EP1065631B1 - Verfahren und Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger - Google Patents

Verfahren und Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger Download PDF

Info

Publication number
EP1065631B1
EP1065631B1 EP00113141A EP00113141A EP1065631B1 EP 1065631 B1 EP1065631 B1 EP 1065631B1 EP 00113141 A EP00113141 A EP 00113141A EP 00113141 A EP00113141 A EP 00113141A EP 1065631 B1 EP1065631 B1 EP 1065631B1
Authority
EP
European Patent Office
Prior art keywords
signal
recording medium
reading station
transmitter
certain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00113141A
Other languages
English (en)
French (fr)
Other versions
EP1065631A1 (de
Inventor
Heinz Hornung
Achim Philipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP1065631A1 publication Critical patent/EP1065631A1/de
Application granted granted Critical
Publication of EP1065631B1 publication Critical patent/EP1065631B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details

Definitions

  • the present invention relates to a method and an apparatus for reading sheet-shaped recording medium during a relative movement relative to a reading station, which at least one transmitter for sequentially emitting at least two signals of different signal type, a common receiver for the different signal types for detecting these modulated by the record carrier signals and has an evaluation unit for the detected signals.
  • This reading station detects at any time on the recording medium a "measuring surface” with a certain length in the direction of relative movement. Due to the relative movement of a clockwise scanning of the recording medium per clock a "raster element" of the recording medium is detected, which is greater than the measuring surface of the reading station. The size of the raster element increases with the relative speed and the duration of a signal emission ("signal clock").
  • Such methods or devices are used, for example, to determine the currency and the value of banknotes and to check their authenticity or validity.
  • a corresponding apparatus for reading and verifying the authenticity of banknotes is in EP 0 537 513 A1 described.
  • the banknotes are guided past a reading station, which consists of several transmitters for emitting light of different colors or of infrared signals and a common receiver.
  • the different signals are emitted sequentially on the banknote.
  • the receiver intercepts the signal reflected by the banknote or transmitted by the banknote and consequently modulated by the banknote. This signal is then evaluated.
  • a bank note tester which scans the passing banknote only in three, transversely to the direction of movement adjacent short sections with different types of signals.
  • multiple oversampling is performed on each section. This results in a very large amount of measured data and a slow conveying speed in relation to the sampling frequency.
  • strip-shaped areas of the banknote surface are scanned in this way.
  • the invention has for its object to provide a method and an apparatus in which a full-surface scanning of the recording medium with respect to at least two physical properties is possible at the largest possible conveying speed.
  • the geometric parameters of the reading station and the time parameters of the sampling are selected so that the length of the detected by the reading station measuring surface exactly corresponds to the spatial distance of the beginning or end of two signal clocks of the same signal type at successive signal clocks of different signal type.
  • the spatial distance of two signal clocks is thus determined by the time interval of the clocks, i. the duration of a period multiplied by the relative velocity. In this way, occurrence of gaps is avoided.
  • the measuring area detected by the reading station shifts relatively over the record carrier during the signal clock. It is therefore also scanned in this process during the clock, a raster element on the recording medium, which is longer in the direction of movement than the detected by the reading station measuring surface. This results in an overlap of the sampled raster elements, ie a partial double sampling.
  • the double-scanned areas are only the edge areas of the raster elements which "run out” or fall into the measurement area during one cycle from the measurement area detected by the read station and which therefore are not be detected by the reading station over the entire cycle time, as is the case with the other areas of the raster element.
  • This "underrepresentation" of the edge regions within a signal clock is exactly compensated by the double sampling in two successive signal clocks. Consequently, since the areas on the record carrier are completely detected with high read reliability without being read multiple times, on the one hand a high throughput is possible and on the other hand the processing and storage effort for the measurement data is relatively low.
  • the transmitter may, for example, be a transmitter with different illumination systems which differ in wavelength, that is, which emit light of different colors or infrared signals.
  • at least one of the signals is an infrared signal and at least one further signal is a light signal of a specific wavelength in the visible range.
  • the sampling is performed at least with a bright field signal and a dark field signal.
  • a bright field signal and a dark field signal.
  • the transmitter or the receiver are formed so that the grid element extends in a line across the relative relative movement over the entire recording medium.
  • This can, for example, by a strip-shaped transmitter in the form of a lighting device be realized with a slit, and a correspondingly arranged strip-shaped CCD receiver or other transducer with a corresponding upstream optics, such as a rod lens.
  • FIG. 1 shows a schematic representation of a reading station 2, wherein for the sake of simplicity, only one transmitter 3 is shown, which is located below the recording medium 1, here a banknote 1. At this reading station 2, the transmission of the banknote 1 is checked.
  • the transmitter 3 consists of a lighting device 5 and an illumination optical unit 6 in the form of a slit diaphragm.
  • the receiver 4 consists of a transducer 7 and an upstream pickup optics 8, here a rod lens.
  • the banknote 1 is passed in the transport direction R.
  • the illumination device 5 By appropriate selection and arrangement of the illumination device 5, the illumination optics 6, the pickup optics 8 and the transducer 7 results in a specific lighting characteristic on the banknote 1 with an illumination gap of a certain width.
  • This gap width corresponds exactly to the length s B of the measured surface detected by the reading station 2 during a specific time in the direction of movement R.
  • FIGS. 2a and 2b the changing position of the measuring surface on the banknote 1 under the movement along the transporting direction R.
  • Fig. 2a shows the position at the beginning of an exposure time with a certain signal, ie at the beginning of a signal clock, and Fig. 2b at the end of this exposure time, ie at the end of the bar.
  • the banknote 1 has been moved at a constant relative speed exactly by the distance l 1 in the transport direction R.
  • the points A and D on the banknote 1 are outside the measuring area during the entire exposure time.
  • points B and C are within the measurement area during the entire exposure time.
  • the points in the range between B and C therefore contribute maximally to the measured value.
  • the points between A and B and between C and D contribute only partially to the measured value, since they push into the measuring surface during the exposure time or move out of the measuring surface.
  • a measured value of a particular signal clock contains information from all points on banknote 1 between points A and D.
  • the distance between A and D is therefore the extent of the scanned raster element in the direction of movement.
  • the contribution of the respective points A to D to the measured value corresponds to dose P, which is determined by the intensity 1 of the signal multiplied by the time that the point in question is within the measuring surface during the signal clock.
  • dose P is determined by the intensity 1 of the signal multiplied by the time that the point in question is within the measuring surface during the signal clock.
  • the length of the ramps AB or DC of the dose distribution depends on the duration of the signal pulses for a given measuring surface geometry and given relative speed. It corresponds exactly to the path length l 1 , which covers the banknote 1 during the cycle time T 1 . It is therefore essential that during a signal clock, the banknote 1 covers only a path l 1 , which is smaller than the length s B of the measuring surface. In order to achieve a complete scanning of the banknote, it is sufficient if the following signal clock of the same signal type restarts when the point located at the beginning of the measuring area in the transport direction R at the beginning of the first clock (in FIG FIG. 2a the point B) has reached the end of the measuring surface.
  • the raster elements are completely relative to each other so that only the areas between the points A and B and C and D of two successive raster elements of length s R overlap. Due to the uniform velocity and the resulting linear increase or decrease of the dose P in these regions, the dose of these points detected in the adjacent raster elements again adds up to exactly 100% ( Fig. 3 ). This means that every point on the record carrier is viewed with the same sensitivity. His information is therefore always scanned to 100%. However, it can be distributed over two adjacent measured values. This is independent of the bar length.
  • the time between two signal clocks of a signal type Q 1 that is the duration T of the period minus the clock duration T 1 , can now be used to scan the banknote 1 with signals of another signal type Q 2 , Q 3 ( Fig. 4 ).
  • a corresponding width of the illumination gap for these further signals that is, a corresponding length s B of the measuring surfaces with respect to this signal type, a seamless scanning can be achieved in the same way for this purpose.
  • the illumination gap width or length s B of the measuring surfaces is identical.
  • Fig. 4 shows, on the basis of three different signal types Q 1 , Q 2 , Q 3 , how a period of successive signals can be arbitrarily divided into periods T 1 , T 2 , T 3 and T 0 in which the individual signal systems are active.
  • the length s B of the measuring surface is equal to the product of the relative velocity and the duration T of the period, so that for all signal channels always a complete scanning of the Banknote 1 in the desired manner results.
  • Fig. 4 also shows that the individual signal durations T 1 , T 2 , T 3 of different signal types Q 1 , Q 2 , Q 3 do not necessarily have to sum up to 100% within the period T.
  • the individual signal durations T 1 , T 2 , T 3 can also be different, so that, for example, one signal type Q 1 within a period has a shorter signal duration T 1 and the other signal types Q 2 , Q 3 have a longer signal duration T 2 , T 3 .
  • a free time T 0 within the period of signals may be used to read the transducers or perform calibration measurements or the like.
  • FIG. 5 is the position of the measuring surfaces 10, 20 for two different signal types, here measuring surfaces 10 of a red color signal and measuring surfaces 20 of an infrared signal represented.
  • the measuring surfaces 10, 20 of the two types of signals lie in the inventive method, the measuring surfaces 10, 20 of the two types of signals, mutually shifted on the banknote 1. Because of the better recognizability here measuring surfaces 10, 20 are shown, which do not extend over the entire width of Banknote 1 extend.
  • only two measuring surfaces 10 of the red light signal are shown.
  • the dashed line shows, by way of example, the overlap region or the length s R of the raster element at a number of measuring surfaces 20 of the infrared signal.
  • the measuring surfaces extend transversely to the transport direction R over the entire width of the banknote.
  • the inventive method provides a gapless, full-surface scanning of the bill at high banknote throughput.
  • the measurement data only a small processing and storage effort is necessary.
  • the invention is not limited to the reading and checking of banknotes, but can also be used for any other record carrier.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger während einer Relativbewegung gegenüber einer Lesestation, welche mindestens einen Sender zum sequentiellen Abstrahlen von mindestens zwei Signalen unterschiedlicher Signalart, einen für die unterschiedlichen Signalarten gemeinsamen Empfänger zum Detektieren dieser durch den Aufzeichnungsträger modulierten Signale und eine Auswerteeinheit für die detektierten Signale aufweist. Diese Lesestation erfaßt zu jedem Zeitpunkt auf dem Aufzeichnungsträger eine "Meßfläche" mit einer bestimmten Länge in Relativbewegungsrichtung. Aufgrund der Relativbewegung wird bei einer taktweisen Abtastung des Aufzeichnungsträgers je Takt ein "Rasterelement" des Aufzeichnungsträgers erfaßt, das größer ist als die Meßfläche der Lesestation. Die Größe des Rasterelements nimmt mit der Relativgeschwindigkeit und der Dauer einer Signalabstrahlung ("Signaltakt") zu.
  • Derartige Verfahren bzw. Vorrichtungen werden beispielsweise dazu verwendet, um die Währung und den Wert von Banknoten zu ermitteln und sie auf ihre Echtheit oder Gültigkeit zu prüfen. Darüber hinaus ist selbstverständlich auch ein Einsatz zum Lesen und Prüfen von beliebigen anderen Aufzeichnungsträgern, wie Urkunden, Ausweisen etc. möglich.
  • Eine entsprechende Vorrichtung zum Lesen und zur Prüfung der Echtheit von Banknoten wird in der EP 0 537 513 A1 beschrieben. Hierbei werden die Banknoten an einer Lesestation vorbeigeführt, welche aus mehreren Sendern zur Abstrahlung von Licht unterschiedlicher Farbe bzw. von Infrarotsignalen und einem gemeinsamen Empfänger besteht. Während der Relativbewegung der Banknote gegenüber der Lesestation werden die unterschiedlichen Signale sequentiell auf die Banknote abgestrahlt. Der Empfänger fängt das von der Banknote reflektierte bzw. das durch die Banknote transmittierte und folglich von der Banknote modulierte Signal auf. Dieses Signal wird dann ausgewertet.
  • Mittels den unterschiedlichen Sendern und dem gemeinsamen Detektor werden mehrere physikalischen Eigenschaften der Banknote geprüft. Dazu werden die Signale von den einzelnen Sendern nacheinander in einer Sequenz abgegeben und gleichzeitig fährt die Banknote in ihrer Relativbewegung fort. Dadurch entstehen bezüglich der für jede Signalart entstehenden unterschiedlichen Bilder zwangsläufig Lücken. Diese Lücken sind nachteilig, wenn auf dem Aufzeichnungsträger Strukturen vorkommen, die in der Größenordnung der Lücken liegen. Bei wiederholten Messungen kann es dann zu recht großen Streuungen der Meßwerte kommen.
  • In der GB-A-2 107 911 wird ein Banknotenprüfgerät beschrieben, welches die vorbeilaufende Banknote lediglich in drei, quer zur Bewegungsrichtung nebeneinander liegenden, kurzen Abschnitten mit unterschiedlichen Signalarten abtastet. Hierbei wird bei jedem Abschnitt mehrfaches Oversampling durchgeführt. Daraus ergibt sich eine sehr große Meßdatenmenge und eine langsame Fördergeschwindigkeit im Verhältnis zur Tastfrequenz. Außerdem werden auf diese Weise nur bestimmte, streifenförmige Bereiche der Banknotenoberfläche abgetastet.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, bei der bei einer möglichst großen Fördergeschwindigkeit eine ganzflächige Abtastung des Aufzeichnungsträgers in bezug auf mindestens zwei physikalische Eigenschaften hin möglich ist.
  • Diese Aufgabe wird durch ein Verfahren und durch eine Vorrichtung gemäß den nebengeordneten Ansprüchen gelöst.
  • Erfindungsgemäß wird bei diesem Verfahren bzw. der Vorrichtung durch eine geeignete Ausbildung der Sender- und/oder Empfängergeometrie der Lesestation und durch eine entsprechende Wahl der Relativgeschwindigkeit und der Taktzeiten dafür gesorgt, daß die Länge der von der Lesestation erfaßten Meßfläche für jede der Signalarten genau der Weglänge entspricht, die sich der Aufzeichnungsträger ab dem Beginn der Abstrahlung in einer Signalart bis zum Beginn der nächstfolgenden Abstrahlung in derselben Signalart ("Periode") fortbewegt. Die Taktzeiten werden sowohl durch die Länge der einzelnen Signaltakte der verschiedenen Signalarten als auch durch die Abstände der Signaltakte zueinander beeinflußt. Mit anderen Worten werden die geometrischen Parameter der Lesestation und die Zeitparameter der Abtastung so gewählt, daß bei aufeinanderfolgenden Signaltakten unterschiedlicher Signalart die Länge der von der Lesestation erfaßten Meßfläche genau dem räumlichen Abstand des Beginns bzw. Endes zweier Signaltakte derselben Signalart entspricht. Der räumliche Abstand zweier Signaltakte ist somit durch den zeitlichen Abstand der Takte, d.h. der Dauer einer Periode, multipliziert mit der Relativgeschwindigkeit gegeben. Auf diese Weise wird ein Auftreten von Lücken vermieden.
  • Da sich während eines Signaltaktes die Banknote weiter fortbewegt, verschiebt sich die von der Lesestation erfaßte Meßfläche während des Signaltaktes relativ über dem Aufzeichnungsträger. Es wird daher auch bei diesem Verfahren während des Taktes ein Rasterelement auf dem Aufzeichnungsträger abgetastet, das in der Bewegungsrichtung länger ist als die von der Lesestation erfaßte Meßfläche. Dadurch kommt es zu einem Überlappen der abgetasteten Rasterelemente, d.h. zu einem teilweisen doppelten Abtasten.
  • Bei den doppelt abgetasteten Bereichen handelt es sich aber wegen der besonders gewählten Geometrie- und Zeitparameter nur um die Randbereiche der Rasterelemente, die während eines Taktes aus der von der Lesestation erfaßten Meßfläche "hinauslaufen" bzw. in die Meßfläche "hineinlaufen" und die deswegen nicht über die gesamte Taktdauer von der Lesestation erfaßt werden, wie dies bei den übrigen Bereichen des Rasterelements der Fall ist. Diese "Unterrepräsentierung" der Randbereiche innerhalb eines Signaltaktes wird durch das doppelte Abtasten in zwei aufeinanderfolgenden Signaltakten exakt ausgeglichen. Da die Bereiche auf dem Aufzeichnungsträger folglich bei hoher Lesesicherheit vollständig erfaßt werden, ohne mehrfach gelesen zu werden, ist zum einen ein hoher Durchsatz möglich und zum anderen der Bearbeitungs- und Speicheraufwand für die Meßdaten relativ gering.
  • Bei dem Sender kann es sich beispielsweise um einen Sender mit unterschiedlichen Beleuchtungssystemen handeln, welche sich in der Wellenlänge unterscheiden, das heißt, welche Licht unterschiedlicher Farben bzw. Infrarotsignale aussenden. Vorzugsweise ist dabei mindestens eines der Signale ein Infrarotsignal und mindestens ein weiteres Signal ein Lichtsignal einer bestimmten Wellenlänge im sichtbaren Bereich.
  • Bei einem alternativen bevorzugten Ausführungsbeispiel erfolgt die Abtastung mindestens mit einem Hellfeldsignal und einem Dunkelfeldsignal. Es sind jedoch auch noch andere Unterscheidungsmerkmale, beispielsweise die Polarisation des Lichts möglich.
  • Weiterhin ist es vorteilhaft, wenn die Sender bzw. auch der Empfänger so ausgebildet sind, daß sich das Rasterelement zeilenförmig quer zur Relativbewegung über den gesamten Aufzeichnungsträger erstreckt. Dies kann beispielsweise durch einen streifenförmigen Sender in Form einer Beleuchtungseinrichtung mit einer Schlitzblende, und einen entsprechend angeordneten streifenförmigen CCD-Empfänger oder einen anderen Meßaufnehmer mit einer entsprechenden vorgeordneten Optik, beispielsweise einer Stablinse realisiert werden. Mit einem derartigen System kann auf einfache und schnelle Weise die gesamte Oberfläche des Aufzeichnungsträgers erfaßt und gelesen werden.
  • Das erfindungsgemäße Verfahren und die Vorrichtung werden nachfolgend anhand eines Ausführungsbeispiels unter Hinweis auf die beigefügten Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine schematische Darstellung der Vorrichtung (mit nur einem Sender),
    Fig.2a
    die Lage des Beleuchtungsspalts (Beleuchtungsintensität 1 = 100%) auf dem Aufzeichnungsträger zu Beginn eines Signaltaktes,
    Fig.2b
    die Lage des Beleuchtungsspalts gemäß Fig. 2a auf dem Aufzeichnungsträger zum Ende des Signaltaktes,
    Fig. 3
    die Lage zweier aufeinanderfolgender in einer Signalart abgetasteten Rasterelemente mit der innerhalb des Signaltaktes bezüglich der jeweiligen Orte im Rasterelement vorliegenden Dosisverteilung auf dem Aufzeichnungsträger,
    Fig. 4
    eine Darstellung einer zeitlichen Abfolge und Dauer von Signaltakten dreier verschiedener Signalarten (oberer Teil) mit der zugehörigen Lage und der örtlichen Dosisverteilung der einzelnen Rasterelemente jeder Signalart auf dem Aufzeichnungsträger (unterer Teil), und
    Fig. 5
    eine schematische Darstellung der Lage und Erstreckung von Meßflächen (Pixeln) unterschiedlicher Signalart auf einem Aufzeichnungsträger (zur Verdeutlichung sind nur zwei Meßflächen der einen Signalart dargestellt).
  • Figur 1 zeigt in einer schematischen Darstellung eine Lesestation 2, wobei der Einfachheit halber nur ein Sender 3 dargestellt ist, welcher sich unterhalb des Aufzeichnungsträgers 1, hier einer Banknote 1, befindet. An dieser Lesestation 2 wird die Transmission der Banknote 1 geprüft.
  • Der Sender 3 besteht aus einer Beleuchtungseinrichtung 5 und einer Beleuchtungsoptik 6 in Form einer Schlitzblende. Der Empfänger 4 besteht aus einem Meßaufnehmer 7 und einer vorgeschalteten Aufnehmeroptik 8, hier einer Stablinse.
  • Zwischen dem Sender 3 und dem Empfänger 4 wird in Transportrichtung R die Banknote 1 hindurchgeführt. Durch die entsprechende Auswahl und Anordnung der Beleuchtungseinrichtung 5, der Beleuchtungsoptik 6, der Aufnehmeroptik 8 und des Meßaufnehmers 7 ergibt sich eine bestimmte Beleuchtungscharakteristik auf der Banknote 1 mit einem Beleuchtungsspalt einer bestimmten Breite. Diese Spaltbreite entspricht genau der Länge sB der von der Lesestation 2 während eines bestimmten Zeitpunkts erfaßten Meßfläche in der Bewegungsrichtung R.
  • Wie in den Figuren 2a und 2b dargestellt, liegt innerhalb des Beleuchtungsspalts, d.h. innerhalb der Meßfläche, näherungsweise eine Beleuchtungsintensität 1 von 100% vor, wohingegen außerhalb des Beleuchtungsspalts die Beleuchtungsintensität 1 nahezu 0 ist. Selbstverständlich sind in der Realität im allgemeinen die Grenzen nicht so scharf wie in den Figuren dargestellt.
  • Weiterhin zeigen die Figuren 2a und 2b die sich verändernde Lage der Meßfläche auf der Banknote 1 unter der Bewegung entlang der Transportrichtung R. Fig. 2a zeigt die Lage zum Beginn einer Belichtungszeit mit einem bestimmten Signal, d.h. zu Beginn eines Signaltaktes, und Fig. 2b zum Ende dieser Belichtungszeit, d.h. am Taktende. Während dieses Signaltaktes ist die Banknote 1 mit einer konstanten Relativgeschwindigkeit genau um die Strecke l1 in der Transportrichtung R verschoben worden. Wie aus den Figuren zu ersehen ist, liegen die Punkte A und D auf der Banknote 1 während der gesamten Belichtungszeit außerhalb der Meßfläche. Die Punkte B und C liegen dagegen während der gesamten Belichtungszeit innerhalb der Meßfläche. Die Punkte im Bereich zwischen B und C tragen daher maximal zum Meßwert bei. Die Punkte zwischen A und B sowie zwischen C und D tragen dagegen nur teilweise zum Meßwert bei, da sie sich während der Belichtungsdauer in die Meßfläche hineinschieben bzw. aus der Meßfläche herausbewegen.
  • Insgesamt enthält ein Meßwert eines bestimmten Signaltaktes Informationen von allen Punkten auf der Banknote 1 zwischen den Punkten A und D. Der Abstand zwischen A und D ist daher die Erstreckung des abgetasteten Rasterelements in der Bewegungsrichtung. Der Beitrag der jeweiligen Punkte A bis D zum Meßwert entspricht hierbei Dosis P, welche durch die Intensität 1 des Signals multipliziert mit der Zeit, die der betreffende Punkt während des Signaltaktes innerhalb der Meßfläche liegt, bestimmt wird. Bei einer gleichförmigen Bewegung und einem rechteckigen Beleuchtungsprofil wie in den Figuren 2 a und 2 b dargestellt, steigt der Beitrag der Punkte zwischen A und B auf der Banknote 1 linear an, zwischen C und D fällt er linear ab. Es ergibt sich daher zwischen den Punkten A und D die in Fig. 3 dargestellte Dosis-verteilung. Die Beleuchtungsspaltbreite ist mit sB und die Rasterelementlänge mit sR bezeichnet. Die maximale Dosis P entspricht wieder 100%.
  • Die Länge der Rampen AB bzw. DC der Dosisverteilung hängt bei gegebener Meßflächengeometrie und gegebener Relativgeschwindigkeit von der Dauer der Signaltakte ab. Sie entspricht genau der Weglänge l1, die die Banknote 1 während der Taktdauer T1 zurücklegt. Wesentlich ist daher, daß während eines Signaltaktes die Banknote 1 nur einen Weg l1 zurücklegt, der kleiner ist als die Länge sB der Meßfläche. Um eine lückenlose Abtastung der Banknote zu erreichen, reicht es dann aus, wenn der folgende Signaltakt der gleichen Signalart wieder beginnt, wenn der zu Beginn des ersten Taktes in Transportrichtung R an der Vorderkante der Meßfläche befindliche Punkt (in Figur 2a der Punkt B) das Ende der Meßfläche erreicht hat. Genau dann liegen die Rasterelemente lückenlos derart relativ zueinander, daß sich nur genau die Bereiche zwischen den Punkten A und B sowie C und D zweier aufeinanderfolgender Rasterelemente der Länge sR überlappen. Aufgrund der gleichförmigen Geschwindigkeit und des daraus resultierenden linearen Anstiegs bzw. Abfalls der Dosis P in diesen Bereichen, addiert sich die in den benachbarten Rasterelementen erfaßte Dosis dieser Punkte wieder genau zu 100% (Fig. 3). Das bedeutet, daß jeder Punkt auf dem Aufzeichnungsträger mit derselben Empfindlichkeit betrachtet wird. Seine Information wird folglich immer zu 100% abgetastet. Sie kann aber auf zwei benachbarte Meßwerte verteilt sein. Dies ist unabhängig von der Taktlänge.
  • Die Zeit zwischen zwei Signaltakten einer Signalart Q1, das heißt die Dauer T der Periode abzüglich der Taktdauer T1, kann nun genutzt werden, um die Banknote 1 mit Signalen einer anderen Signalart Q2, Q3 abzutasten (Fig. 4). Durch eine entsprechende Breite des Beleuchtungsspalts für diese weiteren Signale, das heißt eine entsprechende Länge sB der Meßflächen bezüglich dieser Signalart, läßt sich auch hierfür eine lückenlose Abtastung in gleicher Weise erreichen. In dem in Fig. 4 dargestellten Beispielsfall ist die Beleuchtungsspaltbreite bzw. Länge sB der Meßflächen jeweils identisch.
  • Fig. 4 zeigt am Beispiel dreier unterschiedlicher Signalarten Q1, Q2, Q3, wie eine Periode von aufeinanderfolgenden Signalen in beliebiger Weise in Zeitabschnitte T1, T2, T3 und T0 aufgeteilt werden kann, in denen die einzelnen Signalsysteme aktiv sind. Hierbei muß lediglich die Voraussetzung erfüllt sein, daß für alle Signalarten Q1, Q2, Q3 die Länge sB der Meßfläche gleich dem Produkt aus der Relativgeschwindigkeit und der Dauer T der Periode ist, damit sich für alle Signalkanäle immer eine lückenlose Abrasterung der Banknote 1 in der gewünschten Art ergibt. Die während der einzelnen Zeitabschnitte T1, T2, T3, T0 zurückgelegten Wegstrecken l1, l2, l3, l0 summieren sich wieder genau zur Länge sB der Meßfläche, d.h. zur Breite des Beleuchtungsspalts, auf.
  • Fig. 4 zeigt auch, daß sich die einzelnen Signaldauern T1, T2, T3 unterschiedlichen Signalarten Q1, Q2, Q3 innerhalb der Periode T nicht unbedingt zu 100% aufsummieren müssen. Im Prinzip können die einzelnen Signaldauern T1, T2, T3 auch unterschiedlich sein, so daß beispielsweise einer Signalart Q1 innerhalb einer Periode eine kürzere Signaldauer T1 zur Verfügung steht und den anderen Signalarten Q2, Q3 eine längere Signaldauer T2, T3. Eine innerhalb der Periode von Signalen frei bleibende Zeit T0 kann beispielsweise benutzt werden, um die Meßaufnehmer auszulesen oder Eichmessungen oder ähnliches durchzuführen.
  • In Figur 5 ist die Lage der Meßflächen 10, 20 für zwei verschiedene Signalarten, hier Meßflächen 10 eines roten Farbsignals und Meßflächen 20 eines Infrarotsignals, dargestellt. Wie zu sehen ist, liegen bei dem erfindungsgemäßen Verfahren die Meßflächen 10, 20 der beiden Signalarten, gegeneinander verschoben auf der Banknote 1. Wegen der besseren Erkennbarkeit sind hier Meßflächen 10, 20 dargestellt, welche sich nicht über die gesamte Breite der Banknote 1 erstrecken. Außerdem sind nur zwei Meßflächen 10 des roten Lichtsignals dargestellt. Die gestrichelte Linie zeigt beispielhaft an einer Reihe von Meßflächen 20 des Infrarotsignals den Überlappbereich bzw. die Länge sR des Rasterelements .
  • Bei einem nicht dargestellten bevorzugten Ausführungsbeispiel erstrecken sich die Meßflächen quer zur Transportrichtung R über die gesamte Breite der Banknote.
  • Das erfindungsgemäße Verfahren bietet eine lückenlose, ganzflächige Abtastung der Banknote bei hohem Banknotendurchsatz. Hierbei ist Ihr die Meßdaten nur ein geringer Bearbeitungs- und Speicheraufwand nötig. Wie bereits oben erwähnt, ist die Erfindung selbstverständlich nicht auf das Lesen und Prüfen von Banknoten beschränkt, sondern kann auch für beliebige andere Aufzeichnungsträger verwendet werden.

Claims (8)

  1. Verfahren zum Lesen blattförmiger Aufzeichnungsträger (1) während einer Relativbewegung gegenüber einer Lesestation (2), welche mindestens einen Sender (3) zum sequentiellen, periodischen Abstrahlen von mindestens zwei Signalen unterschiedlicher Signalart (Q1, Q2, Q3) mit Perioden gleicher Dauer (T), einen für die unterschiedlichen Signalarten (Q1, Q2, Q3) gemeinsamen Empfänger (4) zum Detektieren dieser durch den Aufzeichnungsträger (1) modulierten Signale und eine Auswerteeinheit für die detektierten Signale aufweist, wobei sich eine bestimmte Beleuchtungscharakteristik auf dem Aufzeichnungsträger (1) mit einem Beleuchtungsspalt mit einer bestimmten Spaltbreite ergibt, wobei die Spaltbreite genau der Länge (sB) der von der Lesestation (2) während eines bestimmten Zeitpunkts erfaßten Meßfläche in Bewegungsrichtung (R) entspricht, wobei mittels der Lesestation (2) in jeder der Signalarten (Q1, Q2, Q3) taktweise Rasterelemente mit bestimmter Erstreckung (sR) entlang der Relativbewegungsrichtung (R) abgetastet und dabei zu jedem Zeitpunkt eines Taktes eine Meßfläche mit der bestimmten Länge (sB) in Relativbewegungsrichtung (R) auf dem Aufzeichnungsträger (1) erfaßt wird, dadurch gekennzeichnet, daß die Länge (sB) der von der Lesestation (2) erfaßten Meßfläche für jede Signalart (Q1, Q2, Q3) gleich der Weglänge (1) gewählt wird, die sich der Aufzeichnungsträger (1) bei gegebener Relativgeschwindigkeit während der Dauer (T) einer Periode zweier aufeinanderfolgender Signale einer Signalart (Q1; Q2; Q3) relativ zur Lesestation (2) fortbewegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Abtastung mindestens mit einem Infrarotsignal und mindestens mit einem Lichtsignal einer bestimmten Wellenlänge im sichtbaren Bereich erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Abtastung mindestens mit einem Hellfeldsignal und mindestens mit einem Dunkelfeldsignal erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sich die Meßfläche zeilenförmig quer zur Relativbewegung über den gesamten Aufzeichnungsträger erstreckt.
  5. Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger (1) während einer Relativbewegung gegenüber einer Lesestation (2), welche mindestens einen Sender (3) zum sequentiellen, periodischen Abstrahlen von mindestens zwei Signalen unterschiedlicher Signalart (Q1, Q2, Q3) mit Perioden gleicher Dauer (T), einen für die unterschiedlichen Signalarten (Q1, Q2, Q3) gemeinsamen Empfänger (4) zum Detektieren dieser durch den Aufzeichnungsträger (1) modulierten Signale und eine Auswerteeinheit für die detektierten Signale aufweist, wobei sich eine bestimmte Beleuchtungscharakteristik auf dem Aufzeichnungsträger (1) mit einem Beleuchtungsspalt mit einer bestimmten Spaltbreite ergibt, wobei die Spaltbreite genau der Länge (sB) der von der Lesestation (2) während eines bestimmten Zeitpunkts erfaßten Meßfläche in Bewegungsrichtung (R) entspricht, wobei die Lesestation (2) in jeder der Signalarten (Q1, Q2, Q3) taktweise Rasterelemente mit bestimmter Erstreckung (sR) entlang der Relativbewegungsrichtung (R) abtastet und dabei zu jedem Zeitpunkt eines Taktes eine Meßfläche mit der bestimmten Länge (sB) in Relativbewegungsrichtung (R) auf dem Aufzeichnungsträger (1) erfaßt, dadurch gekennzeichnet, daß die Sender- und/oder Empfängergeometrie der Lesestation (2) derart ausgebildet ist und die Relativgeschwindigkeit und die Taktzeiten derart ausgewählt sind, daß die Länge (sB) der von der Lesestation (2) erfaßten Meßfläche für jede Signalart (Q1; Q2; Q3) gleich der Weglänge (1) ist, die sich der Aufzeichnungsträger (1) bei der gegebenen Relativgeschwindigkeit während der Dauer (T) einer Periode zweier aufeinanderfolgender Signale einer Signalart (Q1; Q2; Q3) relativ zur Lesestation (2) fortbewegt.
  6. Vorrichtung nach Anspruch 5, gekennzeichnet durch mindestens einen Infrarotsender und mindestens einen Sender zur Erzeugung eines Lichtsignals einer bestimmten Wellenlänge im sichtbaren Bereich.
  7. Vorrichtung nach Anspruch 5 oder 6, gekennzeichnet durch mindestens einen Sender zur Erzeugung eines Hellfeldsignals und mindestens einen Sender zur Erzeugung eines Dunkelfeldsignals.
  8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der oder die Sender und/oder der Empfänger derart ausgebildet und/ oder angeordnet sind, daß sich die Meßfläche zeilenförmig quer zur Relativbewegung über den gesamten Aufzeichnungsträger erstreckt.
EP00113141A 1999-07-02 2000-06-29 Verfahren und Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger Expired - Lifetime EP1065631B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19930651 1999-07-02
DE19930651A DE19930651C2 (de) 1999-07-02 1999-07-02 Verfahren und Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger

Publications (2)

Publication Number Publication Date
EP1065631A1 EP1065631A1 (de) 2001-01-03
EP1065631B1 true EP1065631B1 (de) 2010-03-24

Family

ID=7913495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00113141A Expired - Lifetime EP1065631B1 (de) 1999-07-02 2000-06-29 Verfahren und Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger

Country Status (3)

Country Link
EP (1) EP1065631B1 (de)
AT (1) ATE462173T1 (de)
DE (2) DE19930651C2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827410B1 (fr) * 2001-07-11 2004-02-13 Banque De France Procede d'authentification d'un document de securite par analyse multifrequence, et dispositif associe
DE10212734B4 (de) * 2002-03-21 2022-06-02 Accu-Sort Systems, Inc. Verfahren und Vorrichtung zur Identifikation und Authentifikation eines Gegenstandes
DE102010055697A1 (de) 2010-12-22 2012-06-28 Giesecke & Devrient Gmbh Verfahren zur Erzeugung eines digitalen Bildes wenigstens eines Abschnitts eines Wertdokuments

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU556102B2 (en) * 1981-10-22 1986-10-23 Cubic Western Data Currency note validator
EP0537431B1 (de) * 1991-10-14 1997-05-28 Mars, Incorporated Einrichtung zum optischen Erkennen von Dokumenten
IT1250847B (it) * 1991-10-15 1995-04-21 Urmet Spa Apparecchio per la validazione di banconote
GB2309299B (en) * 1996-01-16 2000-06-07 Mars Inc Sensing device

Also Published As

Publication number Publication date
DE50015894D1 (de) 2010-05-06
DE19930651C2 (de) 2003-04-10
ATE462173T1 (de) 2010-04-15
EP1065631A1 (de) 2001-01-03
DE19930651A1 (de) 2001-01-11

Similar Documents

Publication Publication Date Title
DE4338780C2 (de) Mustererkennungsvorrichtung
DE3019486C2 (de) Vorrichtung zur Erkennung der Position eines auf einem Träger aufgezeichneten elektrophoretischen Bildes
DE3887157T2 (de) Zähler für gestapelte gegenstände.
EP3318895A1 (de) Vorrichtung und verfahren zum empfangen eines reflektierten lichtpulses in einem lidar-system
DE2636906C3 (de) Verfahren zur Erzeugung eines Schaltsignals beim Durchgang eines Kontrastsprunges und Schaltungsanordnung zur Ausführung des Verfahrens
EP1309949B1 (de) Verifikation von dickenmodulationen in oder auf blattgut
WO1992014221A1 (de) Prüfanordnung
DE2428123A1 (de) Anordnung zum nachweisen von fehlstellen mittels abtastung durch einen laserstrahl
DE10243051A1 (de) Verfahren und Pfüfeinrichtung zur Prüfung von Wertdokumenten
DE202005007089U1 (de) Sensoranordnung zur optischen Kantendetektierung einer Ware
EP0611608B1 (de) Verfahren und Vorrichtung zum Abtasten und Überprüfen von Spurauftragungen auf einer Unterlage
EP2773928B1 (de) Sensor zur prüfung von wertdokumenten
EP0060392A2 (de) Vorrichtung zum Prüfen von Münzen
EP1262800B1 (de) Optoelektronischer Sensor
EP1065631B1 (de) Verfahren und Vorrichtung zum Lesen blattförmiger Aufzeichnungsträger
DE4209546A1 (de) Vorrichtung zum Erfassen einer Bahnkante
DE102010014912A1 (de) Sensor zur Prüfung von Wertdokumenten
DE68912961T2 (de) Erfassung einer Registermarkierung.
DE2340688C3 (de) Lesevorrichtung für optisch erfaßbare digitale Codierungen
DE102020104931B4 (de) Verfahren und Vorrichtung zur Kantenerkennung eines Objekts
DE2061381A1 (de) Interferometer
DE102004003614B4 (de) Vorrichtung und Verfahren zur Erkennung eines vorbestimmten Musters auf einem in Bewegung befindlichen Druckerzeugnis
DE1938083A1 (de) Verfahren zur automatischen Fehlerueberwachung flaechenfoermiger Gueter und Vorrichtung zur Durchfuehrung des Verfahrens
EP0052812A2 (de) Verfahren zum Feststellen von Signal-Abweichungen unter Zuhilfenahme eines integrierenden Differenzverstärkers
DE102009013795A1 (de) Faseroptische Messvorrichtung und Messverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010703

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20061115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50015894

Country of ref document: DE

Date of ref document: 20100506

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100630

Year of fee payment: 11

BERE Be: lapsed

Owner name: GIESECKE & DEVRIENT G.M.B.H.

Effective date: 20100630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100726

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

26N No opposition filed

Effective date: 20101228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50015894

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50015894

Country of ref document: DE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE & DEVRIENT GMBH, 81677 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE AND DEVRIENT GMBH, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180118 AND 20180124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50015894

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190624

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190624

Year of fee payment: 20

Ref country code: DE

Payment date: 20190630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50015894

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200628