EP1061779B1 - Method and electronic ballast for operating one or more fluorescent lamps - Google Patents

Method and electronic ballast for operating one or more fluorescent lamps Download PDF

Info

Publication number
EP1061779B1
EP1061779B1 EP00104995A EP00104995A EP1061779B1 EP 1061779 B1 EP1061779 B1 EP 1061779B1 EP 00104995 A EP00104995 A EP 00104995A EP 00104995 A EP00104995 A EP 00104995A EP 1061779 B1 EP1061779 B1 EP 1061779B1
Authority
EP
European Patent Office
Prior art keywords
circuit
control
load current
δit
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00104995A
Other languages
German (de)
French (fr)
Other versions
EP1061779A3 (en
EP1061779A2 (en
Inventor
Peter Krummel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1061779A2 publication Critical patent/EP1061779A2/en
Publication of EP1061779A3 publication Critical patent/EP1061779A3/en
Application granted granted Critical
Publication of EP1061779B1 publication Critical patent/EP1061779B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions

Definitions

  • the invention relates to a method for operating at least one fluorescent lamp with the aid of an electronic ballast according to the preamble of claim 1 and to a correspondingly designed electronic ballast itself according to the preamble of claim 5.
  • EP-B-0 801 881 such a method for operating at least one fluorescent lamp by means of an electronic ballast is known, which has a coupled to a rectifier circuit half-bridge circuit with two series-connected, alternatively activated power transistors. At the common connection point of these power transistors, which forms the output of the half-bridge arrangement, a load circuit is connected, which contains the at least one fluorescent lamp and the load current is monitored.
  • a control and regulating circuit is provided in the form of an integrated circuit. This is equipped with a monitoring circuit for continuously monitoring the load current and with a derived high-frequency controlled drive circuit for the power transistors.
  • a timer is started defined at each lamp start and each occurring during combustion operation, which generates a time base for subsequent control and regulation operations. Due to this time base, predetermined, different reference levels for the load current to be detected are respectively set in the monitoring circuit, or an automatic switch-off of the electronic ballast is prepared for a predetermined, limited period of time.
  • the monitoring circuit compares the instantaneous value of the load current with the respectively activated reference level and outputs an output pulse when this reference level is reached. These output pulses indicate depending their occurrence or failure during predetermined, defined by the timer periods normal or faulty conditions in the load circuit. With these output pulses, the lamp current is regulated in a time-dependent manner in the undisturbed operating state via the controlled drive circuit or, in the event of a fault, an already prepared automatic switch-off of the electronic ballast is triggered.
  • Fully electronic ballasts of the type mentioned are advantageously applicable universal devices for common AC mains voltages in a relatively wide tolerance range, a wide range of permissible network frequencies and are finally even suitable for DC power supply.
  • One of the main problems in the application of electronic ballasts is that different types of lamps in part also varying circuits, eg. B. also several fluorescent lamps are used, which requires a corresponding variety of types of these applications specifically adapted ballasts. It is therefore not easy to comply with this type of variety with as possible a single highly integrated circuit in which the drive and control circuit of the ballast is summarized.
  • As a compromise with partial waiver of a desired high degree of integration corresponding control inputs of the integrated circuit are adapted by externally connected components.
  • the ignition voltage can not be freely adjusted in height, as this is determined by a fixed, internally defined in the integrated circuit threshold.
  • the required for different applications adaptation within a given range of tolerance permissible ignition and / or preheating is to be achieved in the known electronic ballast at best by appropriate external circuitry of the integrated circuit and therefore only with a corresponding effort.
  • the present invention is therefore a subtask, in a further development of the above-mentioned method for operating at least one fluorescent lamp to specify a further embodiment, in addition to a reliable control of the load current even with aged fluorescent lamps in particular the possibility is opened to control such applications safely in which lamp types with critical ignition behavior are to be used.
  • the electronic ballast of the above-appreciated type such that it despite a corresponding degree of integration of its drive and control circuit and thus reduced effort for the external circuitry only by simple adaptation to a large extent reliable in a variety of applications can be used.
  • a subtask is achieved with the features described in the characterizing part of claim 1. Accordingly, the other subtask is solved in an electronic ballast of the type mentioned above with the features described in the characterizing part of claim 5.
  • the solutions according to the invention make it possible, with a simple measure, to extend the tolerance range of the electronic ballast with respect to the monitoring of the load current.
  • This property is particularly advantageous when the load circuit comprises a lamp circuit with a plurality of fluorescent lamps.
  • the load circuit comprises a lamp circuit with a plurality of fluorescent lamps.
  • the integrated circuit tolerance ranges can not be readily given wide enough, because then possibly critical operating conditions such.
  • B. the Zündunwillmaschine of or misfire in aged fluorescent lamps are no longer detected properly.
  • Another way to use the electronic ballast with a given integrated To equip control and regulating circuit and yet operate such critical lamp circuits so that would be, with effort to adapt the external circuitry of the integrated circuit to the particular application.
  • today electronic ballasts are products that have to be manufactured largely automated at high cost pressure, such a solution is uneconomical.
  • this problem is solved elegantly with a relatively simple circuit measure.
  • the load current signal to be monitored in the control and regulating circuit is superimposed with a direct current signal from an additional direct current source whose level can be set as a function of the respectively used lamp circuit. Since the preheating voltage, but in particular the ignition voltage in these difficult to handle applications are critical, it is sufficient to provide this overlay only for the beginning of the preheating of the ignition period.
  • the level adjustment of the additional DC power source by simple means and safely be achieved in that the level to be adjusted is derived internally from the current flow through the matching resistor, which is assigned as an external resistor to the current-dependent controlled oscillator and by dimensioning the blanking interval Half-bridge circuit is fixed.
  • a circuit adaptation to different lamp circuits in the load circuit is thus carried out by the appropriate dimensioning of a single ohmic resistance.
  • a further threshold is provided in the monitoring circuit, whose level is between those for the preheating threshold and the ignition threshold.
  • FIG. 1 shows an electronic ballast for operating at least one fluorescent lamp and the actual load circuit, here by way of example with only one fluorescent lamp.
  • the electronic ballast shown builds on an electronic ballast, which is already known in its basic structure and a plurality of circuit details from the aforementioned document EP-B-0801 881, to which reference can be made here.
  • Known circuit parts and their function, which are of minor importance in connection with the present invention are therefore described below only in summary and for reasons of completeness.
  • a rectifier bridge 2 and a boost converter 3 is connected, which has a charging inductor L1, a charging diode D1, a first power transistor V1 and a storage capacitor Co as the output stage.
  • the power transistor V1 is driven via a control and regulating circuit IC designed as an integrated circuit.
  • the boost converter 3 provides at its output a compared to rectified mains voltage
  • an inverter with a half-bridge circuit is provided, which is realized here in particular by two further, in series parallel to the output of the boost converter 3 other power transistors V2 and V3 and a bridge capacitor CB.
  • a load circuit 4 shown here with a further inductor L2, a fluorescent lamp FL and a firing capacitor Cz, connected.
  • control and regulating circuit IC All essential control and regulating functions of the electronic ballast are realized in the control and regulating circuit IC.
  • the control and regulating circuit IC in FIG. 1 is merely a module with external connections P1 to P24, to which external components are connected and, in addition, shown in detail in FIG. 2 in the form of a block diagram.
  • a power supply unit IPG is therefore shown schematically, which ensures proper starting of the functions of the control and regulating circuit IC and is controlled by the charge state of an externally connected charging capacitor Ccc.
  • the power supply of the control and regulating circuit IC is given via a connected to the bridge capacitor CB pump diode DB with another external charging capacitor Cp by a two-point controller TPR.
  • the power supply unit IPG generates an internal auxiliary voltage IC-BIAS for supplying the internal circuit units of the control and regulating circuit IC and also supplies a reference voltage Vref.
  • the control and regulating circuit IC it should only be noted, an arrangement PFC for controlling the power factor.
  • a drive circuit for the half-bridge circuit V2, V3 consists of a selection circuit SEL and driver circuits connected thereto HSD or LSD.
  • a high-frequency pulse sequence is supplied to a control input of the selection circuit SEL, the power transistors V2 and V3 of the half-bridge circuit switches via the driver circuits HSD and LSD alternatively in the manner of a flip-flop with a defined blanking interval.
  • This controlling pulse train provides a current dependent controlled oscillator CCO with three setting inputs which coincide with the external terminals P23, P24 and P3.
  • a first adjustment resistor RTL is connected, the dimensioning particular determines the blanking interval of the power transistors V2 and V3 of the half-bridge circuit.
  • a tuning capacitor Cf is connected to the terminal P23.
  • said external elements or the filter network are connected to ground or to a defined reference voltage (in the further description, this is always referred to as an example of ground).
  • the dimensioning of these external components determines the lower or upper limit frequency of the current-dependent controlled oscillator CCO and the size of said blanking interval.
  • a control signal is supplied to the current-dependent controlled oscillator CCO, which determines its instantaneous frequency.
  • This control signal is generated by a control operation amplifier OPR. This compares the internally generated reference voltage Vref with a second input voltage supplied via the external terminal P5, which corresponds to the mean value of the current flowing through the half-bridge circuit V2, V3.
  • the described oscillator circuit represents a closed loop for controlling the load current flowing in the half-bridge circuit. Increasing load current increases the output voltage of the control operation amplifier OPR, which in turn controls the oscillator CCO in the direction of a higher pulse repetition frequency. However, this frequency increase causes in turn a reduction of the load current. The same applies to the reverse direction with decreasing tendency of Load current.
  • the electronic ballast is also dimmable by a corresponding determination of the reference voltage Vref.
  • a monitoring function is implemented in the control and regulating circuit IC in order to control the lamp start, to monitor the state of the fluorescent lamp FL in steady-state operation and to recognize any disturbances which occur.
  • a monitoring circuit MON which continuously monitors the load current, d. H. monitored by the current flowing through the half-bridge circuit V2, V3, and on the other hand, a timer PST provided, which provides a time base for this monitoring process.
  • a first internal current source IT is connected via the external terminal P6 to a grounded further charging capacitor CT. It is activated when starting the electronic ballast and charges the external charging capacitor CT. In the process, a signal voltage rising linearly up to a final value is formed at the external connection P6, which signal signal is supplied to the control input of the timer PST and supplies the time base for this. For this purpose, this signal voltage is compared in the timer PST with predetermined threshold values.
  • the timer PST Upon reaching the respective threshold value, the timer PST each outputs a selection signal S1, S2, S3 or S4 and defines with their time sequence certain time periods for preheating, igniting, subsequent normal operation of the fluorescent lamp FL or for resetting its control in the event of errors, in particular in case of dropouts or permanent ignitability.
  • the meaning of the selection signals S1 to S4 generated by the timer PST is explained in connection with the function of the monitoring circuit MON.
  • the monitoring circuit MON has a signal input which is connected via the external terminal P7 and a series resistor to the low-level output of the half-bridge circuit V2, V3.
  • the input to the monitoring circuit MON about this input signal is thus a current flowing through the power transistor V3 current, ie also the load current proportional pulsed signal.
  • This signal is called DC bias the output signal superimposed on a further internal current source IM, which is temporarily activated by the selection signal S3 of the timer PST.
  • the level of the bias signal DC generated by this second internal current source IM is derived from the current flow through the variable resistor RTL of the current dependent controlled oscillator CCO.
  • IC internally via current mirror, a portion of the current flowing through the adjusting resistor RTL current of the other internal power source IM is supplied.
  • an adaptation of the monitoring function of the monitoring circuit MON to variants of the design of the load circuit 4, in particular specific lamp types or lamp circuits, can thus be achieved without an internal adaptation or additional external connections of the control and regulating circuit IC.
  • the control and regulating circuit IC is thus used without internal adjustments for a wide range of circuit alternatives of the load circuit 4, in particular, tolerances for the ignition current for certain types of lamps are better absorbed.
  • one of several predetermined threshold values for the load current to be monitored is activated in the monitoring circuit MON at specific periods at a lamp start and also during normal firing operation. As soon as the level of the input signal of the monitoring circuit MON reaches the currently activated threshold, it outputs an output pulse QM. Over time, this results in a sequence of short-term output pulses QM, with each of which control operations in other units of the control and regulating circuit IC are triggered.
  • a third internal current source ISC is provided, the output of which via the external Terminal P1 is connected to the already explained external low-pass filter.
  • the third internal current source ISC is set in the manner of a flip-flop by the output pulses QM of the monitoring circuit MON and reset by the selection circuit SEL.
  • the third internal current source ISC charges the external capacitor Cc of the low-pass filter. The charging of the external charging capacitor Cc proportionally, the current supplied to the controlled oscillator CCO at its control input via the external terminal P3 supplied input current If changes.
  • the function of the monitoring circuit MON is most clearly illustrated by the sequence control at a lamp start. If the electronic ballast is connected to the grid, as described, the control and regulating circuit IC is activated as soon as the switch-on threshold is reached. The current-dependent controlled oscillator CCO then starts with a predetermined lower limit frequency and thus controls the selection circuit SEL, which sets the half-bridge circuit V2, V3 via the driver circuits HSD and LSD. The first internal power source IT starts to charge the external charging capacitor CT and puts the timer PST into operation. The lamp starts with a pre-heating period ⁇ pt. In the monitoring circuit MON, a corresponding, relatively low threshold value Mp for the preheating current is activated.
  • the monitoring circuit MON outputs an output pulse QM each time this threshold value Mp is reached by a pulse of the load current. With these, in each case the selection circuit SEL is triggered and the third internal current source ISC is activated. Thus, the above-described in connection with the function of this power source ISC parent, ie second control circuit for the current control is set in motion. During this preheat period ⁇ pt, the output of a signal amplifier QPT is turned off. This Output can be used, for example, to control a preheat circuit or to set a DC bias on the control input of the monitoring circuit MON for free preheat voltage adjustment.
  • the linearly rising input voltage of the timer PST reaches a predetermined preheating level.
  • the preheat period ⁇ pt is completed and the timer PST generates the first selection signal S1, which is output to the monitoring circuit MON and the signal amplifier QPT.
  • the monitoring circuit MON so that a higher threshold value Mi for the ignition current of the fluorescent lamp FL is activated, an ignition period ⁇ it begins.
  • the timer PST generates another, the fourth selection signal S4, whose trailing edge coincides with the reaching of a maximum level of the input voltage of the timer PST.
  • the second internal current source IM is activated and further enabled a flip-flop-controlled switch OPRD.
  • the monitoring circuit MON monitors the input signal proportional to the load current supplied to this threshold and, dependent thereon, supplies the further output pulses QM1.
  • said switch OPRd is initially set and reset by the output signal of the selection circuit SEL, respectively.
  • ground potential is applied to the non-inverting input of the control operation amplifier OPR connected to the external terminal P5.
  • the fluorescent lamp FL fires within a predetermined time after only a few ignition attempts. Automatically then goes the peak value of the load current returns to a normal operating value and no longer reaches the threshold value Mi of the monitoring circuit MON, no further output pulses QM are generated.
  • the timer PST continues to run. Its increasing input voltage initially goes through a predetermined ignition level and finally reaches a maximum level, which initiates a reset of the timer PST. Upon reaching this maximum level, the timer generates the output signal S3, which activates a threshold Mo in the monitoring circuit MON, which is not reached by the rated load current during normal firing operation of the fluorescent lamp FL, so that no further output pulses QM are generated by it.
  • the third selection signal S3 the time allocated to the timer PST second internal power source IT is turned off.
  • the charging capacitor CT connected thereto begins to discharge, i. H. the input signal supplied to the timer PST drops to a constant level which is kept in the normal burning mode.
  • the timer PST generates another, the second selection signal S2. This is held until the input of the timer PST when falling back through the ignition level.
  • This pulse duration of the second selection signal S2 defines a switch-off period .DELTA.st following the ignition period .DELTA.it, in which the shutdown of the electronic ballast is prepared in the event of an error.
  • a shutdown unit with a counter CTR and a shutdown SDL is provided.
  • the counter CTR is reset by both the rising and the falling edge of the second selection signal S2.
  • the output pulses QM are supplied to the monitoring circuit MON as counting pulses. During normal startup, it reaches its final value after four counts, for example, and then activates the internal power source IT. In the further course, the leading edge of the second selection signal S2 resets the counter CTR and prepares the shutdown circuit SDL for preparatory release. Now count the number of futile attempts at ignition or the number of output pulses QM that occur now. If the counter CTR reaches its final value at a Ignoring the lamp, it activates the previously disconnected shutdown circuit SDL.
  • control and regulating circuit IC is finally also designed to adapt to changes in the load current in a relatively wide tolerance range. Such changes can especially in dimming in multi-lamp applications or even with critical lamp tolerances, eg. B. caused by aged, high-resistance lamp filaments occur. These cases can lead to the fact that the operation OPR operational amplifier no longer works within its defined control range.
  • This state is detected by a further comparator COMP which is connected with its non-inverting input to the external terminal P1 and whose inverting input is supplied with an internally generated comparison voltage Vcc ', which is clearly visible in relation to the voltage at the charging capacitor Ccc occurring in the normal operating state. for example, reduced by 25%.
  • the comparator COMP When such an operating state occurs, the comparator COMP outputs to the monitoring circuit MON a control signal with which a state is set there in which all reference levels Mp, Mi, Mdo and Mo are markedly lowered.
  • the monitoring circuit MON then works properly even at lower lamp currents.

Abstract

The fluorescent lamp operating method has an integrated control and regulation circuit (IC) used for regulating the load current in a half bridge load circuit (4) containing at least one fluorescent lamp (FL), with a timing device (PST, IT) providing a sequence of selection signals (S1,S2,S3,S4) upon starting, used for activating different reference levels for a load current monitoring circuit (MON), providing a control pulse (QM) upon reaching each reference level, with automatic disconnection upon detection of an operating fault. An internally generated DC signal is superimposed on the load current signal fed to the monitoring circuit during each lamp ignition period, dependent on the lamp characteristics, for matching the fixed reference level independent of the type of lamp used. An Independent claim for an electronic bias device for operation of a fluorescent lamp is also included.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Betreiben mindestens einer Leuchtstofflampe mit Hilfe eines elektronischen Vorschaltgerätes gemäß dem Oberbegriff des Patentanspruches 1 sowie auf ein entsprechend ausgebildetes elektronisches Vorschaltgerät selbst gemäß dem Oberbegriff des Patentanspruches 5.The invention relates to a method for operating at least one fluorescent lamp with the aid of an electronic ballast according to the preamble of claim 1 and to a correspondingly designed electronic ballast itself according to the preamble of claim 5.

I. Stand der Technik I. State of the art

Aus EP-B-0 801 881 ist ein derartiges Verfahren zum Betreiben mindestens einer Leuchtstofflampe mit Hilfe eines elektronischen Vorschaltgerätes bekannt, das eine an eine Gleichrichterschaltung angekoppelte Halbbrückenschaltung mit zwei in Serie zueinander liegenden, alternativ aktivierten Leistungstransistoren besitzt. An den gemeinsamen Verbindungspunkt dieser Leistungstransistoren, der den Ausgang der Halbbrückenanordnung bildet, ist ein Lastkreis angeschlossen, der die mindestens eine Leuchtstofflampe enthält und dessen Laststrom überwacht wird. Dazu ist in Form eines integrierten Schaltkreises ein Steuer- und Regelkreis vorgesehen. Dieser ist mit einer Überwachungsschaltung zum kontinuierlichen Überwachen des Laststromes und mit einer davon abgeleitet hochfrequent geregelten Ansteuerschaltung für die Leistungstransistoren ausgestattet. Bei dem bekannten Vorschaltgerät wird bei jedem Lampenstart sowie bei jeder im Brennbetrieb auftretenden Störung definiert ein Zeitwertgeber gestartet, der eine Zeitbasis für anschließende Steuer- und Regelvorgänge erzeugt. Aufgrund dieser Zeitbasis werden in der Überwachungsschaltung jeweils vorgegebene, unterschiedliche Referenzpegel für den zu detektierenden Laststrom eingestellt bzw. wird ein automatisches Abschalten des elektronischen Vorschaltgerätes für einen vorgegebenen, begrenzten Zeitraum vorbereitet. Die Überwachungsschaltung vergleicht den Momentanwert des Laststromes mit dem jeweils aktivierten Referenzpegel und gibt bei Erreichen dieses Referenzpegels jeweils einen Ausgangsimpuls ab. Diese Ausgangsimpulse kennzeichnen in Abhängigkeit von ihrem Auftreten bzw. Ausbleiben während vorgegebener, durch den Zeitwertgeber definierter Zeiträume normale bzw. auch fehlerhafte Zustände im Lastkreis. Mit diesen Ausgangsimpulsen wird bei ungestörtem Betriebszustand über die geregelte Ansteuerschaltung der Lampenstrom zeitabhängig geregelt bzw. im Fehlerfall ein bereits vorbereitetes automatisches Abschalten des elektronischen Vorschaltgerätes ausgelöst.From EP-B-0 801 881, such a method for operating at least one fluorescent lamp by means of an electronic ballast is known, which has a coupled to a rectifier circuit half-bridge circuit with two series-connected, alternatively activated power transistors. At the common connection point of these power transistors, which forms the output of the half-bridge arrangement, a load circuit is connected, which contains the at least one fluorescent lamp and the load current is monitored. For this purpose, a control and regulating circuit is provided in the form of an integrated circuit. This is equipped with a monitoring circuit for continuously monitoring the load current and with a derived high-frequency controlled drive circuit for the power transistors. In the known ballast, a timer is started defined at each lamp start and each occurring during combustion operation, which generates a time base for subsequent control and regulation operations. Due to this time base, predetermined, different reference levels for the load current to be detected are respectively set in the monitoring circuit, or an automatic switch-off of the electronic ballast is prepared for a predetermined, limited period of time. The monitoring circuit compares the instantaneous value of the load current with the respectively activated reference level and outputs an output pulse when this reference level is reached. These output pulses indicate depending their occurrence or failure during predetermined, defined by the timer periods normal or faulty conditions in the load circuit. With these output pulses, the lamp current is regulated in a time-dependent manner in the undisturbed operating state via the controlled drive circuit or, in the event of a fault, an already prepared automatic switch-off of the electronic ballast is triggered.

Vollelektronische Vorschaltgeräte der genannten Art sind vorteilhaft anzuwendende Universalgeräte für gebräuchliche Netzwechselspannungen in einem relativ weiten Toleranzbereich, einem weiten Bereich zulässiger Netzfrequenzen und sind schließlich sogar für Gleichspannungsversorgung geeignet. Eines der wesentlichen Probleme bei der Anwendung elektronischer Vorschaltgeräte besteht aber darin, daß unterschiedliche Lampentypen in zum Teil auch variierenden Schaltungen, z. B. auch mehrere Leuchtstofflampen eingesetzt werden, was eine entsprechende Typenvielfalt der an diese Anwendungsfälle spezifisch angepaßten Vorschaltgeräte bedingt. Es ist daher nicht einfach, dieser Typenvielfalt mit möglichst einem einzigen hochintegrierten Schaltkreis zu entsprechen, in dem der Ansteuer- und Regelkreis des Vorschaltgerätes zusammengefaßt ist. Als Kompromiß werden unter teilweisem Verzicht auf einen an sich erwünschten hohen Integrationsgrad entsprechende Steuereingänge des integrierten Schaltkreises durch extern angeschaltete Bauelemente angepaßt.Fully electronic ballasts of the type mentioned are advantageously applicable universal devices for common AC mains voltages in a relatively wide tolerance range, a wide range of permissible network frequencies and are finally even suitable for DC power supply. One of the main problems in the application of electronic ballasts, however, is that different types of lamps in part also varying circuits, eg. B. also several fluorescent lamps are used, which requires a corresponding variety of types of these applications specifically adapted ballasts. It is therefore not easy to comply with this type of variety with as possible a single highly integrated circuit in which the drive and control circuit of the ballast is summarized. As a compromise, with partial waiver of a desired high degree of integration corresponding control inputs of the integrated circuit are adapted by externally connected components.

So kann beispielsweise bei dem vorstehend beschriebenen elektronischen Vorschaltgerät die Zündspannung in ihrer Höhe nicht frei eingestellt werden, da diese durch einen festen, im integrierten Schaltkreis intern definierten Schwellenwert bestimmt ist. Die für verschiedene Anwendungsfälle erforderliche Anpassung der im Rahmen eines noch gegebenen Toleranzbereiches zulässigen Zünd- und/oder Vorheizspannung ist auch bei dem bekannten elektronischen Vorschaltgerät bestenfalls durch entsprechende externe Beschaltung des integrierten Schaltkreises und darum dann nur mit einem entsprechenden Aufwand zu erreichen.Thus, for example, in the electronic ballast described above, the ignition voltage can not be freely adjusted in height, as this is determined by a fixed, internally defined in the integrated circuit threshold. The required for different applications adaptation within a given range of tolerance permissible ignition and / or preheating is to be achieved in the known electronic ballast at best by appropriate external circuitry of the integrated circuit and therefore only with a corresponding effort.

II. Darstellung der ErfindungII. Presentation of the invention

Der vorliegenden Erfindung liegt daher als Teilaufgabe zugrunde, in Weiterbildung des eingangs genannten Verfahrens zum Betreiben mindestens einer Leuchtstofflampe eine weitere Ausführungsform anzugeben, mit dem zusätzlich zu einer zuverlässigen Regelung des Laststromes auch bei gealterten Leuchtstofflampen insbesondere die Möglichkeit eröffnet ist, auch solche Anwendungsfälle sicher zu beherrschen, bei denen Lampentypen mit kritischem Zündverhalten eingesetzt werden sollen.The present invention is therefore a subtask, in a further development of the above-mentioned method for operating at least one fluorescent lamp to specify a further embodiment, in addition to a reliable control of the load current even with aged fluorescent lamps in particular the possibility is opened to control such applications safely in which lamp types with critical ignition behavior are to be used.

Als weitere Teilaufgabe liegt der vorliegenden Erfindung zugrunde, das elektronische Vorschaltgerät der vorstehend gewürdigten Art derart weiterzubilden, daß es trotz eines entsprechenden Integrationsgrades seines Ansteuer- und Regelkreises und damit vermindertem Aufwand für die externe Beschaltung lediglich durch einfache Anpassung in weitem Umfang zuverlässig in den verschiedensten Anwendungsfällen einsetzbar ist.Another sub-task of the present invention, the electronic ballast of the above-appreciated type such that it despite a corresponding degree of integration of its drive and control circuit and thus reduced effort for the external circuitry only by simple adaptation to a large extent reliable in a variety of applications can be used.

Bei einem Verfahren der eingangs genannten Art wird die eine Teilaufgabe mit den im Kennzeichen des Patentanspruches 1 beschriebenen Merkmalen gelöst. Entsprechend wird die andere Teilaufgabe bei einem elektronischen Vorschaltgerät der eingangs genannten Art mit den im Kennzeichen des Patentanspruches 5 beschriebenen Merkmalen gelöst.In a method of the type mentioned, a subtask is achieved with the features described in the characterizing part of claim 1. Accordingly, the other subtask is solved in an electronic ballast of the type mentioned above with the features described in the characterizing part of claim 5.

Die erfindungsgemäßen Lösungen ermöglichen mit einer einfachen Maßnahme, den Toleranzbereich des elektronischen Vorschaltgerätes in bezug auf die Überwachung des Laststromes zu erweitern. Diese Eigenschaft ist insbesondere dann von Vorteil, wenn der Lastkreis eine Lampenschaltung mit mehreren Leuchtstofflampen umfaßt. Bei derartigen Lampenschaltungen, aber auch bei Leuchtstofflampen mit kritischem Zündverhalten ist es schwierig, mit einem gegebenen integrierten Schaltkreis den Toleranzbereich sicher zu beherrschen. Im integrierten Schaltkreis können Toleranzbereiche nicht ohne weiteres breit genug vorgegeben werden, weil dann gegebenenfalls kritische Betriebszustände, wie z. B. die Zündunwilligkeit von bzw. Zündaussetzer bei gealterten Leuchtstofflampen nicht mehr einwandfrei erfaßt werden. Eine andere Möglichkeit, das elektronische Vorschaltgerät mit einem vorgegebenen integrierten Steuer- und Regelkreis auszustatten und dennoch auch derart kritische Lampenschaltungen damit zu betreiben, bestünde darin, mit Aufwand, die externe Beschaltung des integrierten Schaltkreises an den jeweiligen Anwendungsfall anzupassen. In Anbetracht dessen, daß elektronische Vorschaltgeräte heute Produkte sind, die bei hohem Kostendruck weitgehend automatisiert gefertigt werden müssen, ist eine derartige Lösung unwirtschaftlich.The solutions according to the invention make it possible, with a simple measure, to extend the tolerance range of the electronic ballast with respect to the monitoring of the load current. This property is particularly advantageous when the load circuit comprises a lamp circuit with a plurality of fluorescent lamps. In such lamp circuits, but also in fluorescent lamps with critical ignition behavior, it is difficult to reliably control the tolerance range with a given integrated circuit. In the integrated circuit tolerance ranges can not be readily given wide enough, because then possibly critical operating conditions such. B. the Zündunwilligkeit of or misfire in aged fluorescent lamps are no longer detected properly. Another way to use the electronic ballast with a given integrated To equip control and regulating circuit and yet operate such critical lamp circuits so that would be, with effort to adapt the external circuitry of the integrated circuit to the particular application. In view of the fact that today electronic ballasts are products that have to be manufactured largely automated at high cost pressure, such a solution is uneconomical.

Erfindungsgemäß wird dieses Problem in eleganter Weise mit einer relativ einfachen Schaltungsmaßnahme gelöst. Dem im Steuer- und Regelkreis zu überwachenden Laststromsignal wird ein Gleichstromsignal aus einer zusätzlichen Gleichstromquelle überlagert, dessen Pegel in Abhängigkeit von der jeweilig eingesetzten Lampenschaltung einstellbar ist. Da die Vorheizspannung, insbesondere aber die Zündspannung bei diesen schwer beherrschbaren Anwendungsfällen kritisch sind, genügt es, diese Überlagerung lediglich für die mit dem Ende der Vorheizperiode beginnende Zündperiode vorzusehen.According to the invention, this problem is solved elegantly with a relatively simple circuit measure. The load current signal to be monitored in the control and regulating circuit is superimposed with a direct current signal from an additional direct current source whose level can be set as a function of the respectively used lamp circuit. Since the preheating voltage, but in particular the ignition voltage in these difficult to handle applications are critical, it is sufficient to provide this overlay only for the beginning of the preheating of the ignition period.

Wie in Unteransprüchen angegeben, ist die Pegelanpassung der zusätzlichen Gleichstromquelle mit einfachen Mitteln und sicher dadurch zu erreichen, daß der einzustellende Pegel intern von dem Stromfluß durch den Anpassungswiderstand abgeleitet wird, der als externer Widerstand dem stromabhängig gesteuerten Oszillator zugeordnet und durch dessen Dimensionierung die Austastlücke der Halbbrückenschaltung festgelegt ist. Eine Schaltungsanpassung an unterschiedliche Lampenschaltungen im Lastkreis ist damit durch die entsprechende Dimensionierung eines einzigen ohmschen Widerstandes durchzuführen.As indicated in dependent claims, the level adjustment of the additional DC power source by simple means and safely be achieved in that the level to be adjusted is derived internally from the current flow through the matching resistor, which is assigned as an external resistor to the current-dependent controlled oscillator and by dimensioning the blanking interval Half-bridge circuit is fixed. A circuit adaptation to different lamp circuits in the load circuit is thus carried out by the appropriate dimensioning of a single ohmic resistance.

In Weiterbildung der erfindungsgemäßen Lösung ist es von besonderem Vorteil, die für einzelne Betriebszustände des elektronischen Vorschaltgerätes unbedingt erforderliche Regelung des Laststromes zeitweilig und insofern zu deaktivieren, daß die Strombegrenzung während der Zündperiode außer Kraft gesetzt ist. Dazu wird in der Überwachungsschaltung eine weitere Schwelle vorgesehen, deren Pegel zwischen denen für die Vorheizschwelle bzw. die Zündschwelle liegt. Mit den von der Überwachungsschaltung bei der Bewertung des Laststromsignals in bezug auf diese weitere Schwelle abgegebenen weiteren Ausgangsimpulse wird ein Sperrschalter gesetzt, der zyklisch rückgesetzt wird und im aktivierten Zustand jeweils die Stromregelung über den stromabhängig gesteuerten Oszillator unterbricht.In a further development of the solution according to the invention, it is particularly advantageous to temporarily deactivate the regulation of the load current which is absolutely necessary for individual operating states of the electronic ballast in such a way that the current limitation is deactivated during the ignition period. For this purpose, a further threshold is provided in the monitoring circuit, whose level is between those for the preheating threshold and the ignition threshold. With the of the monitoring circuit in the evaluation of the load current signal with respect to this further Threshold delivered further output pulses, a blocking switch is set, which is cyclically reset and interrupts in the activated state in each case the current control via the current-dependent controlled oscillator.

III. Beschreibung bevorzugter AusruhrungsbeispieleIII, Description of preferred Ausruhrungsbeispiele

Weitere Einzelheiten und Vorteile der erfindungsgemäßen Lösung sind der nachfolgenden Beschreibung von Ausführungsbeispielen zu entnehmen, die anhand der Zeichnung erfolgt, dabei zeigt:

  • Figur 1 ein Blockschaltbild eines elektronischen Vorschaltgerätes mit daran angeschlossenem Lastkreis, wobei ein Steuer- und Regelkreis des elektronischen Vorschaltgerätes als integrierter Schaltkreis ausgebildet und lediglich schematisch dargestellt ist und
  • Figur 2 den Aufbau des Steuer- und Regelkreises des elektronischen Vorschaltgerätes in weiteren Einzelheiten.
Further details and advantages of the solution according to the invention can be found in the following description of embodiments, which is made with reference to the drawing, in which:
  • Figure 1 is a block diagram of an electronic ballast connected thereto load circuit, wherein a control and regulating circuit of the electronic ballast is designed as an integrated circuit and is shown only schematically and
  • Figure 2 shows the structure of the control and regulating circuit of the electronic ballast in more detail.

In Figur 1 ist ein elektronisches Vorschaltgerät zum Betreiben mindestens einer Leuchtstofflampe sowie der eigentliche Lastkreis, hier beispielhaft mit nur einer Leuchtstofflampe, dargestellt. Das dargestellte elektronische Vorschaltgerät baut auf einem elektronischen Vorschaltgerät auf, das in seinem prinzipiellen Aufbau sowie einer Mehrzahl von Schaltungseinzelheiten bereits aus dem eingangs genannten Dokument EP-B-0 801 881 bekannt ist, auf das hier Bezug genommen werden kann. Bekannte Schaltungsteile sowie deren Funktion, die im Zusammenhang mit der vorliegenden Erfindung von untergeordneter Bedeutung sind, werden daher nachfolgend nur zusammenfassend und aus Gründen der Vollständigkeit geschildert.FIG. 1 shows an electronic ballast for operating at least one fluorescent lamp and the actual load circuit, here by way of example with only one fluorescent lamp. The electronic ballast shown builds on an electronic ballast, which is already known in its basic structure and a plurality of circuit details from the aforementioned document EP-B-0801 881, to which reference can be made here. Known circuit parts and their function, which are of minor importance in connection with the present invention are therefore described below only in summary and for reasons of completeness.

An Wechselspannung u≈ ist ein Hochfrequenzfilter 1, eine Gleichrichterbrücke 2 sowie ein Hochsetzsteller 3 angeschlossen, der eine Ladedrossel L1, eine Ladediode D1, einen ersten Leistungstransistor V1 und als Ausgangsstufe einen Speicherkondensator Co besitzt. Der Leistungstransistor V1 wird über einen als integrierter Schaltkreis ausgeführten Steuer- und Regelkreis IC angesteuert. Der Hochsetzsteller 3 liefert an seinem Ausgang eine im Vergleich zu gleichgerichteten Netzspannung heraufgesetzte stabilisierte Gleichspannung, die sogenannte Zwischenkreisspannung u.s.w. Weiterhin ist ein Wechselrichter mit einer Halbbrückenschaltung vorgesehen, die hier insbesondere durch zwei weitere, in Serie parallel zum Ausgang des Hochsetzstellers 3 liegende weitere Leistungstransistoren V2 und V3 sowie einen Brükkenkondensator CB realisiert ist. An den Ausgang der Halbbrückenschaltung V2, V3 ist ein Lastkreis 4, hier dargestellt mit einer weiteren Drossel L2, einer Leuchtstofflampe FL und einem Zündkondensator Cz, angeschlossen.At AC voltage u≈ a high frequency filter 1, a rectifier bridge 2 and a boost converter 3 is connected, which has a charging inductor L1, a charging diode D1, a first power transistor V1 and a storage capacitor Co as the output stage. The power transistor V1 is driven via a control and regulating circuit IC designed as an integrated circuit. The boost converter 3 provides at its output a compared to rectified mains voltage Furthermore, an inverter with a half-bridge circuit is provided, which is realized here in particular by two further, in series parallel to the output of the boost converter 3 other power transistors V2 and V3 and a bridge capacitor CB. To the output of the half-bridge circuit V2, V3, a load circuit 4, shown here with a further inductor L2, a fluorescent lamp FL and a firing capacitor Cz, connected.

Alle wesentlichen Steuer- und Regelfunktionen des elektronischen Vorschaltgerätes sind in dem Steuer- und Regelkreis IC realisiert. Aus Gründen der Übersichtlichkeit ist der Steuer- und Regelkreis IC in Figur 1 lediglich als Baustein mit externen Anschlüssen P1 bis P24, an die externe Bauelemente angeschlossen sind und in Figur 2 dazu ergänzend detaillierter in Form eines Blockschaltbildes dargestellt.All essential control and regulating functions of the electronic ballast are realized in the control and regulating circuit IC. For reasons of clarity, the control and regulating circuit IC in FIG. 1 is merely a module with external connections P1 to P24, to which external components are connected and, in addition, shown in detail in FIG. 2 in the form of a block diagram.

Im praktischen Einsatz ist eine definierte Stromversorgung des Steuer- und Regelkreises IC von erheblicher Bedeutung, im vorliegenden Falle kann diese aber bereits als bekannt vorausgesetzt werden. In Figur 2 ist daher vereinfacht eine Stromversorgungseinheit IPG schematisch dargestellt, die ein einwandfreies Starten der Funktionen des Steuer- und Regelkreises IC sicherstellt und dazu durch den Ladungszustand eines extern angeschalteten Ladekondensators Ccc gesteuert ist. Im eingeschwungenen Zustand ist die Stromversorgung des Steuer- und Regelkreises IC über eine an den Brückenkondensator CB angeschlossene Pumpdiode DB mit einem weiteren externen Ladekondensator Cp durch einen Zweipunktregler TPR gegeben. Die Stromversorgungseinheit IPG erzeugt eine interne Hilfsspannung IC-BIAS zur Versorgung der internen Schaltkreiseinheiten des Steuer- und Regelkreises IC und liefert ferner eine Referenzspannung Vref. Weiterhin enthält der Steuer- und Regelkreis IC, darauf sei nur hingewiesen, eine Anordnung PFC zur Steuerung des Leistungsfaktors.In practical use, a defined power supply of the control and regulating circuit IC is of considerable importance, but in the present case, this can already be assumed to be known. In FIG. 2, a power supply unit IPG is therefore shown schematically, which ensures proper starting of the functions of the control and regulating circuit IC and is controlled by the charge state of an externally connected charging capacitor Ccc. In the steady state, the power supply of the control and regulating circuit IC is given via a connected to the bridge capacitor CB pump diode DB with another external charging capacitor Cp by a two-point controller TPR. The power supply unit IPG generates an internal auxiliary voltage IC-BIAS for supplying the internal circuit units of the control and regulating circuit IC and also supplies a reference voltage Vref. Furthermore, the control and regulating circuit IC, it should only be noted, an arrangement PFC for controlling the power factor.

Auch weitere Steuer- und Regelfunktionen des Steuer- und Regelkreises IC sind an sich bereits bekannt. So besteht eine Ansteuerschaltung für die Halbbrückenschaltung V2, V3 aus einer Auswahlschaltung SEL und daran angeschlossene Treiberschaltungen HSD bzw. LSD. Eine hochfrequente Impulsfolge wird an einem Steuereingang der Auswahlschaltung SEL zugeführt, die über die Treiberschaltungen HSD bzw. LSD die Leistungstransistoren V2 und V3 der Halbbrückenschaltung nach Art eines Flipflops alternativ mit einer definierten Austastlücke leitend schaltet.Further control and regulating functions of the control and regulating circuit IC are already known per se. Thus, a drive circuit for the half-bridge circuit V2, V3 consists of a selection circuit SEL and driver circuits connected thereto HSD or LSD. A high-frequency pulse sequence is supplied to a control input of the selection circuit SEL, the power transistors V2 and V3 of the half-bridge circuit switches via the driver circuits HSD and LSD alternatively in the manner of a flip-flop with a defined blanking interval.

Diese steuernde Impulsfolge liefert ein stromabhängig gesteuerter Oszillator CCO mit drei Einstelleingängen, die mit den externen Anschlüssen P23, P24 und P3 übereinstimmen. An den Anschluß P23 ist ein erster Einstellwiderstand RTL angeschlossen, dessen Dimensionierung insbesondere die Austastlücke der Leistungstransistoren V2 und V3 der Halbbrückenschaltung festlegt. Am weiteren externen Anschluß P24 liegt ein Einstellkondensator Cf. Der dritte Anschluß des Oszillators CCO, mit dem externen Anschluß P3 verbunden, ist mit einem hochohmigen Filternetzwerk, insbesondere gebildet durch ohmsche Widerstände Rf und Rfmin sowie einen weiteren Einstellkondensator Cc, verbunden. Die genannten externen Elemente bzw. das Filternetzwerk liegen andererseits an Masse bzw. auch an einer definierten Referenzspannung (in der weiteren Beschreibung wird hier beispielhaft immer von Masse gesprochen). Die Dimensionierung dieser externen Bauelemente legt die untere bzw. obere Grenzfrequenz des stromabhängig gesteuerten Oszillators CCO und die Größe der genannten Austastlücke fest. Über das hochohmige Filternetzwerk wird dem stromabhängig gesteuerten Oszillator CCO ein Steuersignal zugeführt, das seine Momentanfrequenz bestimmt. Dieses Steuersignal wird mit einem Regeloperationsverstärker OPR erzeugt. Dieser vergleicht die intern erzeugte Referenzspannung Vref mit einer zweiten über den externen Anschluß P5 zugeführten Eingangsspannung, die dem Mittelwert des durch die Halbbrückenschaltung V2, V3 fließenden Stromes entspricht.This controlling pulse train provides a current dependent controlled oscillator CCO with three setting inputs which coincide with the external terminals P23, P24 and P3. To the terminal P23, a first adjustment resistor RTL is connected, the dimensioning particular determines the blanking interval of the power transistors V2 and V3 of the half-bridge circuit. At the other external terminal P24 is a tuning capacitor Cf. The third terminal of the oscillator CCO, connected to the external terminal P3, is connected to a high-impedance filter network, in particular formed by ohmic resistors Rf and Rfmin and a further tuning capacitor Cc. On the other hand, said external elements or the filter network are connected to ground or to a defined reference voltage (in the further description, this is always referred to as an example of ground). The dimensioning of these external components determines the lower or upper limit frequency of the current-dependent controlled oscillator CCO and the size of said blanking interval. Via the high-impedance filter network, a control signal is supplied to the current-dependent controlled oscillator CCO, which determines its instantaneous frequency. This control signal is generated by a control operation amplifier OPR. This compares the internally generated reference voltage Vref with a second input voltage supplied via the external terminal P5, which corresponds to the mean value of the current flowing through the half-bridge circuit V2, V3.

Die beschriebene Oszillatorschaltung stellt einen geschlossenen Regelkreis zur Regelung des in der Halbbrückenschaltung fließenden Laststromes dar. Steigender Laststrom erhöht die Ausgangsspannung des Regeloperationsverstärkers OPR, was wiederum den Oszillator CCO in Richtung auf eine höhere Impulsfolgefrequenz steuert. Diese Frequenzerhöhung bewirkt aber ihrerseits eine Reduzierung des Laststromes. Analoges gilt für die umgekehrte Richtung bei abfallender Tendenz des Laststromes. Das elektronische Vorschaltgerät ist durch eine entsprechende Festlegung der Referenzspannung Vref auch dimmfähig.The described oscillator circuit represents a closed loop for controlling the load current flowing in the half-bridge circuit. Increasing load current increases the output voltage of the control operation amplifier OPR, which in turn controls the oscillator CCO in the direction of a higher pulse repetition frequency. However, this frequency increase causes in turn a reduction of the load current. The same applies to the reverse direction with decreasing tendency of Load current. The electronic ballast is also dimmable by a corresponding determination of the reference voltage Vref.

Weiterhin ist im Steuer- und Regelkreis IC eine Überwachungsfunktion implementiert, um den Lampenstart zu steuern, im stationären Betrieb den Zustand der Leuchtstofflampe FL zu überwachen sowie auftretende Störungen zu erkennen. Dazu ist einerseits eine Überwachungsschaltung MON, die kontinuierlich den Laststrom, d. h. den durch die Halbbrückenschaltung V2, V3 fließenden Strom, überwacht und andererseits ein Zeitwertgeber PST vorgesehen, der eine Zeitbasis für diesen Überwachungsvorgang liefert.Furthermore, a monitoring function is implemented in the control and regulating circuit IC in order to control the lamp start, to monitor the state of the fluorescent lamp FL in steady-state operation and to recognize any disturbances which occur. On the one hand a monitoring circuit MON, which continuously monitors the load current, d. H. monitored by the current flowing through the half-bridge circuit V2, V3, and on the other hand, a timer PST provided, which provides a time base for this monitoring process.

Eine erste interne Stromquelle IT ist über den externen Anschluß P6 an einen an Masse liegenden weiteren Ladekondensator CT angeschlossen. Sie wird beim Starten des elektronischen Vorschaltgerätes aktiviert und lädt den externen Ladekondensator CT auf. Dabei bildet sich am externen Anschluß P6 eine bis zu einem Endwert linear ansteigende Signalspannung aus, die dem Steuereingang des Zeitwertgebers PST zugeführt wird und für diesen die Zeitbasis liefert. Dazu wird diese Signalspannung im Zeitwertgeber PST mit vorgegebenen Schwellwerten verglichen. Bei Erreichen des jeweiligen Schwellwertes gibt der Zeitwertgeber PST je ein Auswahlsignal S1, S2, S3 bzw. S4 ab und definiert mit deren zeitlicher Folge bestimmte Zeitabschnitte zum Vorheizen, Zünden, darauffolgendem Normalbetrieb der Leuchtstofflampe FL bzw. zum Rücksetzen ihrer Ansteuerung bei auftretenden Fehlern, insbesondere bei Aussetzern oder dauernder Zündunwilligkeit. Die Bedeutung der vom Zeitwertgeber PST erzeugten Auswahlsignale S1 bis S4 wird im Zusammenhang mit der Funktion der Überwachungsschaltung MON erläutert.A first internal current source IT is connected via the external terminal P6 to a grounded further charging capacitor CT. It is activated when starting the electronic ballast and charges the external charging capacitor CT. In the process, a signal voltage rising linearly up to a final value is formed at the external connection P6, which signal signal is supplied to the control input of the timer PST and supplies the time base for this. For this purpose, this signal voltage is compared in the timer PST with predetermined threshold values. Upon reaching the respective threshold value, the timer PST each outputs a selection signal S1, S2, S3 or S4 and defines with their time sequence certain time periods for preheating, igniting, subsequent normal operation of the fluorescent lamp FL or for resetting its control in the event of errors, in particular in case of dropouts or permanent ignitability. The meaning of the selection signals S1 to S4 generated by the timer PST is explained in connection with the function of the monitoring circuit MON.

Die Überwachungsschaltung MON besitzt einen Signaleingang, der über den externen Anschluß P7 und einen Vorwiderstand an den auf niedrigem Pegel liegenden Ausgang der Halbbrückenschaltung V2, V3 angeschlossen ist. Das darüber der Überwachungsschaltung MON zugeführte Eingangssignal ist somit ein dem durch den Leistungstransistor V3 fließenden Strom, d. h. auch dem Laststrom proportionales gepulstes Signal. Diesem Signal wird als Gleichstromvorspannung das Ausgangssignal einer weiteren internen Stromquelle IM überlagert, die durch das Auswahlsignal S3 des Zeitwertgebers PST zeitweilig aktiviert wird. Der Pegel des von dieser zweiten internen Stromquelle IM erzeugten Vorspannungssignales DC wird vom Stromfluß durch den Einstellwiderstand RTL des stromabhängig gesteuerten Oszillators CCO abgeleitet. Dazu wird, IC intern über Stromspiegel, ein Teil des durch den Einstellwiderstand RTL fließenden Stromes der weiteren internen Stromquelle IM zugeführt.The monitoring circuit MON has a signal input which is connected via the external terminal P7 and a series resistor to the low-level output of the half-bridge circuit V2, V3. The input to the monitoring circuit MON about this input signal is thus a current flowing through the power transistor V3 current, ie also the load current proportional pulsed signal. This signal is called DC bias the output signal superimposed on a further internal current source IM, which is temporarily activated by the selection signal S3 of the timer PST. The level of the bias signal DC generated by this second internal current source IM is derived from the current flow through the variable resistor RTL of the current dependent controlled oscillator CCO. For this purpose, IC internally via current mirror, a portion of the current flowing through the adjusting resistor RTL current of the other internal power source IM is supplied.

Über die Dimensionierung dieses externen Einstellwiderstandes RTL läßt sich somit ohne eine interne Anpassung oder zusätzliche externe Anschlüsse des Steuer- und Regelkreises IC eine Anpassung der Überwachungsfunktion der Überwachungsschaltung MON an Varianten der Ausgestaltung des Lastkreises 4, insbesondere bestimmte Lampentypen bzw. Lampenschaltungen erreichen. Anders ausgedrückt, ist es mit dieser Maßnahme trotz fest vorgegebener Ansprechschwellen der Überwachungsschaltung MON für die Vorheiz- bzw. Zündspannung möglich, diese Überwachungsfunktion für den einzelnen Anwendungsfall über die Dimensionierung des Einstellwiderstandes RTL spezifisch auszugestalten. Der Steuer- und Regelkreis IC ist dadurch ohne interne Anpassungen für ein breites Spektrum von Schaltungsalternativen des Lastkreises 4 einsetzbar, insbesondere sind auch Toleranzen für den Zündstrom bei bestimmten Lampentypen besser aufzufangen.By dimensioning this external adjustment resistor RTL, an adaptation of the monitoring function of the monitoring circuit MON to variants of the design of the load circuit 4, in particular specific lamp types or lamp circuits, can thus be achieved without an internal adaptation or additional external connections of the control and regulating circuit IC. In other words, it is possible with this measure despite fixed preset thresholds of the monitoring circuit MON for preheating or ignition voltage to design this monitoring function for the individual application on the dimensioning of the adjustment resistor RTL specific. The control and regulating circuit IC is thus used without internal adjustments for a wide range of circuit alternatives of the load circuit 4, in particular, tolerances for the ignition current for certain types of lamps are better absorbed.

Prinzipiell betrachtet, ist in der Überwachungsschaltung MON zu bestimmten Perioden bei einem Lampenstart und auch im normalen Brennbetrieb definiert jeweils einer von mehreren vorgegebenen Schwellwerten für den zu überwachenden Laststrom aktiviert. Sobald der Pegel des Eingangssignals der Überwachungsschaltung MON den momentan aktivierten Schwellwert erreicht, gibt diese einen Ausgangsimpuls QM ab. Im zeitlichen Verlauf ergibt dies eine Folge von kurzzeitigen Ausgangsimpulsen QM, mit denen jeweils Steuervorgänge in weiteren Einheiten des Steuer- und Regelkreises IC ausgelöst werden.In principle, one of several predetermined threshold values for the load current to be monitored is activated in the monitoring circuit MON at specific periods at a lamp start and also during normal firing operation. As soon as the level of the input signal of the monitoring circuit MON reaches the currently activated threshold, it outputs an output pulse QM. Over time, this results in a sequence of short-term output pulses QM, with each of which control operations in other units of the control and regulating circuit IC are triggered.

Dies betrifft unter anderem einen weiteren Regelkreis für die Stromregelung. Dafür ist eine dritte interne Stromquelle ISC vorgesehen, deren Ausgang über den externen Anschluß P1 mit dem bereits erläuterten externen Tiefpaßfilter verbunden ist. Die dritte interne Stromquelle ISC wird nach Art eines Flipflops jeweils durch die Ausgangsimpulse QM der Überwachungsschaltung MON gesetzt bzw. durch die Auswahlschaltung SEL zurückgesetzt. Somit lädt die dritte interne Stromquelle ISC den externen Kondensator Cc des Tiefpaßfilters auf. Der Aufladung des externen Ladekondensators Cc proportional, ändert sich der dem stromabhängig gesteuerten Oszillator CCO an seinem Steuereingang über den externen Anschluß P3 zugeführte Eingangsstrom If. Auf diese Weise ist ein weiterer geschlossener Regelkreis gegeben, der Zyklus für Zyklus den Laststrom auf den jeweils vorbestimmten Wert regelt, der durch den momentan aktivierten Schwellwert der Überwachungsschaltung MON festgelegt ist. Dieser zweite Regelkreis ist der einleitend beschriebenen Stromregelung für den stationären Betrieb übergeordnet, er begrenzt und regelt den Laststrom bei einem Lampenstart sowie bei detektierten Störfällen.Among other things, this concerns a further control circuit for the current regulation. For this purpose, a third internal current source ISC is provided, the output of which via the external Terminal P1 is connected to the already explained external low-pass filter. The third internal current source ISC is set in the manner of a flip-flop by the output pulses QM of the monitoring circuit MON and reset by the selection circuit SEL. Thus, the third internal current source ISC charges the external capacitor Cc of the low-pass filter. The charging of the external charging capacitor Cc proportionally, the current supplied to the controlled oscillator CCO at its control input via the external terminal P3 supplied input current If changes. In this way, another closed loop is provided, which regulates the load current cyclically by cycle to the respective predetermined value, which is determined by the currently activated threshold value of the monitoring circuit MON. This second control circuit is superordinate to the initially described current control for stationary operation, it limits and regulates the load current at a lamp start as well as in detected incidents.

Im Zusammenhang ist die Funktion der Überwachungsschaltung MON am klarsten anhand der Ablaufsteuerung bei einem Lampenstart zu verdeutlichen. Wird das elektronische Vorschaltgerät an das Netz gelegt, wird wie beschrieben der Steuer-Und Regelkreis IC aktiviert, sobald die Einschaltschwelle erreicht ist. Der stromabhängig gesteuerte Oszillator CCO startet dann mit vorgegebener unterer Grenzfrequenz und steuert damit die Auswahlschaltung SEL an, die über die Treiberschaltungen HSD und LSD die Halbbrückenschaltung V2, V3 in Betrieb setzt. Die erste interne Stromquelle IT beginnt den externen Ladekondensator CT zu laden und setzt den Zeitwertgeber PST in Betrieb. Der Lampenstart beginnt mit einer Vorheizperiode Δpt. In der Überwachungsschaltung MON ist ein entsprechender, relativ niedriger Schwellwert Mp für den Vorheizstrom aktiviert. Die Überwachungsschaltung MON gibt jeweils mit Erreichen dieses Schwellwertes Mp durch einen Impuls des Laststromes einen Ausgangsimpuls QM ab. Mit diesen wird jeweils die Auswahlschaltung SEL getriggert und die dritte interne Stromquelle ISC aktiviert. Damit ist der in Verbindung mit der Funktion dieser Stromquelle ISC beschriebene übergeordnete, d. h. zweite Regelkreis für die Stromregelung in Gang gesetzt. Während dieser Vorheizperiode Δpt ist der Ausgang eines Signalverstärkers QPT abgeschaltet. Dieser Ausgang kann z.B. zur Steuerung einer Vorheizschaltung oder zur Einstellung einer DC-Vorspannung am Steuereingang der Überwachungsschaltung MON, zur freien Vorheizspannungseinstellung, verwendet werden.In connection, the function of the monitoring circuit MON is most clearly illustrated by the sequence control at a lamp start. If the electronic ballast is connected to the grid, as described, the control and regulating circuit IC is activated as soon as the switch-on threshold is reached. The current-dependent controlled oscillator CCO then starts with a predetermined lower limit frequency and thus controls the selection circuit SEL, which sets the half-bridge circuit V2, V3 via the driver circuits HSD and LSD. The first internal power source IT starts to charge the external charging capacitor CT and puts the timer PST into operation. The lamp starts with a pre-heating period Δpt. In the monitoring circuit MON, a corresponding, relatively low threshold value Mp for the preheating current is activated. The monitoring circuit MON outputs an output pulse QM each time this threshold value Mp is reached by a pulse of the load current. With these, in each case the selection circuit SEL is triggered and the third internal current source ISC is activated. Thus, the above-described in connection with the function of this power source ISC parent, ie second control circuit for the current control is set in motion. During this preheat period Δpt, the output of a signal amplifier QPT is turned off. This Output can be used, for example, to control a preheat circuit or to set a DC bias on the control input of the monitoring circuit MON for free preheat voltage adjustment.

Im weiteren Verlauf erreicht die linear ansteigende Eingangsspannung des Zeitwertgebers PST einen vorgegebenen Vorheizpegel. Die Vorheizperiode Δpt ist abgeschlossen und der Zeitwertgeber PST generiert das erste Auswahlsignal S1, das an die Überwachungsschaltung MON und den Signalverstärker QPT abgegeben wird. In der Überwachungsschaltung MON wird damit ein höherer Schwellwert Mi für den Zündstrom der Leuchtstofflampe FL aktiviert, eine Zündperiode Δit beginnt. Etwa zeitgleich, vorzugsweise unmittelbar zu Beginn der Zündperiode Δit erzeugt der Zeitwertgeber PST ein weiteres, das vierte Auswahlsignal S4, dessen Rückflanke mit dem Erreichen eines maximalen Pegels der Eingangsspannung des Zeitwertgebers PST zusammenfällt. Mit diesem vierten Auswahlsignal S4 wird die zweite interne Stromquelle IM aktiviert und ferner ein nach Art eines Flipflops gesteuerter Schalter OPRd freigegeben. In Verbindung mit einem weiteren in der Überwachungsschaltung MON aktivierten Schwellenwert Md, für den die Beziehung
Mp<Md<Mi gilt, überwacht die Überwachungsschaltung MON das ihr zugeführte, dem Laststrom proportionale Eingangssignal auf diese Schwelle und liefert, davon abhängig, die weiteren Ausgangsimpulse QM1. Mit jedem dieser Impulse wird der genannte Schalter OPRd zunächst gesetzt und jeweils durch das Ausgangssignal der Auswahlschaltung SEL rückgesetzt. Mit dem Einschalten des Schalters OPRd wird Massepotential an den nicht invertierenden, mit dem externen Anschluß P5 verbundenen Eingang des Regeloperationsverstärkers OPR gelegt. Auf diese Weise wird die Begrenzung des Laststromes durch den Regeloperationsverstärker OPR während der Dauer der Zündperiode Δit außer Kraft gesetzt, d. h. die Zündspannung nicht begrenzt.
In the further course, the linearly rising input voltage of the timer PST reaches a predetermined preheating level. The preheat period Δpt is completed and the timer PST generates the first selection signal S1, which is output to the monitoring circuit MON and the signal amplifier QPT. In the monitoring circuit MON so that a higher threshold value Mi for the ignition current of the fluorescent lamp FL is activated, an ignition period Δit begins. At about the same time, preferably immediately at the beginning of the ignition period Δit, the timer PST generates another, the fourth selection signal S4, whose trailing edge coincides with the reaching of a maximum level of the input voltage of the timer PST. With this fourth selection signal S4, the second internal current source IM is activated and further enabled a flip-flop-controlled switch OPRD. In conjunction with another threshold Md activated in the monitoring circuit MON, for which the relationship
Mp <Md <Mi, the monitoring circuit MON monitors the input signal proportional to the load current supplied to this threshold and, dependent thereon, supplies the further output pulses QM1. With each of these pulses, said switch OPRd is initially set and reset by the output signal of the selection circuit SEL, respectively. With the switching on of the switch OPRd, ground potential is applied to the non-inverting input of the control operation amplifier OPR connected to the external terminal P5. In this way, the limitation of the load current through the control operation amplifier OPR during the duration of the ignition period Δit overruled, ie the ignition voltage is not limited.

Im Normalfall zündet die Leuchtstofflampe FL innerhalb vorgegebener Zeit nach nur wenigen Zündversuchen. Automatisch geht dann der Scheitelwert des Laststromes auf einen normalen Betriebswert zurück und erreicht dabei den Schwellwert Mi der Überwachungsschaltung MON nicht mehr, es werden keine weiteren Ausgangsimpulse QM erzeugt.Normally, the fluorescent lamp FL fires within a predetermined time after only a few ignition attempts. Automatically then goes the peak value of the load current returns to a normal operating value and no longer reaches the threshold value Mi of the monitoring circuit MON, no further output pulses QM are generated.

Der Zeitwertgeber PST läuft aber weiter. Seine steigende Eingangsspannung durchläuft zunächst einen vorgegebenen Zündpegel und erreicht schließlich einen maximalen Pegel, der ein Rücksetzen des Zeitwertgebers PST einleitet. Mit Erreichen dieses maximalen Pegels erzeugt der Zeitwertgeber das Ausgangssignal S3, das einerseits in der Überwachungsschaltung MON einen Schwellwert Mo aktiviert, der im normalen Brennbetrieb der Leuchtstofflampe FL vom bewerteten Laststrom nicht erreicht wird, es werden also von ihr keine weiteren Ausgangsimpulse QM erzeugt. Andererseits wird mit dem dritten Auswahlsignal S3 die dem Zeitwertgeber PST zugeordnete zweite interne Stromquelle IT abgeschaltet. Der daran angeschlossene Ladekondensator CT beginnt sich zu entladen, d. h. das dem Zeitwertgeber PST zugeführte Eingangssignal fällt bis auf einen konstanten Pegel ab, der im normalen Brennbetrieb gehalten wird. Bereits mit dem Ablauf der festgelegten Zündperiode Δit erzeugt jedoch der Zeitwertgeber PST ein weiteres, das zweite Auswahlsignal S2. Dieses wird gehalten, bis das Eingangssignal des Zeitwertgebers PST beim Abfallen wieder den Zündpegel durchläuft. Diese Pulsdauer des zweiten Auswahlsignales S2 definiert eine sich an die Zündperiode Δit anschließende Abschaltperiode Δst, in der im Fehlerfall das Abschalten des elektronischen Vorschaltgerätes vorbereitet wird.The timer PST continues to run. Its increasing input voltage initially goes through a predetermined ignition level and finally reaches a maximum level, which initiates a reset of the timer PST. Upon reaching this maximum level, the timer generates the output signal S3, which activates a threshold Mo in the monitoring circuit MON, which is not reached by the rated load current during normal firing operation of the fluorescent lamp FL, so that no further output pulses QM are generated by it. On the other hand, with the third selection signal S3, the time allocated to the timer PST second internal power source IT is turned off. The charging capacitor CT connected thereto begins to discharge, i. H. the input signal supplied to the timer PST drops to a constant level which is kept in the normal burning mode. Already with the expiration of the fixed ignition period Δit, however, the timer PST generates another, the second selection signal S2. This is held until the input of the timer PST when falling back through the ignition level. This pulse duration of the second selection signal S2 defines a switch-off period .DELTA.st following the ignition period .DELTA.it, in which the shutdown of the electronic ballast is prepared in the event of an error.

Für die Ausführung dieser Funktion ist eine Abschalteinheit mit einem Zähler CTR und einem Abschaltkreis SDL vorgesehen. Der Zähler CTR wird sowohl durch die ansteigende als auch die abfallende Flanke des zweiten Auswahlsignales S2 rückgesetzt. Ihm werden die Ausgangsimpulse QM der Überwachungsschaltung MON als Zählimpulse zugeführt. Beim normalen Startvorgang erreicht er nach beispielsweise vier Zählimpulsen seinen Endwert und aktiviert dann die interne Stromquelle IT. Im weiteren Verlauf setzt die Vorderflanke des zweiten Auswahlsignales S2 den Zähler CTR zurück und schaltet den Abschaltkreis SDL vorbereitend frei. Jetzt wird die Anzahl vergeblicher Zündversuche bzw. die Anzahl der nun auftretenden Ausgangsimpulse QM gezählt. Erreicht der Zähler CTR dabei seinen Endwert bei einer zündunwilligen Lampe, aktiviert er den vorbereitend freigeschalteten Abschaltkreis SDL. Dieser sperrt daraufhin unter anderem die Auswahlschaltung SEL und unterbricht darüber die Ansteuerung der Halbbrückenschaltung V2, V3. In analoger Weise wird im Falle eines Aussetzens der Zündung der Leuchtstofflampe FL während des normalen Brennbetriebes der Zeitwertgeber wieder aktiviert, erneute Zündversuche werden in der Überwachungsschaltung MON bewertet und dabei Ausgangsimpulse QM erzeugt. Wieder führt dies zur beschriebenen Abschaltung des elektronischen Vorschaltgerätes nach mehrmaligen vergeblichen Zündversuchen. Die durch diese Maßnahme eingeführte Hysterese unterdrückt kurzzeitige Störungen und führt zu einer erhöhten Störsicherheit des elektronischen Vorschaltgerätes.For the execution of this function, a shutdown unit with a counter CTR and a shutdown SDL is provided. The counter CTR is reset by both the rising and the falling edge of the second selection signal S2. The output pulses QM are supplied to the monitoring circuit MON as counting pulses. During normal startup, it reaches its final value after four counts, for example, and then activates the internal power source IT. In the further course, the leading edge of the second selection signal S2 resets the counter CTR and prepares the shutdown circuit SDL for preparatory release. Now count the number of futile attempts at ignition or the number of output pulses QM that occur now. If the counter CTR reaches its final value at a Ignoring the lamp, it activates the previously disconnected shutdown circuit SDL. This then inter alia blocks the selection circuit SEL and interrupts the control of the half-bridge circuit V2, V3. In an analogous manner, in the event of exposure of the ignition of the fluorescent lamp FL during normal combustion operation, the timer is reactivated, re-ignition attempts are evaluated in the monitoring circuit MON while output pulses QM generated. Again, this leads to the described shutdown of the electronic ballast after repeated futile attempts at ignition. The introduced by this measure hysteresis suppressed short-term disturbances and leads to an increased immunity to interference of the electronic ballast.

Der Vollständigkeit halber sei hinzugefügt, daß der Steuer- und Regelkreis IC schließlich auch dafür ausgelegt ist, sich in einem relativ weiten Toleranzbereich an Veränderungen des Laststromes anzupassen. Solche Veränderungen können insbesondere im Dimmzustand bei mehrlampigen Anwendungen oder auch bei kritischen Lampentoleranzen, z. B. durch gealterte, hochohmige Lampenwendeln hervorgerufen, auftreten. Diese Fälle können dazu führen, daß der Regeloperationsverstärker OPR nicht mehr innerhalb seine definierten Regelbereiches arbeitet. Dieser Zustand wird durch einen weiteren Komparator COMP detektiert, der mit seinem nicht invertierenden Eingang an den externen Anschluß P1 angeschlossen ist und dessen invertierendem Eingang eine intern erzeugte Vergleichsspannung Vcc' zugeführt wird, die gegenüber der im normalen Betriebszustand auftretenden Spannung an dem Ladekondensator Ccc deutlich, beispielsweise um 25% herabgesetzt ist. Tritt ein derartiger Betriebszustand ein, gibt der Komparator COMP an die Überwachungsschaltung MON ein Steuersignal ab, mit dem dort ein Zustand eingestellt wird, in dem alle Referenzpegel Mp, Mi, Mdo und Mo deutlich abgesenkt werden. Die Überwachungsschaltung MON arbeitet daher dann auch bei geringeren Lampenströmen einwandfrei. For the sake of completeness, it should be added that the control and regulating circuit IC is finally also designed to adapt to changes in the load current in a relatively wide tolerance range. Such changes can especially in dimming in multi-lamp applications or even with critical lamp tolerances, eg. B. caused by aged, high-resistance lamp filaments occur. These cases can lead to the fact that the operation OPR operational amplifier no longer works within its defined control range. This state is detected by a further comparator COMP which is connected with its non-inverting input to the external terminal P1 and whose inverting input is supplied with an internally generated comparison voltage Vcc ', which is clearly visible in relation to the voltage at the charging capacitor Ccc occurring in the normal operating state. for example, reduced by 25%. When such an operating state occurs, the comparator COMP outputs to the monitoring circuit MON a control signal with which a state is set there in which all reference levels Mp, Mi, Mdo and Mo are markedly lowered. The monitoring circuit MON then works properly even at lower lamp currents.

Claims (8)

  1. Method for operating at least one fluorescent lamp (FL) by means of an electronic ballast with an integrated control and regulating circuit (IC) for regulating the load current in a load circuit (4) connected via a half-bridge circuit (V2, V3) and having the at least one fluorescent lamp (FL) by means of a drive circuit (CCO, SEL, HSD, LSD) of the half-bridge circuit, said drive circuit being regulated in a high-frequency manner, in which case, in the control and regulating circuit,
    - each time the lamp is started and/or when there is a disturbance, a timer (PST, IT, CT) for generating selection signals (S1, S2, S3, S4) is started, the sequence of which selection signals defines predetermined periods of time (Δpt, Δit, Δst, Δot), for example a preheating period (Δpt) or an ignition period (Δit),
    - by means of the selection signals, respectively different, predetermined reference levels (Mp, Mi, Mdo, and Mo) are activated in a monitoring circuit (MON) for the load current,
    - the monitoring circuit emits control pulses (QM) as soon as the instantaneous value of the pulsed load current reaches the activated reference level,
    - which control pulses identify a normal state or a disturbance in the load circuit as a function of their occurrence or failure to occur during the present period of time (Δpt, Δit, Δst, or Δot) and, in the normal state, are fed as regulator actual values to the drive circuit (CCO, ISC, SEL, HSD, LSD) or, in the event of a disturbance, trigger an automatic disconnection of the electronic ballast,
    characterized in that, during the ignition period (Δit), the current signal which is derived from the load current and is fed to the monitoring circuit (MON) has superposed on it a DC signal (DC) which is generated internally in the control and regulating circuit (IC) and has a defined level, whose value is dimensioned in accordance with the types and/or circuits of the at least one fluorescent lamp which are used in the load circuit, with the result that the signal that is superposed in this way is adapted to the predetermined, fixed reference level (Mi) independently of the lamp selection in the load circuit.
  2. Method according to Claim 1, characterized in that the DC signal (DC) superposed on the current signal to be detected is generated by a DC source (IM) which is provided internally in the control and regulating circuit (IC) and is held in the activated state for the period of time of the ignition period (Δit) by a further selection signal (S4) emitted by the timer (PST, IT, CT).
  3. Method according to Claim 2, characterized in that the level of the internal DC source (IM) is set by the current flow through a resistor (RTL), which is connected externally to the drive circuit (CCO, SEL, HSD, LSD) of the half-bridge circuit (V2, V3), said drive circuit being regulated in a high-frequency manner, and determines a blanking interval in the half-bridge circuit.
  4. Method according to one of Claims 1 to 3, characterized in that the regulation of the load current which is effected via the drive circuit (CCO, SEL, HSD, LSD) and the half-bridge circuit (V2, V3) connected thereto is deactivated during the ignition period (Δit) until the actual ignition instant of the at least one fluorescent lamp (FL).
  5. Electronic ballast for operating at least one fluorescent lamp (FL) with a control and regulating circuit (IC) designed as an integrated circuit, to which there is connected, via a half-bridge circuit (V2, V3), a load circuit having the at least one fluorescent lamp for the regulation of the load currents, in which case, in the control and regulating circuit, provision is made
    - of a drive circuit (CCO, SEL, HSD, LSD), regulated in a high-frequency manner, for the half-bridge circuit (V2, V3),
    - a timer (PST, IT, CT) which is to be started anew each time the lamp is started and/or when there is a disturbance, and serves for generating selection signals (S1, S2, S3), the sequence of which defines predetermined periods of time (Δpt, Δit, Δst, Δot) for example a preheating period (Δpt) or an ignition period (Δit), and
    - a monitoring circuit (MON) for the load current, which monitoring circuit is coupled to the half-bridge circuit, is designed as a threshold value comparator with a plurality of reference levels (Mp, Mi, Mdo, Mo) which are activated individually in each case by one of the selection signals, and generates a respective control pulse (QM) as soon as the pulsed load current reaches the instantaneously activated reference level,
    in which case these control pulses identify a normal state or a disturbance in the load circuit as a function of their occurrence or failure to occur during the present period of time (Δpt, Δit, Δst or Δto) and, in the normal state, are fed as regulator actual values to the drive circuit (CCO, ISC, SEL, HSD, LSD) or, in the event of a disturbance, trigger an automatic disconnection of the electronic ballast,
    characterized in that the control and regulating circuit (IC) furthermore has a DC source (IM), which is activated during the ignition period (Δit) until the actual ignition of the at least one fluorescent lamp (FL) and whose output is connected to the input of the monitoring circuit (MON) for the current signal derived from the load current and thus superposes on this load current signal a DC signal (DC) having a defined level, whose value is dimensioned according to the lamp types and/or circuits used in the load circuit.
  6. Electronic ballast according to Claim 5, in which a non-reactive resistor (RTL) is connected externally to the drive circuit (CCO, SEL, HSD, LSD) for the half-bridge circuit (V2, V3), which resistor defines the blanking interval of these power transistors, characterized in that the level of the internal DC source (IM) is derived from the current flow through said resistor (RTL).
  7. Electronic ballast according to either of Claims 5 and 6, characterized in that, in the control and regulating circuit (IC), provision is furthermore made of an inhibiting switch (OPRd), which deactivates the regulating circuit of the drive circuit (CCO, SEL, HSD, LSD) and hence regulation of the load current via the half-bridge circuit (V2, V3) connected thereto during the ignition period (Δit) until the actual ignition instant of the at least one fluorescent lamp (FL).
  8. Electronic ballast according to Claim 7, characterized in that the monitoring circuit (MON) designed as a threshold value comparator is equipped with a further reference level (Mdo) in addition to the reference levels (Mp, Mi) for the load current during the preheating period (Δpt) and during the ignition period (Δit), respectively, the level of which further reference level is defined according to the relation Mp < Mdo < Mi and, as a result, as soon as the signal which is derived from the load current and is fed to the input of the monitoring circuit exceeds said further reference level (Mop), said monitoring circuit respectively generates a further control pulse (QM1) which is fed to the inhibiting switch (OPRd) as a triggering pulse.
EP00104995A 1999-06-18 2000-03-09 Method and electronic ballast for operating one or more fluorescent lamps Expired - Lifetime EP1061779B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19928042A DE19928042A1 (en) 1999-06-18 1999-06-18 Method for operating at least one fluorescent lamp and electronic ballast therefor
DE19928042 1999-06-18

Publications (3)

Publication Number Publication Date
EP1061779A2 EP1061779A2 (en) 2000-12-20
EP1061779A3 EP1061779A3 (en) 2004-11-03
EP1061779B1 true EP1061779B1 (en) 2006-05-24

Family

ID=7911790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00104995A Expired - Lifetime EP1061779B1 (en) 1999-06-18 2000-03-09 Method and electronic ballast for operating one or more fluorescent lamps

Country Status (7)

Country Link
US (1) US6310447B1 (en)
EP (1) EP1061779B1 (en)
JP (1) JP4570734B2 (en)
AT (1) ATE327653T1 (en)
CA (1) CA2311891A1 (en)
DE (2) DE19928042A1 (en)
TW (1) TW477159B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060228A1 (en) * 2001-01-24 2002-08-01 Stmicroelectronics S.R.L. Fault management method for electronic ballast
AUPR610801A0 (en) * 2001-07-04 2001-07-26 Briter Electronics Controlling apparatus
GB2408834B (en) * 2001-12-11 2005-07-20 Westinghouse Brake & Signal Signal lamps and apparatus
WO2007044948A2 (en) * 2005-10-12 2007-04-19 International Rectifier Corporation Dimmable ballast control integrated circuit
DE102008056814A1 (en) * 2008-11-11 2010-05-27 HÜCO Lightronic GmbH Electronic ballast, lighting device and method of operation of same
US11166645B2 (en) 2018-12-18 2021-11-09 Biosense Webster (Israel) Ltd. Visualizing lesions formed by thermal ablation in a magnetic resonance imaging (MRI) scan

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132096U (en) * 1988-03-04 1989-09-07
ES2049790T3 (en) * 1989-10-09 1994-05-01 Siemens Ag ELECTRONIC ADAPTER.
TW266383B (en) * 1994-07-19 1995-12-21 Siemens Ag Method of starting at least one fluorescent lamp by an electronic ballast and the electronic ballast used therefor
US5550436A (en) * 1994-09-01 1996-08-27 International Rectifier Corporation MOS gate driver integrated circuit for ballast circuits
US5729096A (en) * 1996-07-24 1998-03-17 Motorola Inc. Inverter protection method and protection circuit for fluorescent lamp preheat ballasts
US6008593A (en) * 1997-02-12 1999-12-28 International Rectifier Corporation Closed-loop/dimming ballast controller integrated circuits
US5982110A (en) * 1997-04-10 1999-11-09 Philips Electronics North America Corporation Compact fluorescent lamp with overcurrent protection
JPH1167478A (en) * 1997-08-13 1999-03-09 Matsushita Electric Works Ltd Discharge lamp lighting device

Also Published As

Publication number Publication date
DE19928042A1 (en) 2000-12-21
US6310447B1 (en) 2001-10-30
EP1061779A3 (en) 2004-11-03
DE50012802D1 (en) 2006-06-29
ATE327653T1 (en) 2006-06-15
CA2311891A1 (en) 2000-12-18
JP2001023789A (en) 2001-01-26
EP1061779A2 (en) 2000-12-20
TW477159B (en) 2002-02-21
JP4570734B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
EP0801881B1 (en) Method of operating at least one fluorescent lamp with electronic ballast, and ballast therefor
EP0338109B1 (en) Converter for a discharge lamp
EP1333707A1 (en) Electronic ballast for a discharge lamp
DE19900153A1 (en) Integrated gate driver circuit
DE102005007346A1 (en) Circuit arrangement and method for operating gas discharge lamps
DE60205830T2 (en) Ballast with efficient electrode preheating and lamp fault protection
EP1211794B1 (en) Method for regulation of output current and/or output voltage of switched mode power supply
EP1465330B1 (en) Method and circuit for varying the power consumption of capacitive loads
DE10303246B3 (en) Switch control circuit for switched power factor converter has signal generation circuit responding to detected critical condition for providing control signal with pulse ratio dependent on regulation signal
DE112004000145T5 (en) Control IC for dimming ballast with flicker suppression circuit
DE69911376T2 (en) METHOD AND ARRANGEMENT FOR OPERATING ELECTRONIC CONTROL GEARS FOR DISCHARGE LAMPS OF HIGH INTENSITY
EP1061779B1 (en) Method and electronic ballast for operating one or more fluorescent lamps
EP0986173B1 (en) Circuit device to control the steepness of an edge
EP2138015B1 (en) Circuit configuration for generating an auxiliary voltage and for operating at least one discharge lamp
EP2512207A1 (en) Driver circuit and method for powering an LED and illuminant
EP1031258B1 (en) Interface for a lamp operating device
EP2168229A1 (en) Circuit arrangement comprising a voltage transformer and associated method
DE102005028419A1 (en) Electronic ballast for e.g. coldstarting discharge lamp, has varistor, shutdown device, diode, resistors and integration capacitor connected in parallel for limiting voltage across intermediate circuit capacitor
EP0588273A1 (en) Process for electronically dimming and dimmer for carrying out this process
DE60127966T2 (en) CIRCUIT
EP1326484A2 (en) Apparatus for operating discharge lamps
EP1987704A1 (en) Step-up driver with minimal switching frequency
EP2140735B1 (en) Circuit configuration for starting and operating at least one discharge lamp
WO2004098244A1 (en) Starter circuit having regulated starting voltage
DE19517355C2 (en) Dimmable electronic ballast

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20041206

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50012802

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060904

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061024

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110315

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012802

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012802

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012802

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140319

Year of fee payment: 15

Ref country code: SE

Payment date: 20140319

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140319

Year of fee payment: 15

Ref country code: IT

Payment date: 20140325

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140319

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140319

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012802

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150310

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150309

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331