EP1054214B1 - Analyzing apparatus, using an analyzing apparatus and method for measuring flue gas - Google Patents

Analyzing apparatus, using an analyzing apparatus and method for measuring flue gas Download PDF

Info

Publication number
EP1054214B1
EP1054214B1 EP00110599A EP00110599A EP1054214B1 EP 1054214 B1 EP1054214 B1 EP 1054214B1 EP 00110599 A EP00110599 A EP 00110599A EP 00110599 A EP00110599 A EP 00110599A EP 1054214 B1 EP1054214 B1 EP 1054214B1
Authority
EP
European Patent Office
Prior art keywords
analyser
control
data
exhaust
regulation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00110599A
Other languages
German (de)
French (fr)
Other versions
EP1054214A2 (en
EP1054214A3 (en
Inventor
Jörg Kammerer
Klaus Bott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to DK00110599T priority Critical patent/DK1054214T3/en
Publication of EP1054214A2 publication Critical patent/EP1054214A2/en
Publication of EP1054214A3 publication Critical patent/EP1054214A3/en
Application granted granted Critical
Publication of EP1054214B1 publication Critical patent/EP1054214B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/04Measuring pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/10Measuring temperature stack temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/26Details

Definitions

  • the present invention relates to an analysis device for incineration plants according to claim 1
  • the invention further relates to the use of an analysis device for incinerators as well a method for measuring flue gases using an analyzer according to the independent Claims.
  • incinerators are from EP 0 751 350 A. and known from US 5 010 322 A.
  • Such analysis device for incinerators and the use of an analysis device are already known for different purposes and applications.
  • flue gas measuring devices which system parameters such as temperature, O 2 , CO 2 , CO content, etc. can measure.
  • These measuring devices are used to set heating systems.
  • These devices have input buttons, a display, possibly a printer and, in addition to the measurement inputs mentioned above, interfaces with which the data obtained can be transferred to a printer or a computer.
  • the fitter or chimney sweep can use these measuring devices to carry out the necessary measurements in the heating system's exhaust system.
  • C when t ⁇ ⁇ ) are reached and the measuring probes can be optimally placed. Stable combustion is still required so that the sensors used are not destroyed by incompletely burned parts of the fuel-air mixture. To do this, the heating system is put into operation and the fitter or chimney sweep must wait until there is stable combustion. Only then can the smoke gas measurement be started.
  • the burner settings are optimized Measurement of values from the control device of the burner, a so-called Automatic burner controls can be obtained. To be able to take these measurements, the burner control can be partially opened or rewired. Among other things, are measured the mains voltage with a voltmeter, the sensor current of the flame sensor with a micro-ampere meter or voltmeter and the program times or flame formation time with a stopwatch. From the values of mains voltage and sensor current determined one after the other, a statement about the sensor current at normal mains voltage, this statement being made in terms of time Distance was measured and other fluctuations occurred during this period Interferences such as. the mains voltage is very imprecise.
  • Automatic furnaces for small and medium-sized burners generally do not have displays Show information about malfunctions of the burner control, but only simple Status displays, mostly light emitting diodes or glow lamps. More elaborate displays are made Cost reasons omitted. Newer burner controls are known to have data on one Additional device with display to transmit, the communication via any serial Interface, e.g. via an infrared interface. Can on the display Information about the burner control or about faults in the burner control as Numeric code or in plain text.
  • a fitter or chimney sweep therefore needs service, maintenance and commissioning from Incinerators of the type described above several devices to do the appropriate work the measurements take a lot of time and are sometimes very imprecise. This increases the Effort and thus the cost of such a process.
  • an exhaust gas analyzer has become known, which has a Infrared interface Receive data from a burner control and evaluate it in the analyzer and can visualize on the display device.
  • the analyzer has two modes, one Exhaust gas analysis mode and a data evaluation mode. The analyzer thus only serves as Display for the data output from the burner control.
  • the present invention has for its object an analyzer, its use and Provide methods for measuring flue gases by means of an analysis device, which is simple and allow inexpensive maintenance, service and commissioning of incineration plants.
  • the essence of the invention is thus that means for joint processing of the data in the analysis device the data transmitted to the control and regulating device and the data determined from the exhaust system are arranged.
  • the 1 shows a control and regulating device 1, a so-called burner control, for one Burner 2.
  • the fuel is supplied to the combustion chamber 4 via a fuel line 3, the Amount of fuel is controlled by the control and regulating device 1 by means of an actuator 5.
  • the burner 2 is a gas burner, then the actuator 5 is a flap, the position of which is the gas flow controls.
  • the actuator 5 is an oil pressure regulator.
  • One by one Motor 6 driven fan 7 feeds air into the combustion chamber 4.
  • the fuel-air mixture burned and the flue gases discharged via an exhaust system 8.
  • an analysis device for combustion systems 9 a so-called flue gas analysis device
  • the flue gases are measured in the exhaust system with regard to their composition, as well as the temperature and pressure via lines 10, 11 and specific sensors, not shown, and evaluated in the analysis device 9.
  • the sensors for measuring flue gases such as O 2 , CO 2 and CO can be arranged in the analyzer 9 or outside the analyzer.
  • the flue gases are usually drawn out of the exhaust system via a hose and fed to the sensor. This information obtained in this way from the exhaust system can be shown on a display of the analysis device or output to a printer or computer 12 and processed further via an output unit.
  • the analysis device 9 is connected to the burner control unit 1 via a communication line 13.
  • the data can be transferred from the automatic firing device to the analysis device via any interface, for example via an optical interface arranged on the automatic firing device 1.
  • the sequential optical information output via the optical interface can be converted into the signal level of a serial interface of the analysis device by means of a scanning device (not shown).
  • the signals from the burner control are then processed further in the flue gas analyzer.
  • special programs are provided in the analyzer, which convert the signals from the burner control into corresponding displays on the display of the analyzer and can process the data supplied by the burner control. Fault messages, input and output states of the burner control, identifier, commissioning counter, service counter, mains voltage, flame intensity, respectively flame current, flame formation time, program phase, etc.
  • the burner control unit 1 can be transferred from the burner control to the analysis device.
  • This information is evaluated and processed in the analyzer, in particular shown in plain text on the display. Since the information from the burner control unit 1 and the information from the exhaust system 8 are now recorded in a device 9, this allows this information to be processed in the analysis device 9 at the same time and the measurement accuracy and the analysis accuracy to be decisively increased. Furthermore, by measuring all specific data, such as pressure, temperature, humidity, O 2 , CO, CO 2 , NO x , of the incineration plant, the measurement effort is reduced and thus the costs are reduced. Furthermore, the processing of all specific data of the incineration plant in a device 9 allows precise statements about the overall condition of the plant and, in the event of faults, about the exact cause of the fault. Due to the precise determination of the cause of the fault, only the components that are really defective and no longer have to be replaced as usual, several assemblies, such as the burner control and the fuel valve.
  • the measurement of the flue gases in the exhaust system can be done by processing the data together Analyzer can be automated.
  • the information about the Combustion won and if there is stable combustion i.e. if e.g. the Flame flow is within certain limits, or a certain minimum time since the emergence Flame has passed or a certain boiler temperature has been reached, the flue gases measured. If the state of the combustion changes during the measurement and becomes unstable, the measurement of the flue gases can be interrupted immediately by the analyzer. This allows a reliable measurement of the flue gases without the sensors being burned by insufficient Flue gases are damaged, which increases the life of the sensors. At the same time Long-term measurement of the flue gases is possible using this method, e.g. over several days without that a technician or chimney sweep must monitor the measurement on site. This allows long-term statements about the condition of the incineration plants and thus also an improved analysis the condition of the system.
  • the controller 14 may be a boiler controller that controls the temperature, pressure of a heating system (not shown) that is heated by the combustion in the combustion chamber. If the pressure or the temperature in the heating system rises above a certain predetermined value, the controller 14 passes this information on to the automatic firing device via line 15, whereby the automatic firing device interrupts the combustion.
  • the information passed on from the controller 14 to the automatic firing device 1 can likewise be transmitted via line 13 to the analysis device and processed there. If the communication takes place bidirectionally via line 15, the information from the burner control can also be passed on to controller 14 via line 15 and to the analysis device via line 16.
  • the line 13 can be omitted and the communication between the automatic burner control and the analysis device takes place with the intermediary of the controller 14.
  • the controller 14 can, for example, also be an electrical compound controller which controls the actuator 5 and the motor 6, which is shown in broken lines in FIG.
  • the communication between the burner control unit and the analysis device can of course also take place with the inclusion of controllers / devices not mentioned further, in which case the information contained in the devices can also be passed on to the analysis device.
  • the lines 13, 15, 16 can be configured as desired, so the communication can take place unidirectionally or bidirectionally by means of a point-to-point interface as well as via a bus interface.
  • controllers and analyzer By combining controllers and analyzer, data exchange between the controllers and analysis device and the joint processing of data in the analysis device can be a Numerous advantageous designs and improvements compared to conventional devices achieve.
  • the combustion process can be performed by measuring exhaust gas values and automatically Setting the electrical network can be optimized.
  • the flue gas analyzer measures that Oxygen concentration in the flue gas and gives corresponding control commands to the burner controls or the electrical connection.
  • the Automatic burner control unit By measuring the flue gas from the flue gas analyzer, the Automatic burner control unit at every working point adjust the air size until an optimal one There is combustion at every working point.
  • the connection between the flue gas analyzer and Automatic burner control can be done by bidirectional communication.
  • the combustion process can also be optimized with regard to the mechanical bond.
  • at Single or two-stage burners can set the primary air manually via the specifications of the Analyzer or done automatically via motor adapter. This process is not straightforward in connection with the burner control, but can be measured by the flame intensity and the time of the flame formation are sensibly supplemented.
  • the joint processing of data in the analyzer can be used to determine the Fuel consumption can be used via the burner control. This for example by means of a electric fuel flow meter or by determining the fuel pressure, the nozzle size and calculation over the burner runtime and evaluation / logging over the Flue gas analyzer. Through the annual exhaust gas analysis, an energy balance over the Heating system are made taking into account consumption and efficiency.
  • the optimal pre-ventilation time can be determined using the flue gas analyzer at the system service, taking into account the relevant parameters such as the O 2 content of the flue gas, stability of the combustion chamber pressure etc. This can save until the next check, taking into account the existing safety regulations.
  • the joint processing of data in the analyzer can be used to determine the optimal Interval time between the first and second burner stage or between the first burner stage to can be used to enable the controller.
  • the combustion chamber pressure can be used to determine the time until the flame intensity and the furnace pressure has reached constant values. The stability of the combustion of a plant can thus be checked effectively. This time can be from the analyzer in the machine at a bidirectional interface for storage.
  • the joint processing of data in the analyzer can be used to identify critical boilers / burners Maps and how to avoid them by setting the Automatic burner controls / controllers are used. This prevents the thermodynamics between the burner flames and the boiler geometry Resonance phenomena with poorer combustion, strong noise and shortened Lifetime of the boiler due to mechanical stress.
  • Analysis values of the flue gas analyzer can be saved in the burner control or controller become. These values are used to determine the quality and potential for improvement Burner or a heating system and there should also be previous analysis values be taken into account. By storing the values on site in the burner control or controller the paper protocols used today or the values stored in the analyzer are not needs more, which is advantageous because they are easily lost. The values can be changed at any time Plant can be accessed and are independent of a particular analyzer. A comparison The measured values of the chimney sweep with the last measured values of the service engineer can affect the quality improve your own measurements.
  • the joint processing of data in the analyzer can be used to determine the Flame time and flame intensity of the burner used to be at different Service corridors to be able to recognize deviations / drift.
  • the flame formation time represents one important parameter when evaluating a burner. Based on the flame formation time and their scattering can determine the quality of the fuel mixing and readiness for ignition. This measure can be combined or supplemented with the next one Flame intensity and the additionally determined exhaust gas values when evaluating a burner or a boiler.
  • the flue gas analyzer can also replace existing parameterization devices for burners and Boiler systems can be used.
  • Existing boiler systems with integrated digital controllers require the parameterization of many individual parameters for optimal setting. For setting these parameters require special tools today. However, these tools are complex and therefore also relatively expensive.
  • the parameterization tools for burners and boiler systems can be integrated into existing smoke gas analyzers with sufficient display and control elements. This will A higher availability for heating and service technicians is achieved, since this only takes one instead have to carry two service devices. Further system parameters can already be found in the existing customer databases of the flue gas analysis devices are saved. The parameter data and exhaust gas readings can thus be stored in a database for better To be able to perform optimization. Such an optimization could show that a Reduction of the min. Boiler output reduces the number of burner starts by 10%, or that by one Reduction of the max. Boiler output the max. Exhaust temperature is reduced by 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Incineration Of Waste (AREA)

Abstract

Analyzer has devices for processing data transmitted from a control and regulating apparatus and from the flue gas system. Preferred Features: Devices are arranged in the analyzer for processing data from a further regulator. Parameters of the combustion plant, analyzer, control and regulating apparatus and regulator are adjusted by the processed data. Measurement of th flue gases in the flue gas system can be controlled by data transmitted from the control and regulating device.

Description

Die vorliegende Erfindung betrifft ein Analysegerät für Verbrennungsanlagen nach Anspruch 1 Die Erfindung betrifft weiter die Verwendung eines Analysegerätes für Verbrennungsanlagen sowie ein Verfahren zur Messung von Rauchgasen mittels eines Analysegerätes nach den unabhängigen Ansprüchen. Solche Verbrennungsanlagen sind aus EP 0 751 350 A und aus US 5 010 322 A bekannt.The present invention relates to an analysis device for incineration plants according to claim 1 The invention further relates to the use of an analysis device for incinerators as well a method for measuring flue gases using an analyzer according to the independent Claims. Such incinerators are from EP 0 751 350 A. and known from US 5 010 322 A.

Derartige Analysegerät für Verbrennungsanlagen und die Verwendung eines Analysegerätes sind für unterschiedliche Zwecke und Anwendungen bereits bekannt. So sind beispielsweise von "Testo", "msi",oder "rbr-ecom" Rauchgas-Messgeräte bekannt, welche Anlagenparameter wie Temperatur, O2-, CO2-, CO-Gehalt, usw. messen können. Diese Messgeräte werden zur Einstellung von Heizungsanlagen verwendet. Diese Geräte weisen Eingabetasten, Display, evtl. Drucker und zusätzlich zu den obengenannten Mess-Eingängen Schnittstellen auf, mit denen die gewonnenen Daten auf einen Drucker oder einen Computer übertragen werden können. Zur Einstellung und Wartung der Heizungsanlage kann der Monteur oder Kaminfeger mit diesen Messgeräten die erforderlichen Messungen im Abgassystem der Heizungsanlage vornehmen. Bevor eine solche Messung erfolgen kann, muss jedoch die Heizungsanlage in einem stationären, stabilen Zustand betrieben werden, damit stabile Meßwerte (M=f(t) |=C wenn t → ∞) erreicht und somit die Messsonden optimal plaziert werden können. Eine stabile Verbrennung ist weiterhin erforderlich, damit die verwendeten Sensoren nicht durch unvollständig verbrannte Teile des Brennstoff-Luftgemisches zerstört werden. Dazu wird die Heizungsanlage in Betrieb gesetzt und der Monteur oder Kaminfeger muss abwarten, bis eine stabile Verbrennung vorherrscht. Erst dann kann von ihm die Messung der Rauchgase gestartet werden.Such analysis device for incinerators and the use of an analysis device are already known for different purposes and applications. For example, from "Testo", "msi", or "rbr-ecom" flue gas measuring devices are known which system parameters such as temperature, O 2 , CO 2 , CO content, etc. can measure. These measuring devices are used to set heating systems. These devices have input buttons, a display, possibly a printer and, in addition to the measurement inputs mentioned above, interfaces with which the data obtained can be transferred to a printer or a computer. To set and maintain the heating system, the fitter or chimney sweep can use these measuring devices to carry out the necessary measurements in the heating system's exhaust system. Before such a measurement can be carried out, however, the heating system must be operated in a steady, stable state so that stable measured values (M = f (t) | = C when t → ∞ ) are reached and the measuring probes can be optimally placed. Stable combustion is still required so that the sensors used are not destroyed by incompletely burned parts of the fuel-air mixture. To do this, the heating system is put into operation and the fitter or chimney sweep must wait until there is stable combustion. Only then can the smoke gas measurement be started.

Nach dem Ausmessen des Abgassystems erfolgt zur Optimierung der Brennereinstellungen die Messung von Werten, die aus dem Steuer- und Regelgerät des Brenners, eines sogenannten Feuerungsautomaten, gewonnen werden können. Um diese Messungen vornehmen zu können, muss der Feuerungsautomat teilweise geöffnet oder umverdrahtet werden. Gemessen werden unter anderem die Netzspannung mit einem Voltmeter, der Fühlerstrom des Flammenfühlers mit einem Mikro-Ampere-Meter oder Voltmeter und die Programmzeiten oder Flammenbildungszeit mit einer Stoppuhr. Aus den nacheinander ermittelten Werten von Netzspannung und Fühlerstrom kann eine Aussage über den Fühlerstrom bei Normal-Netzspannung erfolgen, wobei diese Aussage durch die in zeitlichem Abstand erfolgte Messung und durch in diesem Zeitraum erfolgte Schwankungen weiterer Störeinflüsse wie zB. der Netzspannung sehr ungenau ist. After measuring the flue system, the burner settings are optimized Measurement of values from the control device of the burner, a so-called Automatic burner controls can be obtained. To be able to take these measurements, the burner control can be partially opened or rewired. Among other things, are measured the mains voltage with a voltmeter, the sensor current of the flame sensor with a micro-ampere meter or voltmeter and the program times or flame formation time with a stopwatch. From the values of mains voltage and sensor current determined one after the other, a statement about the sensor current at normal mains voltage, this statement being made in terms of time Distance was measured and other fluctuations occurred during this period Interferences such as. the mains voltage is very imprecise.

Feuerungsautomaten für kleinere und mittlere Brenner besitzen in der Regel keine Displays um Informationen über Störungen des Feuerungsautomaten anzuzeigen, sondern nur einfache Statusanzeigen, meist Leuchtdioden oder Glimmlampen . Aufwendigere Displays werden dabei aus Kostengründen weggelassen. Bei neueren Feuerungsautomaten ist bekannt, dass sie Daten auf ein Zusatzgerät mit Display zu übertragen, wobei die Kommunikation über eine beliebige serielle Schnittstelle, z.B. über eine Infrarotschnittstelle, erfolgen kann. Auf dem Display können Informationen über den Feuerungsautomat oder über Störungen im Feuerungsautomaten als Zahlencode oder im Klartext ausgegeben werden.Automatic furnaces for small and medium-sized burners generally do not have displays Show information about malfunctions of the burner control, but only simple Status displays, mostly light emitting diodes or glow lamps. More elaborate displays are made Cost reasons omitted. Newer burner controls are known to have data on one Additional device with display to transmit, the communication via any serial Interface, e.g. via an infrared interface. Can on the display Information about the burner control or about faults in the burner control as Numeric code or in plain text.

Ein Monteur oder Kaminfeger braucht deshalb bei Service, Wartung und Inbetriebsetzung von Verbrennungsanlagen der obenbeschriebenen Art mehrere Geräte, um die entsprechenden Arbeiten auszuführen, die Messungen benötigen viel Zeit und sind teilweise sehr ungenau. Dies erhöht den Aufwand und damit die Kosten eines solchen Vorganges.A fitter or chimney sweep therefore needs service, maintenance and commissioning from Incinerators of the type described above several devices to do the appropriate work the measurements take a lot of time and are sometimes very imprecise. This increases the Effort and thus the cost of such a process.

Aus der DE 299 00 588 U1 ist ein Abgas-Analysegerät bekannt geworden, welches über eine Infrarotschnittstelle Daten aus einem Feuerungsautomaten empfangen und im Analysegerät auswerten und auf der Anzeigevorrichtung visualisiere kann. Das Analysegerät weist dabei zwei Modi auf, einen Abgasanalysemodus und einen Daten-Auswertungs-Modus. Das Analysegerät dient somit nur als Display für die aus dem Feuerungsautomaten ausgegebenen Daten.From DE 299 00 588 U1 an exhaust gas analyzer has become known, which has a Infrared interface Receive data from a burner control and evaluate it in the analyzer and can visualize on the display device. The analyzer has two modes, one Exhaust gas analysis mode and a data evaluation mode. The analyzer thus only serves as Display for the data output from the burner control.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Analysegerät, dessen Verwendung sowie Verfahren zur Messung von Rauchgasen mittels eines Analysegerätes bereitzustellen, die eine einfache und kostengünstige Wartung, Service und Inbetriebsetzung von Verbrennungsanlagen erlauben.The present invention has for its object an analyzer, its use and Provide methods for measuring flue gases by means of an analysis device, which is simple and allow inexpensive maintenance, service and commissioning of incineration plants.

Die genannte Aufgabe wird erfindungsgemäss durch die in den unabhängigen Ansprüche angegebenen Merkmale gelöst.According to the invention, this object is achieved by the features specified in the independent claims Features solved.

Kern der Erfindung ist es somit, dass im Analysegerät Mittel zur gemeinsamen Verarbeitung der aus dem Steuer- und Regelgerät übertragenen Daten und der aus dem Abgassystem ermittelten Daten angeordnet sind.The essence of the invention is thus that means for joint processing of the data in the analysis device the data transmitted to the control and regulating device and the data determined from the exhaust system are arranged.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. Further advantageous embodiments of the invention result from the dependent claims.

Einige bevorzugte Ausführungsbeispiele des erfindungsgemässen Analysegerätes, der Verwendung dieses Analysegerätes bzw. des erfindungsgemässen Verfahrens zur Messung von Rauchgasen werden anhand der nachfolgenden Zeichnungen näher erläutert.Some preferred exemplary embodiments of the analysis device according to the invention, the use this analyzer or the method according to the invention for measuring flue gases explained in more detail using the following drawings.

Dabei zeigen:

Fig. 1
die schematische Ansicht einer Verbrennungsanlage mit einem Steuer- und Regelungsgerät und einem Analysegerät;
Fig. 2
die schematische Ansicht einer Verbrennungsanlage mit einem Steuer- und Regelungsgerät, einem Analysegerät und einem zusätzlichen Regler.
Show:
Fig. 1
the schematic view of an incinerator with a control and regulation device and an analysis device;
Fig. 2
the schematic view of an incinerator with a control and regulation device, an analysis device and an additional regulator.

Die Fig. 1 zeigt ein Steuer- und Regelgerät 1, einen sogenannten Feuerungsautomaten, für einen Brenner 2. Der Brennstoff wird über eine Brennstoffleitung 3 der Brennkammer 4 zugeführt, wobei die Menge des Brennstoffes vom Steuer- und Regelgerät 1 mittels eines Stellorganes 5 gesteuert wird. Ist der Brenner 2 ein Gasbrenner, dann ist das Stellorgan 5 eine Klappe, deren Stellung den Gasstrom steuert. Ist der Brenner 2 ein Ölbrenner, dann ist das Stellorgan 5 ein Öldruckregler. Ein von einem Motor 6 angetriebenes Gebläse 7 befördert Luft in die Brennkammer 4. In der Brennkammer 4 wird das Brennstoff-Luft-Gemisch verbrannt und die Rauchgase über ein Abgassystem 8 abgeführt.1 shows a control and regulating device 1, a so-called burner control, for one Burner 2. The fuel is supplied to the combustion chamber 4 via a fuel line 3, the Amount of fuel is controlled by the control and regulating device 1 by means of an actuator 5. is the burner 2 is a gas burner, then the actuator 5 is a flap, the position of which is the gas flow controls. If the burner 2 is an oil burner, the actuator 5 is an oil pressure regulator. One by one Motor 6 driven fan 7 feeds air into the combustion chamber 4. In the combustion chamber 4 the fuel-air mixture burned and the flue gases discharged via an exhaust system 8.

Mittels eines Analysegerätes für Verbrennungsanlagen 9, eines sogenannten Rauchgasanalysegerätes, werden im Abgassystem die Rauchgase bezüglich ihrer Zusammensetzung, sowie die Temperatur und Druck über Leitungen 10, 11 und spezifische, nicht dargestellte Sensoren gemessen und im Analysegerät 9 ausgewertet. Die Sensoren zur Messung von Rauchgasen wie O2, CO2 und CO können dabei im Analysegerät 9 oder ausserhalb des Analysegerätes angeordnet sein. Die Rauchgase werden üblicherweise über einen Schlauch aus dem Abgassystem abgesogen und dem Sensor zugeführt. Diese so erhaltenen Informationen aus dem Abgassystem können auf einen Display des Analysegerätes dargestellt werden oder über eine Ausgabeeinheit an einen Drucker oder Computer 12 ausgegeben und weiterverarbeitet werden.By means of an analysis device for combustion systems 9, a so-called flue gas analysis device, the flue gases are measured in the exhaust system with regard to their composition, as well as the temperature and pressure via lines 10, 11 and specific sensors, not shown, and evaluated in the analysis device 9. The sensors for measuring flue gases such as O 2 , CO 2 and CO can be arranged in the analyzer 9 or outside the analyzer. The flue gases are usually drawn out of the exhaust system via a hose and fed to the sensor. This information obtained in this way from the exhaust system can be shown on a display of the analysis device or output to a printer or computer 12 and processed further via an output unit.

Das Analysegerät 9 ist über eine Kommunikationsleitung 13 mit dem Feuerungsautomaten 1 verbunden. Die Übertragung der Daten aus dem Feuerungsautomaten zum Analysegerät kann über eine beliebige Schnittstelle, z.B. über eine am Feuerungsautomaten 1 angeordnete optische Schnittstelle, erfolgen. Die über die optische Schnittstelle ausgegebene, sequentielle optische Information kann mittels eines Abtastgerätes (nicht dargestellt) in die Signalpegel einer seriellen Schnittstelle des Analysegerätes umgewandelt werden. Im Abgasanalysegerät werden die Signale des Feuerungsautomaten dann weiter verarbeitet. Dazu werden im Analysegerät spezielle Programme vorgesehen, welche die Signale des Feuerungsautomaten in entsprechende Anzeigen auf dem Display des Analysegerätes umwandeln und die vom Feuerungsautomaten gelieferten Daten verarbeiten können.
Aus dem Feuerungsautomaten können z.B. Störmeldungen, Ein- und Ausgangszustände des Feuerungsautomaten, Kennung, Inbetriebsetzungszähler, Servicezähler, Netzspannung, Flammenintensität, respektive Flammenstrom, Flammenbildungszeit, Programmphase, usw. an das Analysegerät übertragen werden. Diese Information wird im Analysegerät ausgewertet und weiterverarbeitet, insbesondere im Klartext auf dem Display angezeigt.
Da nun die Informationen aus dem Feuerungsautomaten 1 und die Information aus dem Abgassystem 8 in einem Gerät 9 erfasst werden, erlaubt dies, diese Informationen gleichzeitig im Analysegerät 9 zu verarbeiten und die Messgenauigkeit sowie die Analysegenauigkeit entscheidend zu erhöhen. Weiter wird durch die gemeinsame Messung aller spezifischen Daten, wie z.B. Druck , Temperatur, Feuchte, O2, CO, CO2, NOx, der Verbrennungsanlage der Messaufwand verringert und somit die Kosten gesenkt. Weiter erlaubt die Verarbeitung aller spezifischen Daten der Verbrennungsanlage in einem Gerät 9 genaue Aussagen über den Gesamtzustand der Anlage sowie bei Störungen über die genaue Störungsursache. Durch die genaue Festlegung der Störungsursache müssen nur noch die Komponenten ersetzt werden die wirklich defekt sind und nicht mehr wie bisher üblich, mehrere Baugruppen, wie z.B. den Feuerungsautomaten und das Brennstoffventil.
The analysis device 9 is connected to the burner control unit 1 via a communication line 13. The data can be transferred from the automatic firing device to the analysis device via any interface, for example via an optical interface arranged on the automatic firing device 1. The sequential optical information output via the optical interface can be converted into the signal level of a serial interface of the analysis device by means of a scanning device (not shown). The signals from the burner control are then processed further in the flue gas analyzer. For this purpose, special programs are provided in the analyzer, which convert the signals from the burner control into corresponding displays on the display of the analyzer and can process the data supplied by the burner control.
Fault messages, input and output states of the burner control, identifier, commissioning counter, service counter, mains voltage, flame intensity, respectively flame current, flame formation time, program phase, etc. can be transferred from the burner control to the analysis device. This information is evaluated and processed in the analyzer, in particular shown in plain text on the display.
Since the information from the burner control unit 1 and the information from the exhaust system 8 are now recorded in a device 9, this allows this information to be processed in the analysis device 9 at the same time and the measurement accuracy and the analysis accuracy to be decisively increased. Furthermore, by measuring all specific data, such as pressure, temperature, humidity, O 2 , CO, CO 2 , NO x , of the incineration plant, the measurement effort is reduced and thus the costs are reduced. Furthermore, the processing of all specific data of the incineration plant in a device 9 allows precise statements about the overall condition of the plant and, in the event of faults, about the exact cause of the fault. Due to the precise determination of the cause of the fault, only the components that are really defective and no longer have to be replaced as usual, several assemblies, such as the burner control and the fuel valve.

Durch die gemeinsame und gleichzeitige Verarbeitung von Netzspannung und Flammenstrom, ausgegeben durch den Feuerungsautomaten 1, im Analysegerät 9 kann der tatsächliche Flammenstrom in Bezug auf die aktuelle Netzspannung ermittelt und normiert auf die Normnetzspannung umgerechnet und wirksam mit weiteren Prozessdaten verarbeitet und dargestellt werden.Through the simultaneous and simultaneous processing of line voltage and flame current, issued by the burner control 1, in the analyzer 9, the actual flame flow determined in relation to the current mains voltage and normalized to the standard mains voltage converted and effectively processed and displayed with additional process data.

Die Messung der Rauchgase im Abgassystem kann durch die gemeinsame Verarbeitung der Daten im Analysegerät automatisiert werden. Aus dem Feuerungsautomaten werden die Informationen über die Verbrennung gewonnen und wenn eine stabile Verbrennung vorherrscht, d.h. wenn z.B. der Flammenstrom innerhalb gewissen Grenzen liegt, oder eine gewisse Mindestzeit seit Entstehen der Flamme verstrichen ist oder eine bestimmte Kesseltemperatur erreicht wurde, werden die Rauchgase gemessen. Sollte sich während der Messung der Zustand der Verbrennung ändern und instabil werden, kann die Messung der Rauchgase sofort durch das Analysegerät unterbrochen werden. Dies erlaubt eine zuverlässige Messung der Rauchgase, ohne dass die Sensoren durch ungenügend verbrannte Rauchgase beschädigt werden, wodurch die Lebensdauer der Sensoren erhöht wird. Gleichzeitig ist durch dieses Verfahren eine Langzeitmessung der Rauchgase möglich, z.B. über mehrere Tage, ohne dass ein Monteur oder Kaminfeger vor Ort die Messung überwachen muss. Dies erlaubt Langzeit-Aussagen über den Zustand der Verbrennungsanlagen und damit ebenfalls eine verbesserte Analyse des Zustandes der Anlage.The measurement of the flue gases in the exhaust system can be done by processing the data together Analyzer can be automated. The information about the Combustion won and if there is stable combustion, i.e. if e.g. the Flame flow is within certain limits, or a certain minimum time since the emergence Flame has passed or a certain boiler temperature has been reached, the flue gases measured. If the state of the combustion changes during the measurement and becomes unstable, the measurement of the flue gases can be interrupted immediately by the analyzer. This allows a reliable measurement of the flue gases without the sensors being burned by insufficient Flue gases are damaged, which increases the life of the sensors. At the same time Long-term measurement of the flue gases is possible using this method, e.g. over several days without that a technician or chimney sweep must monitor the measurement on site. This allows long-term statements about the condition of the incineration plants and thus also an improved analysis the condition of the system.

Fig. 2 zeigt einen Regler 14, welcher mit dem Feuerungsautomaten 1 und dem Analysegerät 9 verbunden ist. Der Regler 14 kann ein Kesselregler sein, der die Temperatur, Druck eines Heizsystems (nicht dargestellt) regelt, welches durch die Verbrennung in der Brennkammer beheizt wird. Steigt der Druck oder die Temperatur im Heizsystem über einen bestimmten vorgegebenen Wert an, gibt der Regler 14 über die Leitung 15 diese Information an den Feuerungsautomaten weiter, wodurch der Feuerungsautomat die Verbrennung unterbricht. Die vom Regler 14 an den Feuerungsautomaten 1 weitergegebenen Informationen können über die Leitung 13 ebenfalls an das Analysegerät übertragen werden und dort verarbeitet werden. Falls die Kommunikation über die Leitung 15 bidirektional erfolgt, können auch die Informationen aus dem Feuerungsautomaten über die Leitung 15 an den Regler 14 und über eine Leitung 16 an das Analysegerät weitergegeben werden. In diesem Fall kann die Leitung 13 weggelassen werden und die Kommunikation zwischen Feuerungsautomat und Analysegerät erfolgt unter Zwischenschaltung des Reglers 14. Dies ist z.B. in den Fällen vorteilhaft, in denen am Feuerungsautomaten keine Kommunikationsschnittstelle vorhanden ist, jedoch eine am Regler 14.
Der Regler 14 kann z.B. auch ein elektrischer Verbundregler sein, welcher das Stellorgan 5 und den Motor 6 regelt, was gestrichelt in der Figur 2 dargestellt ist.
Die Kommunikation zwischen Feuerungsautomat und Analysegerät kann natürlich auch unter Einbezug nicht weiter erwähnter Regler / Geräte erfolgen, wobei dann jeweils die in den Geräten enthaltenen Informationen ebenfalls an das Analysegerät weitergegeben werden können. Die Leitungen 13, 15, 16 können dabei beliebig ausgestaltet werden, so kann die Kommunikation mittels einer Punkt zu Punkt Schnittstelle als auch über eine Busschnittstelle uni- oder bidirektional erfolgen.
2 shows a controller 14 which is connected to the automatic firing device 1 and the analysis device 9. The controller 14 may be a boiler controller that controls the temperature, pressure of a heating system (not shown) that is heated by the combustion in the combustion chamber. If the pressure or the temperature in the heating system rises above a certain predetermined value, the controller 14 passes this information on to the automatic firing device via line 15, whereby the automatic firing device interrupts the combustion. The information passed on from the controller 14 to the automatic firing device 1 can likewise be transmitted via line 13 to the analysis device and processed there. If the communication takes place bidirectionally via line 15, the information from the burner control can also be passed on to controller 14 via line 15 and to the analysis device via line 16. In this case, the line 13 can be omitted and the communication between the automatic burner control and the analysis device takes place with the intermediary of the controller 14. This is advantageous, for example, in cases where there is no communication interface on the automatic burner control, but one on the controller 14.
The controller 14 can, for example, also be an electrical compound controller which controls the actuator 5 and the motor 6, which is shown in broken lines in FIG.
The communication between the burner control unit and the analysis device can of course also take place with the inclusion of controllers / devices not mentioned further, in which case the information contained in the devices can also be passed on to the analysis device. The lines 13, 15, 16 can be configured as desired, so the communication can take place unidirectionally or bidirectionally by means of a point-to-point interface as well as via a bus interface.

Durch die Kombination von Reglern und Analysegerät, Austausch von Daten zwischen den Reglern und Analysegerät sowie die gemeinsame Verarbeitung von Daten im Analysegerät lassen sich eine Vielzahl von vorteilhaften Ausgestaltungen und Verbesserungen gegenüber herkömmlichen Geräten erzielen. By combining controllers and analyzer, data exchange between the controllers and analysis device and the joint processing of data in the analysis device can be a Numerous advantageous designs and improvements compared to conventional devices achieve.

So kann beispielsweise der Verbrennungsprozess durch Messen der Abgaswerte und automatische Einstellung des elektrischen Verbundes optimiert werden. Das Rauchgasanalysegerät misst die Sauerstoffkonzentration im Abgas und gibt entsprechende Steuerbefehle an den Feuerungsautomaten bzw. den elektrischen Verbund. Durch die Abgasmessung des Rauchgasanalysegeräts kann der Feuerungsautomat an jedem Arbeitspunkt die Luftgröße solange nachführen, bis eine optimale Verbrennung an jedem Arbeitspunkt besteht. Die Verbindung zwischen Rauchgasanalysegerät und Feuerungsautomat kann durch eine bidirektionale Kommunikation erfolgen.For example, the combustion process can be performed by measuring exhaust gas values and automatically Setting the electrical network can be optimized. The flue gas analyzer measures that Oxygen concentration in the flue gas and gives corresponding control commands to the burner controls or the electrical connection. By measuring the flue gas from the flue gas analyzer, the Automatic burner control unit at every working point adjust the air size until an optimal one There is combustion at every working point. The connection between the flue gas analyzer and Automatic burner control can be done by bidirectional communication.

Der Verbrennungsprozess kann auch bezüglich des mechanischen Verbundes optimiert werden. Bei ein- oder zweistufigen Brennern kann die Einstellung der Primärluft manuell über Vorgaben des Analysegerätes oder automatisch über motorische Adapter erfolgen. Dieser Vorgang steht nicht direkt in Verbindung mit dem Feuerungsautomat, kann jedoch durch die Messgröße der Flammenintensität und dem Zeitpunkt der Flammenbildung sinnvoll ergänzt werden.The combustion process can also be optimized with regard to the mechanical bond. at Single or two-stage burners can set the primary air manually via the specifications of the Analyzer or done automatically via motor adapter. This process is not straightforward in connection with the burner control, but can be measured by the flame intensity and the time of the flame formation are sensibly supplemented.

Die gemeinsame Verarbeitung von Daten im Analysegerät kann zur Ermittlung des Brennstoffverbrauchs über den Feuerungsautomat verwendet werden. Dies beispielsweise mittels eines elektrischen Brennstoffmengenzählers oder durch Bestimmung des Brennstoffdrucks, der Düsengrösse und Berechnung über die Brennerlaufzeit und Auswertung / Protokollierung über das Abgasanalysegerät. Durch die jährliche Abgasanalyse kann somit eine Energiebilanz über die Heizungsanlage gemacht werden unter Einbeziehung des Verbrauchs und des Wirkungsgrades.The joint processing of data in the analyzer can be used to determine the Fuel consumption can be used via the burner control. This for example by means of a electric fuel flow meter or by determining the fuel pressure, the nozzle size and calculation over the burner runtime and evaluation / logging over the Flue gas analyzer. Through the annual exhaust gas analysis, an energy balance over the Heating system are made taking into account consumption and efficiency.

Über das Abgasanalysegerät kann beim Anlagenservice die optimale Vorbelüftungszeit ermittelt werden, unter Einbeziehung der relevanten Parameter wie O2-Gehalt des Abgases, Stabilität des Feuerraumdrucks etc.. Diese ermittelte Zeit kann über eine bidirektionale Kommunikation vom Abgasanalysegerät an den Feuerungsautomaten übertragen werden, so dass sie dieser unter Berücksichtigung der bestehenden Sicherheitsvorschriften bis zur nächsten Überprüfung speichern kann.The optimal pre-ventilation time can be determined using the flue gas analyzer at the system service, taking into account the relevant parameters such as the O 2 content of the flue gas, stability of the combustion chamber pressure etc. This can save until the next check, taking into account the existing safety regulations.

Die gemeinsame Verarbeitung von Daten im Analysegerät kann zur Ermittlung der optimalen Intervallzeit zwischen der ersten und zweiten Brennerstufe bzw. zwischen der ersten Brennerstufe bis zur Reglerfreigabe verwendet werden. Durch kontinuierliche Messung der Flammenintensität und des Feuerraumdrucks kann bei einer Anlageneichung die Zeit ermittelt werden, bis die Flammenintensität und der Feuerraumdruck konstante Werte erreicht hat. Die Stabilität der Verbrennung einer Anlage kann somit wirksam überprüft werden. Diese Zeit kann vom Analysegerät in den Automaten bei einer bidirektionalen Schnittstelle zur Speicherung übertragen werden.The joint processing of data in the analyzer can be used to determine the optimal Interval time between the first and second burner stage or between the first burner stage to can be used to enable the controller. By continuously measuring the flame intensity and the When the system is calibrated, the combustion chamber pressure can be used to determine the time until the flame intensity and the furnace pressure has reached constant values. The stability of the combustion of a plant can thus be checked effectively. This time can be from the analyzer in the machine at a bidirectional interface for storage.

Die gemeinsame Verarbeitung von Daten im Analysegerät kann zur Ermittlung der optimalen Sicherheitszeit / Anlaufzeit verwendet werden. Die für einen Brenner erforderliche Sicherheitszeit Anlauf wird bestimmt an folgenden Kriterien:

  • a) Zündzeit des Brennstoffgemisches / Flammenbildungszeit / Flammenerkennungszeit und
  • b) Reaktionszeit des Brennstoffes zwischen Ventil und Brennkopf.
  • Die Variable b) ist anlagenabhängig und kann somit von einem Standardautomaten nicht ausreichend berücksichtigt werden. Der Automat muss daher auf die maximal mögliche Sicherheitszeit ausgelegt werden, was wiederum bei Anlagen mit physikalisch kurz möglichen Flammenbildungszeiten zu unnötigen Verpuffungsrisiken führt.
    Durch das Messen der Flammenbildungs- und Flammenstabilisierungszeit durch das Analysegerät kann die notwendige (erforderliche) Sicherheitszeit Anlauf ermittelt bzw. überprüft und an den Feuerungsautomaten unter Berücksichtigung der Sicherheitsvorschriften übertragen werden.The joint processing of data in the analyzer can be used to determine the optimal safety time / start-up time. The safety time required for a burner is determined using the following criteria:
  • a) ignition time of the fuel mixture / flame formation time / flame detection time and
  • b) Reaction time of the fuel between the valve and the burner head.
  • The variable b) depends on the system and can therefore not be sufficiently taken into account by a standard machine. The automat must therefore be designed for the maximum possible safety time, which in turn leads to unnecessary deflagration risks in systems with physically short flame formation times.
    By measuring the flame formation and flame stabilization time by the analyzer, the necessary (required) safety time start-up can be determined or checked and transmitted to the burner controls taking into account the safety regulations.

    Die gemeinsame Verarbeitung von Daten im Analysegerät kann zur Ermittlung kritischer Kessel /Brenner Kennfelder und zu deren Vermeidung durch entsprechende Einstellung des Feuerungsautomaten / Reglers verwendet werden. Dadurch wird verhindert, dass die Thermodynamik zwischen den Brenner-Flammen und der Kessel-Geometrie zu leistungsabhängigen Resonanzerscheinungen mit schlechterer Verbrennung, starker Geräuschentwicklung und verkürzter Lebensdauer des Kessels durch mechanische Beanspruchung führt.The joint processing of data in the analyzer can be used to identify critical boilers / burners Maps and how to avoid them by setting the Automatic burner controls / controllers are used. This prevents the thermodynamics between the burner flames and the boiler geometry Resonance phenomena with poorer combustion, strong noise and shortened Lifetime of the boiler due to mechanical stress.

    Analysewerte des Rauchgasanalysegerät können im Feuerungsautomat oder Regler gespeichert werden. Diese Werte werden zur Bestimmung der Qualität und Verbesserungsmöglichkeiten eines Brenners bzw. einer Heizungsanlage benötigt und es sollten auch zurückliegende Analysewerte berücksichtigt werden. Durch die Speicherung der Werte vor Ort im Feuerungsautomaten oder Regler werden die heute verwendeten Papier-Protokolle oder die im Analysegerät gespeicherten Werte nicht mehr benötigt, was vorteilhaft ist, da diese leicht verloren gehen. Die Werte können jederzeit an der Anlage abgerufen werden und sind unabhängig von einem bestimmten Analysegerät. Ein Vergleich der Messwerte des Kaminfegers mit den letzten Messwerten des Servicemonteurs können die Qualität der eigenen Messungen verbessern. Analysis values of the flue gas analyzer can be saved in the burner control or controller become. These values are used to determine the quality and potential for improvement Burner or a heating system and there should also be previous analysis values be taken into account. By storing the values on site in the burner control or controller the paper protocols used today or the values stored in the analyzer are not needs more, which is advantageous because they are easily lost. The values can be changed at any time Plant can be accessed and are independent of a particular analyzer. A comparison The measured values of the chimney sweep with the last measured values of the service engineer can affect the quality improve your own measurements.

    Die gemeinsame Verarbeitung von Daten im Analysegerät kann zur Ermittlung der Flammenbildungszeit und Flammenintensität der Brenner verwendet werden, um bei verschiedenen Servicegängen Abweichungen / Drift erkennen zu können. Die Flammenbildungszeit stellt eine wichtige Kenngröße bei der Beurteilung eines Brenners dar. Anhand der Flammenbildungszeit und deren Streuung kann die Qualität der Brennstoffdurchmischung und Zündbereitschaft ermittelt werden. Diese Messgröße lässt sich sinnvollerweise kombinieren bzw. ergänzen mit der darauffolgenden Flammenintensität und den zusätzlich ermittelten Abgaswerten bei der Beurteilung eines Brenners bzw. eines Kessels.The joint processing of data in the analyzer can be used to determine the Flame time and flame intensity of the burner used to be at different Service corridors to be able to recognize deviations / drift. The flame formation time represents one important parameter when evaluating a burner. Based on the flame formation time and their scattering can determine the quality of the fuel mixing and readiness for ignition. This measure can be combined or supplemented with the next one Flame intensity and the additionally determined exhaust gas values when evaluating a burner or a boiler.

    Das Abgasanalysegeräte kann zudem als Ersatz für bestehende Parametriergeräte für Brenner und Kesselanlagen verwendet werden. Bestehende Kesselsysteme mit integrierten digitalen Reglern erfordern zur optimalen Einstellung die Parametrierung vieler einzelner Parameter. Zur Einstellung dieser Parameter sind heute spezielle Tools erforderlich. Diese Tools sind jedoch aufwendig und daher auch relativ teuer. Die Parametriertools von Brenner und Kesselanlagen lassen sich integrieren in bestehende Rauchgasanalysegeräte mit ausreichenden Anzeige- und Bedienelementen. Dadurch wird eine höhere Verfügbarkeit für Heizungs- und Servicemonteur erreicht, da diese nur noch eins anstatt zwei Servicegeräte mit sich führen müssen. Weiter können Anlagenparametern in den bereits bestehenden Kundendatenbanken der Rauchgasanalysegeräte gespeichert werden. Die Parameterdaten und Abgasmesswerte können somit in einer Datenbank gespeichert werden, um eine bessere Optimierung durchführen zu können. So könnte sich durch eine solche Optimierung zeigen, dass eine Reduzierung der min. Kesselleistung die Anzahl der Brennerstarts um 10% senkt, oder dass durch eine Reduzierung der max. Kesselleistung die max. Abgastemperatur um 20 gesenkt wird.The flue gas analyzer can also replace existing parameterization devices for burners and Boiler systems can be used. Existing boiler systems with integrated digital controllers require the parameterization of many individual parameters for optimal setting. For setting these parameters require special tools today. However, these tools are complex and therefore also relatively expensive. The parameterization tools for burners and boiler systems can be integrated into existing smoke gas analyzers with sufficient display and control elements. This will A higher availability for heating and service technicians is achieved, since this only takes one instead have to carry two service devices. Further system parameters can already be found in the existing customer databases of the flue gas analysis devices are saved. The parameter data and exhaust gas readings can thus be stored in a database for better To be able to perform optimization. Such an optimization could show that a Reduction of the min. Boiler output reduces the number of burner starts by 10%, or that by one Reduction of the max. Boiler output the max. Exhaust temperature is reduced by 20.

    Selbstverständlich ist die Erfindung nicht auf die gezeigten und beschriebenen Ausführungsbeispiele beschränkt. Es können natürlich auch Informationen aus dem Analysegerät an den Feuerungsautomaten übertragen werden, wobei jedoch gesetzliche Vorschriften zu beachten und umfassende Sicherheitsvorkehrungen zu treffen sind.Of course, the invention is not based on the exemplary embodiments shown and described limited. Of course, information from the analyzer can also be sent to the Automatic burner controls are transferred, although legal regulations must be observed and comprehensive safety precautions must be taken.

    Claims (11)

    1. Analyser (9) for incineration plants, the incineration plant comprising a control and regulation apparatus (1), supplies for fuel and air (3, 5, 6, 7), a combustion chamber (4) and an exhaust-gas system (8), and data relating to the smoke gases in the exhaust-gas system being determined in the analyser, means for the transmission of data being arranged between the control and regulation apparatus (1) and the analyser (9), characterized in that the analyser (9) has arranged in it means for the joint processing of the data transmitted from the control and regulation apparatus (1) and of the data determined from the exhaust-gas system (8).
    2. Analyser (9) for incineration plants according to Claim 1, characterized in that the analyser (9) has arranged in it means for the processing of data from at least one further regulator (14).
    3. Analyser (9) for incineration plants according to Claim 1 or 2, characterized in that parameters of the incineration plant and/or of the analyser (9) and/or of the control and regulation apparatus (1) and/or of the regulator (14) can be set by means of the processed data.
    4. Analyser (9) for incineration plants according to one of the preceding claims, characterized in that the measurement of the smoke gases in the exhaust-gas system (8) can be controlled by means the data transmitted from the control and regulation apparatus (1).
    5. Analyser (9) for incineration plants according to one of the preceding claims, characterized in that the data obtained in the analyser can be stored in the control and regulation apparatus (1) and/or in the regulator (14).
    6. Use of an analyser (9) for incineration plants for optimizing the incineration, in particular the pollutant emission, the incineration plant comprising a control and regulation apparatus (1), supplies for fuel and air (3, 5, 6, 7), a combustion chamber (4) and an exhaust-gas system (8), data relating to the smoke gases in the exhaust-gas system being determined in the analyser and data being transmitted to the analyser (9) from the control and regulation apparatus (1), characterized in that the data transmitted from the control and regulation apparatus (1) are processed in the analyser jointly with the data determined from the exhaust-gas system (8).
    7. Use of an analyser (9) for incineration plants according to Claim 6, characterized in that parameters of the incineration plant and/or of the analyser (9) and/or of the control and regulation apparatus (1) and/or of the regulator (14) can be set by means of the processed data.
    8. Use of an analyser (9) for incineration plants according to Claim 6 or 7, characterized in that the measurement of the smoke gases in the exhaust-gas system (8) is controlled by means of the data transmitted from the control and regulation apparatus (1).
    9. Use of an analyser (9) for incineration plants according to Claim 8, characterized in that the measurement of the smoke gases in the exhaust-gas system (8) is controlled by means of the data transmitted from the control and regulation apparatus (1) in such a way that the smoke gases are measured only during states of stable incineration.
    10. Method for the measurement of smoke gases by means of an analyser (9) for incineration plants, the incineration plant comprising a control and regulation apparatus (1), supplies for fuel and air (3, 5, 6, 7), a combustion chamber (4) and an exhaust-gas system (8), data relating to the smoke gases in the exhaust-gas system being determined in the analyser and data being transmitted to the analyser (9) from the control and regulation apparatus (1), characterized in that these data are processed in the analyser (9), and in that the measurement of the smoke gases in the exhaust-gas system (8) is controlled by means of the data transmitted from the control and regulation apparatus (1).
    11. Method for the measurement of smoke gases according to Claim 10, characterized in that the measurement of the smoke gases in the exhaust-gas system (8) is controlled by means of the data transmitted to the analyser (9) from the control and regulation apparatus (1) in such a way that the smoke gases are measured only in states of stable incineration.
    EP00110599A 1999-05-21 2000-05-18 Analyzing apparatus, using an analyzing apparatus and method for measuring flue gas Expired - Lifetime EP1054214B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    DK00110599T DK1054214T3 (en) 1999-05-21 2000-05-18 Analyzer, use of an analyzer and method for measuring exhaust gases

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    CH95499 1999-05-21
    CH95499 1999-05-21

    Publications (3)

    Publication Number Publication Date
    EP1054214A2 EP1054214A2 (en) 2000-11-22
    EP1054214A3 EP1054214A3 (en) 2002-06-26
    EP1054214B1 true EP1054214B1 (en) 2004-12-22

    Family

    ID=4199046

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00110599A Expired - Lifetime EP1054214B1 (en) 1999-05-21 2000-05-18 Analyzing apparatus, using an analyzing apparatus and method for measuring flue gas

    Country Status (4)

    Country Link
    EP (1) EP1054214B1 (en)
    AT (1) ATE285547T1 (en)
    DE (2) DE19950651A1 (en)
    DK (1) DK1054214T3 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102009039760A1 (en) * 2009-04-17 2010-11-25 Sohn, Brigitte Unit for permanently testing the functionality of a heating device comprises a probe installed in a waste air pipe or other possible sites on the device to measure the waste gas temperature after testing and setting with a nominal value
    CN102262000B (en) * 2010-05-28 2016-03-09 中国市政工程华北设计研究总院 Determine the testing experimental system of gas utensil combustion characteristics
    EP3130852A1 (en) * 2015-08-08 2017-02-15 Testo AG Method for adjusting a heating installation, exhaust gas measuring device and adjusting arrangement

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5010322A (en) * 1987-08-12 1991-04-23 Gas Research Institute Housing for a process controller
    DE3923773A1 (en) * 1988-07-20 1990-03-01 Vaillant Joh Gmbh & Co Microcomputer control for gas-fired central heating boiler
    AT400484B (en) * 1990-01-25 1996-01-25 Vaillant Gmbh CONTROL AND CONTROL SYSTEM FOR A PREFERRED GAS HEATED WATER HEATER
    EP0615095B1 (en) * 1993-03-11 1997-05-07 Landis & Gyr Technology Innovation AG Burner controller
    DE19523817A1 (en) * 1995-06-29 1997-01-02 Elco Kloeckner Heiztech Gmbh Furnace system and method for regulating, controlling and / or monitoring a furnace system
    DE59705872D1 (en) * 1996-10-23 2002-01-31 Vaillant N V Control and monitoring device for a fuel-heated heater
    DE29900588U1 (en) 1999-01-15 1999-04-01 Satronic Ag Exhaust gas analyzer

    Also Published As

    Publication number Publication date
    ATE285547T1 (en) 2005-01-15
    DE19950651A1 (en) 2000-11-23
    EP1054214A2 (en) 2000-11-22
    DE50008993D1 (en) 2005-01-27
    DK1054214T3 (en) 2005-02-14
    EP1054214A3 (en) 2002-06-26

    Similar Documents

    Publication Publication Date Title
    DE60111359T2 (en) DIAGNOSTIC DEVICE FOR FIRING SYSTEM
    EP1510492B1 (en) Method for testing an elevator and elevator
    DE102012210090B4 (en) Test station for portable gas detectors
    EP3663648A1 (en) Method and device for regulating the mixing ratio of combustion air and combustion gas in a combustion process
    DE19509412A1 (en) Method and device for controlling the firing of a steam generator system
    EP1054214B1 (en) Analyzing apparatus, using an analyzing apparatus and method for measuring flue gas
    EP1002997B1 (en) Method for controlling a fuel/air ratio of full premix gas burner
    EP2017531A2 (en) Method for monitoring an ionisation electrode signal in burners
    EP0331918A2 (en) Actuating method for a heating apparatus, and heating apparatus
    DE102005011287B4 (en) Method and an apparatus for operating at least one burner for firing the combustion chamber of a heat engine or gas turbine
    DE102005011021A1 (en) Fresh air-exhaust gas-pipeline system testing method for blower-supported heating device, involves issuing warning instruction and/or disconnecting blower-supported heating device during lower-deviation of preset threshold value
    EP0615095A1 (en) Automatic burner
    DE10030063A1 (en) Control procedures for gas burners
    EP3995817A1 (en) Method and assembly for detecting hydrogen in a heater operable with hydrogen or hydrogen-containing fuel gas
    EP0614051B1 (en) Burner automat
    DE102015010266A1 (en) Method for adjusting a heating system, exhaust gas measuring device and adjustment arrangement
    EP3369994B1 (en) Method for determining the cause of an ignition failure at the burner of a boiler
    EP0655583B1 (en) Method for controlling and monitoring combustion
    DE4132926C2 (en) Arrangement for protecting the measuring optics of a measuring cell of an exhaust gas test device against contamination by an exhaust gas stream
    DE102007005149B4 (en) incinerator
    EP4102136A1 (en) Method for flame monitoring for a heater, computer program, storage medium, regulation and control device, heater and use of a ratio
    EP4148325A1 (en) Method and assembly for ensuring the presence of flames in a combustion chamber during the modulation of a heater
    EP1309822A1 (en) Control method for gas burners
    DE2510717B2 (en) Device for burners to regulate the fuel-air ratio
    DE202004008932U1 (en) Exhaust gas analyzer, especially for the burner of a heating installation, has an integral expert system that is suitable for use in commissioning, maintenance and or fault detection

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7F 23N 5/00 A, 7F 23N 1/02 B

    17P Request for examination filed

    Effective date: 20021216

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041222

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041222

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50008993

    Country of ref document: DE

    Date of ref document: 20050127

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050322

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050302

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050402

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050518

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050518

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050518

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050531

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050531

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    BERE Be: lapsed

    Owner name: SIEMENS BUILDING TECHNOLOGIES A.G.

    Effective date: 20050531

    26N No opposition filed

    Effective date: 20050923

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8008 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

    BERE Be: lapsed

    Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

    Effective date: 20050531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050522

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFUS

    Owner name: SIEMENS SCHWEIZ AG, CH

    Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFUS

    Owner name: SIEMENS SCHWEIZ AG, CH

    Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50008993

    Country of ref document: DE

    Owner name: SIEMENS SCHWEIZ AG, CH

    Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, ZUERICH, CH

    Effective date: 20130506

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20130620 AND 20130626

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: SIEMENS SCHWEIZ AG, CH

    Effective date: 20131029

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20140807

    Year of fee payment: 15

    Ref country code: DE

    Payment date: 20140718

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20150507

    Year of fee payment: 16

    Ref country code: GB

    Payment date: 20150511

    Year of fee payment: 16

    Ref country code: DK

    Payment date: 20150520

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20150504

    Year of fee payment: 16

    Ref country code: FR

    Payment date: 20150513

    Year of fee payment: 16

    Ref country code: IT

    Payment date: 20150514

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50008993

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150531

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151201

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20160531

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20160601

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160518

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160519

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160601

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160518

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160531

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160518