EP1064691B1 - Integrated waveguide component - Google Patents

Integrated waveguide component Download PDF

Info

Publication number
EP1064691B1
EP1064691B1 EP99915470A EP99915470A EP1064691B1 EP 1064691 B1 EP1064691 B1 EP 1064691B1 EP 99915470 A EP99915470 A EP 99915470A EP 99915470 A EP99915470 A EP 99915470A EP 1064691 B1 EP1064691 B1 EP 1064691B1
Authority
EP
European Patent Office
Prior art keywords
waveguide component
component according
microwave conductor
substrate plate
conductor section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99915470A
Other languages
German (de)
French (fr)
Other versions
EP1064691A1 (en
Inventor
Thomas Wixforth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1064691A1 publication Critical patent/EP1064691A1/en
Application granted granted Critical
Publication of EP1064691B1 publication Critical patent/EP1064691B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters

Definitions

  • the invention relates to an integrated waveguide component with those in the preamble of the claim 1 mentioned features.
  • Integrated waveguide components of the generic type Kind are known. These are, for example, in flat microwave antennas for transmission and / or for Receiving signals used. Such microwave antennas need to achieve a flawless Signal transmission, and in particular to achieve a good selectivity between different Signals, regarding two degrees of freedom to one can be aligned with the partner communicating with them his.
  • a remote station can be, for example be geostationary satellite.
  • the two degrees of freedom are usually called "Elevation” and as "Azimuth” denotes, the elevation being an angle ⁇ corresponds to that between a so-called Main lobe direction of a main antenna plane lies, and the azimuth ⁇ the rotation of the entire arrangement characterized around a vertical axis.
  • the known microwave antennas are not able other than perpendicular to its base To receive microwave signals, which is why an additional mechanical alignment is indispensable.
  • the integrated waveguide component with the in the claim Features mentioned 1 has the advantage of a simple and inexpensive way to implement an adjustable phase shifter / delay element on.
  • the fact that the at least one microwave conductor at least one break point each of the interruption points has a mechanical relocatable microwave section assigned is that bridging the point of interruption Active lengths according to a desired one Phase shift between the input signal and the output signal is adjustable is advantageous possible, in a simple way, namely by a targeted mechanical rearrangement and subsequent Fixation of the displaceable microwave conductor section, to set a desired phase shift.
  • the maximum possible rearrangement can be phase shifts set in relatively large areas.
  • EP-A1-0743695 discloses (see FIGS. 1 and 2 and the description: column 2, line 1 to line 46): an integrated waveguide component according to the preamble of claim 1.
  • a similar waveguide component is known from the publication JP 10 004 305, the microwave conductor (16: signal input) being galvanically connected to a microwave conductor section (4). Although there is an adjustable galvanic connection here, it is not used for phase adjustment. Rather, the two coupler sections (6 1 and 6 2 ) connected to the microwave guide section (4) are provided for the electromagnetic coupling with the stator guide (3), which can be adjusted in terms of amount and phase (see the dimensioning).
  • the microwave guide has at least two planar contact tracks arranged above a ground plane has a substantially U-shaped Is assigned to the conductor section in the longitudinal direction of the at least two contact tracks is movable. This makes it particularly easy through a pull-out detour line (trombone principle) a phase shift using planar Reach microwave guides.
  • leaky wave antennas especially Rampart line antennas
  • the integrated waveguide component preferred for adjustment or change the main beam direction.
  • the microwave component Is resonator. This is a simple Created resonator with adjustable resonance length.
  • the microwave component a filter, especially a superconducting filter is.
  • Figure 1 shows a schematic representation of a Top view of a conductor structure in planar microwave conductor technology, consisting of two on one Substrate plate 2 applied and parallel to each other horizontal contact tracks 12 and 14.
  • the contact tracks 12 and 14 are not connected to each other, so that an interruption point 9 is formed between them is. Instead of a substrate plate 2, the Contact tracks 12 and 14 also on a superstrate plate or applied on a substrate film his.
  • the contact tracks 12 and 14 are, for example by screen printing or the like so on the surface the substrate plate 2 applied that a galvanic contact is made possible.
  • the contact tracks 12 and / or 14 are via a not shown Source can be supplied with an input signal, being on the other contact path Output signal can be tapped.
  • a connection between the contact tracks 12 and 14 are shown below described in more detail.
  • the contact track 12 has an input or output 11 and Contact path an entrance or exit 13.
  • Figures 2a to 2c show different top views Embodiments of a substrate plate 4 with a planar, essentially U-shaped conductor track, in the following also as a U-shaped Conductor section designated.
  • Figure 2a shows a conductor track with pronounced edges of the legs of the U-shaped conductor section 16.
  • Figure 2b is through a 45 ° cut flattened.
  • Figure 2c shows an alternative form a U-shaped conductor track or a U-shaped one Conductor section 20 with a semicircular Structure.
  • the two flat and preferably in their base substrate plates 2 and 4 of approximately the same size lie flat on top of one another in the intended state and form an integrated waveguide component 15 (Figure 3).
  • the substrate plate 2 forms one Ground plane and the substrate plate 4 an adjustment plane of the wave conductor component 15.
  • the composite Contact tracks 12 and 14 and the U-shaped Conductor section 16, 18 or 20 form the total length of the microwave conductor. Similar to one, for example Trumpet becomes a variable length of a detour by pulling out or pushing together, the means by moving the conductor section 16, 18 or 20 in the longitudinal direction of the contact tracks 12 and 14, extended or shortened.
  • planar microwave guides can be used as Microstrip line, triplate line, strip line, Suspended substrate line, slot line, coplanar line or carried out in a coplanar stripline his.
  • the two, from the contact tracks 12 and 14 and one U-shaped conductor section 16, 18 or 20 formed Line structures can be galvanic, for example Have connection, the line structures both substrate plates 2 and 4 respectively Superstrate plates or foils an electrical one Have contact.
  • the Line structures of both substrate plates 2 and 4 respectively Superstrate sheets or foils only close to each other and through a dielectric and / or the substrate plate 4 separated from one another are.
  • the signal path can thus also Phase shift or the term of the transmitted signals vary.
  • Figure 3 shows schematic representations of a possible Realization of a waveguide component 15 in a top view (top) and a side view (below), each in the inserted (left) and extended (right) Position of the U-shaped conductor section 16, 18 or 20.
  • the conductor section shown here has the shape according to FIG. 2b.
  • the Contact tracks 12 and 14 and the conductor section 18 are made using microstrip technology. To However, other embodiments are also Use of one of the contact tracks 16 or 20 accordingly Figure 2a or Figure 2c possible.
  • the flat side view can be seen in the lower side view Structure of the substrate plate 2 with applied thereon planar contact tracks 12 and 14 and the parallel the substrate plate, which is made thinner here 4 with planar U-shaped applied to it Conductor section 18. Furthermore, a galvanic Separation of the contact tracks 12 and 14 from the U-shaped Conductor section 18 due to the between them lying substrate plate 4 of the U-shaped conductor section 18 given.
  • the illustrated embodiment thus refers to an inductive respectively a capacitive coupling of the contact tracks 12 and 14 with the conductor section 18.
  • Figure 4 shows schematic representations of another possible realization of a waveguide component 15 in a top view (top) and one Side view (below), in each case in the inserted (left) and extended (right) position of the U-shaped Conductor section 18.
  • the waveguide component 15 is in a so-called triplate line technology executed.
  • the top views correspond those in Figure 3.
  • Above is another Substrate plate 6, which the top of the Sandwich arrangement in so-called triplate line technology forms.
  • the substrate plate 6 preferably has the same footprint as the substrate plate 2 and is parallel to this.
  • the contact tracks 12 and 14 are here the conductor section 18 directly facing so that - after setting the desired Overall length - a galvanic coupling between the Conductor tracks 12 and 14 and the conductor section 18 is possible.
  • FIG. 5 shows further schematic representations of a possible realization of a waveguide component 15 in a side view, each in the inserted (left) and extended (right) position of the U-shaped conductor section 18.
  • the waveguide component 15 is in a multilayer Line arrangement (so-called multilayer technology) executed.
  • the two substrate plates 4 can either independently movable be or be coupled together so that they only simultaneously and in each case by the same feed path in the longitudinal direction of the contact tracks 12 and 14 can be moved.
  • the arrangement according to FIG. 5 corresponds to a stack of the waveguide components shown in Figures 3 and 4 15. According to a concrete structure a circuit arrangement that the waveguide components 15, they can be in a matrix be arranged in two or three dimensions.

Description

Die Erfindung betrifft ein integriertes Wellenleiterbauelement mit den im Oberbegriff des Patentanspruchs 1 genannten Merkmalen.The invention relates to an integrated waveguide component with those in the preamble of the claim 1 mentioned features.

Stand der TechnikState of the art

Integrierte Wellenleiterbauelemente der gattungsgemäßen Art sind bekannt. Diese werden beispielsweise in ebenen Mikrowellenantennen zum Senden und/oder zum Empfangen von Signalen eingesetzt. Derartige Mikrowellenantennen müssen zur Erzielung einer einwandfreien Signalübertragung, und insbesondere zur Erzielung einer guten Trennschärfe zwischen verschiedenen Signalen, hinsichtlich zweier Freiheitsgrade zu einer mit ihnen kommunizierenden Gegenstelle ausrichtbar sein. Eine solche Gegenstelle kann beispielsweise ein geostationärer Satellit sein. Die beiden Freiheitsgrade werden üblicherweise als "Elevation" und als "Azimuth" bezeichnet, wobei die Elevation einem Winkel ϑ entspricht, der zwischen einer sogenannten Hauptkeulenrichtung einer Antennenhauptebene liegt, und der Azimuth ϕ die Drehung der gesamten Anordnung um eine Hochachse charakterisiert. Je nach Lage eines beschreibenden Koordinatensystems können jedoch ebenso andere Winkelbezeichnungen gewählt werden. Die bekannten Mikrowellenantennen sind nicht in der Lage, andere als zu ihrer Grundfläche senkrecht einfallende Mikrowellensignale zu empfangen, weshalb eine zusätzliche mechanische Ausrichtung unverzichtbar ist.Integrated waveguide components of the generic type Kind are known. These are, for example, in flat microwave antennas for transmission and / or for Receiving signals used. Such microwave antennas need to achieve a flawless Signal transmission, and in particular to achieve a good selectivity between different Signals, regarding two degrees of freedom to one can be aligned with the partner communicating with them his. Such a remote station can be, for example be geostationary satellite. The two degrees of freedom are usually called "Elevation" and as "Azimuth" denotes, the elevation being an angle ϑ corresponds to that between a so-called Main lobe direction of a main antenna plane lies, and the azimuth ϕ the rotation of the entire arrangement characterized around a vertical axis. Depending on the location one descriptive coordinate system can however also other angle designations can be selected. The known microwave antennas are not able other than perpendicular to its base To receive microwave signals, which is why an additional mechanical alignment is indispensable.

Vorteile der ErfindungAdvantages of the invention

Das integrierte Wellenleiterbauelement mit den im Anspruch 1 genannten Merkmalen weist den Vorteil einer einfachen und kostengünstigen Möglichkeit zur Realisierung eines einstellbaren Phasenschiebers/Laufzeitgliedes auf. Dadurch, daß der wenigstens eine Mikrowellenleiter wenigstens eine Unterbrechungsstelle aufweist, jeder der Unterbrechungsstellen ein mechanisch verlagerbarer Mikrowellenleiterabschnitt zugeordnet ist, dessen, die Unterbrechungsstelle überbrückende Wirklänge entsprechend einer gewünschten Phasenverschiebung zwischen dem Eingangssignal und dem Ausgangssignal einstellbar ist, ist vorteilhaft möglich, in einfacher Weise, nämlich durch eine gezielte mechanische Umlagerung und anschließende Fixierung des verlagerbaren Mikrowellenleiterabschnittes, eine gewollte Phasenverschiebung einzustellen. Entsprechend der konstruktiv vorgebbaren maximal möglichen Umlagerung lassen sich Phasenverschiebungen in relativ großen Bereichen einstellen.The integrated waveguide component with the in the claim Features mentioned 1 has the advantage of a simple and inexpensive way to implement an adjustable phase shifter / delay element on. The fact that the at least one microwave conductor at least one break point each of the interruption points has a mechanical relocatable microwave section assigned is that bridging the point of interruption Active lengths according to a desired one Phase shift between the input signal and the output signal is adjustable is advantageous possible, in a simple way, namely by a targeted mechanical rearrangement and subsequent Fixation of the displaceable microwave conductor section, to set a desired phase shift. Corresponding to the constructively specifiable The maximum possible rearrangement can be phase shifts set in relatively large areas.

Die Druckschrift EP-A1-0743695 offenbart (siehe Figur 1 und 2 und die Beschreibung: Spalte 2, Zeile 1 bis Zeile 46):
   ein integriertes Wellenleiterbauelement nach dem Oberbegriff von Anspruch 1.
EP-A1-0743695 discloses (see FIGS. 1 and 2 and the description: column 2, line 1 to line 46):
an integrated waveguide component according to the preamble of claim 1.

Aus der Druckschrift JP 10 004 305 ist ein ähnliches Wellenleiterbauelement bekannt, wobei der Mikrowellenleiter (16: Signaleingang) mit einem Mikrowellenleiterabschnitt (4) galvanisch verbunden ist. Obwohl hier eine einstellbare galvanische Verbindung vorliegt, wird diese dennoch nicht zur Phaseneinstellung benutzt. Vielmehr sind die beiden mit dem Mikrowellenleiterabschnitt (4) verbunden Kopplerabschnitte (61 und 62) zur nach Betrag und Phase einstellbaren elektromagnetischen Kopplung mit dem Statorleiter (3) vorgesehen (siehe die Dimensionierung).A similar waveguide component is known from the publication JP 10 004 305, the microwave conductor (16: signal input) being galvanically connected to a microwave conductor section (4). Although there is an adjustable galvanic connection here, it is not used for phase adjustment. Rather, the two coupler sections (6 1 and 6 2 ) connected to the microwave guide section (4) are provided for the electromagnetic coupling with the stator guide (3), which can be adjusted in terms of amount and phase (see the dimensioning).

In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß der Mikrowellenleiter wenigstens zwei planare über einer Masseebene angeordnete Kontaktbahnen aufweist, denen ein im wesentlichen U-förmiger Leiterabschnitt zugeordnet ist, der in Längserstreckungsrichtung der wenigstens zwei Kontaktbahnen verschiebbar ist. Hierdurch läßt sich besonders einfach durch eine ausziehbare Umwegleitung (Posaunenprinzip) eine Phasenverschiebung mittels planarer Mikrowellenleiter erreichen.In a preferred embodiment of the invention, that the microwave guide has at least two planar contact tracks arranged above a ground plane has a substantially U-shaped Is assigned to the conductor section in the longitudinal direction of the at least two contact tracks is movable. This makes it particularly easy through a pull-out detour line (trombone principle) a phase shift using planar Reach microwave guides.

Da nicht für alle Anwendungen schnell verstellbare elektronische Phasenschieber beziehungsweise Laufzeitglieder benötigt werden, bietet die erfindungsgemäße Vorrichtung eine einfache und kostengünstige Möglichkeit zur Realisierung eines einstellbaren Phasenschiebers (beziehungsweise Laufzeitgliedes) in planarer Mikrowellenleitungstechnik.Because not quickly adjustable for all applications electronic phase shifters or delay elements are needed, offers the invention Device a simple and inexpensive Possibility to implement an adjustable phase shifter (or term term) in planar microwave line technology.

In Leckwellenantennen, insbesondere Rampart-Line-Antennen, kann das integrierte Wellenleiterbauelement bevorzugt zur Einstellung beziehungsweise zur Veränderung der Hauptstrahlrichtung eingesetzt werden.In leaky wave antennas, especially Rampart line antennas, can the integrated waveguide component preferred for adjustment or change the main beam direction.

Weitere bevorzugte Anwendungen der erfindungsgemäßen mechanisch verstellbaren planaren Phasenschieber sind beispielsweise planare Mikrowellenantennen für beliebige Polarisationsarten beziehungsweise -richtungen. So sind durch mehrere einstellbare Phasenschieber in vorteilhafter Weise Mikrowellenantennen mit einstellbarer Richtcharakteristik realisierbar.Further preferred applications of the invention are mechanically adjustable planar phase shifters for example planar microwave antennas for any Types or directions of polarization. So are adjustable by several adjustable phase shifters advantageously microwave antennas with adjustable Directional pattern realizable.

In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß das Mikrowellenbauelement ein Resonator ist. Hierdurch ist in einfacher Weise ein Resonator mit einstellbarer Resonanzlänge geschaffen.In a further preferred embodiment of the invention it is provided that the microwave component Is resonator. This is a simple Created resonator with adjustable resonance length.

Ferner ist bevorzugt, daß das Mikrowellenbauelement ein Filter, insbesondere ein supraleitendes Filter ist. Durch variable Einstellung der wirksamen Länge des Mikrowellenleiters lassen sich in einfacher Weise die Filtereigenschaften des Filters ändern beziehungsweise einstellen.It is further preferred that the microwave component a filter, especially a superconducting filter is. By variable adjustment of the effective length of the microwave guide can be easily change the filter properties of the filter respectively to adjust.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further advantageous embodiments of the invention result from the rest, in the subclaims mentioned features.

Zeichnungendrawings

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung zweier auf ein Substrat aufgebrachte Leiter;
Figur 2a
eine schematische Darstellung einer verschiebbaren Struktur;
Figur 2b
eine schematische Darstellung einer verschiebbaren Struktur in einer abgewandelten Ausführungsform;
Figur 2c
eine schematische Darstellung einer verschiebbaren Struktur in einer weiteren Ausführungsform;
Figur 3
eine schematische Darstellung einer Ausführungsform in Mikrostreifenleitertechnik;
Figur 4
eine schematische Darstellung einer Ausführungsform in Triplate-Leitungstechnik und
Figur 5
eine schematische Darstellung einer Ausführungsform in Multilayertechnik.
The invention is explained in more detail below in exemplary embodiments with reference to the associated drawings. Show it:
Figure 1
a schematic representation of two conductors applied to a substrate;
Figure 2a
a schematic representation of a displaceable structure;
Figure 2b
a schematic representation of a displaceable structure in a modified embodiment;
Figure 2c
a schematic representation of a displaceable structure in a further embodiment;
Figure 3
a schematic representation of an embodiment in microstrip technology;
Figure 4
is a schematic representation of an embodiment in triplate line technology and
Figure 5
is a schematic representation of an embodiment in multilayer technology.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Figur 1 zeigt in einer schematischen Darstellung eine Draufsicht einer Leiterstruktur in planarer Mikrowellenleitertechnik, bestehend aus zwei auf eine Substratplatte 2 aufgebrachte und parallel zueinander liegende Kontaktbahnen 12 und 14. Die Kontaktbahnen 12 und 14 sind nicht miteinander verbunden, so daß eine Unterbrechungsstelle 9 zwischen ihnen ausgebildet ist. Anstatt einer Substratplatte 2 können die Kontaktbahnen 12 und 14 ebenso auf einer Superstratplatte oder auf einer Supsrstratfolie aufgebracht sein. Die Kontaktbahnen 12 und 14 sind beispielsweise durch Siebdruck oder dergleichen so auf die Oberfläche der Substratplatte 2 aufgebracht, daß eine galvanische Kontaktiarung ermöglicht wird. Die Kontaktbahnen 12 und/oder 14 sind über eine nicht dargestellte Quelle mit einem Eingangssignal beaufschlagbar, wobei an der jeweils anderen Kontaktbahn ein Ausgangssignal abgreifbar ist. Eine Verbindung zwischen den Kontaktbahnen 12 und 14 erfolgt in nachfolgend näher beschriebenen Weise. Die Kontaktbahn 12 besitzt einen Ein- beziehungsweise Ausgang 11 und die Kontaktbahn einen Ein- beziehungsweise Ausgang 13.Figure 1 shows a schematic representation of a Top view of a conductor structure in planar microwave conductor technology, consisting of two on one Substrate plate 2 applied and parallel to each other horizontal contact tracks 12 and 14. The contact tracks 12 and 14 are not connected to each other, so that an interruption point 9 is formed between them is. Instead of a substrate plate 2, the Contact tracks 12 and 14 also on a superstrate plate or applied on a substrate film his. The contact tracks 12 and 14 are, for example by screen printing or the like so on the surface the substrate plate 2 applied that a galvanic contact is made possible. The contact tracks 12 and / or 14 are via a not shown Source can be supplied with an input signal, being on the other contact path Output signal can be tapped. A connection between the contact tracks 12 and 14 are shown below described in more detail. The contact track 12 has an input or output 11 and Contact path an entrance or exit 13.

Die Figuren 2a bis 2c zeigen in Draufsicht verschiedene Ausführungsformen einer Substratplatte 4 mit einer darauf aufgebrachten planaren, im wesentlichen U-förmigen Leiterbahn, im folgenden auch als U-förmiger Leiterabschnitt bezeichnet. So zeigt Figur 2a eine Leiterbahn mit ausgeprägten Kanten der Schenkel des U-förmigen Leiterabschnittes 16. Die Kanten der Leiterbahn des U-förmigen Leiterabschnittes 18 entsprechend Figur 2b sind durch einen 45°-Schnitt abgeflacht. Figur 2c zeigt eine alternative Form einer U-förmigen Leiterbahn beziehungsweise eines U-förmigen Leiterabschnittes 20 mit einer halbrundförmigen Struktur.Figures 2a to 2c show different top views Embodiments of a substrate plate 4 with a planar, essentially U-shaped conductor track, in the following also as a U-shaped Conductor section designated. Figure 2a shows a conductor track with pronounced edges of the legs of the U-shaped conductor section 16. The edges of the Conductor of the U-shaped conductor section 18 accordingly Figure 2b are through a 45 ° cut flattened. Figure 2c shows an alternative form a U-shaped conductor track or a U-shaped one Conductor section 20 with a semicircular Structure.

Die beiden flachen und in ihrer Grundfläche vorzugsweise annähernd gleich großen Substratplatten 2 und 4 liegen im bestimmungsgemäßen Zustand flach aufeinander und bilden ein integriertes Wellenleiterbauelement 15 (Figur 3). Durch Verschiebung der Substratplatten 2 und 4 in Längserstreckungsrichtung der Kontaktbahnen 12 und 14 gegeneinander ist die Einstellung einer effektiven Länge eines Mikrowellenleiters möglich. Die Substratplatte 2 bildet eine Masseebene und die Substratplatte 4 eine Einstellebene des Wellenleicerbauelementes 15. Die zusammengesetzten Kontaktbahnen 12 und 14 und der U-förmige Leiterabschnitt 16, 18 oder 20 bilden die Gesamtlänge des Mikrowellenleiters. Ähnlich beispielsweise einer Posaune wird eine variable Länge einer Umwegleitung durch Ausziehen beziehungsweise Zusammenschieben, das heißt durch Verlagern des Leiterabschnittes 16, 18 oder 20 in Längserstreckungsrichtung der Kontaktbahnen 12 und 14, verlängert beziehungsweise verkürzt. Hierdurch ist eine mechanische Einstellmöglichkeit einer Gesamtlänge eines aus den Kontaktbahnen 12 und 14 und einem der Leiterabschnitte 16, 18 oder 20 bestehenden Mikrowellenleiters möglich. Entsprechend der eingestellten Gesamtlänge ist eine Phasenverschiebung beziehungsweise eine Laufzeiteinstellung eines oder mehrerer Mikrowellensignale zwischen den Ein- beziehungsweise Ausgängen 11 und 13 des Wellenleiterbauelementes 15 möglich.The two flat and preferably in their base substrate plates 2 and 4 of approximately the same size lie flat on top of one another in the intended state and form an integrated waveguide component 15 (Figure 3). By moving the substrate plates 2 and 4 in the longitudinal direction of the Contact paths 12 and 14 against each other is the setting an effective length of a microwave conductor possible. The substrate plate 2 forms one Ground plane and the substrate plate 4 an adjustment plane of the wave conductor component 15. The composite Contact tracks 12 and 14 and the U-shaped Conductor section 16, 18 or 20 form the total length of the microwave conductor. Similar to one, for example Trumpet becomes a variable length of a detour by pulling out or pushing together, the means by moving the conductor section 16, 18 or 20 in the longitudinal direction of the contact tracks 12 and 14, extended or shortened. This is a mechanical setting option a total length of one from the contact tracks 12 and 14 and one of the conductor sections 16, 18 or 20 existing microwave conductors possible. According to the total length set there is a Phase shift or a runtime setting one or more microwave signals between the inputs and outputs 11 and 13 of the waveguide component 15 possible.

Die planaren Mikrowellenleiter können dabei als Mikrostreifenleitung, Triplate-Leitung, Streifenleitung, Suspended Substrate-Leitung, Schlitzleitung, Koplanarleitung oder in koplanarer Streifenleitung ausgeführt sein.The planar microwave guides can be used as Microstrip line, triplate line, strip line, Suspended substrate line, slot line, coplanar line or carried out in a coplanar stripline his.

Die beiden, aus den Kontaktbahnen 12 und 14 und einem U-förmigen Leiterabschnitt 16, 18 oder 20 gebildeten Leitungsstrukturen können beispielsweise eine galvanische Verbindung aufweisen, wobei die Leitungsstrukturen beider Substratplatten 2 und 4 beziehungsweise Superstratplatten oder -folien einen elektrischen Kontakt haben. Ebenso möglich sind wahlweise auch induktive und/oder kapazitive Kopplungen, wobei die Leitungsstrukturen beider Substratplatten 2 und 4 beziehungsweise Superstratplatten oder -folien lediglich nahe beieinander liegen und durch ein Dielektrikum und/oder die Substratplatte 4 voneinander getrennt sind.The two, from the contact tracks 12 and 14 and one U-shaped conductor section 16, 18 or 20 formed Line structures can be galvanic, for example Have connection, the line structures both substrate plates 2 and 4 respectively Superstrate plates or foils an electrical one Have contact. Optionally, are also possible inductive and / or capacitive couplings, the Line structures of both substrate plates 2 and 4 respectively Superstrate sheets or foils only close to each other and through a dielectric and / or the substrate plate 4 separated from one another are.

Das zugrundeliegende Prinzip läßt sich mit folgenden Zusammenhängen beschreiben:The basic principle can be with the following Describe relationships:

In der Mikrowellentechnik kann eine Phasenverschiebung (beziehungsweise eine Laufzeit) eines Signals, beschrieben in der allgemeinen Form x(t) = Re{X · ejωt}, durch ein Leitungsstück, welches eine Länge von Null bis einigen Wellenlängen aufweist, realisiert werden. Liegt am Eingang einer (im Idealfall verlustlosen) Mikrowellenleitung einer Länge l ein durch den komplexen Zeiger Xein beschriebenes zeitlich harmonisches Signal an, dann lautet die Gleichung für den komplexen Zeiger des Ausgangssignales Xaus entsprechend Xaus = Xein · exp(-j · 2π · l / λg) = Xein · exp(-j · Δϕ) ; mit Δϕ = 2π · l / λg. In microwave technology, a phase shift (or a transit time) of a signal can be described in the general form x (t) = Re {X · e jωt }, by means of a line piece which has a length of zero to a few wavelengths. If there is a time-harmonic signal described by the complex pointer X at the input of a (ideally lossless) microwave line of a length l, then the equation for the complex pointer of the output signal X out is corresponding X out = X on · Exp (-j · 2π · l / λ G ) = X on · Exp (-j · Δϕ); With Δϕ = 2π · l / λ G ,

Hierbei ist λg die geführte Wellenlänge der Mikrowellenleitung bei einer Frequenz f von f = ω / (2π). Here λ g is the guided wavelength of the microwave line at a frequency f of f = ω / (2π).

Durch Veränderung der Länge 1 der Leitung beziehungsweise des Signallaufweges läßt sich somit auch die Phasenverschiebung beziehungsweise die Laufzeit der übertragenen Signale variieren.By changing the length 1 of the line respectively the signal path can thus also Phase shift or the term of the transmitted signals vary.

Figur 3 zeigt schematische Darstellungen einer möglichen Realisierung eines Wellenleiterbauelementes 15 in einer Draufsicht (oben) und einer Seitenansicht (unten), jeweils in eingeschobener (links) und ausgezogener (rechts) Position des U-förmigen Leiterabschnittes 16, 18 oder 20. Der hier dargestellte Leiterabschnitt besitzt die Form gemäß Figur 2b. Die Kontaktbahnen 12 und 14 sowie der Leiterabschnitt 18 sind in Mikrostreifenleitertechnik ausgeführt. Nach weiteren Ausführungsbeispielen ist jedoch auch die Verwendung einer der Kontaktbahnen 16 oder 20 entsprechend Figur 2a beziehungsweise Figur 2c möglich.Figure 3 shows schematic representations of a possible Realization of a waveguide component 15 in a top view (top) and a side view (below), each in the inserted (left) and extended (right) Position of the U-shaped conductor section 16, 18 or 20. The conductor section shown here has the shape according to FIG. 2b. The Contact tracks 12 and 14 and the conductor section 18 are made using microstrip technology. To However, other embodiments are also Use of one of the contact tracks 16 or 20 accordingly Figure 2a or Figure 2c possible.

Erkennbar ist in der unteren Seitenansicht die flache Struktur der Substratplatte 2 mit darauf aufgebrachten planaren Kontaktbahnen 12 und 14 sowie die parallel dazu liegende, hier dünner ausgebildete Substratplatte 4 mit darauf aufgebrachtem planaren U-förmigen Leiterabschnitt 18. Weiterhin ist eine galvanische Trennung der Kontaktbahnen 12 und 14 von dem U-förmigen Leiterabschnitt 18 aufgrund der zwischen diesen liegenden Substratplatte 4 des U-förmigen Leiterabschnittes 18 gegeben. Das dargestellte Ausführungsbeispiel bezieht sich somit auf eine induktive beziehungsweise eine kapazitive Kopplung der Kontaktbahnen 12 und 14 mit dem Leiterabschnitt 18.The flat side view can be seen in the lower side view Structure of the substrate plate 2 with applied thereon planar contact tracks 12 and 14 and the parallel the substrate plate, which is made thinner here 4 with planar U-shaped applied to it Conductor section 18. Furthermore, a galvanic Separation of the contact tracks 12 and 14 from the U-shaped Conductor section 18 due to the between them lying substrate plate 4 of the U-shaped conductor section 18 given. The illustrated embodiment thus refers to an inductive respectively a capacitive coupling of the contact tracks 12 and 14 with the conductor section 18.

In den Draufsichten der Figur 3 sind weiterhin um einen Winkel von 90° nach oben (Kontaktbahn 12) beziehungsweise nach unten (Kontaktbahn 14) abgewinkelte Abschnitte der Kontaktbahnen 12 und 14 erkennbar, wodurch die Ein- beziehungsweise Ausgänge 11 und 13 weiter voneinander beabstandet liegen können, als in der Ausführungsform entsprechend Figur 1 mit ausschließlich parallel zueinander liegenden Kontaktbahnen 12 und 14. Auf diese Weise sind die äußeren Anschlüsse an zwei sich gegenüberliegenden Längsseiten der Substratplatte 2 und somit des Wellenleiterbauelementes 15 angeordnet, was einen höheren Grad der Miniaturisierung mit entsprechend feiner ausgeführten Anschlüssen beziehungsweise Anschlußdrähten erlaubt.In the plan views of Figure 3 are still around an angle of 90 ° upwards (contact track 12) or angled downwards (contact track 14) Sections of the contact tracks 12 and 14 can be seen, whereby the inputs and outputs 11 and 13 can be spaced further apart than in the embodiment according to Figure 1 with only contact tracks lying parallel to one another 12 and 14. In this way, the outer connections on two opposite long sides the substrate plate 2 and thus the waveguide component 15 arranged, which is a higher degree of Miniaturization with a correspondingly finer design Connections or connecting wires allowed.

Figur 4 zeigt schematische Darstellungen einer weiteren möglichen Realisierung eines Wellenleiterbauelementes 15 in einer Draufsicht (oben) und einer Seitenansicht (unten), jeweils in eingeschobener (links) und ausgezogener (rechts) Position des U-förmigen Leiterabschnittes 18. Das Wellenleiterbauelement 15 ist hierbei in einer sogenannten Triplate-Leitungstechnik ausgeführt. Die Draufsichten entsprechen denen in Figur 3. Erkennbar ist in der unteren Seitenansicht die flache Struktur der Substratplatte 2 mit darauf aufgebrachten planaren Kontaktbahnen 12 und 14 sowie die parallel dazu liegende Substratplatte 4 mit darauf aufgebrachtem planaren U-förmigern Leiterabschnitt 18. Darüber liegt eine weitere Substratplatte 6, welche den oberen Abschluß der Sandwich-Anordnung in sogenannter Triplate-Leitungstechnik bildet. Die Substratplatte 6 weist vorzugsweise die gleiche Grundfläche wie die Substratplatte 2 auf und liegt parallel zu dieser. Die Kontaktbahnen 12 und 14 sind hier dem Leiterabschnitt 18 direkt zugewandt, so daß - nach Einstellung der gewünschten Gesamtlänge - eine galvanische Kopplung zwischen den Leiterbahnen 12 und 14 und dem Leiterabschnitt 18 möglich ist.Figure 4 shows schematic representations of another possible realization of a waveguide component 15 in a top view (top) and one Side view (below), in each case in the inserted (left) and extended (right) position of the U-shaped Conductor section 18. The waveguide component 15 is in a so-called triplate line technology executed. The top views correspond those in Figure 3. Can be seen in the lower Side view of the flat structure of the substrate plate 2 with planar contact tracks 12 applied thereon and 14 and the substrate plate lying parallel thereto 4 with planar U-shaped attached to it Head section 18. Above is another Substrate plate 6, which the top of the Sandwich arrangement in so-called triplate line technology forms. The substrate plate 6 preferably has the same footprint as the substrate plate 2 and is parallel to this. The contact tracks 12 and 14 are here the conductor section 18 directly facing so that - after setting the desired Overall length - a galvanic coupling between the Conductor tracks 12 and 14 and the conductor section 18 is possible.

Figur 5 zeigt weitere schematische Darstellungen einer möglichen Realisierung eines Wellenleiterbauelementes 15 in einer Seitenansicht, jeweils in eingeschobener (links) und ausgezogener (rechts) Position des U-förmigen Leiterabschnittes 18. Das Wellenleiterbauelement 15 ist hierbei in einer mehrlagigen Leitungsanordnung (sogenannte Multilayertechnik) ausgeführt. Hierbei folgt von unten auf eine erste Substratplatte 2 mit darauf aufgebrachten Kontaktbahnen 12 und 14 der verschiebliche U-förmige Leiterabschnitt 18 (beziehungsweise 16 oder 20) mit zugehöriger Substratplatte 4 eine weitere Substratplatte 6, an die eine weitere Substratplatte 2 grenzt. Auf dieser befinden sich wiederum Kontaktbahnen 12 und 14, gefolgt von einer Substratplatte 4 mit U-förmigem Leiterabschnitt 18. Die beiden Substratplatten 4 können entweder unabhängig voneinander verschieblich sein oder miteinander gekoppelt sein, so daß sie nur gleichzeitig und jeweils um einen gleichen Vorschubweg in Längserstreckungsrichtung der Kontaktbahnen 12 und 14 verschoben werden können. Figure 5 shows further schematic representations of a possible realization of a waveguide component 15 in a side view, each in the inserted (left) and extended (right) position of the U-shaped conductor section 18. The waveguide component 15 is in a multilayer Line arrangement (so-called multilayer technology) executed. A first follows from below Substrate plate 2 with contact tracks applied thereon 12 and 14 the sliding U-shaped conductor section 18 (or 16 or 20) with associated Substrate plate 4 a further substrate plate 6, to which another substrate plate 2 borders. On this there are again contact tracks 12 and 14, followed by a substrate plate 4 with a U-shaped Conductor section 18. The two substrate plates 4 can either independently movable be or be coupled together so that they only simultaneously and in each case by the same feed path in the longitudinal direction of the contact tracks 12 and 14 can be moved.

Die Anordnung gemäß Figur 5 entspricht einer Stapelung der in den Figuren 3 und 4 gezeigten Wellenleiterbauelemente 15. Entsprechend eines konkreten Aufbaus einer Schaltungsanordnung, die die Wellenleiterbauelemente 15 aufweist, können diese in einer Matrix zwei- oder dreidimensional angeordnet sein.The arrangement according to FIG. 5 corresponds to a stack of the waveguide components shown in Figures 3 and 4 15. According to a concrete structure a circuit arrangement that the waveguide components 15, they can be in a matrix be arranged in two or three dimensions.

Claims (13)

  1. Integrated waveguide component, having at least one planar microwave conductor to whose input a temporally harmonic input signal can be applied and at whose output an output signal is present which depends on a length of the at least one microwave conductor and is phase-shifted relative to the input signal, the at least one microwave conductor (15) having at least one interrupt point (9), a mechanically displaceable microwave conductor section (16, 18, 20) being provided for each of the interrupt points (9), the microwave conductor being arranged above a substrate plate (2), and the microwave conductor section being arranged above a further substrate plate (4) such that the microwave conductor section can be displaced, by shifting the further substrate plate parallel to the substrate plate, in order to set an active length, bridging the interrupt point (9), of the microwave conductor section in accordance with a desired phase shift between the input signal and the output signal, characterized in that the microwave conductor section is arranged on the side, averted from the microwave conductor, of the further substrate plate such that, in addition to a supporting function for the microwave conductor section, the further substrate plate simultaneously fulfils the function of a dielectric for inductive and/or capacitive coupling of the microwave conductor with the microwave conductor section.
  2. Waveguide component according to Claim 1, characterized in that the microwave conductor (15) has at least two planar contact tracks (12, 14) to which there is assigned an essentially U-shaped microwave conductor section (16, 18, 20) that can be shifted in the direction of the longitudinal extent of the at least two contact tracks (12, 14).
  3. Waveguide component according to one of the preceding claims, characterized in that the substrate plate is a superstrate plate or a superstrate film.
  4. Waveguide component according to one of the preceding claims, characterized in that the further substrate plate is a superstrate plate or a superstrate film.
  5. Waveguide component according to one of the preceding claims, characterized in that the waveguide component is a resonator.
  6. Waveguide component according to one of the preceding claims, characterized in that the waveguide component is a filter.
  7. Waveguide component according to one of the preceding claims, characterized in that the contact tracks (12, 14) and the shiftable U-shaped conductor section (16, 18, 20) are produced from superconductors.
  8. Waveguide component according to Claim 7, characterized in that the waveguide component is a superconducting filter.
  9. Waveguide component according to Claim 8, characterized in that the superconducting filter is a planar filter.
  10. Waveguide component according to one of the preceding claims, characterized in that the conducting layers (12, 14, 16, 18, 20) are applied in microstructures to the substrate plates (2, 4).
  11. Waveguide component according to one of the preceding claims, characterized in that a plurality of ground planes and shiftable adjusting planes are arranged layered one above another.
  12. Waveguide component according to Claim 11, characterized in that ground plane and shiftable adjusting plane are fashioned using triplate line technology.
  13. Waveguide component according to Claim 11, characterized in that a plurality of ground planes and shiftable adjusting planes are arranged layered one above another using multilayer technology.
EP99915470A 1998-03-21 1999-02-11 Integrated waveguide component Expired - Lifetime EP1064691B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19812582A DE19812582A1 (en) 1998-03-21 1998-03-21 Integral waveguide component enables simple, cost-effective implementation of an adjustable phase shifter/transition time element, e.g. for a microwave antenna
DE19812582 1998-03-21
PCT/DE1999/000367 WO1999049533A1 (en) 1998-03-21 1999-02-11 Integrated waveguide component

Publications (2)

Publication Number Publication Date
EP1064691A1 EP1064691A1 (en) 2001-01-03
EP1064691B1 true EP1064691B1 (en) 2003-01-15

Family

ID=7861898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99915470A Expired - Lifetime EP1064691B1 (en) 1998-03-21 1999-02-11 Integrated waveguide component

Country Status (4)

Country Link
US (1) US6512426B1 (en)
EP (1) EP1064691B1 (en)
DE (2) DE19812582A1 (en)
WO (1) WO1999049533A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1181736A4 (en) * 1999-05-20 2003-04-09 Andrew Corp Variable phase shifter
CH694950A5 (en) * 2001-02-21 2005-09-30 Shenzhen Aginitrust Electric C Phase shifter for mobile radio antenna has static component opposite which is longitudinally displaceable component
US6831602B2 (en) * 2001-05-23 2004-12-14 Etenna Corporation Low cost trombone line beamformer
GB0215087D0 (en) 2002-06-29 2002-08-07 Alan Dick & Company Ltd A phase shifting device
JP2013105130A (en) * 2011-11-16 2013-05-30 Canon Inc Image heating device, image forming apparatus, and image heating system
US9325043B2 (en) * 2013-07-26 2016-04-26 Alcatel-Lucent Shanghai Bell Co., Ltd. Phase shifting circuit including an elongated conductive path covered by a metal sheet having stand-off feet and also including a slidable tuning member
GB2537885B (en) * 2015-04-29 2017-04-05 Eureco Tech Ltd Deployable radio frequency transmission line
KR101771240B1 (en) * 2016-02-03 2017-09-05 주식회사 케이엠더블유 Phase shifting device
KR102561222B1 (en) * 2018-07-11 2023-07-28 주식회사 케이엠더블유 Phase shifter
US20230420843A1 (en) * 2020-11-19 2023-12-28 Nokia Solutions And Networks Oy Phase shifter and antenna device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2961620A (en) * 1955-10-06 1960-11-22 Sanders Associates Inc Phase shifter for high frequency transmission line
US3146413A (en) * 1960-08-29 1964-08-25 Sanders Associates Inc Phase shifter
US3737810A (en) 1969-05-05 1973-06-05 Radiation Systems Inc Wideband tem components
US3656179A (en) * 1970-08-21 1972-04-11 Bell Telephone Labor Inc Microwave stripline phase adjuster
DE2453851C3 (en) * 1974-11-13 1979-10-04 Standard Elektrik Lorenz Ag, 7000 Stuttgart High-frequency phase shifter in printed technology
JPS5875901A (en) * 1981-10-30 1983-05-07 Nec Corp Variable phase shifter
CA1264073A (en) * 1989-02-09 1989-12-27 Protap Pramanick Microstripline interdigital planar filter
US5175521A (en) * 1991-05-31 1992-12-29 Hughes Aircraft Company Miniature dynamically tunable microwave and millimeter wave device
US5616538A (en) 1994-06-06 1997-04-01 Superconductor Technologies, Inc. High temperature superconductor staggered resonator array bandpass filter
EP0769823B1 (en) * 1994-06-17 2003-03-19 Matsushita Electric Industrial Co., Ltd High-frequency circuit element
DE19517967A1 (en) * 1995-05-16 1996-11-21 Siemens Ag Mechanically adjustable conductor structure
JPH104305A (en) * 1996-06-18 1998-01-06 Furukawa Electric Co Ltd:The Power distribution type phase shifter
US6208222B1 (en) * 1999-05-13 2001-03-27 Lucent Technologies Inc. Electromechanical phase shifter for a microstrip microwave transmission line

Also Published As

Publication number Publication date
WO1999049533A1 (en) 1999-09-30
DE19812582A1 (en) 1999-09-23
DE59904043D1 (en) 2003-02-20
US6512426B1 (en) 2003-01-28
EP1064691A1 (en) 2001-01-03

Similar Documents

Publication Publication Date Title
DE60214585T2 (en) PATCH VESSEL, PRINTED ANTENNA
EP2256864B1 (en) Antenna for circular polarisation with a conductive base
DE69936903T2 (en) Antenna for two frequencies for radio communication in the form of a microstrip antenna
DE102014203185B4 (en) Antenna device and radar device
DE4407251C2 (en) Dielectric waveguide
DE102017103161A1 (en) Antenna device and antenna array
DE3013903A1 (en) ANTENNA FOR TWO FREQUENCY BANDS
WO2005099042A1 (en) Waveguide structure
EP2991159B1 (en) Feed network for antenna systems
EP1064691B1 (en) Integrated waveguide component
EP2384523B1 (en) Dual band antenna for satellite navigation use
DE3524503A1 (en) LEVEL MICROWAVE ANTENNA
DE102006046728A1 (en) Directional coupler e.g. rat-race coupler, for use in micro-chip, has gates electrically connected with each other by line branches, where all line branches are formed as symmetric line pairs
DE60130561T2 (en) DOUBLE-POLARIZED ACTIVE MICROWAVE REFLECTOR, ESPECIALLY FOR ANTENNA WITH ELECTRONIC BEAM SWIVELING
EP1370886A2 (en) Device for the transmission and/or reception of radar beams
EP3449528B1 (en) Circuit board assembly for supplying signals to radiators
DE102005014209A1 (en) Antenna array with high packing density
WO2001097330A1 (en) Planar antenna with wave guide configuration
DE60112335T2 (en) PHASE-CONTROLLED GROUP ANTENNA WITH VOLTAGE-CONTROLLED PHASE SLIDER
EP0200819A2 (en) Antenna array
WO2000021154A2 (en) Bifocal planar antenna
DE102010014864B4 (en) Waveguide connection for an antenna system and antenna system
DE60016311T2 (en) High frequency circuit arrangement and communication device using this arrangement
DE4119518C2 (en) Microwave lens and antenna with electronic swivel
DE3514880A1 (en) Antenna array

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020325

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59904043

Country of ref document: DE

Date of ref document: 20030220

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030425

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080219

Year of fee payment: 10

Ref country code: DE

Payment date: 20080428

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090211

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302