EP1064100B9 - Electrohydrodynamic spraying means - Google Patents

Electrohydrodynamic spraying means Download PDF

Info

Publication number
EP1064100B9
EP1064100B9 EP99910454A EP99910454A EP1064100B9 EP 1064100 B9 EP1064100 B9 EP 1064100B9 EP 99910454 A EP99910454 A EP 99910454A EP 99910454 A EP99910454 A EP 99910454A EP 1064100 B9 EP1064100 B9 EP 1064100B9
Authority
EP
European Patent Office
Prior art keywords
liquid
duct
surface tension
droplets
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99910454A
Other languages
German (de)
French (fr)
Other versions
EP1064100B1 (en
EP1064100A1 (en
Inventor
Jean-Pascal Borra
Pascale Ehouarn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1064100A1 publication Critical patent/EP1064100A1/en
Publication of EP1064100B1 publication Critical patent/EP1064100B1/en
Application granted granted Critical
Publication of EP1064100B9 publication Critical patent/EP1064100B9/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only

Definitions

  • the present invention relates to electrohydrodynamic spraying means (hereinafter referred to as HDPE).
  • HDPE is a means of producing nebulisates of electrically charged millimeter, micron or submicron sized liquid droplets.
  • HDPE essentially consists of applying an electric field to a liquid so as to induce on the surface of this liquid electric charges of the same polarity as the voltage applied thereto. These charges, accelerated by the electric field, cause a transformation of the liquid drop into a cone. At the apex of this cone, a jet of liquid is produced which breaks up into droplets of millimetric, micron or submicron sizes (nebulisate or spray ).
  • HDPE mode guarantor of bi-modal dispersion
  • HDPE in "jet cone” mode is problematic for liquids with high surface tension such as water or liquids supplemented with reagents or surfactants.
  • EP 0 258 016 discloses an electrostatic spraying system intended to allow the application of very thin surface coatings. This system is capable of spraying in air at atmospheric pressure liquids having a surface tension of less than 0.065 N / m, and preferably less than 0.050 N / m, but only to the extent that crown-type phenomena are avoided ("conc-jet" mode of fragmentation of the liquid).
  • EP 0 258 016 indicates that its device must be placed in a gas other than air, or in an atmosphere different from the atmospheric pressure. The teaching of EP 0 258 016 thus leads the skilled person to avoid the phenomena of discharges, which are considered destabilizing spray.
  • a first type of solution uses an increase in the dielectric strength of the gas surrounding the liquid by increasing the pressure of the gas and / or by using gases other than air such as CO 2 or SF4
  • a second type of solution uses an additional electrode placed near the cone and the liquid jet so as to reduce the radial electric field in the gas in the vicinity of the liquid. None of these two types of solutions is however industrially satisfactory: the first type imposes means of control of the atmospheric environment, and the second type imposes an additional high voltage source.
  • the present application relates to new ways to solve this problem, and to overcome the disadvantages of the means of the prior art.
  • the inventors have indeed for the first time established that a HDPE without pulse pulse regime could be established directly and in air and at atmospheric pressure for liquids whose surface tension, as measured at ambient temperature, is superior at 0.055 N / m and remarkably greater than 0.065 N / m.
  • a HDPE without pulse pulse regime could be established directly and in air and at atmospheric pressure for liquids whose surface tension, as measured at ambient temperature, is superior at 0.055 N / m and remarkably greater than 0.065 N / m.
  • such HDPE can be obtained using an HDPE device that meets certain operating parameters, and in a very essential way, using an HDPE device comprising at least a liquid distribution pipe 1 whose dimensions of outside diameter and internal diameter, at the exit point of the polarized liquid, correspond to a suitable relationship in a previously defined range of outside diameters ( see examples and chart in FIG. after).
  • Such a relationship may notably correspond to a relationship between (diameter dimension outside) and (inside diameter dimension) greater than or equal to
  • the present application thus firstly relates to an electrohydrodynamic spraying device according to claim 1.
  • Various means are known to those skilled in the art to control the continuous nature of a discharge regime. These include the measurement of electric current using a fast oscilloscope, the visual control of the stability of the formed liquid cone, and / or granulometric measurements to verify the bi-modal character of the size distribution.
  • droplets Such a bi-modal distribution may in particular correspond to a first population, predominant (for example 90% of the volume of liquid sprayed), of larger average size droplets, and to a second minority population (for example 10% of the volume of liquid spray), droplets of medium size finer.
  • electrohydrodynamic spraying device we mean, in the present application, a device capable of generating a nebulisate (or dispersion, or spray ) of polarized liquid, that is to say a nebulisate of fragmented liquid, or pulverized, into droplets electrically charged.
  • a device therefore comprises liquid supply and distribution means, and means for biasing electrically the surface of this liquid.
  • the liquid distribution means are provided by a conduit 1, or capillary 1, at an outlet of which the polarized liquid forms a conical meniscus, the apex of which a jet then a dispersion of electrically charged liquid droplets.
  • surface tension we mean in the present application the surface tension as measured in air at ambient temperature and pressure.
  • the device according to the invention designed to allow HDPE under a continuous regime of discharges, in air and at atmospheric pressure, liquids whose surface tension is greater than 0.055 N / m, and remarkably superior at 0.065 N / m, has the advantage of allowing, without modification of said device, the HDPE of liquids whose surface tension is less than or equal to 0.055 N / m.
  • said means comprise, at least at said duct outlet 1, dimensions of outside and inside diameters which respond, when expressed in the same unit, to the following relation: dimension of outer diameter inside diameter dimension greater than or equal to 1 , 445 about , preferably greater than or equal to about 1.5697, more preferably greater than or equal to about 1.6, and still more preferably greater than or equal to about 1.8.
  • the upper limit of the appropriate values for this ratio (outside diameter dimension) / (inner diameter dimension) is determined by different technical limits. It can be mentioned in particular the technical limits related to the machining of a very small internal diameter, or even those related to the pressure drop that may result from a smaller internal diameter and which then imposes in compensation hydraulic systems at higher pressure.
  • the lower bound of the appropriate values for the ratio (outside diameter dimension) / (inner diameter dimension) is obtained from experimental measurements (observation of the achievement of a stable HDPE based on a range of diameter values exterior and interior).
  • the aforesaid lower bound value 1.5697 is obtained from experimental measurements carried out in the presence of such a support, whereas the aforesaid lower bound value 1.445 is obtained from experimental measurements carried out under comparable conditions, but in the absence of such support.
  • the measurements made, and hence the lower bound value obtained also depend on the profile of the section at said conduit or capillary outlet.
  • the aforesaid lower limit value 1,445 is thus obtained when said conduit, or capillary, has at least at said outlet a straight cross section (right face): the cross section perpendicular to the axis of said conduit 1 or capillary 1, at the of said outlet, has an annular profile.
  • the outlet section is not perpendicular to the edge of the duct 1 or capillary 1, the lower limit value obtained may be substantially different.
  • the lower limit value may appear less high (a value of 1.38 could be obtained under these conditions, compared with the value of 1.445 obtained using an outlet section perpendicular to the edge of the duct 1 or capillary 1.
  • the lower limit value may appear higher (a value of 1.8 was thus obtained under these conditions, compared to 1.445 obtained using annular section clear sections, the skilled person can therefore choose to machine a particular profile on the section at said outlet conduit 1 or capillary 1.
  • low and high viscosity are understood to be in accordance with commonly accepted notions by those skilled in the art, typically “low” viscosity means a viscosity of about 1 mPa.s, while “high” is “Viscosity” means a viscosity greater than about two orders of magnitude (ie of the order of about 100 mPa.s). Preferably, the dimension of said outer diameter is less than half of this limit value D max .
  • the dimension of said outer diameter is preferably less than one-third of this limit value D max .
  • the device according to the invention is capable of spraying, in air and at atmospheric pressure, a liquid whose surface tension is greater than 0.053 N / m, and remarkably greater than 0.065 N / m. m, in a stable mode of fragmentation of the liquid, especially in a mode of stable "cone-jet-glow" fragmentation (ie in a "jet cone” mode with continuous discharges superimposed).
  • a liquid whose surface tension is greater than 0.053 N / m, and remarkably greater than 0.065 N / m. m
  • a stable mode of fragmentation of the liquid especially in a mode of stable "cone-jet-glow” fragmentation (ie in a "jet cone” mode with continuous discharges superimposed).
  • Those skilled in the art can verify obtaining a "cone-jet-glow” mode, that is to say the superposition of a continuous discharge regime and a spray-jet cone mode, to using known means. These include electrical measurements using a fast oscilloscope that make
  • the device according to the invention further comprises means for electrically biasing said liquid upstream or during its passage through said conduit 1, in particular means 2 for applying an electrical voltage to said liquid upstream or during its passage inside said conduit, so as to polarize it.
  • any voltage to obtain a stable HDPE is appropriate. Its choice depends on the desired polarization. Advantageously, this voltage is continuous.
  • the device according to the invention then produces nebulisates whose charge always has the same sign (that of the DC voltage applied, this voltage can be positive as well as negative, depending on the intended applications.)
  • said voltage is a DC voltage, preferably a positive DC voltage, such as a positive DC voltage of less than about 130 kV, and a person skilled in the art may choose a suitable voltage depending on the specific properties of the liquid used in the process.
  • device according to the invention in particular its properties of conductivity, viscosity, density, surface tension, and as a function of properties specific to the device, in particular the distance that separates said conduit outlet from the nearest mass point.
  • said means making it possible to apply such an electrical voltage to said liquid essentially consist of at least one high-voltage generator 2 which can be connected firstly to ground and which can be connected to said liquid either direct way upstream or during its passage inside said conduit, or indirectly through a conductive material in contact with said liquid upstream or during its passage inside said conduit.
  • Said duct may indeed comprise an electrically conductive material on its inner surface, or on an internal thickness, and / or consists essentially of such a material.
  • the device according to the invention may further, for safety reasons, comprise a protection resistor 3 making it possible to limit the current in the sprayed polarized liquid, in particular a resistor protection device for limiting the discharge current of said liquid in the case of the passage of a very strong current.
  • a resistor may advantageously be placed between said high voltage generator and its point of connection to said liquid.
  • said device further comprises means 5 for depolarizing said liquid after spraying, that is to say for discharging the droplets of liquid produced by contact on a surface to ground .
  • said means 5 for depolarizing said liquid after spraying are placed at a distance D, hereinafter referred to as the inter-electrode distance, advantageously greater than the minimum distance that allows passage to the arc before the establishment of HDPE.
  • Such means are however optional: when said device is used for the purpose of producing a nebulizer whose polarity must interact with components of inverse polarity, these means are not applicable.
  • said device further comprises means 4 allowing, during the spraying of said liquid, to collect a discharge current in the gas surrounding said polarized liquid, such as in particular a conductive material having an opening of shape and dimensions allowing the passage of the sprayed liquid while collecting said stream of gaseous ions created by electric discharges in the gas.
  • means 4 are particularly suitable when said device is used for the purpose of producing a nebulizer whose polarity must interact with components of inverse polarity. They are also appropriate to ensure that the field at the liquid surface in the production area remains independent of the + and - charge densities under the ring (coagulation, charge modulation, and neutralization phenomena).
  • the device according to the invention is thus capable of controlling the discharge regime over a wide range of operation, typically over voltage ranges of the order of several thousand volts.
  • Such means 4 for collecting a discharge current make it possible in particular to collect the gaseous ions created by such a current of discharge, without collecting the droplets of liquid produced.
  • a particularly suitable means 4 is constituted by a counter-electrode, or conductive material connected to the ground, placed at a distance d from said duct outlet, and having an opening allowing the passage of liquid droplets produced while collecting the ions. gaseous created by a discharge. Said distance d may in particular be evaluated by trial and error, by moving said means by translation along the axis of the fluid nebulisate produced to obtain a non-collection of the liquid droplets, and an effective collection of said current discharge.
  • Such a means may in particular have an annular shape.
  • the device according to the invention further comprises means 6 for supplying said conduit with liquid.
  • Said conduit may in particular be supplied with liquid using one or more pump (s), or with the aid of a reservoir which has a height of liquid suitable for controlling the flow rate.
  • the "jet cone" mode can be achieved by choosing an average operating flow rate equal to [(4/3) ⁇ r 3 ] / ⁇ q , where r is the desired drop radius (in m ), and ⁇ q the electrical relaxation constant (in s).
  • said device further comprises means for measuring the particle size of the dispersion produced by the spraying of said polarized liquid, and in particular an LDA (Laser Doppler Anemometry ) type system, and / or means for measuring the electric current carried by the dispersion produced by spraying said polarized liquid, and in particular an oscilloscope.
  • LDA Laser Doppler Anemometry
  • oscilloscope Such means make it possible in particular to follow the evolution of the particle size of the droplets produced and / or the evolution of said stream during the spraying of said liquid.
  • said liquid is essentially a solution (solvent and solute (s) neutral (s) or ionic (s), organic (s) or mineral (with)), or a mixture of solutions chosen ( s) from the group consisting of water, ultrapure water, distilled water, water comprising conductive salts, an organic solvent supplemented with surfactant molecule (s), ethanol supplemented with surfactant molecule (s), acetone supplemented with terzioactive molecule (s), ethylene glycol supplemented with surfactant molecule (s).
  • the device according to the invention has many applications of interest. They encompass all known applications of HDPE devices in general, such as coating or surface deposition, to which are added new applications now achievable with the aid of the device according to the invention because of its ability to spray. , in air and at atmospheric pressure, a liquid whose surface tension is greater than 0.055 N / m, and remarkably greater than 0.065 N / m, without generating a pulse pulse regime. There may be mentioned applications in the field of electric washing of particles, and in the biological field.
  • said device is applied to the collection of particles, and in particular polluting particles, present in an aerosol (dedusting).
  • aerosol dedusting
  • Such collection takes place by electrical coagulation of said particles to be removed from said droplets of liquid produced by the device according to the invention; for such coagulation to be operative, said device is then applied to the production of liquid droplets of inverse polarity to the polarity (natural or induced) of said particles to be eliminated.
  • the device according to the invention is therefore, in a preferred embodiment of the invention, disposed on a vein of industrial effluent to be dusted, in which it can produce a reverse polarization nebulisate of that of the particles of the aerosol effluent. from liquid (s) with a surface tension greater than 0.055 N / m, and remarkably greater than 0.065 N / m, such as water. Particularly advantageously, there is a plurality of devices according to the invention on such a stream of effluents.
  • the device according to the invention Compared with the devices of the prior art for the collection of aerosols such as in particular fluidized bed and wet scrubber, the device according to the invention has the particular advantage of producing charged liquid droplets of finer sizes and, in the case an application for collecting pollutant particles in an aerosol, to limit the volume of wastewater resulting.
  • the device according to the invention also has the advantages of increasing the collection area per unit volume of collecting liquid (increase of inter-particle electrostatic forces, collecting droplets of medium size finer), to avoid the problem of reduction.
  • the device according to the invention also has, in general, the advantages of reducing installation costs, energy costs, wastewater treatment costs (due to the low flow rates of wastewater produced by the device according to the invention. the invention, from the liter to the cubic meter per hour). It also has the advantage of reliability: the percolation of the collecting droplets on the walls used for the inertial collection makes it possible to avoid the accumulation of the products collected on the electrodes, as observed by using said devices of the prior art. .
  • the device according to the invention allows a particularly advantageous way of working continuously.
  • said device is therefore applied to the inertia collection, following electric coagulation on larger droplets, particles whose initial size is less than or equal to one micron, and in particular pollutant particles of this size, present in an aerosol, or in an effluent transformable aerosol.
  • the device according to the invention by allowing the control of the (or) size (s) of charged droplets produced, makes it possible to produce charged droplets whose size (s) is (are) optimal (s) for causing, after coagulation with said particles to be eliminated, their fall by simple inertia in a controlled and effective manner.
  • the device according to the invention it is not necessary to use, for said collection, filtration systems. The pressure losses related to the use of such filtration systems are thus avoided.
  • the device according to the invention also makes it possible to control the volume of water necessary for this growth, and thus the volume of wastewater to be treated.
  • One means for varying the size (s) of droplets produced by the device according to the invention consists in particular in varying the flow rate of the liquid, that is to say to vary the mechanical flow of liquid by varying the rate of supply of liquid to the inlet, or inside, of said conduit, and / or to vary those liquid properties that influence its flow rate, including its conductivity properties (that this either by modifying the properties of a single basic liquid, or by using different liquids of specific properties).
  • Said effluent or aerosol can in particular be from an incineration plant, a chemical industry, metallurgy, a glass industry, a boiler or a thermal power station, a road tunnel, a vehicle, in particular a diesel vehicle.
  • the present application also relates to a method of HDPE characterized in that it implements at least one device according to the invention. It also relates to a process for the depollution of aerosol effluents, as described in claim 10.
  • the ring 4 is placed at a distance d from the capillary 1 equal to 2 to 4 cm, so as to collect the gaseous ions created by the discharges in the gas surrounding the liquid, while allowing the nebulisate of charged droplets to pass.
  • a counter electrode 5 (optional) is placed at a distance D from the capillary 1 so as to collect the droplet charges from the nebulizer. If one seeks to produce an aerosol of droplets loaded suspended in a gas, only the capillary 1 and the ring 4 are indispensable.
  • the voltage applied to the liquid, via the conductive capillary 1, is for example between about +1 kV and +30 kV for interelectrode distances of the order of 1 to 10 cm approximately.
  • a positive voltage is preferentially applied because the threshold field of a negative discharge is lower than the threshold field of a positive discharge, which makes it possible to widen the range of voltages applicable to the liquid in the case of positive HDPEs.
  • the capillary 1 is constituted by a syringe needle. Different outer diameters (D ext ) and inner diameters (D int ) of capillary 1 were tested.
  • FIG. 2 represents an abacus making it possible to read the maximum value of the appropriate external diameter: as a function of the time of electrical relaxation in s (abscissa axis) of the liquid considered, the maximum value of the outside diameter of the capillary in m (ordinate axis) is read on the straight line if it is a low-viscosity liquid, on the dashed right if it is a liquid with a high viscosity.
  • the terms "low” and "high” viscosity are understood in accordance with the notions commonly accepted by those skilled in the art.
  • low viscosity means a viscosity of about 1mPa.s
  • high viscosity means a viscosity greater than about two orders of magnitude (about the order of 100 mPa.s approximately).
  • the outer diameter values of the capillary 1 range from 0.324 to 1.8 mm.
  • the results of this example were obtained with capillaries placed on a conductive support disposed perpendicularly to the axis of the capillary.
  • each couple (outside diameter - inside diameter) is tested with different liquids with surface tension greater than 0.055 N / m, and remarkably greater than 0.065 N / m at ambient temperature (liquids ranging from ultrapure water (conductivity 10 ⁇ S / m ⁇ q 70 ⁇ s) with water doped with conducting salts (conductivity 1000 ⁇ S / m, ⁇ q 7.10 -7 s)).
  • the entire device according to the invention is placed in the air and at atmospheric pressure, a positive DC voltage of between +1 and + 30 kV is applied, and said device is supplied with liquid.
  • the LDA 7 and oscilloscope 8 systems make it possible to observe the achievement of a stable or unstable HDPE (absence or presence of pulse pulse regime). The probability of obtaining for all the tested liquids a stable HDPE for each pair D ext / D int tested is then calculated.
  • FIG. 3 shows, for different pairs of values (inner diameter of the capillary 1, outer diameter of the capillary 1), these HDPE results obtained with a liquid whose conductivity is 100 ⁇ S / m: the symbol + indicates the achievement of a stable HDPE (absence of pulse pulse regime), that is to say the obtaining of a stable "cone-jet-glow” mode with a probability equal to 1; the symbol - indicates obtaining an unstable HDPE (presence of a pulse pulse regime), that is to say obtaining an unstable mode ("cone-jet-glow” non-permanent), and therefore with a probability less than 1.
  • Tables 1 and 2 above, as well as FIGS. 3 and 4 show that, if the values of D ext and D int correspond to an appropriate relation, a HDPE without pulse pulse regime can be obtained, in the air and at atmospheric pressure, for a liquid with a surface tension greater than 0.055 N / m, and remarkably greater than 0.065 N / m, with a probability equal to 1.
  • a suitable relation can be calculated and read in Figure 3 (conductivity liquid of 100 ⁇ S / m) and Figure 4 (liquid conductivity of 1000 ⁇ S / m) as being: report D ext D int capillary 1 greater than about 1.5697. The same is done on the remaining D ext ranges (up to maximum D ext ).

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Electrotherapy Devices (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cosmetics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

The invention concerns electrohydrodynamic spraying means enabling electrohydrodynamic spraying, in the air and at atmospheric pressure, of liquids with high surface tension such as water. The means are characterised in that they comprise at least a liquid dispensing conduit (1) whereof the dimensions of the external diameter and of the internal diameter, at the liquid exit point, correspond to an appropriate ratio. Said means can be advantageously used for depolluting aerosol effluents, or transformable into aerosols.

Description

La présente invention est relative à des moyens de pulvérisation électrohydrodynamique (ci-après dénommée PEHD).The present invention relates to electrohydrodynamic spraying means (hereinafter referred to as HDPE).

La PEHD est un moyen de produire des nébulisats de gouttelettes de liquide de tailles millimétriques, microniques ou submicroniques chargées électriquement.HDPE is a means of producing nebulisates of electrically charged millimeter, micron or submicron sized liquid droplets.

La PEHD consiste essentiellement à appliquer un champ électrique sur un liquide de manière à induire à la surface de ce liquide des charges électriques de même polarité que la tension qui y est appliquée. Ces charges, accélérées par le champ électrique, engendrent une transformation de la goutte de liquide en cône. A l'apex de ce cône, se produit un jet de liquide qui se fragmente en gouttelettes de tailles millimétriques, microniques ou submicroniques (nébulisat ou spray).HDPE essentially consists of applying an electric field to a liquid so as to induce on the surface of this liquid electric charges of the same polarity as the voltage applied thereto. These charges, accelerated by the electric field, cause a transformation of the liquid drop into a cone. At the apex of this cone, a jet of liquid is produced which breaks up into droplets of millimetric, micron or submicron sizes (nebulisate or spray ).

Différents modes de fragmentation de liquide peuvent être obtenus et ont été décrits dans l'art antérieur (cf. notamment Cloupeau et Prunet-Foch, 1989, J. Electrostatics 22, pp 135-159). On peut notamment citer le mode "goutte-à-goutte" qui produit des gouttes millimétriques, et le mode "cône-jet" stable qui produit une distribution granulométrique bi-modale du nébulisat (gouttes microniques et satellites sub-microniques).Different modes of liquid fragmentation can be obtained and have been described in the prior art ( see in particular Cloupeau and Prunet-Foch, 1989, J. Electrostatics 22, pp 135-159). We can notably mention the "drop-by-drop" mode which produces millimetric drops, and the stable "jet-cone" mode which produces a bimodal particle size distribution of the nebulisate (micron drops and sub-micron satellites).

Différents moyens ont été décrits dans l'art antérieur afin de permettre l'obtention d'une PEHD en mode "cône-jet" stable (mode garant de la dispersion bi-modale) pour des liquides dont la tension de surface à température ambiante est inférieure ou égale à 0,055 N/m tel que l'éthanol, l'acétone, l'éthylèneglycol. La PEHD en mode "cône-jet" pose toutefois problème pour les liquides à forte tension de surface tels que l'eau ou bien encore les liquides additionnés de réactifs ou principes actifs à effet tensioactif.Various means have been described in the prior art in order to obtain a stable "cone-jet" mode HDPE (mode guarantor of bi-modal dispersion) for liquids whose surface tension at ambient temperature is less than or equal to 0.055 N / m such as ethanol, acetone, ethylene glycol. However, HDPE in "jet cone" mode is problematic for liquids with high surface tension such as water or liquids supplemented with reagents or surfactants.

La forte tension de surface de ces liquides impose en effet, pour la réalisation de leur PEHD, l'application de forts potentiels sur le liquide, ce qui créé un champ électrique fort dans le gaz entourant le liquide et, par suite, des phénomènes d'ionisation dans le gaz. Dans l'air, à pression atmosphérique, ces décharges électriques sont la plupart du temps impulsionnelles (dards), et empêchent l'établissement d'un mode de fragmentation "cône-jet" au profit d'un mode "cône-jet-glow".The high surface tension of these liquids indeed imposes, for the realization of their HDPE, the application of strong potentials on the liquid, which creates a strong electric field in the gas surrounding the liquid and, consequently, the phenomena of ionization in the gas. In air, at atmospheric pressure, these electric discharges are mostly impulsive (darts), and prevent the establishment of a mode of fragmentation "cone-jet" in favor of a mode "cone-jet-glow ".

Ainsi, le document EP 0 258 016 décrit un système de pulvérisation électrostatique destiné à permettre l'application de très fins revêtements de surface. Ce système est capable de pulvériser dans l'air à pression atmosphérique des liquides dont la tension de surface est inférieure à 0,065 N/m, et préférablement inférieure à 0,050 N/m, mais cela uniquement dans la mesure où les phénomènes de type couronne sont évités (mode "conc-jet" de fragmentation du liquide). Dans le cas où des décharges apparaîtraient, EP 0 258 016 indique que son dispositif doit être placé dans un gaz autre que l'air, ou dans une atmosphère différente de la pression atmosphérique. L'enseignement de EP 0 258 016 conduit donc l'homme du métier à éviter les phénomènes de décharges, qui sont considérées comme déstabilisatrices de la pulvérisation.Thus, EP 0 258 016 discloses an electrostatic spraying system intended to allow the application of very thin surface coatings. This system is capable of spraying in air at atmospheric pressure liquids having a surface tension of less than 0.065 N / m, and preferably less than 0.050 N / m, but only to the extent that crown-type phenomena are avoided ("conc-jet" mode of fragmentation of the liquid). In the event of discharges, EP 0 258 016 indicates that its device must be placed in a gas other than air, or in an atmosphere different from the atmospheric pressure. The teaching of EP 0 258 016 thus leads the skilled person to avoid the phenomena of discharges, which are considered destabilizing spray.

Différentes solutions ont été proposées dans l'art antérieur afin de stabiliser la PEHD de tels liquides en prévenant la formation de décharges impulsionnelles dans le gaz les entourant. Deux types de solutions peuvent être identifiées : un premier type de solutions utilise une augmentation de la rigidité diélectrique du gaz entourant le liquide par augmentation de la pression du gaz et/ou par mise en oeuvre de gaz autres que l'air tels que le CO2 ou le SF4, un deuxième type de solutions, utilise une électrode supplémentaire placée à proximité du cône et du jet de liquide de manière à réduire le champ électrique radial dans le gaz au voisinage du liquide. Aucun de ces deux types de solutions n'est toutefois industriellement satisfaisant : le premier type impose des moyens de contrôle de l'environnement atmosphérique, et le deuxième type impose une source de haute tension supplémentaire.Various solutions have been proposed in the prior art to stabilize the HDPE of such liquids by preventing the formation of pulses in the gas surrounding them. Two types of solutions can be identified: a first type of solution uses an increase in the dielectric strength of the gas surrounding the liquid by increasing the pressure of the gas and / or by using gases other than air such as CO 2 or SF4, a second type of solution, uses an additional electrode placed near the cone and the liquid jet so as to reduce the radial electric field in the gas in the vicinity of the liquid. None of these two types of solutions is however industrially satisfactory: the first type imposes means of control of the atmospheric environment, and the second type imposes an additional high voltage source.

A la connaissance de la Demanderesse, aucun des dispositifs décrits dans l'art antérieur ne permettent donc, pour des liquides à fortes tensions de surface tels que l'eau, une PEHD dans l'air et à pression atmosphérique, sans engendrer un régime impulsionel de décharges, et sans nécessiter l'utilisation d'une électrode supplémentaire.To the knowledge of the Applicant, none of the devices described in the prior art therefore allow, for liquids with high surface tensions such as water, HDPE in air and at atmospheric pressure, without generating a pulse regime. discharges, and without requiring the use of an additional electrode.

La présente demande est relative à de nouveaux moyens permettant de résoudre ce problème, et visant à pallier les inconvénients des moyens de l'art antérieur.The present application relates to new ways to solve this problem, and to overcome the disadvantages of the means of the prior art.

Les inventeurs ont en effet pour la première fois établi qu'une PEHD sans régime impulsionnel de décharges pouvait être établie directettrent dans l'air et à pression atmosphérique pour des liquides, dont la tension de surface, telle que mesurée à température ambiante, est supérieure à 0,055 N/m et, de manière remarquable supérieure à 0,065 N/m. Ils ont notamment établi qu'une telle PEHD peut être obtenue à l'aide d'un dispositif de PEHD répondant à certains paramètres de fonctionnement, et de manière tout à fait essentielle, à l'aide d'un dispositif de PEHD comportant au moins un conduit 1 de distribution de liquide dont les dimensions de diamètre extérieur et de diamètre intérieur, au point de sortie du liquide polarisé, répondent à une relation appropriée dans une gamme de diamètres extérieurs préalablement définie (cf. exemples et abaque en Figure 2 ci-après). Une telle relation peut notamment correspondre à un rapport entre (dimension de diamètre extérieur) et (dimension de diamètre intérieur) supérieur ou égal à une valeur limite fixe.The inventors have indeed for the first time established that a HDPE without pulse pulse regime could be established directly and in air and at atmospheric pressure for liquids whose surface tension, as measured at ambient temperature, is superior at 0.055 N / m and remarkably greater than 0.065 N / m. In particular, they established that such HDPE can be obtained using an HDPE device that meets certain operating parameters, and in a very essential way, using an HDPE device comprising at least a liquid distribution pipe 1 whose dimensions of outside diameter and internal diameter, at the exit point of the polarized liquid, correspond to a suitable relationship in a previously defined range of outside diameters ( see examples and chart in FIG. after). Such a relationship may notably correspond to a relationship between (diameter dimension outside) and (inside diameter dimension) greater than or equal to a fixed limit value.

Les inventeurs ont en effet observé que le régime de décharges dans le gaz (régime continu de décharges -glow stabilisateur- ou régime impulsionnel de décharges -dards déstabilisateurs-) est directement relié au divergent du champ dans le gaz. Ils ont ainsi établi que, pour des liquides dont la tension de surface est supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m, il est essentiel, pour réaliser la PEHD recherchée dans l'air à pression atmosphérique, de choisir des diamètres extérieur et intérieur qui permettent de contrôler :

  • la forme du liquide, c'est-à-dire la géométrie du cône et du jet de liquide, et
  • la chute de potentiel dans le liquide, c'est-à-dire le potentiel à la surface du liquide,
ceci afin de contrôler le divergent du champ dans le gaz (c'est-à-dire la variation du champ électrique dans le gaz).The inventors have indeed observed that the regime of discharges into the gas (continuous regime of discharges -glow stabilizer- or pulsed regime of discharges -dards destabilizing-) is directly connected to the divergent field in the gas. They have thus established that, for liquids whose surface tension is greater than 0.055 N / m, and remarkably greater than 0.065 N / m, it is essential, to achieve the desired HDPE in air at atmospheric pressure, to choose outside and inside diameters which allow to control:
  • the shape of the liquid, that is to say the geometry of the cone and the jet of liquid, and
  • the potential drop in the liquid, that is to say the potential on the surface of the liquid,
this in order to control the divergence of the field in the gas (that is to say the variation of the electric field in the gas).

La présente demande a ainsi pour premier objet un dispositif de pulvérisation électrohydrodynamique selon la revendication 1.The present application thus firstly relates to an electrohydrodynamic spraying device according to claim 1.

Différents moyens sont connus de l'homme du métier pour contrôler le caractère continu d'un régime de décharges. On peut notamment citer la mesure du courant électrique à l'aide d'un oscilloscope rapide, le contrôle visuel de la stabilité du cône de liquide formé, et/ou les mesures granulométriques permettant de vérifier le caractère bi-modal de la distribution en tailles des gouttelettes. Une telle distribution bi-modale peut notamment correspondre à une première population, majoritaire (par exemple 90% du volume de liquide pulvérisé), de gouttelettes de taille moyenne plus importante, et à une deuxième population, minoritaire (par exemple 10% du volume de liquide pulvérisé), de gouttelettes de taille moyenne plus fine.Various means are known to those skilled in the art to control the continuous nature of a discharge regime. These include the measurement of electric current using a fast oscilloscope, the visual control of the stability of the formed liquid cone, and / or granulometric measurements to verify the bi-modal character of the size distribution. droplets. Such a bi-modal distribution may in particular correspond to a first population, predominant (for example 90% of the volume of liquid sprayed), of larger average size droplets, and to a second minority population (for example 10% of the volume of liquid spray), droplets of medium size finer.

Par dispositif de pulvérisation électrohydrodynamique, nous entendons, dans la présente demande, un dispositif capable de générer un nébulisat (ou dispersion, ou spray) de liquide polarisé, c'est-à-dire un nébulisat de liquide fragmenté, ou pulvérisé, en gouttelettes électriquement chargées. Un tel dispositif comprend donc des moyens d'alimentation et de distribution en liquide, et des moyens pour polariser électriquement la surface de ce liquide. Les moyens de distribution en liquide sont assurés par un conduit 1, ou capillaire 1, à une sortie duquel, le liquide polarisé forme un ménisque conique, de l'apex duquel part un jet puis une dispersion de gouttelettes de liquide électriquement chargées.By electrohydrodynamic spraying device, we mean, in the present application, a device capable of generating a nebulisate (or dispersion, or spray ) of polarized liquid, that is to say a nebulisate of fragmented liquid, or pulverized, into droplets electrically charged. Such a device therefore comprises liquid supply and distribution means, and means for biasing electrically the surface of this liquid. The liquid distribution means are provided by a conduit 1, or capillary 1, at an outlet of which the polarized liquid forms a conical meniscus, the apex of which a jet then a dispersion of electrically charged liquid droplets.

Par tension de surface, nous entendons dans la présente demande la tension de surface telle que mesurée dans l'air à température et pression ambiantes.By surface tension, we mean in the present application the surface tension as measured in air at ambient temperature and pressure.

Le dispositif selon l'invention, conçu de manière à permettre la PEHD sous un régime continu de décharges, dans l'air et à pression atmosphérique, de liquides dont la tension de surface est supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m, présente l'avantage de permettre, sans modification dudit dispositif, la PEHD de liquides dont la tension de surface est inférieure ou égale à 0,055 N/m.The device according to the invention, designed to allow HDPE under a continuous regime of discharges, in air and at atmospheric pressure, liquids whose surface tension is greater than 0.055 N / m, and remarkably superior at 0.065 N / m, has the advantage of allowing, without modification of said device, the HDPE of liquids whose surface tension is less than or equal to 0.055 N / m.

Selon une disposition avantageuse de l'invention, lesdits moyens comprennent, tout au moins à ladite sortie de conduit 1, des dimensions de diamètres extérieur et intérieur qui répondent, lorsqu'elles sont exprimées dans la même unité, à la relation suivante : dimension de diamètre extérieur dimension de diamètre intérieur supérieur ou égal à 1 , 445 environ ,

Figure imgb0001
préférentiellement supérieur ou égal à 1,5697 environ, plus préférentiellement supérieur ou égal à 1,6 environ, et encore plus préférentiellement supérieur ou égal à 1,8 environ.According to an advantageous arrangement of the invention, said means comprise, at least at said duct outlet 1, dimensions of outside and inside diameters which respond, when expressed in the same unit, to the following relation: dimension of outer diameter inside diameter dimension greater than or equal to 1 , 445 about ,
Figure imgb0001
preferably greater than or equal to about 1.5697, more preferably greater than or equal to about 1.6, and still more preferably greater than or equal to about 1.8.

La borne supérieure des valeurs appropriées pour ce rapport (dimension de diamètre extérieur) / (dimension de diamètre intérieur) est déterminée par différentes limites techniques. On peut notamment citer les limites techniques liées à l'usinage d'un diamètre intérieur très petit, ou bien encore celles liées à la perte de charge qui peut résulter d'un diamètre intérieur plus petit et qui impose alors en compensation des systèmes hydrauliques à plus haute pression.The upper limit of the appropriate values for this ratio (outside diameter dimension) / (inner diameter dimension) is determined by different technical limits. It can be mentioned in particular the technical limits related to the machining of a very small internal diameter, or even those related to the pressure drop that may result from a smaller internal diameter and which then imposes in compensation hydraulic systems at higher pressure.

La borne inférieure des valeurs appropriées pour le rapport (dimension de diamètre extérieur) / (dimension de diamètre intérieur) est obtenue à partir de mesures expérimentales (observation de l'obtention d'une PEHD stable en fonction d'une gamme de valeurs de diamètres extérieurs et intérieurs).The lower bound of the appropriate values for the ratio (outside diameter dimension) / (inner diameter dimension) is obtained from experimental measurements (observation of the achievement of a stable HDPE based on a range of diameter values exterior and interior).

La valeur de borne inférieure dépend bien entendu des conditions expérimentales appliquées. Des exemples de dispositifs appropriés et de leur utilisation sont décrits en figure 1 et dans la partie "exemples" ci-dessous. L'homme du métier peut toutefois en concevoir, et en mettre en oeuvre des variantes. Ainsi, l'homme du métier peut naturellement tenir compte du matériau et/ou de la disposition du support soutenant ledit conduit, ou capillaire, dans la mesure où ce matériau et/ou cette disposition sont susceptibles d'affecter le champ électrique produit. Il apparaîtra en effet à l'homme du métier que le choix de la présence ou de l'absence d'un tel support en matériau conducteur, en particulier lorsqu'il est disposé perpendiculairement à l'axe dudit conduit 1, ou capillaire 1, influence sensiblement la borne inférieure expérimentalement mesurée desdites valeurs appropriées de rapport (dimension de diamètre extérieur) / (dimension de diamètre intérieur). Ainsi, la susdite valeur de borne inférieure 1,5697 est obtenue à partir de mesures expérimentales réalisées en présence d'un tel support, alors que la susdite valeur de borne inférieure 1,445 est obtenue à partir de mesures expérimentales réalisées dans des conditions comparables, mais en l'absence d'un tel support.The lower bound value of course depends on the experimental conditions applied. Examples of suitable devices and their use are described in Figure 1 and in the "Examples" section below. Those skilled in the art can however design and implement variants. Thus, those skilled in the art can naturally take into account the material and / or the arrangement of the support supporting said conduit, or capillary, insofar as this material and / or this arrangement are likely to affect the electric field produced. It will be apparent to those skilled in the art that the choice of the presence or absence of such a support of conductive material, in particular when it is arranged perpendicularly to the axis of said duct 1, or capillary 1, substantially influences the experimentally measured lower bound of said appropriate ratio values (outside diameter dimension) / (inside diameter dimension). Thus, the aforesaid lower bound value 1.5697 is obtained from experimental measurements carried out in the presence of such a support, whereas the aforesaid lower bound value 1.445 is obtained from experimental measurements carried out under comparable conditions, but in the absence of such support.

Il doit également être souligné que les mesures réalisées, et par là-même, la valeur de borne inférieure obtenue, dépendent également du profil de la section à ladite sortie de conduit ou capillaire. La susdite valeur de borne inférieure 1,445 est ainsi obtenue lorsque ledit conduit, ou capillaire, présente tout au moins à ladite sortie une section droite franche (face droite) : la section droite perpendiculaire à l'axe dudit conduit 1 ou capillaire 1, au niveau de ladite sortie, présente un profil annulaire. Lorsque la section de sortie n'est pas perpendiculaire au bord du conduit 1 ou capillaire 1, la valeur de borne inférieure obtenue peut être sensiblement différente. Ainsi, lorsque la face externe de conduit 1 ou capillaire 1 apparaît, tout au moins à ladite sortie plus longue que la face interne (face non droite, cesi-à-dire profil de type biseauté), la valeur de borne inférieure peut apparaître moins élevée (une valeur de 1,38 a pu être obtenue dans ces conditions, par comparaison avec la valeur de 1,445 obtenue à l'aide d'une section de sortie perpendiculaire au bord du conduit 1 ou capillaire 1. Inversement, lorsque la face externe apparaît, tout au moins à ladite sortie, plus courte que la face interne (profil de type biseauté), la valeur de borne inférieure peut apparaître plus élevée (une valeur de 1,8 a ainsi pu être obtenue dans ces conditions, par comparaison à 1,445 obtenue à l'aide de sections franches à profil annulaire. L'homme du métier pourra donc choisir d'usiner un profil particulier sur la section à ladite sortie de conduit 1 ou capillaire 1.It should also be emphasized that the measurements made, and hence the lower bound value obtained, also depend on the profile of the section at said conduit or capillary outlet. The aforesaid lower limit value 1,445 is thus obtained when said conduit, or capillary, has at least at said outlet a straight cross section (right face): the cross section perpendicular to the axis of said conduit 1 or capillary 1, at the of said outlet, has an annular profile. When the outlet section is not perpendicular to the edge of the duct 1 or capillary 1, the lower limit value obtained may be substantially different. Thus, when the outer face of duct 1 or capillary 1 appears, at least at said outlet longer than the internal face (non-straight face, that is to say, beveled type profile), the lower limit value may appear less high (a value of 1.38 could be obtained under these conditions, compared with the value of 1.445 obtained using an outlet section perpendicular to the edge of the duct 1 or capillary 1. Conversely, when the outer face appears, at least at said output, shorter than the internal face (beveled type profile), the lower limit value may appear higher (a value of 1.8 was thus obtained under these conditions, compared to 1.445 obtained using annular section clear sections, the skilled person can therefore choose to machine a particular profile on the section at said outlet conduit 1 or capillary 1.

Une dimension appropriée pour ledit diamètre extérieur est notamment fonction de la constante de relaxation électrique du liquide τq (qui est elle-même fonction de la conductivité du liquide). Elle est inférieure a une valeur limite Dmax répondant, dans le cas d'un liquide à forte viscosité, a équation: log 10 ( D max ) = 0 , 37793 × log 10 ( τ q ) + 0 , 34674

Figure imgb0002
avec Dmax ladite valeur limite en m, et τq constante de relaxation électrique dudit liquide en s, ou, dans le cas d'un liquide à faible viscosité, à l'équation : log 10 ( D max ) = 0 , 37747 × log 10 ( τ q ) + 0 , 43141
Figure imgb0003
avec Dmax et τq comme ci-dessus définis.
Les termes "faible'' et "forte" viscosité sont entendus canformément aux notions communément admises par l'homme du métier. Typiquement, par "faible" viscosité, on entend une viscosité d'environ 1 mPa.s, tandis que par "forte" viscosité, on entend une viscosité supérieure d'environ deux ordres de grandeur (soit de l'ordre de 100 mPa.s environ).
Préférentiellement, la dimension dudit diamètre extérieur est inférieure à la moitié de cette valeur limite Dmax. Lorsque lesdits diamètres extérieur et intérieur présentent des dimensions dont le rapport répond à une relation ci-dessus précisée (supérieur ou égal à 1,445 environ, préférentiellement supérieur ou égal à 1,5697 environ, plus préférentiellement supérieur ou égal à 1,65 environ, encore plus préférentiellement supérieur ou égal à 1,8 environ), la dimension dudit diamètre extérieur est préférentiellement inférieure au tiers de cette valeur limite Dmax.An appropriate dimension for said outer diameter is in particular a function of the liquid electrical relaxation constant τ q (which is itself a function of the conductivity of the liquid). It is lower than a limit value D max which , in the case of a liquid with a high viscosity, has the equation: log 10 ( D max ) = 0 , 37793 × log 10 ( τ q ) + 0 , 34674
Figure imgb0002
with D max said limit value in m, and τ q electrical relaxation constant of said liquid in s, or, in the case of a low-viscosity liquid, to the equation: log 10 ( D max ) = 0 , 37747 × log 10 ( τ q ) + 0 , 43141
Figure imgb0003
with D max and τ q as defined above.
The terms "low" and "high" viscosity are understood to be in accordance with commonly accepted notions by those skilled in the art, typically "low" viscosity means a viscosity of about 1 mPa.s, while "high" is "Viscosity" means a viscosity greater than about two orders of magnitude (ie of the order of about 100 mPa.s).
Preferably, the dimension of said outer diameter is less than half of this limit value D max . When said outer and inner diameters have dimensions whose ratio corresponds to a relationship specified above (greater than or equal to about 1.445, preferably greater than or equal to about 1.5697, more preferably greater than or equal to about 1.65, still more preferably greater than or equal to about 1.8), the dimension of said outer diameter is preferably less than one-third of this limit value D max .

Selon un autre aspect avantageux, le dispositif selon l'invention est capable de pulvériser, dans l'air et à pression atmosphérique, un liquide dont la tension de surface est supérieure à 0,053 N/m, et de manière remarquable supérieure à 0,065 N/m, dans un mode stable de fragmentation du liquide, notamment dans un mode de fragmentation "cône-jet-glow" stable (c'est-à-dire dans un mode "cône-jet" auquel se superposent des décharges continues). L'homme du métier peut vérifier l'obtention d'un mode "cône-jet-glow", c'est-à-dire la superposition d'un régime de décharges continu et d'un mode cône-jet de pulvérisation, à l'aide de moyens connus. On peut notamment citer les mesures électriques à l'aide d'un oscilloscope rapide qui permettent de vérifier que le courant est continu (absence d'impulsions), et qu'il est supérieur au courant de "cône-jet" théorique.According to another advantageous aspect, the device according to the invention is capable of spraying, in air and at atmospheric pressure, a liquid whose surface tension is greater than 0.053 N / m, and remarkably greater than 0.065 N / m. m, in a stable mode of fragmentation of the liquid, especially in a mode of stable "cone-jet-glow" fragmentation (ie in a "jet cone" mode with continuous discharges superimposed). Those skilled in the art can verify obtaining a "cone-jet-glow" mode, that is to say the superposition of a continuous discharge regime and a spray-jet cone mode, to using known means. These include electrical measurements using a fast oscilloscope that make it possible to verify that the current is continuous (no pulses), and that it is greater than the theoretical "jet-cone" current.

Par stable, nous entendons dans la présente demande un phénomène permanent (probabilité de réalisation dans le temps supérieure ou égale à 0,9, préférentiellement supérieure ou égale à 0,95, plus préférentiellement égale à 1).By stable, we mean in the present application a permanent phenomenon (probability of occurrence in time greater than or equal to 0.9, preferably greater than or equal to 0.95, more preferably equal to 1).

Le dispositif selon l'invention comprend en outre des moyens permettant de polariser électriquement ledit liquide en amont ou lors de son passage à travers ledit conduit 1, notamment des moyens 2 permettant d'appliquer une tension électrique audit liquide en amont ou lors de son passage à l'intérieur dudit conduit, de manière à le polariser.The device according to the invention further comprises means for electrically biasing said liquid upstream or during its passage through said conduit 1, in particular means 2 for applying an electrical voltage to said liquid upstream or during its passage inside said conduit, so as to polarize it.

Toute tension permettant d'obtenir une PEHD stable est appropriée. Son choix est fonction de la polarisation recherchée. Avantageusement, cette tension est continue. Le dispositif selon l'invention produit alors des nébulisats dont la charge présente toujours le même signe (celui de la tension continue appliquée. Cette tension peut être positive tout comme négative, selon les applications visées. Dans un mode de réalisation avantageux de l'invention, ladite tension est une tension continue, de préférence une tension continue positive, telle qu'une tension continue positive inférieure à 130 kV environ. L'homme du métier peut choisir une tension appropriée en fonction des propriétés propres au liquide mis en oeuvre dans le dispositif selon l'invention, notamment de ses propriétés de conductivité, viscosité, densité, tension de surface, et en fonction de propriétés propres au dispositif, notamment de la distance qui sépare ladite sortie de conduit du point masse le plus proche.Any voltage to obtain a stable HDPE is appropriate. Its choice depends on the desired polarization. Advantageously, this voltage is continuous. The device according to the invention then produces nebulisates whose charge always has the same sign (that of the DC voltage applied, this voltage can be positive as well as negative, depending on the intended applications.) In an advantageous embodiment of the invention. said voltage is a DC voltage, preferably a positive DC voltage, such as a positive DC voltage of less than about 130 kV, and a person skilled in the art may choose a suitable voltage depending on the specific properties of the liquid used in the process. device according to the invention, in particular its properties of conductivity, viscosity, density, surface tension, and as a function of properties specific to the device, in particular the distance that separates said conduit outlet from the nearest mass point.

De manière avantageuse, lesdits moyens permettant d'appliquer une telle tension électrique audit liquide sont essentiellement constitués par au moins un générateur haute tension 2 pouvant être relié d'une part à la masse, et pouvant être d'autre part relié audit liquide soit de manière directe en amont ou lors de son passage à l'intérieur dudit conduit, soit de manière indirecte par l'intemiédiaire d'un matériau conducteur en contact avec ledit liquide en amont ou pendant son passage à l'intérieur dudit conduit. Ledit conduit peut en effet comprendre un matériau électriquement conducteur sur sa surface interne, ou sur une épaisseur interne, et/ou est essentiellement constitué d'un tel matériau.Advantageously, said means making it possible to apply such an electrical voltage to said liquid essentially consist of at least one high-voltage generator 2 which can be connected firstly to ground and which can be connected to said liquid either direct way upstream or during its passage inside said conduit, or indirectly through a conductive material in contact with said liquid upstream or during its passage inside said conduit. Said duct may indeed comprise an electrically conductive material on its inner surface, or on an internal thickness, and / or consists essentially of such a material.

Afin de limiter le courant dans ledit liquide résultant de l'application de ladite tension, le dispositif selon l'invention peut en outre, par sécurité, comprendre une résistance de protection 3 permettant de limiter le courant dans le liquide polarisé pulvérisé, notamment une résistance de protection permettant de limiter le courant de décharge dudit liquide dans le cas du passage d'un très fort courant. Une telle résistance peut avantageusement être placée entre ledit générateur haute tension et son point de liaison audit liquide.In order to limit the current in said liquid resulting from the application of said voltage, the device according to the invention may further, for safety reasons, comprise a protection resistor 3 making it possible to limit the current in the sprayed polarized liquid, in particular a resistor protection device for limiting the discharge current of said liquid in the case of the passage of a very strong current. Such a resistor may advantageously be placed between said high voltage generator and its point of connection to said liquid.

Selon un mode particulier de réalisation de l'invention, ledit dispositif comprend en outre des moyens 5 permettant de dépolariser ledit liquide après pulvérisation, c'est-à-dire permettant de décharger les gouttelettes de liquide produites par contact sur une surface à la masse. Selon une disposition avantageuse de ce mode particulier, lesdits moyens 5 permettant de dépolariser ledit liquide après pulvérisation sont placés à une distance D, ci-après dénommée distance inter-électrode, avantageusement supérieure à la distance minimale qui permet le passage à l'arc avant l'établissement de la PEHD. De tels moyens sont toutefois optionnels : lorsque ledit dispositif est utilisé dans l'objectif de produire un nébulisat dont la polarité doit interagir avec des composants de polarité inverse, ces moyens sont sans objet.According to a particular embodiment of the invention, said device further comprises means 5 for depolarizing said liquid after spraying, that is to say for discharging the droplets of liquid produced by contact on a surface to ground . According to an advantageous arrangement of this particular embodiment, said means 5 for depolarizing said liquid after spraying are placed at a distance D, hereinafter referred to as the inter-electrode distance, advantageously greater than the minimum distance that allows passage to the arc before the establishment of HDPE. Such means are however optional: when said device is used for the purpose of producing a nebulizer whose polarity must interact with components of inverse polarity, these means are not applicable.

Selon un mode avantageux de réalisation de l'invention, ledit dispositif comprend en outre des moyens 4 permettant, au cours de la pulvérisation dudit liquide, de collecter un courant de décharge dans le gaz entourant ledit liquide polarisé, tel que notamment un matériau conducteur présentant une ouverture de forme et de dimensions permettant le passage du liquide pulvérisé tout en collectant ledit courant d'ions gazeux créés par décharges électriques dans le gaz. De tels moyens 4 sont particulièrement appropriés lorsque ledit dispositif est utilisé dans l'objectif de produire un nébulisat dont la polarité doit interagir avec des composants de polarité inverse. Ils sont également appropriés pour s'assurer que le champ à la surface du liquide dans la zone de production reste indépendant des densités de charges + et - sous l'anneau (phénomènes de coagulation, de modulation des charges, et neutralisation).According to an advantageous embodiment of the invention, said device further comprises means 4 allowing, during the spraying of said liquid, to collect a discharge current in the gas surrounding said polarized liquid, such as in particular a conductive material having an opening of shape and dimensions allowing the passage of the sprayed liquid while collecting said stream of gaseous ions created by electric discharges in the gas. Such means 4 are particularly suitable when said device is used for the purpose of producing a nebulizer whose polarity must interact with components of inverse polarity. They are also appropriate to ensure that the field at the liquid surface in the production area remains independent of the + and - charge densities under the ring (coagulation, charge modulation, and neutralization phenomena).

Ces moyens 4 permettent alors d'éliminer des ions gazeux présentant la même polarité que ledit nébulisat et qui, de ce fait, pourraient parasiter l'interaction nébulisat-composants recherchée, et ainsi diminuer l'efficacité du dispositif selon l'invention. Le dispositif selon l'invention est ainsi capable de contrôler le régime de décharges sur une large plage de fonctionnement, typiquement sur des plages de tensions de l'ordre de plusieurs milliers de volts.These means 4 then make it possible to eliminate gaseous ions having the same polarity as said nebulisate and which, as a result, could interfere with the desired nebulisate-component interaction, and thus reduce the efficiency of the device according to the invention. The device according to the invention is thus capable of controlling the discharge regime over a wide range of operation, typically over voltage ranges of the order of several thousand volts.

De tels moyens 4 de collecte d'un courant de décharge permettent notamment de collecter les ions gazeux créés par un tel courant de décharge, sans pour autant collecter les gouttelettes de liquide produites. Un tel moyen 4 particulièrement approprié est constitué par une contre-électrode, ou matériau conducteur relié à la masse, placé à une distance d de ladite sortie de conduit, et présentant une ouverture permettant le passage des gouttelettes de liquide produites tout en collectant les ions gazeux créés par une décharge. Ladite distance d peut notamment être évaluée par essai et erreur, en déplaçant ledit moyen par translation selon l'axe du nébulisat de liquide produit jusqu'à obtention d'une non-collecte des gouttelettes de liquide, et d'une collecte effective dudit courant de décharge. Un tel moyen peut notamment présenter une forme annulaire.Such means 4 for collecting a discharge current make it possible in particular to collect the gaseous ions created by such a current of discharge, without collecting the droplets of liquid produced. Such a particularly suitable means 4 is constituted by a counter-electrode, or conductive material connected to the ground, placed at a distance d from said duct outlet, and having an opening allowing the passage of liquid droplets produced while collecting the ions. gaseous created by a discharge. Said distance d may in particular be evaluated by trial and error, by moving said means by translation along the axis of the fluid nebulisate produced to obtain a non-collection of the liquid droplets, and an effective collection of said current discharge. Such a means may in particular have an annular shape.

Le dispositif selon invention comprend en outre des moyens 6 permettant d'alimenter ledit conduit en liquide. Ledit conduit peut notamment être aliment en liquide à l'aide d'une ou plusieurs pompe(s), ou à l'aide d'un réservoir qui présente une hauteur de liquide appropriée au contrôle du débit.The device according to the invention further comprises means 6 for supplying said conduit with liquid. Said conduit may in particular be supplied with liquid using one or more pump (s), or with the aid of a reservoir which has a height of liquid suitable for controlling the flow rate.

Selon un autre mode avantageux de réalisation de l'invention, ledit dispositif comprend en outre des moyens 6 permettant un débit moyen de liquide de fonctionnement à l'entrée, ou à l'intérieur dudit conduit d'une valeur, en m3.s-1, qui est comprise dans une plage présentant un écart d'un facteur de 10 environ entre sa borne haute et sa borne basse, ladite plage comprenant, de préférence de manière centrale, une valeur pouvant répondre à la formule suivante A [ ( 4 / 3 ) π r 3 ] / τ q ,

Figure imgb0004

  • A étant une constante différente de 0 et de 1, comprise entre 0,1 et 10 environ et de préférence égale à 0,5 environ,
  • r le rayon de gouttes désiré exprimé en m, et
  • τq la constante de relaxation électrique dudit liquide exprimée en s.
According to another advantageous embodiment of the invention, said device further comprises means 6 for an average flow of operating fluid at the inlet or inside said duct of a value in m 3 .s -1 , which is within a range of about 10 between its upper and lower bounds, said range preferably including a value which can be of the following formula AT [ ( 4 / 3 ) π r 3 ] / τ q ,
Figure imgb0004
  • A being a constant different from 0 and 1, from about 0.1 to about 10 and preferably about 0.5,
  • r the desired drop radius expressed in m, and
  • τ q the electrical relaxation constant of said liquid expressed in s.

Pour des liquides dont la tension de surface est inférieure ou égale à 0,055 N/m, c'est-à-dire en l'absence de problème de décharge, il est connu de l'homme du métier que le mode "cône-jet" peut être réalisé en choisissant un débit moyen de fonctionnement égal à [(4/3) π r3] / τq, r étant le rayon de goutte désiré (en m), et τq la constante de relaxation électrique (en s). Il est ici rappelé que : τq = [ε0 εr] /λ = [8,92.10-12 εr ] /λ, λ étant la conductivité du liquide en s/m, ε0 la permittivité du vide, εr la permittivité relative du matériau (εr = le rapport entre permittivité absolue du matériau et permittivité du vide).For liquids whose surface tension is less than or equal to 0.055 N / m, that is to say in the absence of discharge problem, it is known those skilled in the art that the "jet cone" mode can be achieved by choosing an average operating flow rate equal to [(4/3) π r 3 ] / τ q , where r is the desired drop radius (in m ), and τ q the electrical relaxation constant (in s). It is recalled here that: τ q = [ε 0 ε r ] / λ = [8,92.10 -12 ε r ] / λ, λ being the conductivity of the liquid in s / m, ε 0 the permittivity of the vacuum, ε r the relative permittivity of the material (ε r = the ratio between the absolute permittivity of the material and the permittivity of the vacuum).

Pour les liquides dont la tension de surface est supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m, les inventeurs ont pu établir que le débit moyen de fonctionnement approprié, pour des liquides à tension de surface inférieure ou égale à 0,055 N/m à température ambiante comme indiqué ci-dessus, doit être corrigé d'un facteur constant A, différent de 0 et de 1, compris entre 0,1 et 10 environ et préférentiellement égal à 1/2, afin d'éviter un régime impulsionnel de décharges déstabilisateur du nébulisat.For liquids whose surface tension is greater than 0.055 N / m, and remarkably greater than 0.065 N / m, the inventors have been able to establish that the appropriate average operating flow, for liquids with a surface tension of less than or equal to at 0.055 N / m at room temperature as indicated above, must be corrected by a constant factor A, different from 0 and from 1, between 0.1 and 10 approximately and preferably equal to 1/2, in order to to avoid a pulse regime of destabilizing discharges of the nebulisate.

Le dispositif selon l'invention peut donc en outre comprendre des moyens 6 d'alimentation en liquide permettant un débit moyen de liquide de fonctionnement à l'entrée dudit conduit dont la valeur en m3.s-1 répond à la formule suivante : A [ ( 4 / 3 ) π r 3 ] / τ q ,

Figure imgb0005

  • A étant une constante différente de 0 et de 1, comprise entre 0,1 et 10 environ et de préférence égale à 0,5 environ,
  • r le rayon de gouttes désiré exprimé en m, et
  • τq la constante de relaxation électrique dudit liquide exprimée en s.
The device according to the invention can therefore also comprise liquid supply means 6 allowing an average flow rate of operating liquid at the inlet of said duct whose value in m 3 .s -1 corresponds to the following formula: AT [ ( 4 / 3 ) π r 3 ] / τ q ,
Figure imgb0005
  • A being a constant different from 0 and 1, from about 0.1 to about 10 and preferably about 0.5,
  • r the desired drop radius expressed in m, and
  • τ q the electrical relaxation constant of said liquid expressed in s.

Selon un autre aspect de l'invention, ledit dispositif comprend en outre des moyens permettant une mesure de la granulométrie de la dispersion produite par la pulvérisation dudit liquide polarisé, et notamment un système de type LDA (Laser Doppler Anemometry), et/ou des moyens pour la mesure du courant électrique porté par la dispersion produite par la pulvérisation dudit liquide polarisé, et notamment un oscilloscope. De tels moyens permettent notamment de suivre l'évolution de la granulométrie des gouttelettes produites et/ou l'évolution dudit courant au cours de la pulvérisation dudit liquide.According to another aspect of the invention, said device further comprises means for measuring the particle size of the dispersion produced by the spraying of said polarized liquid, and in particular an LDA (Laser Doppler Anemometry ) type system, and / or means for measuring the electric current carried by the dispersion produced by spraying said polarized liquid, and in particular an oscilloscope. Such means make it possible in particular to follow the evolution of the particle size of the droplets produced and / or the evolution of said stream during the spraying of said liquid.

Selon un aspect avantageux de l'invention, ledit liquide est essentiellement une solution (solvant et soluté(s) neutre(s) ou ionique(s), organique(s) ou minéral(aux)), ou un mélange de solutions choisie(s) parmi le groupe constitué par de l'eau, de l'eau ultrapure, de l'eau distillée, de l'eau comprenant des sels conducteurs, un solvant organique additionné de molécule(s) tensioactive(s), de l'éthanol additionné de molécule(s) tensioactive(s), de l'acétone additionnée de molécule(s) tertsioactive(s), de l'éthylèneglycol additionné de molécule(s) tensioactive(s).According to an advantageous aspect of the invention, said liquid is essentially a solution (solvent and solute (s) neutral (s) or ionic (s), organic (s) or mineral (with)), or a mixture of solutions chosen ( s) from the group consisting of water, ultrapure water, distilled water, water comprising conductive salts, an organic solvent supplemented with surfactant molecule (s), ethanol supplemented with surfactant molecule (s), acetone supplemented with terzioactive molecule (s), ethylene glycol supplemented with surfactant molecule (s).

Le dispositif selon l'invention présente de nombreuses applications d'intérêt. Elles englobent l'ensemble des applications connues des dispositifs de PEHD en général, telles que le revêtement ou dépôt de surface, auxquelles s'ajoutent de nouvelles applications maintenant réalisables à l'aide du dispositif selon l'invention du fait de sa capacité à pulvériser, dans l'air et à pression atmosphérique, un liquide dont la tension de surface est supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m, sans engendrer un régime impulsionnel de décharges. On peut notamment citer des applications dans le domaine du lavage électrique des particules, et dans le domaine biologique.The device according to the invention has many applications of interest. They encompass all known applications of HDPE devices in general, such as coating or surface deposition, to which are added new applications now achievable with the aid of the device according to the invention because of its ability to spray. , in air and at atmospheric pressure, a liquid whose surface tension is greater than 0.055 N / m, and remarkably greater than 0.065 N / m, without generating a pulse pulse regime. There may be mentioned applications in the field of electric washing of particles, and in the biological field.

Selon un mode préféré de réalisation de l'invention, ledit dispositif est appliqué à la collecte de particules, et notamment de particules polluantes, présentes dans un aérosol (dépoussiérage). Ceci s'applique à tout effluent à l'état d'aérosol ou à tout effluent qui peut être transformé en aérosol. Une telle collecte s'opère par coagulation électrique desdites particules à éliminer auxdites gouttelettes de liquide produites par le dispositif selon l'invention; pour qu'une telle coagulation soit opérante, ledit dispositif est alors appliqué à la production de gouttelettes de liquide de polarité inverse à la polarité (naturelle ou induite) desdites particules à éliminer.According to a preferred embodiment of the invention, said device is applied to the collection of particles, and in particular polluting particles, present in an aerosol (dedusting). This applies to any aerosol effluent or any effluent that can be aerosolized. Such collection takes place by electrical coagulation of said particles to be removed from said droplets of liquid produced by the device according to the invention; for such coagulation to be operative, said device is then applied to the production of liquid droplets of inverse polarity to the polarity (natural or induced) of said particles to be eliminated.

Le dispositif selon l'invention est donc, dans un mode de réalisation préféré de l'invention, disposé sur une veine d'effluent industriel à dépoussiérer, dans laquelle il peut produire un nébulisat de polarisation inverse de celle des particules de l'effluent aérosol à partir de liquide(s) à tension de surface supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m, tels que l'eau. De manière particulièrement avantageuse, on dispose une pluralité de dispositifs selon l'invention sur une telle veine d'effluents.The device according to the invention is therefore, in a preferred embodiment of the invention, disposed on a vein of industrial effluent to be dusted, in which it can produce a reverse polarization nebulisate of that of the particles of the aerosol effluent. from liquid (s) with a surface tension greater than 0.055 N / m, and remarkably greater than 0.065 N / m, such as water. Particularly advantageously, there is a plurality of devices according to the invention on such a stream of effluents.

Par rapport aux dispositifs de l'art antérieur pour la collection des aérosols tels que notamment lit fluidisé et laveur humide, le dispositif selon l'invention présente notamment l'avantage de produire des gouttelettes de liquide chargées de tailles plus fines et, dans le cas d'une application de collecte de particules polluantes dans un aérosol, de limiter le volume d'eaux usées résultant. Le dispositif selon l'invention présente en outre les avantages d'augmenter la surface de collecte par unité de volume de liquide collecteur (augmentation des forces électrostatiques inter-particulaires, gouttelettes collectrices de taille moyenne plus fine), d'éviter le problème de réduction de l'efficacité des systèmes de précipitation électrostatique lié à l'accumulation sur les électrodes collectrices des poussières isolantes, de ne pas requérir de système de pressurisation ou de système mécanique et ainsi d'éviter les problèmes de perte de charge d'un système de filtration en sortie du procédé (la collecte inertielle est possible avec le dispositif selon l'invention).Compared with the devices of the prior art for the collection of aerosols such as in particular fluidized bed and wet scrubber, the device according to the invention has the particular advantage of producing charged liquid droplets of finer sizes and, in the case an application for collecting pollutant particles in an aerosol, to limit the volume of wastewater resulting. The device according to the invention also has the advantages of increasing the collection area per unit volume of collecting liquid (increase of inter-particle electrostatic forces, collecting droplets of medium size finer), to avoid the problem of reduction. the efficiency of electrostatic precipitator systems related to the accumulation on the collecting electrodes of insulating dusts, not to require a pressurization system or mechanical system and thus to avoid the problems of pressure drop of a filtration system at the output of the process (inertial collection is possible with the device according to the invention).

Le dispositif selon l'invention présente de plus, de manière générale, les avantages de réduction des coûts d'installation, des coûts énergétiques, des coûts de traitement des eaux usées (du fait des faibles débits d'eaux usées produits par le dispositif selon l'invention, du litre au mètre cube par heure). Il présente également l'avantage de la fiabilité : la percolation des gouttelettes collectrices sur les parois utilisées pour la collecte inertielle permet d'éviter l'accumulation des produits collectés sur les électrodes, telle qu'observée en utilisant lesdits dispositifs de l'art antérieur. Le dispositif selon l'invention pennet de manière particulièrement avantageuse de travailler en continu.The device according to the invention also has, in general, the advantages of reducing installation costs, energy costs, wastewater treatment costs (due to the low flow rates of wastewater produced by the device according to the invention. the invention, from the liter to the cubic meter per hour). It also has the advantage of reliability: the percolation of the collecting droplets on the walls used for the inertial collection makes it possible to avoid the accumulation of the products collected on the electrodes, as observed by using said devices of the prior art. . The device according to the invention allows a particularly advantageous way of working continuously.

Selon un mode particulièrement, préféré de réalisation de l'invention, ledit dispositif est donc appliqué à la collecte par inertie, suite à la coagulation électrique sur des gouttelettes plus grosses, de particules dont la taille initiale est inférieure ou égale au micron, et notamment de particules polluantes d'une telle taille, présentes dans un aérosol, ou dans un effluent transformable en aérosol.According to a particularly preferred embodiment of the invention, said device is therefore applied to the inertia collection, following electric coagulation on larger droplets, particles whose initial size is less than or equal to one micron, and in particular pollutant particles of this size, present in an aerosol, or in an effluent transformable aerosol.

De telles particules, du fait de leurs faibles tailles, ne pouvaient jusqu'alors être efficacement éliminées d'un aérosol par collecte inertielle après leur coagulation aux gouttelettes collectrices. Le dispositif selon l'invention, en permettant le contrôle de la (ou des) taille(s) de gouttelettes chargées produites, permet de produire des gouttelettes chargées dont la (les) taille(s) est (sont) optimale(s) pour provoquer, après coagulation auxdites particules à éliminer, leur chute par simple inertie de manière contrôlée et efficace. Avec le dispositif selon l'invention, il n'est pas nécessaire d'utiliser, pour ladite collecte, de systèmes de filtration. Les pertes de charges liées à l'utilisation de tels systèmes de filtration sont ainsi évitées. Le dispositif selon l'invention permet également de contrôler le volume d'eau nécessaire à cette croissance, et ainsi le volume d'eau usée à traiter.Such particles, because of their small sizes, could previously be effectively removed from an aerosol by inertial collection after their coagulation with the collecting droplets. The device according to the invention, by allowing the control of the (or) size (s) of charged droplets produced, makes it possible to produce charged droplets whose size (s) is (are) optimal (s) for causing, after coagulation with said particles to be eliminated, their fall by simple inertia in a controlled and effective manner. With the device according to the invention, it is not necessary to use, for said collection, filtration systems. The pressure losses related to the use of such filtration systems are thus avoided. The device according to the invention also makes it possible to control the volume of water necessary for this growth, and thus the volume of wastewater to be treated.

Un moyen pour faire varier la (les) taille(s) de gouttelettes produite(s) par le dispositif selon l'invention consiste notamment à faire varier le débit de liquide, c'est-à-dire à faire varier le débit mécanique de liquide en faisant varier la vitesse d'alimentation en liquide à l'entrée, ou à l'intérieur, dudit conduit, et/ou à faire varier celles des propriétés propres audit liquide qui influencent son débit, notamment ses propriétés de conductivité (que cela soit en modifiant les propriétés d'un seul et même liquide de base, ou en utilisant différents liquides de propriétés déterminées).One means for varying the size (s) of droplets produced by the device according to the invention consists in particular in varying the flow rate of the liquid, that is to say to vary the mechanical flow of liquid by varying the rate of supply of liquid to the inlet, or inside, of said conduit, and / or to vary those liquid properties that influence its flow rate, including its conductivity properties (that this either by modifying the properties of a single basic liquid, or by using different liquids of specific properties).

Ledit effluent ou aérosol peut notamment être issu d'une usine d'incinération, d'une industrie chimique, métallurgique, d'une industrie du verre, d'une chaudière ou d'une centrale thermique, d'un tunnel routier, d'un véhicule, notamment d'un véhicule diesel.Said effluent or aerosol can in particular be from an incineration plant, a chemical industry, metallurgy, a glass industry, a boiler or a thermal power station, a road tunnel, a vehicle, in particular a diesel vehicle.

La présente demande a également pour objet un procédé de PEHD caractérisé en ce qu'il met en oeuvre au moins un dispositif selon l'invention. Elle vise également un procédé de dépollution d'effluents aérosols, tel que décrit dans la revendication 10.The present application also relates to a method of HDPE characterized in that it implements at least one device according to the invention. It also relates to a process for the depollution of aerosol effluents, as described in claim 10.

Les caractéristiques et avantages de la présente invention sont illustrées par les exemples suivants donnés à titre non limitatif. Dans ces exemples, il est fait référence aux figures 1 à 6 :

  • la figure 1 représente un mode de réalisation du dispositif de PEHD selon l'invention,
  • la figure 2 représente une abaque (diamètre de capillaire en m en fonction du temps de relaxation électrique en s) sur laquelle peut être lue des valeurs de diamètres extérieurs de conduit appropriées à la réalisation d'une PEHD dans l'air, à pression atmosphérique, et sans régime impulsionnel de décharges, pour des liquides à tension de surface supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m (droite pointillée : valeurs limites de diamètres extérieurs de conduit pour un liquide de forte viscosité, droite continue : valeurs limites de diamètres extérieurs de conduit pour un liquide de faible viscosité),
  • les figures 3 et 4 représentent, en fonction du diamètre intérieur (axe des ordonnées, en mm) et du diamètre extérieur (axe des abscisses, en mm) de conduits testés, l'obtention d'une probabilité égale à 1 (signe +), ou inférieure à 1 (signe -), pour la PEHD, sans régime impulsionnel de décharges, d'un liquide de conductivité 100 µS/m (figure 3) ou 1000 µS/m (figure 4) et à tension de surface supérieure à 0,055 N/m, et notamment à 0,065 N/m : sur ces figures 3 et 4, est portée la droite Dext =1,5697 Dint qui trace une limite de fonctionnement du capillaire 1 selon une disposition de l'invention (présence d'un support métallique soutenant ledit conduit ou capillaire, et perpendiculaire à ce conduit ou capillaire). Une droite (droite verticale Dmax) marque la borne supérieure de diamètres extérieurs appropriés.
  • les figures 5 et 6 représentent, comme les figures 3 et 4, l'obtention d'une probabilité égale à 1 (signe +), ou inférieure à 1 (signe -), pour la PEHD, sans régime impulsionnel de décharges (en mode "cône-jet-glow"), d'un liquide de conductivité 100 µS/m (figure 5) ou 1000 µS/m (figure 6) et à tension de surface supérieure à 0,055 N/m : et notamment à 0,065 N/m : sur ces figures 5 et 6, est portée la droite Dext = 1,445 Dint qui trace une limite de fonctionnement du capillaire 1 selon une autre disposition de l'invention (absence de support métallique perpendiculaire audit conduit ou capillaire). Une droite (droite verticale Dmax ) marque la borne supérieure de diamètres extérieurs appropriés.
The features and advantages of the present invention are illustrated by the following non-limiting examples. In these examples, reference is made to FIGS. 1 to 6:
  • FIG. 1 represents an embodiment of the HDPE device according to the invention,
  • FIG. 2 represents an abacus (capillary diameter in m as a function of the electrical relaxation time in s) on which can be read values of external pipe diameters suitable for the production of HDPE in air, at atmospheric pressure. , and without pulse pulse regime, for liquids with a surface tension greater than 0.055 N / m, and remarkably greater than 0.065 N / m (dashed line: limit values for external pipe diameters for a high viscosity liquid, Continuous straight line: limit values of outside diameter of pipe for a low viscosity liquid),
  • FIGS. 3 and 4 represent, as a function of the inside diameter (ordinate axis, in mm) and the outside diameter (abscissa axis, in mm) of tested conduits, obtaining a probability equal to 1 (+ sign) , or less than 1 (- sign), for HDPE, without pulse pulse regime, a liquid conductivity of 100 μS / m (Figure 3) or 1000 μS / m (Figure 4) and with a surface tension higher than 0.055 N / m, and in particular 0.065 N / m: in these FIGS. 3 and 4, the straight line D ext = 1.5697 D int is plotted which traces an operating limit of the capillary 1 according to a disposition of the invention (presence a metal support supporting said conduit or capillary, and perpendicular to this conduit or capillary). A line (vertical line D max ) marks the upper limit of appropriate outside diameters.
  • FIGS. 5 and 6 represent, like FIGS. 3 and 4, obtaining a probability equal to 1 (+ sign), or less than 1 (sign -), for HDPE, without pulsed pulse regime (in the "cone-jet-glow"), a liquid of conductivity 100 μS / m (FIG. 5) or 1000 μS / m (FIG. 6) and with a surface tension greater than 0.055 N / m: and especially at 0.065 N / m m: in these figures 5 and 6 is carried the line D ext = 1.445 D int which traces an operating limit of the capillary 1 according to another embodiment of the invention (absence of metal support perpendicular to said duct or capillary). A line (vertical line D max ) marks the upper limit of appropriate outside diameters.

EXEMPLE 1EXAMPLE 1

On monte un dispositif de PEHD comme présenté en figure 1. Ce dispositif de PEHD comprend notamment :

  • un conduit distributeur de liquide, en matériau conducteur, ou capillaire, 1,
  • un générateur 2 à Haute Tension continue positive (HT DC 0-30 kV positive),
  • une résistance de protection 3 (R = 106 Ohm),
  • un moyen 4 de collecte du courant de décharge dans le gaz entourant le liquide, sous forme d'un anneau conducteur relié à la masse,
  • une contre-électrode 5 reliée à la masse permettant de collecter la charge des gouttelettes de liquide pulvérisées, et
  • une pompe d'alimentation en liquide 6.
An HDPE device is mounted as shown in FIG. 1. This HDPE device comprises in particular:
  • a liquid distributor duct, made of conducting material, or capillary, 1,
  • a generator 2 with positive high-voltage DC (positive DC 0-30 kV),
  • a protection resistor 3 (R = 10 6 Ohm),
  • a means 4 for collecting the discharge current in the gas surrounding the liquid, in the form of a conductive ring connected to ground,
  • a counter-electrode 5 connected to the ground for collecting the charge of the sprayed liquid droplets, and
  • a liquid supply pump 6.

L'anneau 4 est placé à une distance d du capillaire 1 égale à 2 à 4 cm, de manière à collecter les ions gazeux créés par les décharges dans le gaz entourant le liquide, tout en laissant passer le nébulisat de gouttelettes chargées. Une contre-électrode 5 (optionnelle) est placée à une distance D du capillaire 1 de manière à collecter les charges de gouttelettes du nébulisat. Si on cherche à produire un aérosol de gouttelettes chargées en suspension dans un gaz, seul le capillaire 1 et l'anneau 4 sont indispensables.The ring 4 is placed at a distance d from the capillary 1 equal to 2 to 4 cm, so as to collect the gaseous ions created by the discharges in the gas surrounding the liquid, while allowing the nebulisate of charged droplets to pass. A counter electrode 5 (optional) is placed at a distance D from the capillary 1 so as to collect the droplet charges from the nebulizer. If one seeks to produce an aerosol of droplets loaded suspended in a gas, only the capillary 1 and the ring 4 are indispensable.

Le dispositif de PEHD comprend également, comme illustré en figure 1, des moyens d'analyses et de mesures, à savoir :

  • un système Laser Doppler Anemometry (LDA) 7 permettant, à l'aide de rayons laser 9, de mesurer la granulométrie des gouttelettes chargées produites par le dispositif selon l'invention, et
  • un oscilloscope (Oscillo 200 Mhz) 8 permettant de mesurer le courant électrique porté par le nébulisat produit.
The HDPE device also comprises, as illustrated in FIG. 1, means of analysis and measurements, namely:
  • an Laser Doppler Anemometry (LDA) system 7 making it possible, by means of laser beams 9, to measure the particle size of the charged droplets produced by the device according to the invention, and
  • an oscilloscope (Oscillo 200 Mhz) 8 for measuring the electric current carried by the nebulisate produced.

La tension appliquée au liquide, par l'intermédiaire du capillaire conducteur 1, est par exemple comprise entre +1 kV et +30 kV environ pour des distances interélectrodes de l'ordre de 1 à 10 cm environ. Une tension positive est appliquée de manière préférentielle car le champ seuil d'une décharge négative est inférieur au champ seuil d'une décharge positive, ce qui permet d'élargir la gamme des tensions applicables au liquide dans le cas des PEHD positives.The voltage applied to the liquid, via the conductive capillary 1, is for example between about +1 kV and +30 kV for interelectrode distances of the order of 1 to 10 cm approximately. A positive voltage is preferentially applied because the threshold field of a negative discharge is lower than the threshold field of a positive discharge, which makes it possible to widen the range of voltages applicable to the liquid in the case of positive HDPEs.

Le capillaire 1 est constitué par une aiguille de seringtie. Différents diamètres extérieurs (Dext) et intérieurs (Dint) de capillaire 1 ont été testés.The capillary 1 is constituted by a syringe needle. Different outer diameters (D ext ) and inner diameters (D int ) of capillary 1 were tested.

La figure 2 représente une abaque permettant de lire la valeur maximale de diamètre extérieur approprié : en fonction du temps de relaxation électrique en s (axe des abscisses) du liquide considéré, on lit la valeur maximale de diamètre extérieur de capillaire en m (axe des ordonnées) sur la droite continue s'il s'agit d'un liquide à faible viscosité, sur la droite pointillée s'il s'agit d'un liquide à forte viscosité. Les termes "faible" et "forte" viscosité sont entendus conformément aux notions communément admises par l'homme du métier. Typiquement, à faible viscosité, on entend une viscosité d'environ 1mPa.s, tandis que par forte viscosité, on entend une viscosité supérieure d'environ deux ordres de grandeur (soit de l'ordre de 100 mPa.s environ). Sur cette figure 2, la droite pointillée (liquides à forte viscosité) répond à l'équation : log 10 ( diamètre de capillaire en m ) = 0 , 37793 × log 10 ( temps de relaxation électrique en s ) + 0 , 34674.

Figure imgb0006
FIG. 2 represents an abacus making it possible to read the maximum value of the appropriate external diameter: as a function of the time of electrical relaxation in s (abscissa axis) of the liquid considered, the maximum value of the outside diameter of the capillary in m (ordinate axis) is read on the straight line if it is a low-viscosity liquid, on the dashed right if it is a liquid with a high viscosity. The terms "low" and "high" viscosity are understood in accordance with the notions commonly accepted by those skilled in the art. Typically, low viscosity means a viscosity of about 1mPa.s, while high viscosity means a viscosity greater than about two orders of magnitude (about the order of 100 mPa.s approximately). In this FIG. 2, the dashed line (liquids with high viscosity) corresponds to the equation: log 10 ( capillary diameter in m ) = 0 , 37793 × log 10 ( electric relaxation time in s ) + 0 , 34674.
Figure imgb0006

La droite continue (liquides à faible viscosité) répond à l'équation : log10 (diamètre de capillaire en m) = 0,37747 x log10 (temps de relaxation électrique en s)+ 0,43141.The straight line (low viscosity liquids) satisfies the equation: log 10 (capillary diameter in m) = 0.37747 x log 10 (electric relaxation time in s) + 0.43141.

Une valeur de diamètre extérieur appropriée à la PEHD stable (absence de régime impulsionnel de décharges) dans l'air à pression atmosphérique, d'un liquide à forte tension de surface (supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m) est choisie inférieure à la valeur limite lue sur la figure 2.An outer diameter value suitable for stable HDPE (no pulse pulse rate) in air at atmospheric pressure, a high surface tension liquid (greater than 0.055 N / m, and remarkably greater than 0.065 N / m) N / m) is chosen lower than the limit value read in FIG.

Dans les essais ici rapportés, les valeurs de diamètres extérieurs du capillaire 1 vont de 0,324 à 1,8 mm. Les résultats du présent exemple ont été obtenus avec des capillaires placés sur un support conducteur disposé perpendiculairement à l'axe du capillaire.In the tests reported here, the outer diameter values of the capillary 1 range from 0.324 to 1.8 mm. The results of this example were obtained with capillaries placed on a conductive support disposed perpendicularly to the axis of the capillary.

Différentes valeurs de diamètres intérieurs de capillaire 1 sont testées pour chaque valeur de diamètre extérieur ; et chaque couple (diamètre extérieur - diamètre intérieur) est testé avec différents liquides à tension de surface supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m à température ambiante (liquides allant de l'eau ultrapure (conductivité 10 µS/m ; τq 70 µs) à l'eau dopée en sels conducteurs (conductivité 1 000 µS/m ; τq 7.10-7 s)).Different inner diameter values of capillary 1 are tested for each outer diameter value; and each couple (outside diameter - inside diameter) is tested with different liquids with surface tension greater than 0.055 N / m, and remarkably greater than 0.065 N / m at ambient temperature (liquids ranging from ultrapure water (conductivity 10 μS / m τ q 70 μs) with water doped with conducting salts (conductivity 1000 μS / m, τ q 7.10 -7 s)).

On place l'ensemble du dispositif selon l'invention à l'air et à la pression atmosphérique, on applique une tension continue positive comprise entre +1 et +30 kV, et on alimente ledit dispositif en liquide. Les systèmes LDA 7 et oscilloscope 8 permettent d'observer l'obtention d'une PEHD stable ou instable (absence ou présence de régime impulsionnel de décharges). On calcule alors la probabilité d'obtenir pour l'ensemble des liquides testés, une PEHD stable pour chaque couple Dext/Dint testé.The entire device according to the invention is placed in the air and at atmospheric pressure, a positive DC voltage of between +1 and + 30 kV is applied, and said device is supplied with liquid. The LDA 7 and oscilloscope 8 systems make it possible to observe the achievement of a stable or unstable HDPE (absence or presence of pulse pulse regime). The probability of obtaining for all the tested liquids a stable HDPE for each pair D ext / D int tested is then calculated.

Sur le tableau 1 ci-dessous sont rapportés des résultats ainsi obtenus avec un liquide dont la conductivité est de 100 µS/m : TABLEAU 1 Diamètre extérieur de capillaire Dext (mm) Diamètre intérieur de capillaire Dint Dext/ Dint Probabilité d'une PEHD en mode cône-jet-glow stable (Pcjm) 1,800 0,200 9,000 = 1 1,800 0,400 4,500 = 1 1,800 0,600 3,000 = 1 1,800 1,300 1,380 < 1 1,800 1,600 1,130 < 1 0,900 0,600 1,500 < 1 1,100 0,700 1,570 = 1 3,000 2,000 1,500 < 1 1,000 0,600 1,666 = 1 1,200 0,700 1,780 = 1 2,000 1,520 1,316 < 1 0,324 0,122 2,667 = 1 0,525 0,300 1,750 = 1 0,657 0,375 1,750 = 1 0,518 0,296 1,750 = 1 0,643 0,367 1,750 = 1 0,740 0,471 1,570 = 1 0,800 0,554 1,445 < 1 In Table 1 below are reported the results thus obtained with a liquid whose conductivity is 100 μS / m: <b> TABLE 1 </ b> Outer diameter of capillary D ext (mm) Inner diameter of capillary D int D ext / D int Probability of PEHD in stable cone-jet-glow mode (Pcjm) 1,800 0,200 9,000 = 1 1,800 0,400 4,500 = 1 1,800 0,600 3,000 = 1 1,800 1,300 1,380 <1 1,800 1,600 1,130 <1 0,900 0,600 1,500 <1 1,100 0,700 1,570 = 1 3,000 2,000 1,500 <1 1,000 0,600 1,666 = 1 1,200 0,700 1,780 = 1 2,000 1,520 1,316 <1 0.324 0.122 2,667 = 1 0.525 0,300 1,750 = 1 0.657 0.375 1,750 = 1 0.518 0.296 1,750 = 1 0.643 0.367 1,750 = 1 0.740 0.471 1,570 = 1 0,800 0.554 1,445 <1

Sur la figure 3, sont reportés, pour différents couples de valeurs (diamètre intérieur du capillaire 1 ; diamètre extérieur du capillaire 1), ces résultats de PEHD obtenus avec un liquide dont la conductivité est de 100 µS/m : le symbole + indique l'obtention d'une PEHD stable (absence de régime impulsionnel de décharges), c'est-à-dire l'obtention d'un mode "cône-jet-glow" stable avec une probabilité égale à 1 ; le symbole - indique l'obtention d'une PEHD instable (présence d'un régime impulsionnel de décharges), c'est-à-dire l'obtention d'un mode instable ("cône-jet-glow" non permanent), et donc avec une probabilité inférieure à 1.FIG. 3 shows, for different pairs of values (inner diameter of the capillary 1, outer diameter of the capillary 1), these HDPE results obtained with a liquid whose conductivity is 100 μS / m: the symbol + indicates the achievement of a stable HDPE (absence of pulse pulse regime), that is to say the obtaining of a stable "cone-jet-glow" mode with a probability equal to 1; the symbol - indicates obtaining an unstable HDPE (presence of a pulse pulse regime), that is to say obtaining an unstable mode ("cone-jet-glow" non-permanent), and therefore with a probability less than 1.

Sur le tableau 2 ci-dessous sont rapportés des résultats ainsi obtenus avec un liquide dont la conductivité est de 1000 µS/m : TABLEAU 2 Diamètre extérieur de capillaire Dext (mm) Diamètre intérieur de capillaire Dint Dext / Dint Probabilité d'une PEHD en mode cône-jet-glow stable (Pcjm) 0,900 0,600 1,500 < 1 0,324 0,122 2,667 = 1 0,525 0,300 1,750 = 1 0,657 0,375 1,750 = 1 0,518 0,296 1,750 = 1 0,643 0,367 1,750 = 1 0,740 0,471 1,570 = 1 0,800 0,554 1,445 < 1 1,800 0,200 9,000 < 1 1,800 0,400 4,500 < 1 1,800 0,600 3,000 < 1 1,800 1,000 1,800 < 1 1,800 1,300 1,380 < 1 1,800 1,600 1,130 < 1 1,100 0,700 1,570 = 1 3,000 2,000 1,500 < 1 2,000 1,520 1,316 < 1 In Table 2 below are reported results obtained with a liquid whose conductivity is 1000 μS / m: <b> TABLE 2 </ b> Outer diameter of capillary D ext (mm) Inner diameter of capillary D int D ext / D int Probability of PEHD in stable cone-jet-glow mode (Pcjm) 0,900 0,600 1,500 <1 0.324 0.122 2,667 = 1 0.525 0,300 1,750 = 1 0.657 0.375 1,750 = 1 0.518 0.296 1,750 = 1 0.643 0.367 1,750 = 1 0.740 0.471 1,570 = 1 0,800 0.554 1,445 <1 1,800 0,200 9,000 <1 1,800 0,400 4,500 <1 1,800 0,600 3,000 <1 1,800 1,000 1,800 <1 1,800 1,300 1,380 <1 1,800 1,600 1,130 <1 1,100 0,700 1,570 = 1 3,000 2,000 1,500 <1 2,000 1,520 1,316 <1

Sur la figure 4, sont reportés, pour différents couples de valeurs (diamètre intérieur du capillaire 1 ; diamètre extérieur du capillaire 1), ces résultats de PEHD obtenus avec un liquide dont la conductivité est de 1000 µS/m: le symbole + indique l'obtention d'une PEHD stable (absence de régime impulsionnel de décharges), c'est-à-dire l'obtention d'un mode "cône-jet-glow" stable avec une probabilité égale à 1 ; le symbole - indique l'obtention d'une PEHD instable (présence d'un régime impulsionnel de décharges), c'est-à-dire l'obtention d'un mode "cône-jet-glow" stable avec une probabilité inférieure à 1.In FIG. 4, for different pairs of values (inner diameter of the capillary 1, external diameter of the capillary 1), these are reported. HDPE results obtained with a liquid whose conductivity is 1000 μS / m: the symbol + indicates the achievement of a stable HDPE (absence of pulse pulse regime), that is to say the obtaining of a stable "cone-jet-glow" mode with a probability equal to 1; the symbol - indicates obtaining an unstable HDPE (presence of a pulse pulse regime), that is to say obtaining a stable "cone-jet-glow" mode with a probability lower than 1.

Les tableaux 1 et 2 ci-dessus, ainsi que les figures 3 et 4 mettent en évidence que, si les valeurs de Dext et Dint répondent à une relation appropriée, une PEHD sans régime impulsionnel de décharges peut être obtenue, dans l'air et à pression atmosphérique, pour un liquide à tension de surface supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m, avec une probabilité égale à 1. Par exemple, pour des Dext allant jusqu'à une valeur égale à (Dext maximal)/3 environ, une relation appropriée peut être calculée et lue sur la figure 3 (liquide de conductivité de 100 µS/m) et la figure 4 (liquide de conductivité de 1000 µS/m) comme étant : rapport D ext D int

Figure imgb0007
du capillaire 1 supérieur à 1,5697 environ. On procède de même sur les plages de Dext restantes (jusqu'à Dext maximal).Tables 1 and 2 above, as well as FIGS. 3 and 4 show that, if the values of D ext and D int correspond to an appropriate relation, a HDPE without pulse pulse regime can be obtained, in the air and at atmospheric pressure, for a liquid with a surface tension greater than 0.055 N / m, and remarkably greater than 0.065 N / m, with a probability equal to 1. For example, for D ext up to one value equal to (D ext maximum) / 3 approximately, a suitable relation can be calculated and read in Figure 3 (conductivity liquid of 100 μ S / m) and Figure 4 (liquid conductivity of 1000 μS / m) as being: report D ext D int
Figure imgb0007
capillary 1 greater than about 1.5697. The same is done on the remaining D ext ranges (up to maximum D ext ).

Les tableaux 3 et 4 ci-dessous présentent, pour chaque diamètre extérieur Dext de capillaire 1 présenté dans le tableau 1 (liquide de conductivité 100 µS/m) et respectivement 2 (liquide de conductivité 1000 µS/m), la valeur maximale de diamètre intérieur Dint de capillaire 1 qui peut être ainsi utilisée, conformément à l'invention, afin d'obtenir une PEHD sans régime impulsionnel de décharges dans l'air et à pression atmosphérique pour un liquide à tension de surface supérieure à 0,055 N/m, et de manière remarquable supérieure à 0,065 N/m, (Relation Dext = 1,5697 Dint pour des valeurs de Dext intérieures à 1 3

Figure imgb0008
de Dext maximal environ). TABLEAU 3 (liquide de conductivité 100 µS/m) Diamètre extérieur de capillaire Dext (mm) Dint maximum calculé (mm) 1,800 1,154 0,900 0,577 1,100 0,705 3,000 1,923 1,000 0,641 1,200 0,769 2,000 1,282 0,324 0,208 0,525 0,337 0,657 0,421 0,518 0,332 0,643 0,412 0,740 0,474 0,800 0,513 TABLEAU 4 (liquide de conductivité 1000 µS/m) Diamètre extérieur de capillaire Dext (mm) Dint maximum calculé (mm) 0,900 0,573 0,324 0,206 0,525 0,334 0,657 0,418 0,518 0,330 0,643 0,410 0,740 0,471 0,800 0,510 1,800 1,147 1,100 0,701 3,000 1,911 2,000 1,274 Tables 3 and 4 below show, for each external diameter D ext of capillary 1 presented in Table 1 (liquid conductivity 100 μS / m) and respectively 2 (liquid conductivity 1000 μS / m), the maximum value of internal diameter D int of capillary 1 which can thus be used, in accordance with the invention, to obtain a HDPE without pulsed regime of discharges into the air and at atmospheric pressure for a liquid with a surface tension higher than 0.055 N / m, and remarkably greater than 0.065 N / m, (Relation D ext = 1.5697 D int for values of D ext internal to 1 3
Figure imgb0008
of maximum D ext about). <b> TABLE 3 </ b> (Conductivity liquid 100 μS / m) Outer diameter of capillary D ext (mm) D maximum calculated int (mm) 1,800 1,154 0,900 0.577 1,100 0.705 3,000 1,923 1,000 0.641 1,200 0.769 2,000 1,282 0.324 0.208 0.525 0.337 0.657 0.421 0.518 0.332 0.643 0.412 0.740 0.474 0,800 0.513 (Conductivity liquid 1000 μS / m) Outer diameter of capillary D ext (mm) D maximum calculated int (mm) 0,900 0.573 0.324 0.206 0.525 0.334 0.657 0.418 0.518 0,330 0.643 0,410 0.740 0.471 0,800 0,510 1,800 1,147 1,100 0.701 3,000 1,911 2,000 1,274

EXEMPLE 2EXAMPLE 2

Des expériences ont été réalisées de manière comparable à celles décrites en exemple 1 ci-dessus, mais en l'absence de support conducteur soutenant ledit conduit ou capillaire 1.
Les résultats obtenus sont reportés dans les tableaux 5 (liquide de conductivité 100 µS/m) et 6 (liquide de conductivité 1000 µS/m) ci-dessous. TABLEAU 5 Diamètres de buses pour la Pulvérisation Electro-HydroDynamique d'eau en mode cône-jet-glow stable (Pcjm-glow=1) ou instable (Pcjm-glow < 1) pour de l'eau à une conductivité de 100 µS/m : Dext (mm) Dint (mm) Pcjm-glow = 1 Dint (mm) Pcjm-glow < 1 Dint max calculé (mm) Dext = 1,445 Dint Dext/Dint 1,800 0,200 1,154 9,000 1,800 0,400 1,154 4,500 1,800 0,600 1,154 3,000 1,800 1,600 1,154 1,130 0,900 0,600 0,577 1,500 1,100 0,700 0,705 1,570 3,000 2,000 1,923 1,500 1,000 0,600 0,641 1,666 1,200 0,700 0,769 1,780 2,000 1,520 1,282 1,316 0,324 0,122 0,208 2,667 0,525 0,300 0,337 1,750 0,657 0,375 0,421 1,750 0,518 0,296 0,332 1,750 0,643 0,367 0,412 1,750 0,740 0,471 0,474 1,570 0,800 0,554 0,513 1,445 TABLEAU 6 Diamètres de buses pour la Pulvérisation Electro-HydroDynamique d'eau en mode cône-jet-glow stable (Pcjm-glow=1) ou instable (Pcjm-glow < 1) pour de l'eau à une conductivité de 1000 µS/m : Dext (mm) Dint (mm) Pcjm-glow = 1 Dint (mm) Pcjm-glow < 1 Dint max calculé (mm) Dext = 1,445 Dint Dext/Dint 0,900 0,600 0,573 1,500 1,000 0,600 0,637 1,666 0,324 0,122 0,206 2,667 0,525 0,300 0,334 1,750 0,657 0,375 0,418 1,750 0,518 0,296 0,330 1,750 0,643 0,367 0,410 1,750 0,740 0,471 0,471 1,570 0,800 0,554 0,510 1,445 1,800 0,200 1,147 9,000 1,800 0,400 1,147 4,500 1,800 0,600 1,147 3,000 1,800 1,000 1,147 1,800 1,800 1,300 1,147 1,380 1,800 1.600 1,147 1,130 1,100 0.700 0,701 1,570 3,000 2.000 1,911 1,500 1,200 0.700 0,764 1,780 2,000 1.520 1,274 1,316
Experiments were performed in a manner comparable to those described in Example 1 above, but in the absence of a conductive support supporting said conduit or capillary 1.
The results obtained are shown in Tables 5 (liquid of conductivity 100 μS / m) and 6 (liquid of conductivity 1000 μS / m) below. <b> TABLE 5 </ b> Nozzle diameters for Electro-HydroDynamic water spray in stable cone-jet-glow mode (Pcjm-glow = 1) or unstable (Pcjm-glow <1) for water with a conductivity of 100 μS / m: Dext (mm) Dint (mm) Pcjm-glow = 1 Dint (mm) Pcjm-glow <1 Dint max calculated (mm) Dext = 1.445 Dint Dext / Dint 1,800 0,200 1,154 9,000 1,800 0,400 1,154 4,500 1,800 0,600 1,154 3,000 1,800 1,600 1,154 1,130 0,900 0,600 0.577 1,500 1,100 0,700 0.705 1,570 3,000 2,000 1,923 1,500 1,000 0,600 0.641 1,666 1,200 0,700 0.769 1,780 2,000 1,520 1,282 1,316 0.324 0.122 0.208 2,667 0.525 0,300 0.337 1,750 0.657 0.375 0.421 1,750 0.518 0.296 0.332 1,750 0.643 0.367 0.412 1,750 0.740 0.471 0.474 1,570 0,800 0.554 0.513 1,445 Nozzle diameters for Electro-HydroDynamic water spray in stable cone-jet-glow mode (Pcjm-glow = 1) or unstable (Pcjm-glow <1) for water with a conductivity of 1000 μS / m: Dext (mm) Dint (mm) Pcjm-glow = 1 Dint (mm) Pcjm-glow <1 Dint max calculated (mm) Dext = 1.445 Dint Dext / Dint 0,900 0,600 0.573 1,500 1,000 0,600 0.637 1,666 0.324 0.122 0.206 2,667 0.525 0,300 0.334 1,750 0.657 0.375 0.418 1,750 0.518 0.296 0,330 1,750 0.643 0.367 0,410 1,750 0.740 0.471 0.471 1,570 0,800 0.554 0,510 1,445 1,800 0,200 1,147 9,000 1,800 0,400 1,147 4,500 1,800 0,600 1,147 3,000 1,800 1,000 1,147 1,800 1,800 1,300 1,147 1,380 1,800 1,600 1,147 1,130 1,100 0.700 0.701 1,570 3,000 2,000 1,911 1,500 1,200 0.700 0.764 1,780 2,000 1,520 1,274 1,316

Ces résultats sont illustrés respectivement par les figures 5 et 6. La figure 5 illustre les résultats reportés sur le tableau 5 (liquide de conductivité 100 µS/m ; τq = 7,143136.10-6 ; liquide faible viscosité : le signe + symbolise une probabilité de PEHD stable en mode "cône-jet-glow" égale à 1 (instabilité dans le temps du mode "cône-jet-glow"), le signe - une probabilité inférieure à 1, la droite de valeurs limites de fonctionnement obtenue répond à l'équation Dext = 1,445 Dint avec Dext maximal = 4,22 mm). La figure 6 utilise le même symbolisme que la figure 5, et illustre les résultats issus du tableau 6 (liquide de conductivité 1000 µS/m, τq = 7,143136.10-7 ; liquide faible viscosité) : la droite de valeurs limites de fonctionnement répond à l'équation Dext = 1.445 Dint mais avec Dext maximal = 1,77 mm.These results are illustrated respectively in Figures 5 and 6. Figure 5 illustrates the results reported in Table 5 (liquid conductivity 100 μS / m, τ q = 7.13136.10 -6 low viscosity liquid: the sign + symbolizes a probability of stable HDPE in "cone-jet-glow" mode equal to 1 (time instability of the "cone-jet-glow" mode), the sign - a probability less than 1, the line of operating limit values obtained to the equation D ext = 1.445 D int with maximum D ext = 4.22 mm). Figure 6 uses the same symbolism as Figure 5, and illustrates the results from Table 6 (liquid conductivity 1000 μS / m, τ q = 7.13136.10 -7 low viscosity liquid): the line of operating limit values corresponds to the equation D ext = 1.445 D int but with D ext maximal = 1.77 mm.

Claims (10)

  1. A device for the electrohydrodynamic spraying of a liquid comprising at least one duct (1) at an outlet of which said liquid can be sprayed and means including means (2) allowing the application of a voltage to said liquid upstream or while it is flowing inside said duct, so as to bias it, characterized in that at least at said outlet of the duct (1), the dimensions of the external and internal diameters of the duct (1) correspond, when they are expressed in the same units, to the following relationship:
    (external diameter dimension) / (internal diameter dimension) greater than 1.445, preferably greater than 1.5697, more preferably greater than 1.6;
    the dimension of the external diameter of the duct (1) being less than a limiting value Dmax corresponding to the formula: log 10 ( D max ) = 0.37793 × log 10 ( τ q ) + 0.34674
    Figure imgb0012
    when said liquid has a high viscosity,
    or to the equation: log 10 ( D max ) = 0.37747 × log 10 ( τ q ) + 0.34141
    Figure imgb0013
    when said liquid has a low viscosity, with
    Dmax said limiting value in m, and τq the electrical relaxation constant of said liquid in s,
    said device allowing the spraying, in the air and at atmospheric pressure, of a liquid the surface tension of which is greater than 0.055 N/m while generating a continuous discharge regime such as a glow regime or a Hermstein regime.
  2. Device according to claim 1, characterized in that said means comprise, at the at said outlet, dimensions of external and internal diameters of a duct (1) which correspond, when they are expressed in the same units, to the following relationship:
    (external diameter dimension) / (internal diameter dimension) greater than approximately 1.8.
  3. Device according to claim 1, characterized in that said voltage is a DC voltage, in particular a positive DC voltage such as a DC voltage less than approximately 30 kV.
  4. Device according to any one of the preceding claims, characterized in that it also comprises means (5) allowing said liquid to be unbiased after spraying, such as an earthed electricity-conducting material.
  5. Device according to any one of the preceding claims, characterized in that it also comprises means (4) allowing, during the spraying of said liquid, the collection of a discharge current in the gas surrounding said biased liquid, such as in particular a conducting material having an opening of a shape and a size which allows the sprayed liquid to flow while collecting said discharge current.
  6. Device according to any one of the preceding claims, characterized in that it also comprises means for feeding with liquid (6) allowing a mean operating liquid flow rate at the inlet or inside said duct of a value in m3.s-1 which is comprised within a range varying by a factor of approximately 10 between its upper bound and its lower bound, said range comprising, preferably centrally, a value which can correspond to the following formula: A [ ( 4 / 3 ) π  r 3 ] / τ q ,
    Figure imgb0014
    A being a constant different from 1, comprised between approximately 0.1 and 10 and preferably equal to approximately 0.5 with
    r the desired drop radius expressed in m,
    τq the electrical relaxation constant of said liquid expressed in s.
  7. Method for electrohydrodynamic spraying using a device according to one of claims 1 to 6, characterized in that a liquid which is biased at the outlet of the duct (1), and the surface tension of which is greater than 0.055 N/m, and in a remarkable manner greater than 0.065 N/m, is sprayed in the air at atmospheric pressure setting up a continuous discharge regime.
  8. Method according to claim 7, characterized in that said liquid the surface tension of which is greater than 0.055 N/m is essentially a solution (solvent and neutral or ionic, organic or mineral solute(s)), or a mixture of solutions selected from the group constituted by water, ultra pure water, distilled water, water containing conducting salts, an organic solvent to which one or more surfactant molecule have been added, ethanol to which one or more surfactant molecule have been added, acetone to which one or more surfactant molecule have been added, ethylene glycol to which one or more surfactant molecule have been added.
  9. Use of a device according to any one of claims 1 to 6 according to a continuous discharge regime, in order to produce droplets of liquid, said liquid having a surface tension greater than 0.055 N/m, for the collection of particles, and in particular polluting particles, present in an aerosol, and in particular inertial collection, following the electrocoagulation on said larger droplets, of particles the initial size of which is smaller than or equal to a micron, and in particular of polluting particles present in an aerosol and the size of which is less than or equal to a micron.
  10. Method for the pollution control of aerosol effluents, or effluents which can be converted into aerosols, in which it is sought to remove the polluting particles, characterized in that it comprises the stages of:
    - biasing said polluting particles present in the aerosol,
    - producing a dispersion of liquid droplets with reverse polarity using at least one device according to any one of claims 1 to 6 setting up a continuous discharge regime, said liquid having a surface tension greater than 0.055 N/m,
    - bringing said dispersion of liquid droplets and said biased polluting particles into contact, so as to allow the electrocoagulation of these polluting particles onto said liquid droplets,
    - collecting the polluted liquid droplets inertially.
EP99910454A 1998-03-27 1999-03-29 Electrohydrodynamic spraying means Expired - Lifetime EP1064100B9 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9803842A FR2776538B1 (en) 1998-03-27 1998-03-27 ELECTROHYDRODYNAMIC SPRAYING MEANS
FR9803842 1998-03-27
PCT/FR1999/000730 WO1999049981A1 (en) 1998-03-27 1999-03-29 Electrohydrodynamic spraying means

Publications (3)

Publication Number Publication Date
EP1064100A1 EP1064100A1 (en) 2001-01-03
EP1064100B1 EP1064100B1 (en) 2006-06-21
EP1064100B9 true EP1064100B9 (en) 2006-10-11

Family

ID=9524593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99910454A Expired - Lifetime EP1064100B9 (en) 1998-03-27 1999-03-29 Electrohydrodynamic spraying means

Country Status (9)

Country Link
US (1) US6679441B1 (en)
EP (1) EP1064100B9 (en)
JP (1) JP4491675B2 (en)
AT (1) ATE330707T1 (en)
AU (1) AU2940599A (en)
DE (1) DE69932042T2 (en)
DK (1) DK1064100T3 (en)
FR (1) FR2776538B1 (en)
WO (1) WO1999049981A1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787585A (en) * 1987-06-11 1988-11-29 Wang Laboratories, Inc. Adapter support
US6397838B1 (en) * 1998-12-23 2002-06-04 Battelle Pulmonary Therapeutics, Inc. Pulmonary aerosol delivery device and method
BR0010262A (en) * 1999-05-03 2002-01-15 Battelle Memorial Institute Composition to form an aerosol, process for preparing and aerosolizing a composition, and aerosol generating device
KR100455718B1 (en) * 2000-01-28 2004-11-08 안강호 Electrospray apparatus for guiding sprayed particles without coagulation and sticking
US7883032B2 (en) 2000-04-03 2011-02-08 Battelle Memorial Institute Devices and formulations
WO2002043750A2 (en) 2000-12-01 2002-06-06 Battelle Memorial Institute Method for the stabilizing of biomolecules (e.g. insulin) in liquid formulations
ES2180405B1 (en) * 2001-01-31 2004-01-16 Univ Sevilla DEVICE AND PROCEDURE FOR PRODUCING MULTICOMPONENT COMPOSITE LIQUID JEANS AND MULTICOMPONENT AND / OR MULTI-PAPER MICRO AND NANOMETRIC SIZE CAPSULES.
ATE392262T1 (en) 2002-02-04 2008-05-15 Univ Sevilla DEVICE FOR GENERATING CAPILLARY BEAMS AND MICRO AND NANOMETER PARTICLES
ES2199048B1 (en) * 2002-02-04 2005-06-01 Universidad De Sevilla MULTIDISPOSITIVE DEVICE AND PROCEDURE FOR THE PRODUCTION OF MICRO AND NANOMETRIC CAPILLARY JETS AND PARTICLES.
ES2239861B1 (en) * 2002-04-05 2006-11-16 Universidad De Sevilla DEVICE AND PROCEDURE FOR PRODUCING ELECTROSPRAYS OF DRIVING LIQUIDS IN THE BREAST OF DIELECTRIC LIQUIDS AND MULTICOMPONENT EMULSIONS.
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307403D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
GB0307428D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
US20050221339A1 (en) * 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
FR2872068B1 (en) * 2004-06-28 2006-10-27 Centre Nat Rech Scient Cnrse METHOD AND DEVICE FOR THE DEPOSITION OF THIN LAYERS BY ELECTROHYDRODYNAMIC SPRAY, IN PARTICULAR IN POST-DISCHARGE
US7326043B2 (en) * 2004-06-29 2008-02-05 Cornell Research Foundation, Inc. Apparatus and method for elevated temperature electrospinning
US7968287B2 (en) * 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US7083854B1 (en) * 2005-05-10 2006-08-01 Cornell Research Foundation, Inc. Fibers from polymer nanoclay nanocomposites by electrospinning
US20070017505A1 (en) * 2005-07-15 2007-01-25 Lipp Brian A Dispensing device and method
JP4674541B2 (en) 2005-12-22 2011-04-20 パナソニック電工株式会社 Electrostatic atomization device and food storage equipped with electrostatic atomization device
EP1984738A2 (en) 2006-01-11 2008-10-29 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
JP4645501B2 (en) * 2006-03-29 2011-03-09 パナソニック電工株式会社 Electrostatic atomizer
US8297959B2 (en) * 2006-05-03 2012-10-30 Terapia Celular, Ln, Inc. Systems for producing multilayered particles, fibers and sprays and methods for administering the same
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2481815B1 (en) 2006-05-11 2016-01-27 Raindance Technologies, Inc. Microfluidic devices
EP3536396B1 (en) 2006-08-07 2022-03-30 The President and Fellows of Harvard College Fluorocarbon emulsion stabilizing surfactants
US8772046B2 (en) * 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
FR2924349B1 (en) 2007-12-03 2010-01-01 Dbv Tech ALLERGEN DISENSIBILITY METHOD
FR2926466B1 (en) * 2008-01-23 2010-11-12 Dbv Tech METHOD FOR MANUFACTURING PATCHES BY ELECTROSPRAY
JP5190280B2 (en) * 2008-02-29 2013-04-24 オリジン電気株式会社 Liquid coating apparatus and liquid coating method
US20090314861A1 (en) * 2008-06-18 2009-12-24 Jaan Noolandi Fluid ejection using multiple voltage pulses and removable modules
EP4047367A1 (en) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Method for detecting target analytes with droplet libraries
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
US8528589B2 (en) 2009-03-23 2013-09-10 Raindance Technologies, Inc. Manipulation of microfluidic droplets
WO2011042564A1 (en) 2009-10-09 2011-04-14 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
WO2011079176A2 (en) 2009-12-23 2011-06-30 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
WO2011100604A2 (en) 2010-02-12 2011-08-18 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
WO2012045012A2 (en) 2010-09-30 2012-04-05 Raindance Technologies, Inc. Sandwich assays in droplets
AU2011265562A1 (en) 2011-01-12 2012-07-26 Sumitomo Chemical Company, Limited Method of controlling harmful arthropod, composition, and electrostatic spray device
WO2012109600A2 (en) 2011-02-11 2012-08-16 Raindance Technologies, Inc. Methods for forming mixed droplets
WO2012112804A1 (en) 2011-02-18 2012-08-23 Raindance Technoligies, Inc. Compositions and methods for molecular labeling
EP3709018A1 (en) 2011-06-02 2020-09-16 Bio-Rad Laboratories, Inc. Microfluidic apparatus for identifying components of a chemical reaction
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
US9589852B2 (en) * 2013-07-22 2017-03-07 Cree, Inc. Electrostatic phosphor coating systems and methods for light emitting structures and packaged light emitting diodes including phosphor coating
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
EP3090063B1 (en) 2013-12-31 2019-11-06 Bio-Rad Laboratories, Inc. Method for detection of latent retrovirus
US9925547B2 (en) * 2014-08-26 2018-03-27 Tsi, Incorporated Electrospray with soft X-ray neutralizer
KR101851884B1 (en) * 2014-11-13 2018-04-24 신덴겐코교 가부시키가이샤 Manufacturing method of semiconductor device and glass coating film forming apparatus
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
JP6528333B2 (en) 2016-08-01 2019-06-12 パナソニックIpマネジメント株式会社 Electrostatic atomizer
CN106563322B (en) * 2016-10-31 2019-01-29 重庆市南川区庆岩福利碱厂 Water film dedusting device for boilers
CN108905582A (en) * 2018-08-30 2018-11-30 肇庆市高要区华锋电子铝箔有限公司 A kind of ring and acid mist purifying tower by spraying
CN112121578B (en) * 2020-09-21 2021-06-18 熙诚环保科技(苏州)有限公司 High-efficient type waste gas sprays purifying column for refuse treatment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264641A (en) * 1977-03-17 1981-04-28 Phrasor Technology Inc. Electrohydrodynamic spraying to produce ultrafine particles
USRE30479E (en) * 1978-05-17 1981-01-13 Trw Inc. Method of removing particles and fluids from a gas stream by charged droplets
US4335419A (en) * 1980-10-20 1982-06-15 Hastings Edward E Insulated dust control apparatus for use in an explosive environment
GB8604328D0 (en) * 1986-02-21 1986-03-26 Ici Plc Producing spray of droplets of liquid
US4669671A (en) * 1986-03-06 1987-06-02 Hastings Edward E Pollutant suppression device
US4658269A (en) * 1986-06-02 1987-04-14 Xerox Corporation Ink jet printer with integral electrohydrodynamic electrodes and nozzle plate
US4748043A (en) * 1986-08-29 1988-05-31 Minnesota Mining And Manufacturing Company Electrospray coating process
GB9226717D0 (en) * 1992-12-22 1993-02-17 Coffee Ronald A Induction-operated electro-hydrodynamic spray device with means of modifying droplet trajectories
US6105571A (en) * 1992-12-22 2000-08-22 Electrosols, Ltd. Dispensing device
GB9406255D0 (en) * 1994-03-29 1994-05-18 Electrosols Ltd Dispensing device

Also Published As

Publication number Publication date
FR2776538B1 (en) 2000-07-21
DK1064100T3 (en) 2006-12-27
EP1064100B1 (en) 2006-06-21
WO1999049981A1 (en) 1999-10-07
DE69932042D1 (en) 2006-08-03
JP4491675B2 (en) 2010-06-30
JP2002509794A (en) 2002-04-02
AU2940599A (en) 1999-10-18
FR2776538A1 (en) 1999-10-01
US6679441B1 (en) 2004-01-20
ATE330707T1 (en) 2006-07-15
DE69932042T2 (en) 2007-01-11
EP1064100A1 (en) 2001-01-03

Similar Documents

Publication Publication Date Title
EP1064100B9 (en) Electrohydrodynamic spraying means
Cloupeau et al. Electrostatic spraying of liquids in cone-jet mode
Borra Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for High Efficiency Air Filtration by wet electro-scrubbing of aerosols
JP5294871B2 (en) Electrospray apparatus and method of electrospray
US4508265A (en) Method for spray combination of liquids and apparatus therefor
CA1244299A (en) Spraying apparatus
EP1771256A1 (en) Method and device for depositing thin films by electrohydrodynamic, in particular post-discharge, spraying
US6479077B1 (en) Method of manufacturing powder particles
Jaworek et al. Corona discharge in electrospraying
FR2492212A1 (en) METHOD AND DEVICES FOR TRANSFERRING ELECTRIC LOADS OF DIFFERENT SIGNS IN A SPACE AREA AND APPLICATION TO STATIC ELECTRICITY ELIMINATORS
US20010033901A1 (en) Plasma enhanced chemical deposition of conjugated polymer
US20060093737A1 (en) Method and apparatus for generating charged particles for deposition on a surface
Mafuné et al. Formation and ejection of cluster ions from a liquid beam of aniline—ethanol solution by laser photoionization
WO2005115088A2 (en) Nano particle generator and a method for generating nanoparticles by said device
WO2003049865A1 (en) Method for treating a nuclear graphite contaminated
EP1476588B1 (en) Method of cleaning the surface of a material coated with an organic substance and a generator and device for carrying out said method
Pongrác et al. Effects of corona space charge polarity and liquid phase ion mobility on the shape and velocities of water jets in the spindle jet and precession modes of water electro-spray
Elele et al. Detection of a dynamic cone-shaped meniscus on the surface of fluids in electric fields
Sato Formation of uniformly sized liquid droplets using spinning disk under applied electrostatic field
Meesters et al. A (sub-) micron aerosol generator, using a high electric field
WO2011141184A1 (en) Plasma generator and method for generating and using an ionised gas
Gomez The electrospray: fundamentals and applications
FR2950545A1 (en) DEVICE AND METHOD FOR ELECTROSTATIC PROJECTION OF A LIQUID, FUEL INJECTOR INCORPORATING THIS DEVICE AND USES THEREOF
KR101569288B1 (en) Method and apparatus for generating aerosol
EP1512469B1 (en) Method and device for lubricating rolling rolls

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 69932042

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061002

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061116

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070329

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110222

Year of fee payment: 13

Ref country code: DK

Payment date: 20110218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20110221

Year of fee payment: 13

Ref country code: CH

Payment date: 20110222

Year of fee payment: 13

Ref country code: SE

Payment date: 20110222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110308

Year of fee payment: 13

Ref country code: GB

Payment date: 20110224

Year of fee payment: 13

Ref country code: FR

Payment date: 20110412

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120329

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120329

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69932042

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120329

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002