EP1065052B1 - Processless printing plate with high ratio of anorganic pigment over hardener - Google Patents
Processless printing plate with high ratio of anorganic pigment over hardener Download PDFInfo
- Publication number
- EP1065052B1 EP1065052B1 EP19990202111 EP99202111A EP1065052B1 EP 1065052 B1 EP1065052 B1 EP 1065052B1 EP 19990202111 EP19990202111 EP 19990202111 EP 99202111 A EP99202111 A EP 99202111A EP 1065052 B1 EP1065052 B1 EP 1065052B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- sensitive material
- material according
- hydrophilic
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007639 printing Methods 0.000 title claims description 31
- 239000004848 polyfunctional curative Substances 0.000 title claims description 7
- 239000000049 pigment Substances 0.000 title description 4
- 239000000463 material Substances 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 13
- 230000005660 hydrophilic surface Effects 0.000 claims description 7
- 239000001023 inorganic pigment Substances 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 239000004411 aluminium Substances 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229920000620 organic polymer Polymers 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 229920002451 polyvinyl alcohol Polymers 0.000 description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 239000004372 Polyvinyl alcohol Substances 0.000 description 13
- 239000000976 ink Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- -1 borides Chemical class 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 239000008119 colloidal silica Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 229920004482 WACKER® Polymers 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000000080 wetting agent Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940093499 ethyl acetate Drugs 0.000 description 3
- 235000019439 ethyl acetate Nutrition 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920006255 plastic film Polymers 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920003270 Cymel® Polymers 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 206010057040 Temperature intolerance Diseases 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000008543 heat sensitivity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910003439 heavy metal oxide Inorganic materials 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920001480 hydrophilic copolymer Polymers 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910001506 inorganic fluoride Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 1
- 229950005308 oxymethurea Drugs 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- DOKHEARVIDLSFF-UHFFFAOYSA-N prop-1-en-1-ol Chemical group CC=CO DOKHEARVIDLSFF-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1008—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
- B41C1/1016—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/04—Negative working, i.e. the non-exposed (non-imaged) areas are removed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/08—Developable by water or the fountain solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/14—Multiple imaging layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/20—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by inorganic additives, e.g. pigments, salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/24—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
Definitions
- the present invention relates to a heat mode recording material for making a lithographic plate for use in lithographic printing.
- the present invention further relates to a method for imaging said heat mode recording material e.g. by means of a laser.
- Lithographic printing is the process of printing from specially prepared surfaces, some areas of which are capable of accepting ink (oleophilic areas) whereas other areas will not accept ink (hydrophilic areas).
- oleophilic areas areas of which are capable of accepting ink
- hydrophilic areas areas of which are capable of accepting ink
- hydrophilic areas are applied to the plate surface that contains hydrophilic and oleophilic areas.
- the hydrophilic areas will be soaked with water or the dampening liquid and are thereby rendered oleophobic while the oleophilic areas will accept the ink.
- DE-A- 2 448 325 discloses a laser heat mode "direct negative" printing plate comprising e.g. a polyester film support provided with a hydrophilic surface layer.
- the disclosed heat mode recording material is imaged using an Argon laser thereby rendering the exposed areas oleophilic.
- An offset printing plate is thus obtained which can be used on an printing press without further processing.
- the plate is called a "direct negative” plate because the areas of the recording material that have been exposed are rendered ink accepting.
- DE-A- 2 448 325 concern "direct negative" printing plates comprising e.g. hydrophilic aluminium support coated with a water soluble laser light (Argon-488nm) absorbing dye or with a coating based on a mixture of hydrophilic polymer and laser light absorbing dye (Argon - 488nm).
- heat mode recording materials for preparing "direct negative” printing plates include e.g. US-A- 4 341 183, DE-A- 2 607 207, DD-A- 213 530, DD-A- 217 645 and DD-A- 217 914. These documents disclose heat mode recording materials that have on an anodized aluminium support a hydrophilic layer.
- the disclosed heat mode recording materials are image-wise exposed using a laser.
- Laser exposure renders the exposed areas insoluble and ink receptive, whereas the non exposed image portions remain hydrophilic and water soluble allowing to be removed by the dampening liquid during printing exposing the hydrophilic support.
- Such plates can be used directly on the press without processing.
- DD-A- 155 407 discloses a laser heat mode "direct negative" printing plate where a hydrophilic aluminum oxide layer is rendered oleophilic by direct laser heat mode imaging. These printing plates may also be used on the press without further processing.
- EP-A- 580 393 discloses a lithographic printing plate directly imageable by laser discharge, the plate comprising a topmost first layer and a second layer underlying the first layer wherein the first layer is characterized by efficient absorption of infrared radiation and the first and second layer exhibit different affinities for at least one printing liquid.
- EP-A- 683 728 discloses a heat mode recording material comprising on a support having an ink receptive surface or being coated with an ink receptive layer a substance capable of converting light into heat and a hardened hydrophilic surface layer having a thickness not more than 3 ⁇ m. The lithographic properties of said material are not very good.
- WO99/19143 discloses a heat mode printing plate element which comprises a support, an IR-sensitive oleophilic layer and a hydrophilic top layer comprising a cross-linked polymeric matrix containing a colloid of an oxide or hydroxide of a metal and a photothermal conversion material.
- a heat-sensitive material for making lithographic plates comprising in the order given on a support an IR-sensitive oleophilic layer and an ablatable cross-linked hydrophilic layer comprising a hydrophilic organic polymer, an inorganic pigment and a hardener, wherein the ratio of said inorganic pigment over the hardener is comprised between 95/5 and 75/25 by weight.
- the IR-sensitive oleophilic layer amounts preferably to a dry weight between 0.1 and 0.75 g/m 2 , more preferably between 0.15 and 0.5 g/m 2 .
- the IR-sensitive oleophilic layer comprises a binder and a compound capable of converting light into heat.
- Suitable compounds capable of converting light into heat are preferably infrared absorbing components having an absorption in the wavelength range of the light source used for image-wise exposure.
- Particularly useful compounds are for example dyes and in particular infrared dyes as disclosed in EP-A- 908 307 and pigments and in particular infrared pigments such as carbon black, metal carbides, borides, nitrides, carbonitrides, bronze-structured oxides and oxides structurally related to the bronze family but lacking the A component e.g. WO 2.9 .
- conductive polymer dispersion such as polypyrrole or polyaniline-based conductive polymer dispersions.
- the lithographic performance and in particular the print endurance obtained depends i.a.on the heat-sensitivity of the imaging element. In this respect it has been found that carbon black or graphite yields very good and favorable results.
- the binder is selected from the group consisting of polyvinyl chloride, polyesters, polyurethanes, novolac, polyvinyl carbazole etc., copolymers or mixtures thereof.
- the polymeric binder in the recording layer is heat sensitive: e.g. a polymer containing nitrate ester groups (e.g. self oxidizing binder cellulose nitrate as disclosed in GB-P- 1 316 398 and DE-A- 2 512 038 ); e.g. a polymer containing carbonate groups (e.g. polyalkylene carbonate); e.g. a polymer containing covalently bound chlorine (e.g. polyvinylidene chloride). Also substances containing azo or azide groups , capable of liberating N 2 upon heating are favourably used.
- nitrate ester groups e.g. self oxidizing binder cellulose nitrate as disclosed in GB-P- 1 316 398 and DE-A- 2 512 038
- carbonate groups e.g. polyalkylene carbonate
- chlorine e.g. polyvinylidene chloride
- substances containing azo or azide groups capable of liberating N 2 upon heating
- hydrophilic coatings are preferably cast from aqueous compositions containing hydrophilic binders having free reactive groups including e.g. hydroxyl, carboxyl, hydroxyethyl, hydroxypropyl, amino, aminoethyl, aminopropyl, carboxymethyl, etc.. along with suitable crosslinking or modifying agents including e.g. hydrophilic organotitanium reagents, aluminoformyl acetate, dimethylol urea, melamines, aldehydes, hydrolyzed tetraalkyl orthosilicate, etc..
- hydrophilic organotitanium reagents e.g. hydrophilic organotitanium reagents, aluminoformyl acetate, dimethylol urea, melamines, aldehydes, hydrolyzed tetraalkyl orthosilicate, etc.
- Suitable polymers for hydrophilic layers may be selected from the group consisting of gum arabic, casein, gelatin, starch derivatives, carboxymethyl cellulose and Na salt thereof, cellulose acetate, sodium alginate, vinyl acetate-maleic acid copolymers, styrene-maleic acid copolymers, polyacrylic acids and salts thereof, polymethacrylic acids and salts thereof, hydroxyethylene polymers, polyethylene glycols, hydroxypropylene polymers, polyvinyl alcohols, and hydrolyzed polyvinylacetate having a hydrolyzation degree of at least 60% by weight and more preferably at least 80% by weight.
- Hydrophilic layers containing polyvinylalcohol or polyvinylacetate hydrolyzed to an extent of at least 60% by weight hardened with a tetraalkyl orthosilicate, e.g. tetraethyl orthosilicate or tetramethyl orthosilicate, as disclosed in e.g. US-P- 3 476 937 are particularly preferred because their use in the present heat mode recording material results in excellent lithographic printing properties.
- a cross-linked hydrophilic binder in the heat-sensitive material used in accordance with the present embodiment also contains inorganic pigments that increase the mechanical strength and the porosity of the layer e.g.colloidal metal oxide particles which are particles of titanium dioxide or other metal oxides. Incorporation of these particles gives the surface of the cross-linked hydrophilic layer a uniform rough texture consisting of microscopic hills and valleys.
- these particles are oxides or hydroxydes of beryllium, magnesium, aluminium, silicon, gadolinium, germanium, arsenic, indium, tin, antimony, tellurium, lead, bismuth or a transition metal.
- Particularly preferable colloidal particles are oxides or hydroxides of aluminum, silicon, zirconium and titanium, used in 20 to 95 % by weight of the hydrophilic layer, more preferably in 30 to 90 % by weight of the hydrophilic layer.
- the cross-linked hydrophilic layer is preferably coated at a dry thickness of 0.3 to 5 ⁇ m, more preferably at a dry thickness of 0.5 to 3 ⁇ m.
- the hardened hydrophilic layer may comprise additional substances such as e.g. plasticizers, pigments, dyes etc.
- the cross-linked hydrophilic layer can additionally contain an IR-absorbing compound in order to increase the IR-sensitivity.
- suitable cross-linked hydrophilic layers for use in accordance with the present invention are disclosed in EP-A- 601 240, GB-P- 1 419 512, FR-P- 2 300 354, US-P- 3 971 660, US-P- 4 284 705 and EP-A- 514 490 .
- the support according to the present invention can be a dimensionally stable support e.g. aluminum or another metal or alloy or it can be a flexible support e.g. polyethylene terephthalate.
- the support is a lithographic base with a hydrophilic surface.
- the lithographic base may be an anodised aluminum support.
- a particularly preferred lithographic base is an electrochemically grained and anodised aluminum support.
- the anodised aluminum support may be treated to improve the hydrophilic properties of its surface.
- the aluminum support may be silicated by treating its surface with sodium silicate solution at elevated temperature, e.g. 95°C.
- a phosphate treatment may be applied which involves treating the aluminum oxide surface with a phosphate solution that may further contain an inorganic fluoride.
- the aluminum oxide surface may be rinsed with a citric acid or citrate solution. This treatment may be carried out at room temperature or may be carried out at a slightly elevated temperature of about 30 to 50°C.
- a further interesting treatment involves rinsing the aluminum oxide surface with a bicarbonate solution.
- the aluminum oxide surface may be treated with polyvinylphosphonic acid, polyvinylmethylphosphonic acid, phosphoric acid esters of polyvinyl alcohol, polyvinylsulphonic acid, polyvinylbenzenesulphonic acid, sulphuric acid esters of polyvinyl alcohol, and acetals of polyvinyl alcohols formed by reaction with a sulphonated aliphatic aldehyde It is further evident that one or more of these post treatments may be carried out alone or in combination.
- the lithographic base with a hydrophilic surface comprises a flexible support, such as e.g. paper or plastic film, provided with a cross-linked hydrophilic layer.
- a particularly suitable cross-linked hydrophilic layer may be obtained from a hydrophilic binder cross-linked with a cross-linking agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolysed tetraalkylorthosilicate. The latter is particularly preferred.
- hydrophilic binder there may be used hydrophilic (co)polymers such as for example, homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol methacrylamide, acrylate acid, methacrylate acid, hydroxyethyl acrylate, hydroxyethyl methacrylate or maleic anhydride/vinylmethylether copolymers.
- the hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably the same as or higher than the hydrophilicity of polyvinyl acetate hydrolyzed to at least an extent of 60 percent by weight, preferably 80 percent by weight.
- the amount of crosslinking agent, in particular of tetraalkyl orthosilicate, is preferably at least 0.2 parts by weight per part by weight of hydrophilic binder, more preferably between 0.5 and 5 parts by weight, most preferably between 1.0 parts by weight and 3 parts by weight.
- a cross-linked hydrophilic layer in a lithographic base used in accordance with the present embodiment preferably also contains substances that increase the mechanical strength and the porosity of the layer.
- colloidal silica may be used.
- the colloidal silica employed may be in the form of any commercially available water dispersion of colloidal silica for example having an average particle size up to 40 nm, e.g. 20 nm.
- inert particles of larger size than the colloidal silica may be added e.g. silica prepared according to Stöber as described in J. Colloid and Interface Sci., Vol. 26, 1968, pages 62 to 69 or alumina particles or particles having an average diameter of at least 100 nm which are particles of titanium dioxide or other heavy metal oxides.
- the surface of the cross-linked hydrophilic layer is given a uniform rough texture consisting of microscopic hills and valleys, which serve as storage places for water in background areas.
- the thickness of a cross-linked hydrophilic layer in a lithographic base in accordance with this embodiment may vary in the range of 0.2 to 25 ⁇ m and is preferably 1 to 10 ⁇ m.
- plastic film e.g. substrated polyethylene terephthalate film, substrated polyethylene naphthalate film, cellulose acetate film, polystyrene film, polycarbonate film etc.
- the plastic film support may be opaque or transparent.
- glass with a thickness less than 1.2 mm and a failure stress (under tensile stress) equal or higher than 5 x 10 7 .
- the amount of silica in the adhesion improving layer is between 200 mg per m2 and 750 mg per m2.
- the ratio of silica to hydrophilic binder is preferably more than 1 and the surface area of the colloidal silica is preferably at least 300 m2 per gram, more preferably at least 500 m2 per gram.
- the imaging element is image-wise exposed.
- the cross-linked hydrophilic layer can be removed and said areas are converted to oleophilic areas while the unexposed areas remain hydrophilic. This is mostly the case when using short pixel dwell times (for example 1 to 100 ns). However when using longer pixel dwell times (for example 1 to 20 us) the hydrophilic layer is not or only partially removed upon exposure.
- the remaining parts of the hydrophilic layer can be removed on the press by contact with fountain solution and ink or by an additional wet or dry processing step between the IR-laser exposure and the start-up of the printing process.
- Image-wise exposure in connection with the present invention is preferably an image-wise scanning exposure involving the use of a laser or L.E.D.
- a laser or L.E.D Preferably used are lasers that operate in the infrared or near-infrared, i.e. wavelength range of 700-1500 nm. Most preferred are laser diodes emitting in the near-infrared with an intensity greater than 0.1 mW/ ⁇ m 2 .
- the plate is then ready for printing without an additional development and can be mounted on the printing press.
- the imaging element is first mounted on the printing cylinder of the printing press and then image-wise exposed directly on the press. Subsequent to exposure, the imaging element is ready for printing.
- the printing plate of the present invention can also be used in the printing process as a seamless sleeve printing plate.
- the printing plate is soldered in a cylindrical form by means of a laser.
- This cylindrical printing plate which has as diameter the diameter of the print cylinder is slid on the print cylinder instead of mounting a conventional printing plate. More details on sleeves are given in "Grafisch Nieuws" , 15, 1995, page 4 to 6.
- a 0.30 mm thick aluminum foil was degreased by immersing the foil in an aqueous solution containing 5 g/l of sodium hydroxide at 50°C and rinsed with demineralized water.
- the foil was then electrochemically grained using an alternating current in an aqueous solution containing 4 g/l of hydrochloric acid, 4 g/l of hydroboric acid and 5 g/l of aluminum ions at a temperature of 35°C and a current density of 1200 A/m 2 to form a surface topography with an average center-line roughness Ra of 0.5 mm.
- the aluminum foil was then etched with an aqueous solution containing 300 g/l of sulfuric acid at 60°C for 180 seconds and rinsed with demineralized water at 25°C for 30 seconds.
- the foil was subsequently subjected to anodic oxidation in an aqueous solution containing 200 g/l of sulfuric acid at a temperature of 45°C, a voltage of about 10 V and a current density of 150 A/m 2 for about 300 seconds to form an anodic oxidation film of 3.00 g/m 2 of Al 2 O 3 then washed with demineralized water, posttreated with a solution containing polyvinylphosphonic acid and subsequently with a solution containing aluminum trichloride, rinsed with demineralized water at 20°C during 120 seconds and dried.
- the hydrophilic layer was coated to a wet coating thickness of 20 ⁇ m from a solution having the following compositions Element 1 100.0g TiO2- dispersion in water, stabilized with Polyviol WX 48TM (polyvinyl alcohol from Wacker) (10 % w/w polyvinyl alcohol versus TiO 2 ) ( average particle size 0.3 to 0.5 ⁇ m)-6.25% w/w 0.0g hydrolyzed tetramethyl orthosilicate in water/ethanol-6.25% w/w 1.2g wetting agent in water-5%w/w.
- Element 1 100.0g TiO2- dispersion in water, stabilized with Polyviol WX 48TM (polyvinyl alcohol from Wacker) (10 % w/w polyvinyl alcohol versus TiO 2 ) ( average particle size 0.3 to 0.5 ⁇ m)-6.25% w/w 0.0g hydrolyzed tetramethyl orthosilicate in water/ethanol-6.25% w/w 1.2g wetting agent in water
- Element 2 90.9g TiO2 dispersion in water, stabilized with Polyviol WX 48TM (polyvinyl alcohol from Wacker) (10 % w/w polyvinyl alcohol versus TiO 2 ( average particle size 0.3 to 0.5 ⁇ m)-6.25% w/w 9.1g hydrolyzed tetramethyl orthosilicate in water/ethanol-6.25% w/w 1.2g wetting agent in water-5%w/w.
- Polyviol WX 48TM polyvinyl alcohol from Wacker
- Element 3 81.6g TiO2- dispersion in water, stabilized with Polyviol WX 48TM (polyvinyl alcohol from Wacker) (10 % w/w polyvinyl alcohol versus TiO 2 ) ( average particle size 0.3 to 0.5 ⁇ m)-6.25% w/w 18.4g hydrolyzed tetramethyl orthosilicate in water/ethanol-6.25% w/w 1.2g wetting agent in water-5%w/w.
- Polyviol WX 48TM polyvinyl alcohol from Wacker
- 10 % w/w polyvinyl alcohol versus TiO 2 average particle size 0.3 to 0.5 ⁇ m
- Element 4 72.2g TiO2- dispersion in water, stabilized with Polyviol WX 48TM (polyvinyl alcohol from Wacker) (10 % w/w polyvinyl alcohol versus TiO 2 ) ( average particle size 0.3 to 0.5 ⁇ m)-6.25% w/w 27.8g hydrolyzed tetramethyl orthosilicate in water/ethanol-6.25% w/w 1.2g wetting agent in water-5%w/w.
- Polyviol WX 48TM polyvinyl alcohol from Wacker
- 10 % w/w polyvinyl alcohol versus TiO 2 average particle size 0.3 to 0.5 ⁇ m
- Element 5 62.5g TiO2- dispersion in water, stabilized with Polyviol WX 48TM (polyvinyl alcohol from Wacker) (10 % w/w polyvinyl alcohol versus TiO 2 ) ( average particle size 0.3 to 0.5 ⁇ m)-6.25% w/w 37.5g hydrolyzed tetramethyl orthosilicate in water/ethanol-6.25% w/w 1.2g wetting agent in water-5%w/w.
- Polyviol WX 48TM polyvinyl alcohol from Wacker
- 10 % w/w polyvinyl alcohol versus TiO 2 average particle size 0.3 to 0.5 ⁇ m
- the resulting imaging elements were imaged on a Gerber C42 TTM at 2400 dpi operating at a scanning speed of 150 rps and a laser output of 7.5 Watt
- the press was started by allowing the print cylinder with the imaging element mounted thereon to rotate.
- the dampener rollers of the press were first dropped on the imaging element so as to supply dampening liquid to the imaging element and after 5 revolutions of the print cylinder, the ink rollers were dropped to supply ink. After 5 further revolutions paper was feeded.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Printing Plates And Materials Therefor (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Materials For Photolithography (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19990202111 EP1065052B1 (en) | 1999-06-29 | 1999-06-29 | Processless printing plate with high ratio of anorganic pigment over hardener |
DE1999614588 DE69914588T2 (de) | 1999-06-29 | 1999-06-29 | Verarbeitungsfreie Flachdruckplatte mit hohem anorganisches Pigment/Härter Verhältnis |
US09/599,964 US6576395B1 (en) | 1999-06-29 | 2000-06-23 | Processless printing plate with high ratio of inorganic pigment over hardener in a hydrophilic layer |
JP2000194285A JP2001047759A (ja) | 1999-06-29 | 2000-06-28 | 無機顔料対硬化剤の高い比を有するプロセスレス印刷版 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19990202111 EP1065052B1 (en) | 1999-06-29 | 1999-06-29 | Processless printing plate with high ratio of anorganic pigment over hardener |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1065052A1 EP1065052A1 (en) | 2001-01-03 |
EP1065052B1 true EP1065052B1 (en) | 2004-02-04 |
Family
ID=8240386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990202111 Expired - Lifetime EP1065052B1 (en) | 1999-06-29 | 1999-06-29 | Processless printing plate with high ratio of anorganic pigment over hardener |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1065052B1 (enrdf_load_stackoverflow) |
JP (1) | JP2001047759A (enrdf_load_stackoverflow) |
DE (1) | DE69914588T2 (enrdf_load_stackoverflow) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6720130B1 (en) | 2002-10-08 | 2004-04-13 | Kodak Polychrome Graphics Llc | Radiation sensitive lithographic printing plate precursors having ablation-free imageable composition and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55105560A (en) * | 1979-02-07 | 1980-08-13 | Tomoegawa Paper Co Ltd | Photoengraving by laser |
JP3625089B2 (ja) * | 1995-09-13 | 2005-03-02 | 富士写真フイルム株式会社 | 湿し水不要平版印刷版の形成方法 |
GB9702568D0 (en) * | 1997-02-07 | 1997-03-26 | Horsell Graphic Ind Ltd | Planographic printing |
US6090524A (en) * | 1997-03-13 | 2000-07-18 | Kodak Polychrome Graphics Llc | Lithographic printing plates comprising a photothermal conversion material |
-
1999
- 1999-06-29 DE DE1999614588 patent/DE69914588T2/de not_active Expired - Fee Related
- 1999-06-29 EP EP19990202111 patent/EP1065052B1/en not_active Expired - Lifetime
-
2000
- 2000-06-28 JP JP2000194285A patent/JP2001047759A/ja not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JP2001047759A (ja) | 2001-02-20 |
DE69914588D1 (de) | 2004-03-11 |
EP1065052A1 (en) | 2001-01-03 |
DE69914588T2 (de) | 2004-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0931647B1 (en) | A heat sensitive element and a method for producing lithographic plates therewith | |
EP0864420B2 (en) | Heat-sensitive imaging element for making positive working printing plates | |
EP0773112B1 (en) | Heat sensitive imaging element and method for making a printing plate therewith | |
EP0816070B1 (en) | A heat sensitive imaging element and a method for producing lithographic plates therewith | |
US6605407B2 (en) | Thermally convertible lithographic printing precursor | |
US6106996A (en) | Heat sensitive imaging element and a method for producing lithographic plates therewith | |
US6589710B2 (en) | Method for obtaining a lithographic printing surface | |
US6399276B1 (en) | Processless printing plate with cover layer containing compounds with cationic groups | |
EP0881094B1 (en) | A heat sensitive imaging element and a method for producing lithographic plates therewith | |
US6620573B2 (en) | Processless lithographic printing plate | |
US6511782B1 (en) | Heat sensitive element and a method for producing lithographic plates therewith | |
EP1065052B1 (en) | Processless printing plate with high ratio of anorganic pigment over hardener | |
EP1065053B1 (en) | Processless printing plate with low ratio of anorganic pigment over hardener | |
US20030180658A1 (en) | Thermally-convertible lithographic printing precursor developable with aqueous medium | |
US6555285B1 (en) | Processless printing plate with low ratio of an inorganic pigment over hardener | |
US6576395B1 (en) | Processless printing plate with high ratio of inorganic pigment over hardener in a hydrophilic layer | |
EP1065051B1 (en) | Processless printing plate with cover layer containing compounds with cationic groups | |
EP1065050B1 (en) | Processless printing plate with thin oleophilic layer | |
EP1065049B1 (en) | Heat-sensitive imaging element with cover layer for providing a lithographic printing plate | |
EP1208973B1 (en) | Processless lithographic printing plate | |
US20020155374A1 (en) | Thermally convertible lithographic printing precursor comprising an organic base | |
US20030017417A1 (en) | Method for obtaining a lithographic printing surface using a metal complex | |
US20030235776A1 (en) | Thermally-convertible lithographic printing precursor and imageable medium with coalescence inhibitor | |
US6528237B1 (en) | Heat sensitive non-ablatable wasteless imaging element for providing a lithographic printing plate with a difference in dye density between the image and non image areas | |
US20030017413A1 (en) | Thermally convertible lithographic printing precursor comprising a metal complex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010703 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA-GEVAERT |
|
17Q | First examination report despatched |
Effective date: 20030521 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69914588 Country of ref document: DE Date of ref document: 20040311 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041105 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090420 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090421 Year of fee payment: 11 Ref country code: DE Payment date: 20090421 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100629 |