EP1064112B1 - Use of iron mica in the production of moulds - Google Patents

Use of iron mica in the production of moulds Download PDF

Info

Publication number
EP1064112B1
EP1064112B1 EP99909984A EP99909984A EP1064112B1 EP 1064112 B1 EP1064112 B1 EP 1064112B1 EP 99909984 A EP99909984 A EP 99909984A EP 99909984 A EP99909984 A EP 99909984A EP 1064112 B1 EP1064112 B1 EP 1064112B1
Authority
EP
European Patent Office
Prior art keywords
mould material
iron oxide
plate
lamellar structure
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99909984A
Other languages
German (de)
French (fr)
Other versions
EP1064112A1 (en
Inventor
Günther POKORNY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karntner Montanindustrie GmbH
Original Assignee
Kaerntner Montanindustrie GmbH
KAERNTNER MONTANINDUSTRIE GES
Karntner Montanindustrie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaerntner Montanindustrie GmbH, KAERNTNER MONTANINDUSTRIE GES, Karntner Montanindustrie GmbH filed Critical Kaerntner Montanindustrie GmbH
Priority to AT99909984T priority Critical patent/ATE240174T1/en
Publication of EP1064112A1 publication Critical patent/EP1064112A1/en
Application granted granted Critical
Publication of EP1064112B1 publication Critical patent/EP1064112B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds

Definitions

  • the present invention relates to the use of iron mica for the production of molds, especially lost molds, and cores for casting castings from non-ferrous, Cast iron and cast steel alloys as well as molding compounds containing mica.
  • iron mica can also be used as an additive for moldings for molds and cores, used in entire area of the foundry industry, as well as an additive for exothermic Dining aids are used.
  • a lost form means a sand form, solidified through organic or inorganic binders (e.g. clays, Resins) which can only be used once and after Pouring for casting emptying must be destroyed.
  • organic or inorganic binders e.g. clays, Resins
  • Cores have the task of creating cavities or undercuts in the casting To form outer contours. Differentiates according to their usability analogue to mold production, cores for single use (lost cores, sand cores) and permanent cores (metal cores), that are used repeatedly. Sand cores are separated manufactured interior parts. You will be assembling the Mold inserted, inserted or hung into the outer mold parts. Both lost forms and lost cores become mainly because of this in the foundry industry very large percentage used because it is relatively inexpensive can be produced and the molding material after destruction of the shapes reconditioned and to produce new shapes again can be used.
  • Finishing or blackening are refractory Substances used in liquid or pasty form to produce a thin coating on the mold walls or cores (sand cores, Metal cores) are used and heat-insulating, heat-conducting, have a smoothing, separating or blocking effect. Depending on These coatings are used accordingly and appropriately Additives added.
  • Molds are made with molding materials made from binder (organic or inorganic), mold raw material, water and Mold additives exist. These terms are used in explained the following:
  • All molds are used as the mold in the present description to understand the manufacture of castings, such as Sand mold, Chill mold, die casting mold, ceramic investment mold or shell mold. Only as examples are outer and inner mold parts, Box shapes, boxless shapes, core shapes and mask shapes called.
  • Molding material is the collective name for all dry, moist, pasty or liquid substances for the production of casting molds, which compresses, solidifies or by chemical processes be bound, e.g. Form and core sands, flow sands, form slips and ceramic molding compounds. Acting in the form of raw materials it is natural mineral or synthetic granules or sands that are used to manufacture single use serving forms are used.
  • Binder is understood to mean constituents of molding material, and certain Requirements (moistening, swelling, silicate formation, Polymerization etc.) the bond between the individual grains of sand produce.
  • source binders e.g. Bentonites that swell by adding a mixing liquid
  • ceramic binders e.g. alumina, which solidify through drying or sintering in the heat
  • hydraulic binders e.g. Gypsum or cement that react with a mixing liquid and hardening
  • chemically hardening binders e.g. water glass, Ethyl silicate or synthetic resins
  • molding material means an addition to those containing binder Mold or core sand mixes, which are the performance characteristics improve and / or the interaction between molding material and cast metal.
  • examples are glossy carbon formers, Starches, calcined soda, boric acid, as well as wood and Called peat flour.
  • Defects occurring in castings can be caused by the molding material have (mold-related casting defects), or metallurgical (Microporosity, slag inclusions, perspiration pearls, Shrinkage and stress cracks, segregations etc.) or technologically (Offset, cold casting, dimensional inaccuracy, etc.).
  • iron mica mentioned here is in ISO 10601 (first edition 1993-08-15), the sieve residue of max. 0.1% on the However, 105 ⁇ m sieve is expressly excluded. So is under Iron mica - CAS No. 1317-60-8 - also iron oxide (alpha hematite) to understand that has a higher sieve residue.
  • iron oxide (according to ISO / DIS 1248.2) - mostly as iron oxide red - as a molding additive is known and is considered "state of the art". These are powdery, mostly amorphous, iron oxides of high fineness. The usual additional quantities are approx. 0.5-1%.
  • Mica is dark gray in color with a metallic sheen. Mica shows a platelet-shaped, lamellar structure and is therefore different from natural and synthetic iron oxides. The chemical composition with Fe 2 O 3 applies to both products in pure form.
  • iron mica for the production of Molds especially lost molds and cores for casting of castings from non-ferrous, cast iron and cast steel alloys to use, being used to manufacture the molds and cores used molding material mixture 4 to 90% by mass, preferably 4 up to 50% by mass, in particular 4-20% by mass, of iron mica as a molding additive contains.
  • the use of iron mica for the production of Molded material coatings (finishing / blackening) provided, the Proportion of iron mica 0.1 to 10 mass% in the solid mass of the coating should be.
  • the one used for the application Mold coating is liquid or pasty and contains depending correspondingly less of the carriers used Micaceous iron oxide.
  • the iron mica used according to the invention has the negative Properties of iron oxide red do not show up. As the cause of this The main effect is its platelet-shaped, lamellar View structure that also allows the percentage in the respective molding material mixture compared to iron oxide (Iron oxide red) without negatively affecting the Strength properties of the form / core.
  • Typical casting defects, such as leaf veins, mineralization, pinholes, etc. become clear reduced, the surface quality is improved and the microstructure formation, especially with AlSiMg alloys, taking into account a high packing density of the molding material / iron mica mixture is greatly refined. As a result, they are better mechanical Properties, savings in a subsequent heat treatment as well as lower cleaning costs.
  • iron mica is according to the invention Additive provided for exothermic food aids. Due to the surprising, highly insulating effect of iron mica as pure, binder-free material is such a use of Iron mica is particularly beneficial. Suitable additional amounts are about 0.1 to 20% by mass of iron mica.
  • thermocouples used (they consist of two wires different metals which are welded at the ends) generate by heating the welding point of the "thermocouple" Electricity with a sensitive millivoltmeter that in the Conductor circuit is installed, measured and referred to as thermal voltage becomes. This thermal voltage is a measure of the temperature at the measuring point. Depending on the time, this results in Cooling or heating curves.
  • the thermocouple pairs used were made of platinum-platinum-rhodium with a temperature range from 0 to 1300 ° C and a thermal voltage of 10.5 uV / K.
  • the device according to FIG. 1 proved to be optimal.
  • the basic form 1 consisted of water glass / CO 2 hardened quartz sand, in which a copper tube 2 (diameter 30 mm, wall thickness 1.5 mm) was placed exactly in the middle. This copper tube serves as the actual shape for the cast material 3; The material to be measured was then either poured around the copper pipe into region 4 or compacted as a mixture of molding materials. Thermocouples 5 were used at suitable locations.
  • Copper was used because of this material has good thermal conductivity, so the casting heat well on the transferred to investigated granular substances or mixtures of molding materials becomes. At the same time, the thermal stability should be so large that the copper form does not melt and before especially when measuring loose, pure granular substances Dimensional stability until the end of solidification is guaranteed.
  • the proportions are as a result of the computational simulation the mold filling and solidification processes chosen so that both a constant compression (e.g. only by the Bulk density of the pure substances) as well as a sufficiently sensitive Measurement of the temperature gradient is possible.
  • thermophysical parameters in the computer simulation of the materials used are unconditional prerequisites, but these are with iron mica not available and i.a. determined with these studies data from zircon, chromite and quartz sand used.
  • thermocouples 5 are in the thermal center of the Cast material (GG, G-AlSi7Mg) and in the granular material or in the molding material mixture attached 20 mm from the metal / mold interface and constant in all attempts. All measurements were taken until the end of the experiment with a measuring speed of one value per Second recorded.
  • the properties of iron mica additives of the bentonite-bound molding material is not adversely affected. A significant increase in the amount of binder is not necessary.
  • FIG.7 are the cooling curves of G-AlSi7Mg using of mixture I (M10N) and II (M20N) as well as a comparison of one Quartz sand mixture without iron mica additive (Q1N) for normal Compaction (corresponds to a conventional machine molding shop).
  • the heating curves of the molding material mixtures shown in Fig. 8 during solidification show the same tendency as in Fig. 6, however, the curve is due to binder components and Water addition another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Description

Die vorliegende Erfindung betrifft die Verwendung von Eisenglimmer zur Herstellung von Gußformen, insbesondere verlorenen Gußformen, und Kernen zum Gießen von Gußstücken aus Nichteisen-, Gußeisen und Stahlgußlegierungen sowie eisenglimmerhältige Formstoffmischungen. Erfindungsgemäß kann Eisenglimmer auch als Zusatz zu Formstoffüberzügen für Formen und Kerne, eingesetzt im gesamten Gebiet der Gießereiindustrie, sowie als Zusatz für exotherme Speisehilfen verwendet werden.The present invention relates to the use of iron mica for the production of molds, especially lost molds, and cores for casting castings from non-ferrous, Cast iron and cast steel alloys as well as molding compounds containing mica. According to the invention, iron mica can also be used as an additive for moldings for molds and cores, used in entire area of the foundry industry, as well as an additive for exothermic Dining aids are used.

Unter einer verlorenen Form versteht man eine Sandform, verfestigt durch organische oder anorganische Binder (z.B. Tone, Harze) welche nur einmal verwendet werden kann und nach dem Gießen zur Gußteilentleerung zerstört werden muß. Im Gegensatz dazu stehen Dauerformen, die wiederholt verwendet werden können, z.B. Kokillen oder Druckgießformen.A lost form means a sand form, solidified through organic or inorganic binders (e.g. clays, Resins) which can only be used once and after Pouring for casting emptying must be destroyed. In contrast there are permanent forms that can be used repeatedly, e.g. Chill molds or die casting molds.

Kerne haben die Aufgabe, im Gußteil Hohlräume oder unterschnittene Außenkonturen zu bilden. Nach ihrer Verwendbarkeit unterscheidet man analog zur Formherstellung Kerne zum einmaligen Gebrauch (verlorene Kerne, Sandkerne) und Dauerkerne (Metallkerne), die wiederholt Verwendung finden. Sandkerne sind getrennt hergestellte Forminnenteile. Sie werden beim Zusammenbau der Form in die Formaußenteile eingesetzt, eingelegt oder eingehängt. Sowohl verlorene Formen als auch verlorene Kerne werden in der Gießereiindustrie heute hauptsächlich deswegen zu einem sehr großen Prozentsatz eingesetzt, weil sie relativ preisgünstig hergestellt werden können und der Formstoff nach Zerstörung der Formen neu aufbereitet und zur Herstellung neuer Formen wieder verwendet werden kann.Cores have the task of creating cavities or undercuts in the casting To form outer contours. Differentiates according to their usability analogue to mold production, cores for single use (lost cores, sand cores) and permanent cores (metal cores), that are used repeatedly. Sand cores are separated manufactured interior parts. You will be assembling the Mold inserted, inserted or hung into the outer mold parts. Both lost forms and lost cores become mainly because of this in the foundry industry very large percentage used because it is relatively inexpensive can be produced and the molding material after destruction of the shapes reconditioned and to produce new shapes again can be used.

Schlichten oder Schwärzen (Formstoffüberzüge) sind feuerfeste Stoffe, die in flüssiger oder pastöser Form zur Herstellung eines dünnen Überzuges auf den Formwänden oder Kernen (Sandkerne, Metallkerne) verwendet werden und wärmeisolierende, wärmeleitende, glättende, trennende oder sperrende Wirkung haben. Je nach Einsatzgebiet werden diesen Überzügen entsprechende und geeignete Zusätze beigemischt.Finishing or blackening (mold material coatings) are refractory Substances used in liquid or pasty form to produce a thin coating on the mold walls or cores (sand cores, Metal cores) are used and heat-insulating, heat-conducting, have a smoothing, separating or blocking effect. Depending on These coatings are used accordingly and appropriately Additives added.

Die zur Herstellung von Gußerzeugnissen im Gießverfahren benötigten Formen werden mit Formstoffen gefertigt, welche aus Binder (organisch oder anorganisch), Formgrundstoff, Wasser und Formstoffzusätzen bestehen. Diese verwendeten Begriffe werden im folgenden näher erläutert:The required for the production of castings in the casting process Molds are made with molding materials made from binder (organic or inorganic), mold raw material, water and Mold additives exist. These terms are used in explained the following:

Als Form sind in der vorliegenden Beschreibung alle Gießformen zur Herstellung von Gußerzeugnissen zu verstehen, wie z.B. Sandform, Kokille, Druckgießform, keramische Feingießform oder Schalenform. Lediglich als Beispiele seien Formaußenteile und Forminnenteile, Kastenformen, kastenlose Formen, Kernformen und Maskenformen genannt.All molds are used as the mold in the present description to understand the manufacture of castings, such as Sand mold, Chill mold, die casting mold, ceramic investment mold or shell mold. Only as examples are outer and inner mold parts, Box shapes, boxless shapes, core shapes and mask shapes called.

Formstoff ist die Sammelbezeichnung für alle trockenen, feuchten, pastösen oder flüssigen Stoffe zur Herstellung von Gießformen, die verdichtet, verfestigt oder nach chemischen Verfahren gebunden werden, z.B. Form- und Kernsande, Fließsande, Formschlicker und keramische Formmassen. Bei Formgrundstoffen handelt es sich um natürliche mineralische oder synthetische Granulate bzw. Sande, die zur Herstellung von zum einmaligen Gebrauch dienende Formen eingesetzt werden.Molding material is the collective name for all dry, moist, pasty or liquid substances for the production of casting molds, which compresses, solidifies or by chemical processes be bound, e.g. Form and core sands, flow sands, form slips and ceramic molding compounds. Acting in the form of raw materials it is natural mineral or synthetic granules or sands that are used to manufacture single use serving forms are used.

Unter Binder versteht man Formstoffbestandteile, die unter bestimmten Voraussetzungen (Anfeuchtung, Quellung, Silicatbildung, Polymerisation usw.) den Verbund zwischen den einzelnen Sandkörnern herstellen. Man unterscheidet zwischen Quellbindern (z.B. Bentonite, die durch Zusatz einer Anmachflüssigkeit aufquellen), keramischen Bindern (z.B. Tonerde, die sich durch Trocknung verfestigen oder in der Hitze sintern), hydraulischen Bindern (z.B. Gips oder Zement, die mit einer Anmachflüssigkeit reagieren und dabei härten) und chemisch härtende Binder (z.B. Wasserglas, Ethylsilicat oder Kunstharze) die während der Härtung verfestigen.Binder is understood to mean constituents of molding material, and certain Requirements (moistening, swelling, silicate formation, Polymerization etc.) the bond between the individual grains of sand produce. A distinction is made between source binders (e.g. Bentonites that swell by adding a mixing liquid), ceramic binders (e.g. alumina, which solidify through drying or sintering in the heat), hydraulic binders (e.g. Gypsum or cement that react with a mixing liquid and hardening) and chemically hardening binders (e.g. water glass, Ethyl silicate or synthetic resins) which solidify during hardening.

Unter Formstoffzusatz versteht man einen Zusatz zu binderhaltigen Form- oder Kernsandmischungen, welcher die Gebrauchseigenschaften verbessern und/oder die Wechselwirkung zwischen Formstoff und Gießmetall beeinflußt. Beispielhaft seien Glanzkohlenstoffbildner, Stärken, calcinierte Soda, Borsäure, sowie Holzund Torfmehl genannt.The addition of molding material means an addition to those containing binder Mold or core sand mixes, which are the performance characteristics improve and / or the interaction between molding material and cast metal. Examples are glossy carbon formers, Starches, calcined soda, boric acid, as well as wood and Called peat flour.

In Gußstücken auftretende Fehler können ihre Ursache im Formstoff haben (formstoffbedingte Gußfehler), oder auch metallurgisch (Mikroporosität, Schlackeneinschlüsse, Schwitzperlen, Schwindungs- und Spannungsrisse, Seigerungen etc.) oder technologisch (Versatz, Kaltguß, Maßungenauigkeit etc.) bedingt sein.Defects occurring in castings can be caused by the molding material have (mold-related casting defects), or metallurgical (Microporosity, slag inclusions, perspiration pearls, Shrinkage and stress cracks, segregations etc.) or technologically (Offset, cold casting, dimensional inaccuracy, etc.).

In der Gießerei-Rundschau, 42. Jahrgang, Heft 1/2 vom Februar 1995 bzw. Heft 3/4 vom März/April 1995 wird bereits die Verwendung von Eisenglimmer als Formstoffzusatz zu Formstoffmischungen geoffenbart. Während bei Zusätzen von 2% Eisenglimmer zu Formstoffmischungen gute Ergebnisse erzielt werden können, führt ein Zusatz von 4% zu schlechter Druckfestigkeit der Formstoffmischung, welche erst durch eine Bentoniterhöhung ausgeglichen werden kann. Diese Erhöhung konnte jedoch eine zu geringe Naßzugfestigkeit nicht ausgleichen, weswegen von einem Zusatz von 4% Eisenglimmer und darüber abgeraten wurde.In the Gießerei-Rundschau, 42nd year, issue 1/2 of February 1995 or issue 3/4 of March / April 1995 is already used from iron mica as a molding additive to molding mixtures revealed. While adding 2% iron mica to molding material mixtures good results can be achieved, introduces Addition of 4% to poor compressive strength of the molding material mixture, which is only compensated for by an increase in bentonite can be. However, this increase could result in an insufficient wet tensile strength do not compensate, why of an addition of 4% iron mica and above was discouraged.

In Abhängigkeit von der Verdichtungsintensität wurde nun überraschenderweise gefunden, daß auch höhere Zusätze von Eisenglimmer zu Formstoffmischungen zu ausgezeichneten Ergebnissen führen können. Dafür dürfte hier in erster Linie das gute Wärmeleitvermögen von Eisenglimmer in der Formstoffmischung in Verbindung mit einer dichten Packung verantwortlich sein.Surprisingly, depending on the compaction intensity found that even higher additions of iron mica lead to molding mixtures for excellent results can. The main reason for this is the good thermal conductivity of iron mica in combination in the molding material mixture be responsible with a tight pack.

Die Verwendung von Eisenglimmer in Formstoffmischungen führt zu:

  • Reduzierung von Blattrippenbildung
  • Reduzierung von Vererzungen
  • Reduzierung von Pinholes
  • Verbessertem Wärmeleitvermögen in Abhängigkeit der Packungsdichte
  • Verbesserter Gefügeausbildung
  • Verbesserten mechanischen Eigenschaften
  • Reduzierung von Nacharbeiten
  • The use of iron mica in molding material mixtures leads to:
  • Reduction of leaf veins
  • Reduction of mineralization
  • Reduction of pinholes
  • Improved thermal conductivity depending on the packing density
  • Improved microstructure formation
  • Improved mechanical properties
  • Reduction of rework
  • Der hier genannte Eisenglimmer ist in ISO 10601 (first edition 1993-08-15) beschrieben, der Siebrückstand von max. 0,1% auf dem 105 µm Sieb wird jedoch ausdrücklich ausgenommen. So ist unter Eisenglimmer - CAS Nr. 1317-60-8 - auch Eisenoxid (alpha-Hämatit) zu verstehen, der einen höheren Siebrückstand aufweist.The iron mica mentioned here is in ISO 10601 (first edition 1993-08-15), the sieve residue of max. 0.1% on the However, 105 µm sieve is expressly excluded. So is under Iron mica - CAS No. 1317-60-8 - also iron oxide (alpha hematite) to understand that has a higher sieve residue.

    Der Einsatz von Eisenoxid (entsprechend ISO/DIS 1248.2) - zumeist als Eisenoxidrot - als Formstoffzusatz ist bekannt und gilt als "Stand der Technik". Hierbei handelt es sich um pulverförmige, zumeist amorphe, Eisenoxide von hoher Feinheit. Die bisher üblichen Zusatzmengen liegen bei ca. 0,5-1%.The use of iron oxide (according to ISO / DIS 1248.2) - mostly as iron oxide red - as a molding additive is known and is considered "state of the art". These are powdery, mostly amorphous, iron oxides of high fineness. The The usual additional quantities are approx. 0.5-1%.

    Eisenglimmer ist von dunkelgrauer Farbe mit metallischem Glanz. Eisenglimmer zeigt plättchenförmige, lamellare Struktur und unterscheidet sich damit von natürlichen und synthetischen Eisenoxiden. Für beide Produkte gilt in reiner Form die chemische Zusammensetzung mit Fe2O3.Mica is dark gray in color with a metallic sheen. Mica shows a platelet-shaped, lamellar structure and is therefore different from natural and synthetic iron oxides. The chemical composition with Fe 2 O 3 applies to both products in pure form.

    Durch Zusatz von Eisenoxid (Eisenoxidrot) werden Ausdehnungsfehler des Sandgefüges in der Gießhitze teilweise unterdrückt und die Gußqualität verbessert. Es werden durch diese Zusätze, vor allem bei höheren Zusatzmengen, die Festigkeitseigenschaften der Formen und Kerne teilweise derart negativ beeinflußt, daß keine genügende Formstabilität mehr gewährleistet ist und der Abguß oder teilweise schon das Handling der Formteile bzw. Kerne nicht mehr möglich ist.By adding iron oxide (iron oxide red) there are expansion errors of the sand structure in the pouring heat partially suppressed and the casting quality improved. It is through these additions, before especially with higher additions, the strength properties of the Forms and cores are so negatively influenced that none sufficient dimensional stability is guaranteed and the cast or partially not handling the molded parts or cores is more possible.

    Erfindungsgemäß ist vorgesehen, Eisenglimmer zur Herstellung von Formen, insbesondere von verlorenen Formen und Kernen zum Gießen von Gußstücken aus Nichteisen-, Gußeisen- und Stahlgußlegierungen zu verwenden, wobei die zur Herstellung der Formen und Kerne verwendete Formstoffmischung 4 bis 90 Masse-%, vorzugsweise 4 bis 50 Masse-%, insbesondere 4-20 Masse-% Eisenglimmer als Formstoffzusatz enthält.According to the invention it is provided iron mica for the production of Molds, especially lost molds and cores for casting of castings from non-ferrous, cast iron and cast steel alloys to use, being used to manufacture the molds and cores used molding material mixture 4 to 90% by mass, preferably 4 up to 50% by mass, in particular 4-20% by mass, of iron mica as a molding additive contains.

    Desweiteren ist der Einsatz von Eisenglimmer zur Herstellung von Formstoffüberzügen (Schlichten/Schwärzen) vorgesehen, wobei der Anteil an Eisenglimmer 0,1 bis 10 Masse-% in der Feststoffmasse des Überzugs betragen dürfte. Der zur Applikation verwendete Formstoffüberzug ist flüssig bzw. pastös und enthält in Abhängigkeit von den verwendeten Trägermitteln entsprechend weniger Eisenglimmer.Furthermore, the use of iron mica for the production of Molded material coatings (finishing / blackening) provided, the Proportion of iron mica 0.1 to 10 mass% in the solid mass of the coating should be. The one used for the application Mold coating is liquid or pasty and contains depending correspondingly less of the carriers used Micaceous iron oxide.

    Der erfindungsgemäß eingesetzte Eisenglimmer weist die negativen Eigenschaften von Eisenoxidrot nicht auf. Als Ursache dieser Wirkung ist in erster Linie seine plättchenförmige, lamellare Struktur anzusehen, die es auch gestattet, den prozentualen Anteil in der jeweiligen Formstoffmischung gegenüber Eisenoxid (Eisenoxidrot) zu erhöhen, ohne negative Auswirkungen auf die Festigkeitseigenschaften der Form/des Kernes. Typische Gußfehler, wie Blattrippen, Vererzungen, Pinholes usw. werden deutlich vermindert, die Oberflächengüte wird verbessert und die Gefügeausbildung, vor allem bei AlSiMg-Legierungen, unter Berücksichtigung einer hohen Packungsdichte des Formstoff/Eisenglimmergemisches wird stark verfeinert. Als Folge sind bessere mechanische Eigenschaften, Einsparungen bei einer anschließenden Wärmebehandlung sowie geringere Putzkosten zu erwarten.The iron mica used according to the invention has the negative Properties of iron oxide red do not show up. As the cause of this The main effect is its platelet-shaped, lamellar View structure that also allows the percentage in the respective molding material mixture compared to iron oxide (Iron oxide red) without negatively affecting the Strength properties of the form / core. Typical casting defects, such as leaf veins, mineralization, pinholes, etc. become clear reduced, the surface quality is improved and the microstructure formation, especially with AlSiMg alloys, taking into account a high packing density of the molding material / iron mica mixture is greatly refined. As a result, they are better mechanical Properties, savings in a subsequent heat treatment as well as lower cleaning costs.

    Bei realen Gießversuchen (Werkstoffe GG, G-AlSi7Mg) unter Einsatz von 10 Masse-% bzw. 20 Masse-% Eisenglimmer als Formstoffzusatz in Formstoffmischungen wurden im Vergleich mit einer Quarzsandmischung ohne Zusatz deutlich kürzere Erstarrungszeiten gemessen. Mit Beginn der aufgezeichneten Erstarrung von ca. 600°C wurde eine Abkühlung auf 450°C nach ca. 250 sec (+ 10 Masse-%) bzw. ca. 370 sec (+ 20 Masse-%) im Vergleich zu 430 sec (Quarzsandmischung ohne Eisenglimmer) festgestellt (Bild 7). Bei erhöhter Verdichtung der Formstoffmischung konnte eine weitere Verringerung der Abkühlzeit auf 200 sec (+ 10 Masse-%) bzw. 210 sec (+ 20 Masse-%) erreicht werden (Bilder 9 und 11). Die Formstoffmischungen bestanden dabei aus:

  • 90 Gewichtsteilen (GT) Quarzsand, 10 GT Eisenglimmer, darauf bezogen 6 % Bentonit und 3,5 % Wasser bzw.
  • 80 Gewichtsteilen (GT) Quarzsand, 20 GT Eisenglimmer, darauf bezogen 8 % Bentonit und 4.0 % Wasser;
  • die Naßzugfestigkeit betrug 0,22 bzw. 0,20 N/cm2, die Druckfestigkeit 16,9 bzw. 19,2 N/cm2. Da die höhere Druckfestigkeit der Mischung mit höherem Eisenglimmeranteil im erhöhten Bentonitgehalt begründet liegt, ist auch bei Eisenglimmeranteilen > 20 % ein höherer Bentonitgehalt empfehlenswert. Grundsätzlich werden durch den Eisenglimmerzusatz die Eigenschaften der Formstoffmischungen aus gießtechnologischer Sicht nicht negativ beeinflußt, die Wärmeentzugsgeschwindigkeit wird jedoch deutlich verbessert, d.h. bei höheren Zusätzen von Eisenglimmer in Verbindung mit einer dichten Packung ist eine schnellere Abkühlung/Erstarrung zu erwarten.In real casting tests (materials GG, G-AlSi7Mg) using 10% by mass or 20% by mass of iron mica as a molding additive in molding mixes, significantly shorter solidification times were measured compared to a quartz sand mix without the addition. At the beginning of the recorded solidification of approx. 600 ° C, cooling to 450 ° C was achieved after approx. 250 sec (+ 10 mass%) or approx. 370 sec (+ 20 mass%) compared to 430 sec (quartz sand mixture without iron mica) (Fig. 7). With increased compression of the molding material mixture, a further reduction in the cooling time to 200 sec (+ 10 mass%) or 210 sec (+ 20 mass%) could be achieved (Figures 9 and 11). The molding material mixtures consisted of:
  • 90 parts by weight (GT) quartz sand, 10 GT iron mica, based on 6% bentonite and 3.5% water or
  • 80 parts by weight (GT) quartz sand, 20 GT iron mica, based on 8% bentonite and 4.0% water;
  • the wet tensile strength was 0.22 and 0.20 N / cm 2 , the compressive strength 16.9 and 19.2 N / cm 2 . Since the higher compressive strength of the mixture with a higher proportion of iron mica is due to the increased bentonite content, a higher bentonite content is also recommended for iron mica contents> 20%. In principle, the properties of the molding material mixtures are not negatively influenced by the addition of iron mica from a casting technology point of view, but the rate of heat removal is significantly improved, that is to say faster cooling / solidification can be expected with higher additions of iron mica in conjunction with a dense packing.

    Weiters ist erfindungsgemäß die Verwendung von Eisenglimmer als Zusatzstoff für exotherme Speisehilfen vorgesehen. Aufgrund der überraschenden stark isolierenden Wirkung von Eisenglimmer als reiner, binderfreier Stoff ist eine derartige Verwendung von Eisenglimmer besonders vorteilhaft. Geeignete Zusatzmengen betragen etwa 0,1 bis 20 Masse-% Eisenglimmer.Furthermore, the use of iron mica is according to the invention Additive provided for exothermic food aids. Due to the surprising, highly insulating effect of iron mica as pure, binder-free material is such a use of Iron mica is particularly beneficial. Suitable additional amounts are about 0.1 to 20% by mass of iron mica.

    Die vorliegende Erfindung wird nun anhand der beiliegenden Figuren und der folgenden Untersuchung näher erläutert. Es zeigen:

  • Fig.1 den prinzipiellen Aufbau der Versuchseinrichtung,
  • Fig.2 eine rechnerische Simulation der Abkühlung von Gußeisen mit Lamellengraphit (GG) bei Verwendung verschiedener Formstoffe in reiner, binderfreier Form ohne Zusätze,
  • Fig.3 praktisch gemessene Abkühlungskurven von GG bei Verwendung verschiedener Formstoffe in reiner, binderfreier Form ohne Zusätze,
  • Fig.4 Aufheizkurven der verwendeten Formstoffe aus Fig.3 bei GG,
  • Fig.5 praktisch gemessene Abkühlungskurven von G-AlSi7Mg bei Verwendung verschiedener Formstoffe in reiner, binderfreier Form ohne Zusätze,
  • Fig.6 Aufheizkurven der verwendeten Formstoffe aus Fig.5 bei G-AlSi7Mg,
  • Fig.7 Abkühlungskurven von G-AlSi7Mg bei Verwendung von Formstoffmischungen mit 10 bzw. 20 %-Masse Eisenglimmerzusatz bei normaler Verdichtung (M10N bzw. M20N); als Vergleich Quarzsandmischung ohne Zusatz (Q1N),
  • Fig.8 Aufheizkurven der Sandmischungen aus Fig.7,
  • Fig.9 Abkühlungskurven von G-AlSi7Mg bei Verwendung von Formstoffmischungen mit 10 %-Masse Eisenglimmerzusatz bei normaler Verdichtung (M10N) bzw. bei hoher Verdichtung (M10H); als Vergleich Quarzsandmischung ohne Zusatz (Q1N),
  • Fig.10 Aufheizkurven der Sandmischungen aus Fig.9,
  • Fig.11 Abkühlungskurven von G-AlSi7Mg bei Verwendung von Formstoffmischungen mit 10 bzw. 20 %-Masse Eisenglimmerzusatz bei hoher Verdichtung (M10H bzw. M20H) ; als Vergleich Quarzsandmischung ohne Zusatz (Q1N), und
  • Fig.12 Aufheizkurven der Sandmischungen aus Fig.11.
  • The present invention will now be explained in more detail with reference to the accompanying figures and the following investigation. Show it:
  • 1 shows the basic structure of the test facility,
  • 2 a mathematical simulation of the cooling of cast iron with lamellar graphite (GG) when using different molding materials in pure, binder-free form without additives,
  • 3 practically measured cooling curves of GG when using different molding materials in pure, binder-free form without additives,
  • 4 heating curves of the molding materials used from FIG. 3 at GG,
  • 5 practically measured cooling curves of G-AlSi7Mg when using different molding materials in pure, binder-free form without additives,
  • Fig. 6 heating curves of the molding materials used from Fig. 5 for G-AlSi7Mg,
  • Fig. 7 cooling curves of G-AlSi7Mg when using molding material mixtures with 10 or 20% mass of iron mica additive with normal compression (M10N or M20N); as a comparison quartz sand mixture without additives (Q1N),
  • Fig. 8 heating curves of the sand mixtures from Fig. 7,
  • Fig. 9 cooling curves of G-AlSi7Mg when using molding material mixtures with 10% mass of iron mica additive with normal compression (M10N) or with high compression (M10H); as a comparison quartz sand mixture without additives (Q1N),
  • Fig. 10 heating curves of the sand mixtures from Fig. 9,
  • Fig. 11 cooling curves of G-AlSi7Mg when using molding material mixtures with 10 or 20% mass of iron mica additive with high compression (M10H or M20H); as a comparison quartz sand mix without additives (Q1N), and
  • Fig. 12 Heating curves of the sand mixtures from Fig. 11.
  • Mit Hilfe der thermischen Analyse und der daraus resultierenden Aufnahme von Erstarrungs- und Abkühlungskurven von Legierungen sowie von Aufheizkurven der zu untersuchenden Stoffe während der Erstarrung, ist es möglich, konkrete Aussagen über die Wärmeableitung von Formstoffen bzw. deren Zusätzen zu treffen.With the help of thermal analysis and the resulting Recording of solidification and cooling curves of alloys as well as heating curves of the substances to be examined during the Solidification, it is possible to make specific statements about heat dissipation of molded materials or their additives.

    Die eingesetzten Thermoelemente (sie bestehen aus zwei Drähten unterschiedlicher Metalle welche an den Enden verschweißt sind) erzeugen durch Erwärmung der Schweißstelle des "Thermopaares" Strom, der mit einem empfindlichen Millivoltmeter, das in den Leiterkreis eingebaut ist, gemessen und als Thermospannung bezeichnet wird. Diese Thermospannung ist ein Maß für die Temperatur an der Meßstelle. In Abhängigkeit der Zeit ergeben sich somit Abkühlungs- bzw. Aufheizkurven. Die verwendeten Thermoelementpaare bestanden aus Platin-Platin-Rhodium mit einem Temperaturbereich von 0 bis 1300°C und einer Thermospannung von 10,5 µV/K. The thermocouples used (they consist of two wires different metals which are welded at the ends) generate by heating the welding point of the "thermocouple" Electricity with a sensitive millivoltmeter that in the Conductor circuit is installed, measured and referred to as thermal voltage becomes. This thermal voltage is a measure of the temperature at the measuring point. Depending on the time, this results in Cooling or heating curves. The thermocouple pairs used were made of platinum-platinum-rhodium with a temperature range from 0 to 1300 ° C and a thermal voltage of 10.5 uV / K.

    Im Ergebnis erwies sich die Einrichtung gemäß Fig.1 als optimal.As a result, the device according to FIG. 1 proved to be optimal.

    Die Grundform 1 bestand aus Wasserglas/CO2 gehärtetem Quarzsand, in welche genau mittig ein Kupferrohr 2 (Durchmesser 30 mm, Wanddicke 1,5 mm) gestellt war. Dieses Kupferrohr dient als eigentliche Form für den Gußwerkstoff 3; um das Kupferrohr wurde dann der zu messende Stoff in den Bereich 4 entweder geschüttet oder genau definiert als Formstoffmischung verdichtet. Thermoelemente 5 waren an geeigneten Stellen eingesetzt.The basic form 1 consisted of water glass / CO 2 hardened quartz sand, in which a copper tube 2 (diameter 30 mm, wall thickness 1.5 mm) was placed exactly in the middle. This copper tube serves as the actual shape for the cast material 3; The material to be measured was then either poured around the copper pipe into region 4 or compacted as a mixture of molding materials. Thermocouples 5 were used at suitable locations.

    Kupfer wurde deshalb verwendet, weil dieses Material eine sehr gute Wärmeleitfähigkeit besitzt, die Gießwärme also gut auf die zu untersuchenden körnigen Stoffe bzw. Formstoffmischungen übertragen wird. Gleichzeitig sollte die thermische Stabilität aber so groß sein, daß die Kupfer-Form nicht aufschmilzt und vor allem bei der Messung der losen, reinen körnigen Stoffe eine Formstabilität bis Erstarrungsende gewährleistet ist.Copper was used because of this material has good thermal conductivity, so the casting heat well on the transferred to investigated granular substances or mixtures of molding materials becomes. At the same time, the thermal stability should be so large that the copper form does not melt and before especially when measuring loose, pure granular substances Dimensional stability until the end of solidification is guaranteed.

    Die Größenverhältnisse sind als Ergebnis der rechnerischen Simulation der Formfüllungs- und Erstarrungsvorgänge so gewählt, daß sowohl eine konstante Formverdichtung (z.B. nur durch das Schüttgewicht der reinen Stoffe) als auch eine genügend empfindliche Messung der Temperaturgradienten möglich ist.The proportions are as a result of the computational simulation the mold filling and solidification processes chosen so that both a constant compression (e.g. only by the Bulk density of the pure substances) as well as a sufficiently sensitive Measurement of the temperature gradient is possible.

    Da bei der rechnerischen Simulation thermophysikalische Kenngrößen der eingesetzten Materialien (Formstoff und Werkstoff) unbedingte Voraussetzung sind, welche jedoch bei Eisenglimmer nicht vorliegen und u.a. mit diesen Untersuchungen ermittelt werden sollten, wurden Daten von Zirkon-, Chromit- und Quarzsand verwendet.As thermophysical parameters in the computer simulation of the materials used (molding material and material) are unconditional prerequisites, but these are with iron mica not available and i.a. determined with these studies data from zircon, chromite and quartz sand used.

    Die in Fig.2 so rechnerisch simulierten, deutlichen Unterschiede in der Erstarrungszeit des Werkstoffes Gußeisen mit Lamellengraphit (GG) bei Verwendung von

    Zirkonsand
    = 104 sec.
    Chromitsand
    = 112 sec.
    Quarzsand
    = 138 sec.
    zeigen die notwendige Sensibilität der verwendeten Versuchseinrichtung.The significant differences in the solidification time of the material cast iron with lamellar graphite (GG) when using
    zircon
    = 104 sec.
    chromite
    = 112 sec.
    quartz sand
    = 138 sec.
    show the necessary sensitivity of the test facility used.

    Kürzere Erstarrungszeiten sind gleichbedeutend mit gutem Wärmeentzugsvermögen des Formstoffes und damit mit guten Gefüge- und Gußstückeigenschaften.Shorter solidification times are synonymous with good heat removal properties of the molding material and thus with good structure and Gußstückeigenschaften.

    Die Thermoelemente 5 (Fig.1) sind im thermischen Zentrum des Gußwerkstoffes (GG, G-AlSi7Mg) sowie im körnigen Stoff bzw. in der Formstoffmischung 20 mm von der Grenzfläche Metall/Form angebracht und bei allen Versuchen konstant. Alle Messungen wurden bis Versuchsende mit einer Meßgeschwindigkeit von einem Wert pro Sekunde aufgenommen.The thermocouples 5 (Fig.1) are in the thermal center of the Cast material (GG, G-AlSi7Mg) and in the granular material or in the molding material mixture attached 20 mm from the metal / mold interface and constant in all attempts. All measurements were taken until the end of the experiment with a measuring speed of one value per Second recorded.

    Die Ergebnisse der Messung der Erstarrungsgeschwindigkeiten von GG in reinen binderfreien, unverdichteten Formgrundstoffen Zirkon, Chromit, Quarz sowie in natürlichem Eisenglimmer zeigt Fig.3.The results of the measurement of the solidification rates of GG in pure binder-free, undensified zirconia, Chromite, quartz and natural iron mica shows Figure 3.

    Diese realen Versuche zeigen für Zirkon, Chromit und Quarz prinzipiell die gleiche Tendenz wie die Ergebnisse der Simulation. Der Einsatz von Eisenglimmer als Formstoff in reinem binderfreien und unverdichteten Zustand führt aber eindeutig zu extrem langen Erstarrungszeiten, verbunden mit einem Aufschmelzen der Kupferform. Deutlich wird dieser Effekt auch in Fig.4, in dem die Aufheizung des Formstoffes während der Erstarrung dargestellt ist. Der hier deutlich werdende exotherme Effekt in der "Glimmer-Kurve" zwischen 100 und 280 sec. deutet darauf hin, daß in diesem Zeitraum Eisenglimmer derart isolierend wirkt, daß die Kupferform aufschmilzt und sich somit die Erstarrungszeit deutlich verlängert (Fig.3).These real tests show in principle for zirconium, chromite and quartz the same tendency as the results of the simulation. The use of iron mica as a molding material in pure binder-free and undensified condition clearly leads to extreme long solidification times, combined with a melting of the Copper mold. This effect is also evident in Fig. 4, in which the heating of the molding material during solidification is shown is. The exothermic effect in the "Mica curve" between 100 and 280 sec. Indicates that during this period iron mica is so insulating that the Copper form melts and thus the solidification time becomes clear extended (Fig. 3).

    Um dieses Phänomen der isolierenden Wirkung deutlicher nachzuweisen, aber dabei das Aufschmelzen der Kupferform und somit zusätzliche thermische Effekte zu vermeiden, wurde in einer weiteren Versuchsserie der Werkstoff G-AlSi7Mg verwendet. Die Ergebnisse sind in Fig.5 dargestellt. Obwohl bei allen vier untersuchten Stoffen die Erstarrungstemperatur annähernd gleich ist, wird sie bei Verwendung von Eisenglimmer deutlich zu längeren Zeiten verschoben, ein Hinweis für die stark isolierenden Wirkung dieses Stoffes in binderfreier, unverdichteter Form. Diese Eigenschaft begünstigt auch die Verwendung von Eisenglimmer als Zusatz zu exothermen Speisehilfen bei Gießverfahren.In order to demonstrate this isolating effect more clearly, but the melting of the copper mold and thus additional Avoiding thermal effects was discussed in another Test series of the material G-AlSi7Mg used. The results are shown in Fig.5. Although examined in all four Substances the solidification temperature is approximately the same, it becomes much longer when using iron mica Times shifted, an indication of the highly insulating effect of this material in binder-free, undensified form. This Property also favors the use of mica as iron Addition to exothermic food aids in casting processes.

    Die Erstarrungszeiten für G-AlSi7Mg betragen in:

    binderfreiem Zirkonsand
    = 58 sec.
    binderfreiem Chromitsand
    = 67 sec.
    binderfreiem Quarzsand
    = 80 sec.
    binderfreiem Eisenglimmer
    = 139 sec.
    The setting times for G-AlSi7Mg are:
    binder-free zircon sand
    = 58 sec.
    binder-free chromite sand
    = 67 sec.
    binder-free quartz sand
    = 80 sec.
    binder-free iron mica
    = 139 sec.

    Bei Zirkon, Chromit und Eisenglimmer wird die aufgenommene Wärme entsprechend der Aufheizkurve in Fig.6 offensichtlich schnell an die Umgebung, d.h. in tiefer gelegene Formpartien abgegeben, der Maximalwert für Eisenglimmer von 67,16°C nach 900 sec. liegt unter dem des Quarzsandes.The heat absorbed by zircon, chromite and iron mica according to the heating curve in Fig. 6 obviously quickly the environment, i.e. given in lower parts of the form, the Maximum value for iron mica of 67.16 ° C after 900 sec under that of quartz sand.

    Entsprechend des Versuchsplanes wurden dann zwei Formstoffmischungen mit folgender Zusammensetzung hergestellt: Mischung I Mischung II 90 GT Quarzsand 80 GT Quarzsand 10 GT Eisenglimmer darauf bezogen 20 GT Eisenglimmer 6 % Bentonit 8 % Bentonit 3,5 % Wasser 4,0 % Wasser Aufbereitungszeit jeweils 10 Minuten im Kollergang.In accordance with the test plan, two molding material mixtures with the following composition were then produced: Mixture I Mixture II 90 GT quartz sand 80 GT quartz sand 10 GT iron mica based on it 20 GT iron mica 6% bentonite 8% bentonite 3.5% water 4.0% water Preparation time 10 minutes each in the pan mill.

    Festigkeits- und gießtechnologische Eigenschaften nach DIN 52 401 und VDG-Merkblättern P 31 bis P 43: Mischung I Mischung II Schüttdichte g/l 755 782 Feuchtigkeit % 3,5 4,0 Verdichtbarkeit % 38 32 Gasdurchlässigkeit 80 68 Druckfestigkeit N/cm2 16,9 19,2 Naßzugfestigkeit N/cm2 0,22 0,20 Strength and casting technology properties according to DIN 52 401 and VDG leaflets P 31 to P 43: Mixture I Mixture II Bulk density g / l 755 782 Humidity % 3.5 4.0 Compressibility% 38 32 Gas permeability 80 68 Compressive strength N / cm 2 16.9 19.2 Wet tensile strength N / cm 2 0.22 0.20

    Diese Werte sind für die praktische Formherstellung, auch aus großtechnischer Sicht, völlig in Ordnung. Die etwas geringere Verdichtbarkeit bei Mischung II trotz höherer Feuchtigkeit resultiert aus der höheren Schüttdichte, diese wiederum aus dem höheren Zusatz an Eisenglimmer. Die höhere Druckfestigkeit bei Mischung II liegt ursächlich im erhöhten Bentonitgehalt begründet, d.h. daß auch höhere Eisenglimmer-Zusätze nicht unmittelbar höhere Bentonitgehalte benötigen, ein Optimum muß gefunden werden.These values are for practical mold making, too on an industrial scale, perfectly fine. The slightly less Compressibility in mixture II results despite higher moisture from the higher bulk density, this in turn from the higher addition of iron mica. The higher compressive strength at Mixture II is caused by the increased bentonite content, i.e. that even higher iron mica additives are not immediate require higher bentonite contents, an optimum must be found.

    Grundsätzlich werden durch Eisenglimmer-Zusätze die Eigenschaften des bentonitgebundenen Formstoffes nicht negativ beeinflußt. Eine deutliche Erhöhung der Bindemittelmenge ist nicht erforderlich.Basically, the properties of iron mica additives of the bentonite-bound molding material is not adversely affected. A significant increase in the amount of binder is not necessary.

    Infolge der Ergebnisse der Versuche bei praktischen Messungen der Wärmeentzugsgeschwindigkeit von Formstoffmischungen bei unterschiedlicher Verdichtung wurde ausschließlich die Legierung G-AlSi7Mg verwendet.As a result of the results of the tests in practical measurements the rate of heat removal of molding material mixtures with different The alloy was the only compression G-AlSi7Mg used.

    Wird Eisenglimmer als Formstoffzusatz verwendet, zeigt dieser Stoff in Abhängigkeit der Packungsdichte kühlende Wirkung. In Fig.7 werden die Abkühlungskurven von G-AlSi7Mg unter Verwendung von Mischung I (M10N) und II (M20N) sowie als Vergleich einer Quarzsandmischung ohne Eisenglimmer-Zusatz (Q1N) bei normaler Verdichtung (entspricht einer üblichen Maschinenformerei) gegenübergestellt.If iron mica is used as a molding material additive, this shows Cooling effect depending on the packing density. In Fig.7 are the cooling curves of G-AlSi7Mg using of mixture I (M10N) and II (M20N) as well as a comparison of one Quartz sand mixture without iron mica additive (Q1N) for normal Compaction (corresponds to a conventional machine molding shop).

    Die Erstarrungszeiten von G-AlSi7Mg betragen in:

    Mischung I (10 % Eisenglimmer)
    = 83 sec.
    Mischung II (20 % Eisenglimmer)
    = 87 sec.
    Mischung ohne Zusatz
    = 102 sec.
    The solidification times of G-AlSi7Mg are:
    Mixture I (10% iron mica)
    = 83 sec.
    Mix II (20% iron mica)
    = 87 sec.
    Mix without additive
    = 102 sec.

    Eine Erhöhung der Packungsdichte des Kornanteiles ergibt eine Erhöhung des Wärmeleitvermögens. Die isolierende Wirkung der in den Poren befindlichen Luft wird durch Vergrößerung der Anteile der Festkörperleitung vermindert, die Anzahl der Kontaktpunkte im Kornverband wird erhöht. Eine Veränderung der Korn- bzw. Sandart verschiebt das gesamte System zu höheren oder niedrigeren Werten (vgl. Erstarrungszeiten in Fig.5), der prinzipielle Zusammenhang bei Zugabe von Feinanteilen (Eisenglimmer) bleibt aber bestehen.An increase in the packing density of the grain fraction results in a Increase in thermal conductivity. The isolating effect of in Air present in the pores is increased by increasing the proportions of solid-state conduction, the number of contact points in the grain structure is increased. A change in grain or Sandart shifts the entire system to higher or lower Values (see solidification times in Fig. 5), the basic one The connection remains when adding fine particles (iron mica) but persist.

    Die in Fig.8 dargestellten Aufheizkurven der Formstoffmischungen während der Erstarrung zeigen die gleiche Tendenz wie in Fig.6, der Kurvenverlauf ist jedoch infolge von Binderbestandteilen und Wasserzusatz ein anderer.The heating curves of the molding material mixtures shown in Fig. 8 during solidification show the same tendency as in Fig. 6, however, the curve is due to binder components and Water addition another.

    Die eben erläuterten Zusammenhänge werden durch Fig.9 und Fig.10 bestätigt. Hier wurde die Mischung I zum einen normal (M1ON) und zum anderen hoch verdichtet (M1OH) der Quarzsandmischung (Q1N) gegenübergestellt.The relationships just explained are shown in Fig. 9 and Fig. 10 approved. Mix I became normal (M1ON) and secondly, highly compressed (M1OH) quartz sand mixture (Q1N) compared.

    Die dabei gemessenen Erstarrungszeiten der Leichtmetall-Legierung G-AlSi7Mg betragen in:

    Mischung I - M1ON
    = 83 sec.
    Mischung I - M1OH
    = 43 sec.
    Quarzsandmischung - Q1N
    = 102 sec.
    The solidification times of the light metal alloy G-AlSi7Mg measured here are as follows:
    Mixture I - M1ON
    = 83 sec.
    Mixture I - M1OH
    = 43 sec.
    Quartz sand mix - Q1N
    = 102 sec.

    Bei höher verdichteten Formen in Verbindung mit Eisenglimmer-Zusatz haben die einzelnen Sandkörner untereinander eine noch größere Kontaktfläche, die Porenräume sind noch weiter verringert, die Wärmeentzugsgeschwindigkeit wird deutlich größer.For higher density forms in connection with iron mica additive the individual grains of sand still have one another larger contact area, the pore spaces are further reduced, the rate of heat removal increases significantly.

    Bei 20 % Eisenglimmer-Zusatz und hoch verdichteten Formen ist die Erstarrungszeit von G-AlSi7Mg am geringsten (Fig.11). Hier wurde Mischung I hoch verdichtet (M1OH) der Mischung II hoch verdichtet (M20H) und der normalen Quarzsandmischung (Q1N) gegenübergestellt und die Erstarrungsgeschwindigkeiten gemessen. Sie betragen in G-AlSi7Mg für:

    Mischung I - M1OH
    = 43 sec.
    Mischung II - M20H
    = 37 sec.
    Quarzsandmischung - Q1N
    = 102 sec.
    The solidification time of G-AlSi7Mg is the lowest with 20% iron mica addition and highly compressed forms (Fig. 11). Here mixture I was highly compressed (M1OH), compared to mixture II highly compressed (M20H) and the normal quartz sand mixture (Q1N) and the solidification rates were measured. They are in G-AlSi7Mg for:
    Mixture I - M1OH
    = 43 sec.
    Mixture II - M20H
    = 37 sec.
    Quartz sand mix - Q1N
    = 102 sec.

    Ein Indiz für die hier offensichtlich sehr gute Packungsdichte ist die höhere Verdichtbarkeit bei einem Zusatz von 20 % Eisenglimmer; eine schnelle Erstarrung wird dadurch in jedem Fall gefördert.An indication of the obviously very good packing density here is the higher compressibility with the addition of 20% iron mica; a rapid solidification in any case promoted.

    Claims (10)

    1. The use of plate-like micaceous iron oxide of a lamellar structure to produce casting moulds, particularly lost casting moulds and cores, bonded both organically and inorganically, to cast castings of non-ferrous, cast iron and cast steel alloys, characterised in that the mould material mixture used for producing the casting moulds or cores, respectively, contains 4 to 90 % by weight of plate-like micaceous iron oxide of a lamellar structure as a mould material additive.
    2. The use according to claim 1, characterised in that the mould material mixture contains 4 to 50 % by weight of plate-like micaceous iron oxide of a lamellar structure as a mould material additive.
    3. The use according to claim 1 or 2, characterised in that the mould material mixture contains 4 to 20 % by weight of plate-like micaceous iron oxide of a lamellar structure as a mould material additive.
    4. The use of plate-like micaceous iron oxide of a lamellar structure to produce mould material coatings for cores and casting moulds, bonded organically or inorganically, to cast castings of non-ferrous, cast iron and cast steel alloys, characterised in that the mixture used for producing the mould material coating contains plate-like micaceous iron oxide of a lamellar structure in a quantity of 0.10-10 % by weight, based on the solids mass of the coating.
    5. The use of plate-like micaceous iron oxide of lamellar structure as an additive for exothermic feeders.
    6. A mould material mixture for producing cores and casting moulds to cast castings of non-ferrous, cast iron and cast steel alloys, characterised in that the mould material mixture contains 4 to 90% by weight of plate-like micaceous iron oxide of a lamellar structure as a mould material additive.
    7. A mould material mixture according to claim 6, characterised in that the mould material mixture contains 4 to 50 % by weight of plate-like micaceous iron oxide of a lamellar structure as a mould material additive.
    8. A mould material mixture according to claim 6 or 7, characterised in that the mould material mixture contains 4 to 20 % by weight of plate-like micaceous iron oxide of a lamellar structure as a mould material additive.
    9. A mixture for producing mould material coatings for cores and casting moulds, organically or inorganically bound, to cast castings of non-ferrous, cast iron and cast steel alloys, characterised in that the mixture contains plate-like micaceous iron oxide of a lamellar structure in a quantity of 0.10-10 % by weight, based on the solids mass of the coating.
    10. Exothermic feeder, characterised in that it contains 0.1 to 20 % by weight of plate-like micaceous iron oxide of a lamellar structure in a non-compressed binder-free form as an additive.
    EP99909984A 1998-03-20 1999-03-17 Use of iron mica in the production of moulds Expired - Lifetime EP1064112B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    AT99909984T ATE240174T1 (en) 1998-03-20 1999-03-17 USE OF IRON MICA IN THE PRODUCTION OF CASTING MOLDS

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    AT17698U AT2581U1 (en) 1998-03-20 1998-03-20 USE OF IRON Mica in the manufacture of molds
    AT17698 1998-03-20
    PCT/AT1999/000068 WO1999048634A1 (en) 1998-03-20 1999-03-17 Use of iron mica in the production of moulds

    Publications (2)

    Publication Number Publication Date
    EP1064112A1 EP1064112A1 (en) 2001-01-03
    EP1064112B1 true EP1064112B1 (en) 2003-05-14

    Family

    ID=3483579

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99909984A Expired - Lifetime EP1064112B1 (en) 1998-03-20 1999-03-17 Use of iron mica in the production of moulds

    Country Status (5)

    Country Link
    EP (1) EP1064112B1 (en)
    AT (1) AT2581U1 (en)
    AU (1) AU2910799A (en)
    DE (1) DE59905561D1 (en)
    WO (1) WO1999048634A1 (en)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004042535B4 (en) * 2004-09-02 2019-05-29 Ask Chemicals Gmbh Molding material mixture for the production of casting molds for metal processing, process and use
    JP2011504520A (en) 2007-10-26 2011-02-10 ビーエーエスエフ ソシエタス・ヨーロピア Security element
    US8772371B2 (en) * 2008-05-09 2014-07-08 Basf Se Pearlescent pigments coated with a metal oxide/hydroxide layer and an acrylic copolymer
    US20110139311A1 (en) 2009-12-16 2011-06-16 Showman Ralph E Foundry mixes containing an organic acid salt and their uses
    CN105750486A (en) * 2016-04-27 2016-07-13 霍邱县鑫瑞金属制品有限责任公司 Water-based lost foam casting coating with active carbon nanoparticles for magnesium alloy casting and preparation method thereof
    DE102018004234A1 (en) * 2018-05-25 2019-11-28 Ask Chemicals Gmbh Sizing composition, method of coating a mold and use of the sizing composition to coat a mold

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS54147127A (en) * 1978-05-11 1979-11-17 Sougou Imono Sentaa Preventing defects in castings due to nitrogen contained in mold
    US4430441A (en) * 1982-01-18 1984-02-07 Zhukovsky Sergei S Cold setting sand for foundry moulds and cores
    CN85107187A (en) * 1985-09-29 1987-07-22 北京钢铁学院 Heating feeder head for cast iron

    Also Published As

    Publication number Publication date
    AT2581U1 (en) 1999-01-25
    EP1064112A1 (en) 2001-01-03
    WO1999048634A1 (en) 1999-09-30
    AU2910799A (en) 1999-10-18
    DE59905561D1 (en) 2003-06-18

    Similar Documents

    Publication Publication Date Title
    EP2451596B1 (en) Mold wash for manufacturing mold coatings
    DE69019466T2 (en) Process for casting a reactive metal onto a surface made of a slurry containing yttrium oxide.
    EP1934001B1 (en) Borosilicate glass-containing molding material mixtures
    DE102007027577A1 (en) Molding material mixture, molded article for foundry purposes and method for producing a molded article
    EP0339183A2 (en) Ceramic compositions for manufacturing water soluble cores and moulds
    DE1947904B2 (en) FIRE-RESISTANT THERMAL INSULATION MATERIAL
    EP1868753B1 (en) Exothermic and insulating feeder insert have high gas permeability
    WO2013014118A2 (en) Feeder and shapeable composition for production thereof
    EP1064112B1 (en) Use of iron mica in the production of moulds
    DE3810866A1 (en) FILTER MEDIUM THAT IS SUITABLE FOR REMOVING INFLUSED SOLIDS FROM LIQUIDS AT HIGH TEMPERATURES
    DE2715314C3 (en) Molding material for precision casting mold
    EP2308614A1 (en) Green aerosand
    DE2200002B2 (en) Unfired heterogeneous clunel cell mixture
    EP2941327B1 (en) Method for the production of core sand and or molding sand for casting purposes
    DE3444398C1 (en) Process for making a refractory light-weight brick
    DE4435411A1 (en) Kneaded refractory used for inside of tundish, etc.
    DE102016112039B4 (en) Heat-insulating plate, in particular cover plate for molten metal, and method for producing the plate and its use
    DE3237188A1 (en) Process for manufacturing a casting nozzle
    DE1458102C (en) Method of making shells
    DE2205626B2 (en) Porous ceramic radiant heating element
    Agbo et al. EFFICACY OF MOISTURE CONTENT ON THE MOULDING PROPERTIES OF UMUNZE RIVER SAND USING OBOSI CLAY AS BINDER
    AT319494B (en) Breaker core for sand mold casting, especially for iron and steel casting, and process for its manufacture
    DE2114442A1 (en) Casting pipe for die casting machines
    WO2021023493A1 (en) Method for producing an article for use in the foundry industry, corresponding granular material and kit, apparatuses, and uses
    AT389249B (en) Additive for regulating the strength remaining after casting of water-glass-bound casting moulds and/or cores

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000825

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: KARNTNER MONTANINDUSTRIE GESELLSCHAFT MBH

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030514

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20030514

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030514

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030514

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030514

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030514

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030514

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59905561

    Country of ref document: DE

    Date of ref document: 20030618

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030814

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030814

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030814

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030814

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030825

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20030514

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    Ref document number: 1064112E

    Country of ref document: IE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040317

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    26N No opposition filed

    Effective date: 20040217

    EN Fr: translation not filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060301

    Year of fee payment: 8

    BERE Be: lapsed

    Owner name: *KARNTNER MONTANINDUSTRIE G.M.B.H.

    Effective date: 20070331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070331

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20080325

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080523

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090317

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091001