordements de masse (57) tout autour de chacun des radiateurs vers les passages RF ;un radiateur disque empilé (80) disposé de façon adjacente à la couche de symétrisation et relié par une paire de sondes d'excitation (63) entre le radiateur vers les passages RF et le radiateur actif.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES99114034T ES2204035T3 (es) | 1999-07-19 | 1999-07-19 | Antena de trayectos apilados multiples. |
EP99114034A EP1071161B1 (fr) | 1999-07-19 | 1999-07-19 | Antenne à plaques empilées multiples |
DE69911938T DE69911938T2 (de) | 1999-07-19 | 1999-07-19 | Mehrfach-Scheibenstrahler-Antenne |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99114034A EP1071161B1 (fr) | 1999-07-19 | 1999-07-19 | Antenne à plaques empilées multiples |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1071161A1 EP1071161A1 (fr) | 2001-01-24 |
EP1071161B1 true EP1071161B1 (fr) | 2003-10-08 |
Family
ID=8238617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99114034A Expired - Lifetime EP1071161B1 (fr) | 1999-07-19 | 1999-07-19 | Antenne à plaques empilées multiples |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1071161B1 (fr) |
DE (1) | DE69911938T2 (fr) |
ES (1) | ES2204035T3 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7920097B2 (en) | 2001-10-16 | 2011-04-05 | Fractus, S.A. | Multiband antenna |
US7932870B2 (en) | 1999-10-26 | 2011-04-26 | Fractus, S.A. | Interlaced multiband antenna arrays |
US8009111B2 (en) | 1999-09-20 | 2011-08-30 | Fractus, S.A. | Multilevel antennae |
US8207893B2 (en) | 2000-01-19 | 2012-06-26 | Fractus, S.A. | Space-filling miniature antennas |
US9099773B2 (en) | 2006-07-18 | 2015-08-04 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US10615496B1 (en) | 2018-03-08 | 2020-04-07 | Government Of The United States, As Represented By The Secretary Of The Air Force | Nested split crescent dipole antenna |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002251881A1 (en) * | 2001-02-14 | 2002-08-28 | Comsat Corporation | Wide-band modular mems phased array |
ES2298196T3 (es) * | 2001-10-16 | 2008-05-16 | Fractus, S.A. | Antena de parche de microcinta multifrecuencia con elementos parasitos acoplados. |
US9755314B2 (en) | 2001-10-16 | 2017-09-05 | Fractus S.A. | Loaded antenna |
JP2005533446A (ja) | 2002-07-15 | 2005-11-04 | フラクトゥス・ソシエダッド・アノニマ | マルチレベルで成形された素子及び空間充填して成形された素子を使用するアンダーサンプリングされたマイクロストリップアレー |
US7427967B2 (en) | 2003-02-01 | 2008-09-23 | Qinetiq Limited | Phased array antenna and inter-element mutual coupling control method |
NL1026104C2 (nl) * | 2004-05-03 | 2005-11-07 | Thales Nederland Bv | Meerlaagse PWB stralende schakeling en fasegestuurd antennestelsel waarin deze wordt toegepast. |
US7868843B2 (en) | 2004-08-31 | 2011-01-11 | Fractus, S.A. | Slim multi-band antenna array for cellular base stations |
US20060044189A1 (en) * | 2004-09-01 | 2006-03-02 | Livingston Stan W | Radome structure |
EP1935057B1 (fr) | 2005-10-14 | 2012-02-01 | Fractus S.A. | Reseau d'antennes minces triple bande pour stations de base cellulaires |
US7486239B1 (en) * | 2007-09-27 | 2009-02-03 | Eswarappa Channabasappa | Multi-polarization planar antenna |
US10205216B2 (en) | 2016-05-06 | 2019-02-12 | GM Global Technology Operations LLC | Thin film antenna to FAKRA connector |
WO2019058378A1 (fr) * | 2017-09-19 | 2019-03-28 | Mashaal Heylal | Antenne planaire à double bande |
CN110034394B (zh) * | 2018-01-11 | 2023-06-20 | 三星电子株式会社 | 多馈电贴片天线及包括多馈电贴片天线的装置 |
KR102432378B1 (ko) * | 2018-01-11 | 2022-08-16 | 삼성전자주식회사 | 다중-급전 패치 안테나 및 이를 포함하는 장치 |
CN109599667B (zh) * | 2018-11-09 | 2020-06-26 | 南京理工大学 | 一种双圆极化切换式超宽带宽波束天线 |
CN109980365B (zh) * | 2019-03-01 | 2020-11-06 | 中国电子科技集团公司第三十八研究所 | 一种应用于5g毫米波通信的大规模mimo有源天线阵列 |
US11355862B1 (en) * | 2019-12-06 | 2022-06-07 | Lockheed Martin Corporation | Ruggedized antennas and systems and methods thereof |
EP3910735B1 (fr) * | 2020-05-11 | 2024-03-06 | Nokia Solutions and Networks Oy | Agencement d'antenne |
US11929556B2 (en) * | 2020-09-08 | 2024-03-12 | Raytheon Company | Multi-beam passively-switched patch antenna array |
CN113381177A (zh) * | 2021-06-11 | 2021-09-10 | 重庆航天火箭电子技术有限公司 | 一种s频段双圆极化高集成度宽带相控阵子阵天线 |
CN113451732B (zh) * | 2021-08-30 | 2021-11-23 | 成都雷电微力科技股份有限公司 | 一种新型气密瓦片式相控阵天线 |
CN113725629B (zh) * | 2021-11-02 | 2022-01-25 | 成都雷电微力科技股份有限公司 | 一种高功率双频双极化瓦式有源相控阵天线 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5153600A (en) * | 1991-07-01 | 1992-10-06 | Ball Corporation | Multiple-frequency stacked microstrip antenna |
DE4135828A1 (de) * | 1991-10-30 | 1993-05-06 | Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn, De | Antennenanordnung |
US5745079A (en) * | 1996-06-28 | 1998-04-28 | Raytheon Company | Wide-band/dual-band stacked-disc radiators on stacked-dielectric posts phased array antenna |
US5880694A (en) * | 1997-06-18 | 1999-03-09 | Hughes Electronics Corporation | Planar low profile, wideband, wide-scan phased array antenna using a stacked-disc radiator |
-
1999
- 1999-07-19 DE DE69911938T patent/DE69911938T2/de not_active Expired - Lifetime
- 1999-07-19 EP EP99114034A patent/EP1071161B1/fr not_active Expired - Lifetime
- 1999-07-19 ES ES99114034T patent/ES2204035T3/es not_active Expired - Lifetime
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9240632B2 (en) | 1999-09-20 | 2016-01-19 | Fractus, S.A. | Multilevel antennae |
US8009111B2 (en) | 1999-09-20 | 2011-08-30 | Fractus, S.A. | Multilevel antennae |
US8154462B2 (en) | 1999-09-20 | 2012-04-10 | Fractus, S.A. | Multilevel antennae |
US8154463B2 (en) | 1999-09-20 | 2012-04-10 | Fractus, S.A. | Multilevel antennae |
US9362617B2 (en) | 1999-09-20 | 2016-06-07 | Fractus, S.A. | Multilevel antennae |
US9054421B2 (en) | 1999-09-20 | 2015-06-09 | Fractus, S.A. | Multilevel antennae |
US8330659B2 (en) | 1999-09-20 | 2012-12-11 | Fractus, S.A. | Multilevel antennae |
US9000985B2 (en) | 1999-09-20 | 2015-04-07 | Fractus, S.A. | Multilevel antennae |
US8976069B2 (en) | 1999-09-20 | 2015-03-10 | Fractus, S.A. | Multilevel antennae |
US8941541B2 (en) | 1999-09-20 | 2015-01-27 | Fractus, S.A. | Multilevel antennae |
US7932870B2 (en) | 1999-10-26 | 2011-04-26 | Fractus, S.A. | Interlaced multiband antenna arrays |
US8896493B2 (en) | 1999-10-26 | 2014-11-25 | Fractus, S.A. | Interlaced multiband antenna arrays |
US8228256B2 (en) | 1999-10-26 | 2012-07-24 | Fractus, S.A. | Interlaced multiband antenna arrays |
US8212726B2 (en) | 2000-01-19 | 2012-07-03 | Fractus, Sa | Space-filling miniature antennas |
US8610627B2 (en) | 2000-01-19 | 2013-12-17 | Fractus, S.A. | Space-filling miniature antennas |
US8558741B2 (en) | 2000-01-19 | 2013-10-15 | Fractus, S.A. | Space-filling miniature antennas |
US8471772B2 (en) | 2000-01-19 | 2013-06-25 | Fractus, S.A. | Space-filling miniature antennas |
US9331382B2 (en) | 2000-01-19 | 2016-05-03 | Fractus, S.A. | Space-filling miniature antennas |
US8207893B2 (en) | 2000-01-19 | 2012-06-26 | Fractus, S.A. | Space-filling miniature antennas |
US8723742B2 (en) | 2001-10-16 | 2014-05-13 | Fractus, S.A. | Multiband antenna |
US8228245B2 (en) | 2001-10-16 | 2012-07-24 | Fractus, S.A. | Multiband antenna |
US7920097B2 (en) | 2001-10-16 | 2011-04-05 | Fractus, S.A. | Multiband antenna |
US9099773B2 (en) | 2006-07-18 | 2015-08-04 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
US10615496B1 (en) | 2018-03-08 | 2020-04-07 | Government Of The United States, As Represented By The Secretary Of The Air Force | Nested split crescent dipole antenna |
Also Published As
Publication number | Publication date |
---|---|
ES2204035T3 (es) | 2004-04-16 |
DE69911938T2 (de) | 2004-07-29 |
EP1071161A1 (fr) | 2001-01-24 |
DE69911938D1 (de) | 2003-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6114997A (en) | Low-profile, integrated radiator tiles for wideband, dual-linear and circular-polarized phased array applications | |
EP1071161B1 (fr) | Antenne à plaques empilées multiples | |
EP0886336B1 (fr) | Réseau d'antennes plan de profil bas à commande de phase, à large bande, à balayage large utilisant radiateurs de disques empilés | |
US5382959A (en) | Broadband circular polarization antenna | |
US6300906B1 (en) | Wideband phased array antenna employing increased packaging density laminate structure containing feed network, balun and power divider circuitry | |
EP2248222B1 (fr) | Antenne réseau polarisée circulairement | |
CA2486647C (fr) | Antenne a circuits imprimes alimentee par plaque | |
EP2460230B1 (fr) | Procédé et appareil pour élément compact de réseau modulaire à commande de phase | |
CA2203077C (fr) | Element rayonnant polarimetrique a deux bandes pour radar a ouverture synthetique | |
JP6749489B2 (ja) | 単層共用開口デュアルバンドアンテナ | |
US20140009357A1 (en) | Hybrid Single Aperture Inclined Antenna | |
US5990836A (en) | Multi-layered patch antenna | |
Zhang et al. | K-/Ka-band planar shared-aperture beam-scanning array antenna for simultaneous transmitting and receiving low earth orbit satellite communication terminal | |
Rohrdantz et al. | Ka-band antenna arrays with dual-frequency and dual-polarized patch elements | |
JP3472204B2 (ja) | 広帯域の二重線形および円偏波されたフェイズドアレイ用の低プロフィールの集積された放射器タイル | |
US11881611B2 (en) | Differential fed dual polarized tightly coupled dielectric cavity radiator for electronically scanned array applications | |
Chae et al. | Design of aperture coupled feeding Ku-band phased array antenna on multi-layer PCB for satellite communications | |
JPH0590826A (ja) | マイクロストリツプアンテナ | |
IL131022A (en) | Low-profile, integrated radiator tiles for wideband, dual-linear and circular-polarized phased array applications | |
Sor et al. | Multi-mode microstrip antennas for reconfigurable aperture | |
Abd El-Rahman et al. | Dual-Band Cavity-Backed KA-band antenna for satellite communication | |
Shi et al. | Modular Ka-Band Transmit Phased Array Antenna for SATCOM Applications | |
CN118315815B (zh) | 一种基于f-p谐振腔的跨频段双圆极化融合天线 | |
CN219591650U (zh) | 一种具有宽波束圆极化辐射性能的天线 | |
CN112421246B (zh) | 一种共口径阵列天线和卫星通讯终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010714 |
|
AKX | Designation fees paid |
Free format text: DE ES GB |
|
17Q | First examination report despatched |
Effective date: 20010920 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69911938 Country of ref document: DE Date of ref document: 20031113 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2204035 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040709 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20170801 Year of fee payment: 19 Ref country code: DE Payment date: 20170711 Year of fee payment: 19 Ref country code: GB Payment date: 20170719 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69911938 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180719 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180720 |