EP1052465B1 - Process and device for cryogenic air separation - Google Patents

Process and device for cryogenic air separation Download PDF

Info

Publication number
EP1052465B1
EP1052465B1 EP99112289A EP99112289A EP1052465B1 EP 1052465 B1 EP1052465 B1 EP 1052465B1 EP 99112289 A EP99112289 A EP 99112289A EP 99112289 A EP99112289 A EP 99112289A EP 1052465 B1 EP1052465 B1 EP 1052465B1
Authority
EP
European Patent Office
Prior art keywords
liquid
transfer fraction
level
expansion
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99112289A
Other languages
German (de)
French (fr)
Other versions
EP1052465A1 (en
Inventor
Thomas Dipl.-Ing. Nohlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1052465A1 publication Critical patent/EP1052465A1/en
Application granted granted Critical
Publication of EP1052465B1 publication Critical patent/EP1052465B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/06Lifting of liquids by gas lift, e.g. "Mammutpumpe"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon

Definitions

  • the invention relates to a method for the cryogenic separation of air according to the The preamble of claim 1.
  • the invention particularly relates to two-pillar systems with a Pressure column and with a arranged above the pressure column low pressure column and / or multi-column systems with further separation columns for nitrogen-oxygen separation.
  • the pressure column in this case represents the "first rectification column” in the sense of Invention; the rectification in the low pressure column and / or the evaporation in the Top condenser of the crude argon column is the "further process step".
  • the "Transfer fraction” is here by the bottoms liquid or a Intermediate liquid of the pressure column formed in the low pressure column or in the Evaporation space of the top condenser of the crude argon column is initiated.
  • the invention relates in particular to double-column methods, as shown in FIGS. 4.23, 4.26, 4.28 and 4.34 are presented in Chapter 4.5 of Hausen / Linde. Notwithstanding the examples in Hausen / Linde is in the invention of Mass transfer preferably in at least one separation column (e.g. Low pressure and / or crude argon column) at least partially by packing or ordered Pack causes.
  • at least one separation column e.g. Low pressure and / or crude argon column
  • the transfer fraction collects within the first rectification column in one Reservoir that through the bottom of this column or a cup located in the column is formed.
  • the liquid level in this reservoir sets the "first level” h1 within the meaning of the invention.
  • the transfer fraction in directed a container in which a further process step is carried out, for example, the low-pressure column or the evaporation chamber of a condenser-evaporator (e.g., top condenser of the crude argon column).
  • a further process step for example, the low-pressure column or the evaporation chamber of a condenser-evaporator (e.g., top condenser of the crude argon column).
  • the place of supply to This further process step defines the "second, higher level" in the sense of Invention.
  • Air separation plants in which packages in the low-pressure part of a double column are used, for example, in EP 321163 A, WO 9319335, WO 9319336 or EP 628777A.
  • a disadvantage of the use of packages is that the height noticeably increased in comparison with tray columns.
  • the inequality stated that is, the pressure difference between pressure and pressure Low pressure column or between pressure column and evaporation chamber of the Top condenser of the crude argon column is no longer sufficient to the corresponding hydrostatic pressure of a liquid column of the transfer fraction to overcome. While this situation in some systems in normal operation under full load often appears particularly in special operating cases, especially when operating under load, so with a lower product and Amount used as at full load.
  • the invention is based on the object, the aforementioned method and the appropriate device to be further improved.
  • the expansion valve is at a suitable intermediate level between the first and the second level.
  • the concrete determination of this intermediate level is different for each specific embodiment of the invention, but can be easily determined by means of the calculation tools available to the person skilled in the art, if one specifies the height of the intermediate level as a degree of freedom.
  • the transfer fraction is subcooled before relaxing by indirect heat exchange. This will the formation of a two-phase mixture upstream of the relaxation all or partially avoided, so that only when relaxing the inventive targeted Steam bubble formation takes place.
  • the subcooling usually takes place near the first levels.
  • the degree of supercooling of the transfer fraction becomes usually determined independently of the liquid transport process and is of other criteria, such as the desire to have relatively little flash gas when feeding into the second container to produce.
  • the relaxation process in particular, the arrangement of the expansion valve, is then so determines that at the given supercooling the transfer fraction immediately before relaxing just in the single-phase liquid state and neither a significant hypothermia still steam bubbles in appreciable extent available.
  • the invention also relates to a device for the cryogenic separation of air according to claims 3 and 4.
  • purified air 1 is under a Pressure of 4 to 20 bar, preferably 5 to 12 bar in a heat exchanger 2 against Product streams cooled to about dew point and in the pressure column 3 a two-stage Rectifier fed.
  • the pressure column 3 is connected via a common Condenser-evaporator 4 in heat exchange relationship with a low pressure column 5th
  • Bottom liquid 6 and nitrogen 7 are withdrawn from the pressure column 3, in one Countercurrent 8 undercooled and at least partially in the low pressure column. 5 throttled. From the low pressure column are oxygen 9, nitrogen 10 and impure nitrogen 11 removed in gaseous form. The products can also be at least are partially removed liquid (oxygen 9a, nitrogen 10a).
  • the inventive method of transferring a liquid may as well the liquid nitrogen 7 from the head of the pressure column as (further) "transfer fraction" be applied.
  • the "first level” is thereby by the liquid level formed within the cup 16, in which coming from main capacitor 4 Liquid is collected. Undercooling is again in the counterstroller 8.
  • the supercooled nitrogen 17 flows to a relief valve 18, which on a Intermediate level hz 'is arranged and finally on to the feed point 19 ("second level" h2 ') at the top of the low pressure column.
  • the Invention also to the transport of a liquid transfer fraction in the Evaporation space of the top condenser of a crude argon column can be applied.
  • the crude argon column is formed in the example by two sections 20a, 20b, their function in European patent EP 628777 B1 and in the corresponding US Patent US 5426946 is described in detail.
  • the invention can be applied to anyone known type of Rohargon notung be used, in which an argon-containing Oxygen fraction 21 introduced from the low pressure column 5 in a crude argon column is, wherein in the upper part of the crude argon column depleted of oxygen Argon product 22a, 22b obtained in gaseous and / or liquid state.
  • the further transfer fraction is in the example shown in the drawing through a part 13a of the supercooled bottoms liquid 6 from the pressure column 5 educated. She is relaxed in a relaxation valve 14a, which on a Intermediate level is arranged. This intermediate level is in the example the same or about the same height as the intermediate level hz.
  • the in 14a relaxed transfer fraction 15a of sump 12 of the pressure column 3 is on a "second level" h2 "in the evaporation space 23 of the top condenser Introduced crude argon column.

Description

Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff von Patentanspruch 1.The invention relates to a method for the cryogenic separation of air according to the The preamble of claim 1.

Einschlägige Luftzerlegungsverfahren und -vorrichtungen sind zum Beispiel in Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) beschrieben. Die Erfindung betrifft insbesondere Zweisäulensysteme mit einer Drucksäule und mit einer über der Drucksäule angeordneten Niederdrucksäule und/oder Mehrsäulensysteme mit weiteren Trennsäulen zur Stickstoff-Sauerstoff-Trennung. Die Drucksäule stellt in diesem Fall die "erste Rektifiziersäule" im Sinne der Erfindung dar; die Rektifikation in der Niederdrucksäule und/oder die Verdampfung im Kopfkondensator der Rohargonsäule ist der "weitere Verfahrensschritt". Die "Überleitungsfraktion" wird hier durch die Sumpfflüssigkeit oder eine Zwischenflüssigkeit der Drucksäule gebildet, die in die Niederdrucksäule oder in den Verdampfungsraum des Kopfkondensators der Rohargonsäule eingeleitet wird.Relevant air separation processes and devices are, for example, in Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337) described. The invention particularly relates to two-pillar systems with a Pressure column and with a arranged above the pressure column low pressure column and / or multi-column systems with further separation columns for nitrogen-oxygen separation. The pressure column in this case represents the "first rectification column" in the sense of Invention; the rectification in the low pressure column and / or the evaporation in the Top condenser of the crude argon column is the "further process step". The "Transfer fraction" is here by the bottoms liquid or a Intermediate liquid of the pressure column formed in the low pressure column or in the Evaporation space of the top condenser of the crude argon column is initiated.

Die Erfindung betrifft insbesondere Doppelsäulenverfahren, wie sie in den Bildem 4.21, 4.23, 4.26, 4.28 und 4.34 im Kapitel 4.5 von Hausen/Linde dargestellt sind. Abweichend von den Beispielen in Hausen/Linde wird bei der Erfindung der Stoffaustausch vorzugsweise in mindestens einer Trennsäule (z.B. Niederdruck- und/oder Rohargonsäule) mindestens teilweise durch Füllkörper oder geordnete Packung bewirkt.The invention relates in particular to double-column methods, as shown in FIGS. 4.23, 4.26, 4.28 and 4.34 are presented in Chapter 4.5 of Hausen / Linde. Notwithstanding the examples in Hausen / Linde is in the invention of Mass transfer preferably in at least one separation column (e.g. Low pressure and / or crude argon column) at least partially by packing or ordered Pack causes.

Die Überleitungsfraktion sammelt sich innerhalb der ersten Rektifiziersäule in einem Reservoir, das durch den Sumpf dieser Säule oder eine in der Säule befindliche Tasse gebildet wird. Der Flüssigkeitsspiegel in diesem Reservoir legt das "erste Niveau" h1 im Sinne der Erfindung fest. Aus diesem Reservoir wird die Überleitungsfraktion in einen Behälter geleitet, in dem ein weiterer Verfahrensschritt durchgefüh rt wird, beispielsweise die Niederdrucksäule oder der Verdampfungsraum eines Kondensator-Verdampfers (z.B. Kopfkondensator der Rohargonsäule). Die Stelle der Zuspeisung zu diesem weiteren Verfahrensschritt definiert das "zweite, höhere Niveau" im Sinne der Erfindung. The transfer fraction collects within the first rectification column in one Reservoir that through the bottom of this column or a cup located in the column is formed. The liquid level in this reservoir sets the "first level" h1 within the meaning of the invention. From this reservoir, the transfer fraction in directed a container in which a further process step is carried out, for example, the low-pressure column or the evaporation chamber of a condenser-evaporator (e.g., top condenser of the crude argon column). The place of supply to This further process step defines the "second, higher level" in the sense of Invention.

Seit einigen Jahren setzt sich der Einsatz von druckverlustarmen Einbauten in Luftzerlegersäulen immer mehr durch, da sie eine Reihe von Vorteilen aufweisen. Luftzerlegungsanlagen, bei denen Packungen im Niederdruckteil einer Doppelsäule eingesetzt werden, sind beispielsweise in EP 321163 A, WO 9319335, WO 9319336 oder EP 628777 A beschrieben.For some years, the use of low pressure loss internals in Air decomposition columns more and more, because they have a number of advantages. Air separation plants in which packages in the low-pressure part of a double column are used, for example, in EP 321163 A, WO 9319335, WO 9319336 or EP 628777A.

Ein Nachteil der Verwendung von Packungen besteht darin, daß sich die Bauhöhe gegenüber Bodenkolonnen spürbar erhöht. In diesem Fall kann die im Patentanspruch angeführte Ungleichung gelten, das heißt, der Druckunterschied zwischen Druck- und Niederdrucksäule beziehungsweise zwischen Drucksäule und Verdampfungsraum des Kopfkondensators der Rohargonsäule reicht nicht mehr aus, um den entsprechenden hydrostatischen Druck einer Flüssigkeitssäule der Überleitungsfraktion zu überwinden. Während diese Situation bei einigen Anlagen auch im Normalbetrieb unter Vollast auftreten kann, erscheint es häufig insbesondere bei speziellen Betriebsfällen, insbesondere bei einem Betrieb unter Unterlast, also mit einer geringeren Produkt- und Einsatzmenge als beim Vollastbetrieb.A disadvantage of the use of packages is that the height noticeably increased in comparison with tray columns. In this case, in the claim the inequality stated, that is, the pressure difference between pressure and pressure Low pressure column or between pressure column and evaporation chamber of the Top condenser of the crude argon column is no longer sufficient to the corresponding hydrostatic pressure of a liquid column of the transfer fraction to overcome. While this situation in some systems in normal operation under full load often appears particularly in special operating cases, especially when operating under load, so with a lower product and Amount used as at full load.

Das Problem wurde bereits in EP 567360 A grundsätzlich erwähnt und durch die Einspeisung eines "Erleichterungsgases" stromabwärts des Ventils gelöst.The problem has already been mentioned in EP 567360 A in principle and by the Supply of a "relief gas" downstream of the valve solved.

Der Erfindung liegt die Aufgabe zugrunde, das vorgenannte Verfahren und die entsprechende Vorrichtung weiter zu verbessern.The invention is based on the object, the aforementioned method and the appropriate device to be further improved.

Diese Aufgabe wird durch das kennzeichnende Merkmal des Patentanspruchs 1 gelöst.This object is achieved by the characterizing feature of patent claim 1 solved.

Im Rahmen der Erfindung hat es sich herausgestellt, daß es möglich ist das "Erleichterungsgas" im Sinne der EP 567360 A unmittelbar aus der Überleitungsfraktion selbst zu gewinnen. Die Nachteile der in EP 567360 A beschriebenen Methode werden dabei vermieden, insbesondere sind bei der Überleitung von sauerstoffangereicherter Flüssigkeit aus der Drucksäule weder ein Verbrauch von Druckluft als "Erleichterungsgas" noch aufwendige zusätzliche Schritte zur Erzeugung von "Erleichterungsgas" aus der Überleitungsfraktion notwendig; auch eine zusätzliche Regelung entfällt. In the context of the invention it has been found that it is possible that "Lightening gas" in the sense of EP 567360 A directly from the To transfer the transition fraction itself. The disadvantages of EP 567360 A described method are avoided, in particular are in the Conversion of oxygen-enriched liquid from the pressure column neither a Consumption of compressed air as "relief gas" still consuming additional steps necessary to generate "facilitating gas" from the transfer fraction; also no additional regulation is required.

Hierfür bedarf es einer Anordnung des Entspannungsventils auf einem geeigneten Zwischenniveau zwischen dem ersten und dem zweiten Niveau. Die konkrete Festlegung dieses Zwischenniveaus ist für jede spezielle Ausführung der Erfindung verschieden, kann aber mit Hilfe der Berechnungswerkzeuge, die dem Fachmann zur Verfügung stehen, ohne weiteres ermittelt werden, wenn man die Höhe des Zwischenniveaus als Freiheitsgrad vorgibt. In typischen Fällen wird das Entspannungsventil auf einem Zwischenniveau von hz = h1 + x· (h2-h1) angeordnet, wobei x 30 bis 80 %, vorzugsweise 40 bis 70 %, beträgt.This requires an arrangement of the expansion valve at a suitable intermediate level between the first and the second level. The concrete determination of this intermediate level is different for each specific embodiment of the invention, but can be easily determined by means of the calculation tools available to the person skilled in the art, if one specifies the height of the intermediate level as a degree of freedom. In typical cases, the expansion valve will be at an intermediate level of hz = h1 + x · (h2-h1) where x is 30 to 80%, preferably 40 to 70%.

Diese Auslegung muß für einen bestimmten Betriebsfall vorgenommen werden, zum Beispiel für das Anfahren der Anlage. In einem anderen Beispiel wird die Anordnung des Entspannungsventils für den Unterlastfall im stationären Betrieb der Anlage ausgelegt; dann müssen unter Umständen zusätzliche Mittel zum Transport der Überleitungsflüssigkeit zum "weiteren Verfahrensschritt" während des Anfahrens der Anlage vorgesehen sein; dabei können übliche Methoden zum Transport von Flüssigkeit (mechanische Pumpe, Eindüsen von externem Gas usw.) eingesetzt werden, alternativ oder zusätzlich kann das Druckniveau in der ersten Rektifiziersaule beim Anfahren erhöht werden.This interpretation must be made for a specific operating case, for Example for starting the system. In another example, the arrangement becomes of the expansion valve for under load in stationary operation of the plant designed; then you may need additional funds to transport the Transfer fluid to the "further process step" during the start of the Be provided plant; In doing so, conventional methods for the transport of Liquid (mechanical pump, injection of external gas, etc.) used be, alternatively or additionally, the pressure level in the first rectification column be increased when starting.

Bei dem erfindungsgemäßen Verfahren ist es günstig, wenn die Überleitungsfraktion vor dem Entspannen durch indirekten Wärmeaustausch unterkühlt wird. Dadurch wird die Bildung eines Zweiphasengemischs stromaufwärts des Entspannens ganz oder teilweise vermieden, so daß erst beim Entspannen die erfindungsgemäße gezielte Dampfblasenbildung erfolgt. Die Unterkühlung erfolgt in der Regel in der Nähe des ersten Niveaus.In the method according to the invention, it is advantageous if the transfer fraction is subcooled before relaxing by indirect heat exchange. This will the formation of a two-phase mixture upstream of the relaxation all or partially avoided, so that only when relaxing the inventive targeted Steam bubble formation takes place. The subcooling usually takes place near the first levels.

Vorzugsweise wird gerade so stark unterkühlt, daß die Überleitungsfraktion unmittelbar stromaufwärts des Entspannens vollständig oder im wesentlichen vollständig in flüssiger Form vorliegt, aber nicht mehr unterkühlt ist. Preferably, it is just so much supercooled that the transfer fraction immediately upstream of the relaxation completely or substantially completely in liquid form is present, but not overcooled.

Bei der Auslegung einer Anlage wird dies praktisch so durchgeführt, daß zunächst die Unterkühlung festgelegt wird. Das Maß der Unterkühlung der Überleitungsfraktion wird in der Regel unabhängig vom Flüssigkeitstransportvorgang bestimmt und ist von anderen Kriterien bestimmt, beispielsweise dem Bestreben, relativ wenig Flashgas beim Einspeisen in den zweiten Behälter zu erzeugen. Der Entspannungsvorgang, insbesondere die Anordnung des Entspannungsventils, wird anschließend so bestimmt, daß bei der vorgegebenen Unterkühlung die Überleitungsfraktion unmittelbar vor dem Entspannen gerade noch im einphasigen flüssigen Zustand vorliegt und weder eine nennenswerte Unterkühlung noch Dampfblasen in nennenswertem Umfang vorliegen.In the design of a plant, this is done practically so that the first Hypothermia is set. The degree of supercooling of the transfer fraction becomes usually determined independently of the liquid transport process and is of other criteria, such as the desire to have relatively little flash gas when feeding into the second container to produce. The relaxation process, in particular, the arrangement of the expansion valve, is then so determines that at the given supercooling the transfer fraction immediately before relaxing just in the single-phase liquid state and neither a significant hypothermia still steam bubbles in appreciable extent available.

Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 3 und 4.The invention also relates to a device for the cryogenic separation of air according to claims 3 and 4.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. In dem Ausführungsbeispiel ist sowohl die Überleitung von Drucksäulen-Sumpfflüssigkeit und Drucksäulen-Stickstoff in die Niederdrucksäule als auch die Argongewinnung mit Überführung der Drucksäulen-Sumpfflüssigkeit in den Kopfkondensator einer Rohargonsäule gezeigt.The invention and further details of the invention are described below an embodiment schematically shown in the drawing explained. In the embodiment, both the transfer of pressure column bottom liquid and pressure column nitrogen into the low pressure column as well Argon recovery with transfer of the pressure column sump liquid in the Top condenser of a crude argon column shown.

Bei dem in dem Schema dargestellten Verfahren wird gereinigte Luft 1 unter einem Druck von 4 bis 20 bar, vorzugsweise 5 bis 12 bar in einem Wärmetauscher 2 gegen Produktströme auf etwa Taupunkt abgekühlt und in die Drucksäule 3 einer zweistufigen Rektifiziereinrichtung eingespeist. Die Drucksäule 3 steht über einen gemeinsamen Kondensator-Verdampfer 4 in Wärmeaustauschbeziehung mit einer Niederdrucksäule 5.In the process shown in the scheme purified air 1 is under a Pressure of 4 to 20 bar, preferably 5 to 12 bar in a heat exchanger 2 against Product streams cooled to about dew point and in the pressure column 3 a two-stage Rectifier fed. The pressure column 3 is connected via a common Condenser-evaporator 4 in heat exchange relationship with a low pressure column 5th

Sumpfflüssigkeit 6 und Stickstoff 7 werden aus der Drucksäule 3 abgezogen, in einem Gegenströmer 8 unterkühlt und mindestens teilweise in die Niederdrucksäule 5 eingedrosselt. Aus der Niederdrucksäule werden Sauerstoff 9, Stickstoff 10 und unreiner Stickstoff 11 gasförmig entnommen. Die Produkte können auch mindestens teilweise flüssig entnommen werden (Sauerstoff 9a, Stickstoff 10a). Bottom liquid 6 and nitrogen 7 are withdrawn from the pressure column 3, in one Countercurrent 8 undercooled and at least partially in the low pressure column. 5 throttled. From the low pressure column are oxygen 9, nitrogen 10 and impure nitrogen 11 removed in gaseous form. The products can also be at least are partially removed liquid (oxygen 9a, nitrogen 10a).

In der Drucksäule bildet der Sumpf ein Reservoir 24 für die vom untersten Stoffaustauschabschnitt ablaufende Kolonnenflüssigkeit. Die Sumpfflüssigkeit, die sich in diesem Reservoir sammelt bildet die Überleitungsfraktion im Sinne der Erfindung. Das "erste Niveau" h1 ist durch den Flüssigkeitsspiegel im Sumpf der Drucksäule bestimmt. Die Überleitungsfraktion 6 wird in dem Gegenströmer 8 unterkühlt. Die unterkühlte Überleitungsfraktion strömt zu einem ersten Teil 13 einem Entspannungsventil 14 zu, das auf dem Niveau hz angeordnet ist. Beim Entspannen 14 wird soviel Dampf erzeugt, daß der verbleibende Druckunterschied ausreicht, um die Überleitungsfraktion als Zweiphasengemisch 15 in die Niederdrucksäule zu drücken, und zwar auf dem "zweiten Niveau" h2. In einem konkreten Zahlenbeispiel gilt:

  • h1 = 3100 mm
  • hz = 22100 mm
  • h2 = 46100 mm
  • In the pressure column, the sump forms a reservoir 24 for the column liquid draining from the lowest mass transfer section. The bottom liquid which collects in this reservoir forms the transfer fraction in the sense of the invention. The "first level" h1 is determined by the liquid level in the bottom of the pressure column. The transfer fraction 6 is supercooled in the countercurrent 8. The supercooled transfer fraction flows to a first part 13 to an expansion valve 14, which is arranged at the level hz. When relaxing 14 so much vapor is generated that the remaining pressure difference is sufficient to push the transfer fraction as a two-phase mixture 15 in the low-pressure column, namely at the "second level" h2. In a concrete numerical example:
  • h1 = 3100 mm
  • hz = 22100 mm
  • h2 = 46100 mm
  • Die erfindungsgemäße Methode der Überführung einer Flüssigkeit kann genauso auf den flüssigen Stickstoff 7 vom Kopf der Drucksäule als (weitere) "Überleitungsfraktion" angewandt werden. Das "erste Niveau" wird dabei durch den Flüssigkeitsspiegel innerhalb der Tasse 16 gebildet, in der die von Hauptkondensator 4 kommende Flüssigkeit aufgefangen wird. Unterkühlt wird wiederum im Gegenströrner 8. Der unterkühlte Stickstoff 17 fließt zu einem Entspannungsventil 18, das auf einem Zwischenniveau hz' angeordnet ist und schließlich weiter zu der Einspeisestelle 19 ("zweites Niveau" h2') am Kopf der Niederdrucksäule.The inventive method of transferring a liquid may as well the liquid nitrogen 7 from the head of the pressure column as (further) "transfer fraction" be applied. The "first level" is thereby by the liquid level formed within the cup 16, in which coming from main capacitor 4 Liquid is collected. Undercooling is again in the counterstroller 8. The supercooled nitrogen 17 flows to a relief valve 18, which on a Intermediate level hz 'is arranged and finally on to the feed point 19 ("second level" h2 ') at the top of the low pressure column.

    Wird zusätzlich Argon gewonnen, wie es in der Zeichnung dargestellt ist, kann die Erfindung auch auf den Transport einer flüssigen Überleitungsfraktion in den Verdampfungsraum des Kopfkondensators einer Rohargonsäule angewandt werden. Die Rohargonsäule wird in dem Beispiel durch zwei Abschnitte 20a, 20b gebildet, deren Funktion im europäischen Patent EP 628777 B1 und in dem korrespondierenden US-Patent US 5426946 ausführlich beschrieben ist. Die Erfindung kann bei jeder bekannten Art der Rohargongewinnung eingesetzt werden, bei der eine argonhaltige Sauerstofffraktion 21 aus der Niederdrucksäule 5 in eine Rohargonsäule eingeleitet wird, wobei im oberen Bereich der Rohargonsäule ein an Sauerstoff abgereichertes Argonprodukt 22a, 22b in gasförmigem und/oder flüssigem Zustand anfällt. If additional argon is recovered, as shown in the drawing, the Invention also to the transport of a liquid transfer fraction in the Evaporation space of the top condenser of a crude argon column can be applied. The crude argon column is formed in the example by two sections 20a, 20b, their function in European patent EP 628777 B1 and in the corresponding US Patent US 5426946 is described in detail. The invention can be applied to anyone known type of Rohargongewinnung be used, in which an argon-containing Oxygen fraction 21 introduced from the low pressure column 5 in a crude argon column is, wherein in the upper part of the crude argon column depleted of oxygen Argon product 22a, 22b obtained in gaseous and / or liquid state.

    Die weitere Überleitungsfraktion wird in dem in der Zeichnung dargestellten Beispiel durch einen Teil 13a der unterkühlten Sumpfflüssigkeit 6 aus der Drucksäule 5 gebildet. Sie wird in einem Entspannungsventil 14a entspannt, das auf einem Zwischenniveau angeordnet ist. Dieses Zwischenniveau liegt in dem Beispiel auf derselben oder etwa derselben Höhe wie das Zwischenniveau hz. Die in 14a entspannte Überleitungsfraktion 15a von Sumpf 12 der Drucksäule 3 wird auf einem "zweiten Niveau" h2" in den Verdampfungsraum 23 des Kopfkondensators der Rohargonsäule eingeführt.The further transfer fraction is in the example shown in the drawing through a part 13a of the supercooled bottoms liquid 6 from the pressure column 5 educated. She is relaxed in a relaxation valve 14a, which on a Intermediate level is arranged. This intermediate level is in the example the same or about the same height as the intermediate level hz. The in 14a relaxed transfer fraction 15a of sump 12 of the pressure column 3 is on a "second level" h2 "in the evaporation space 23 of the top condenser Introduced crude argon column.

    Claims (4)

    1. Process for the cryogenic separation of air, in which feed air (1) is introduced into a first rectification column (3) and a transfer fraction (6, 7) of density ρ is removed in the liquid state from a reservoir (24, 16) inside the first rectification column (3), is supercooled by indirect heat exchange (8), expanded (14, 14a, 18) and fed to a further process step (5, 23), in which process
      the liquid level in the reservoir (24, 16) is at a first level h1 and is under a first pressure p1,
      the expanded transfer fraction is fed to the further process step (5, 23) at a second, higher level h2(h2 > h1) and under a second, lower pressure (p2 < p1),
      the difference between the two pressures Δp = p1 - p2 is lower than the hydrostatic pressure (phydr = ρ· g· [h2-h1]) generated by a liquid column of the transfer fraction between the first level and the second level
      Δp = p1 - p2 < ρ· g· [h2 - h1]   (g: gravitational acceleration), characterized in that the expansion (14, 14a, 18) is carried out in such a way that the gas bubbles which are formed during the expansion reduce the density of the transfer fraction to such an extent that the pressure difference Δp is sufficient to feed the transfer fraction to the further process step (5, 23), without a gaseous or liquid stream being fed to the. transfer fraction downstream of the expansion (14, 14a, 18) or a liquid stream being fed to the transfer fraction between supercooling (8) and expansion (14, 14a, 18).
    2. Process according to Claim 1, characterized in that the supercooling (8) is carried out in such a way that the transfer fraction (13, 13a, 17) is completely or substantially completely in liquid form immediately upstream of the expansion (14, 14a, 18).
    3. Apparatus for carrying out the process according to Claim 1, which is designed for at least one operating situation and has a first rectification column (3) with a reservoir (24, 16) for a liquid transfer fraction and a liquid line (6 - 13 - 15, 6 - 13a - 15a, 7 - 17 - 19), which is connected to the reservoir (24, 16) in the first rectification column (3) and to a further vessel (5, 23), has an expansion valve (14, 14a, 18) between these connections and upstream of the expansion valve (14, 14a, 18) leads through a heat exchanger (8) in order to cool the transfer fraction by indirect heat exchange, in which apparatus
      in the operating situation the liquid level in the reservoir (24, 16) is at a first level h1 and is under a first pressure p1,
      in the further vessel (5, 23) a second pressure (p2) prevails at the location of the connection between liquid line (15, 15a, 19) and further vessel (5, 23) in the operating situation,
      the location of the connection between liquid line (15, 15a, 19) and further vessel (5, 23) is arranged at a second, higher level h2 (h2 > h1),
      the difference between the two pressures Δp = p1 - p2 in the operating situation is lower than the hydrostatic pressure (phydr=ρ g[h2-h1]) generated by a liquid column of the transfer fraction between the first level and the second level:
      Δp = p1 - p2 < ρ g [h2 - h1]   g: gravitational acceleration. characterized in that the expansion valve (14, 14a, 18) is arranged in such a way that in the operating situation the gas bubbles which are formed during the expansion reduce the density of the transfer fraction during expansion to such an extent that the pressure difference Δp is sufficient to feed the transfer fraction into the further vessel (5, 23), without a gaseous or two-phase stream being fed to the transfer fraction downstream of the expansion valve (14, 14a, 18) or a liquid stream being fed to the transfer fraction between the heat exchanger (8) and the expansion valve (14, 14a, 18).
    4. Apparatus according to Claim 3, characterized in that the heat exchanger (8) is arranged in such a way that in the operating situation the transfer fraction is completely or substantially completely in liquid form immediately upstream of the expansion valve (14, 14a, 18).
    EP99112289A 1999-05-12 1999-06-25 Process and device for cryogenic air separation Expired - Lifetime EP1052465B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19921949A DE19921949A1 (en) 1999-05-12 1999-05-12 Method and device for the low-temperature separation of air
    DE19921949 1999-05-12

    Publications (2)

    Publication Number Publication Date
    EP1052465A1 EP1052465A1 (en) 2000-11-15
    EP1052465B1 true EP1052465B1 (en) 2005-05-11

    Family

    ID=7907865

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99112289A Expired - Lifetime EP1052465B1 (en) 1999-05-12 1999-06-25 Process and device for cryogenic air separation

    Country Status (6)

    Country Link
    US (1) US6308533B1 (en)
    EP (1) EP1052465B1 (en)
    JP (1) JP2000356463A (en)
    KR (1) KR20010049347A (en)
    DE (2) DE19921949A1 (en)
    ES (1) ES2242331T3 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1300640A1 (en) * 2001-10-04 2003-04-09 Linde Aktiengesellschaft Process and device for producing ultra-high purity Nitrogen by cryogenic separation of air
    FR2853406A1 (en) * 2003-04-01 2004-10-08 Air Liquide Procedure for separating air by cryogenic distillation uses two-column separator and pressure reducing valve opening at set pressure
    FR2853405A1 (en) * 2003-04-01 2004-10-08 Air Liquide Cryogenic distillation air separation procedure and plant uses lightening gas formed at least partly from purging gas drawn from vaporizer-condenser

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5071458A (en) * 1989-07-28 1991-12-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vaporization-condensation apparatus for air distillation double column, and air distillation equipment including such apparatus

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4224068A1 (en) * 1992-03-20 1993-09-23 Linde Ag METHOD FOR DEEP TEMPERATURE DISASSEMBLY OF AIR AND AIR DISASSEMBLY SYSTEM
    FR2689223B1 (en) * 1992-03-24 1994-05-06 Air Liquide METHOD AND INSTALLATION FOR TRANSFERRING FLUID FROM A DISTILLATION COLUMN, ESPECIALLY AIR.
    DE4317916A1 (en) * 1993-05-28 1994-12-01 Linde Ag Process and apparatus for the isolation of argon
    US5406800A (en) * 1994-05-27 1995-04-18 Praxair Technology, Inc. Cryogenic rectification system capacity control method
    US5669237A (en) * 1995-03-10 1997-09-23 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of air
    GB9711258D0 (en) * 1997-05-30 1997-07-30 Boc Group Plc Air separation

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5071458A (en) * 1989-07-28 1991-12-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vaporization-condensation apparatus for air distillation double column, and air distillation equipment including such apparatus

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    DIN ET AL: "Low temperature techniques", 1960, GEORGES NEWNES LTD., LONDON *
    STER J.V.: "The production of liquid nitrogen from atmospherique air using a gas refrigerating machine (Thesis)", 1960, TECHNISCHE HOGESCHOOL, DELFT *

    Also Published As

    Publication number Publication date
    DE19921949A1 (en) 2000-11-16
    EP1052465A1 (en) 2000-11-15
    DE59912043D1 (en) 2005-06-16
    KR20010049347A (en) 2001-06-15
    US6308533B1 (en) 2001-10-30
    ES2242331T3 (en) 2005-11-01
    JP2000356463A (en) 2000-12-26

    Similar Documents

    Publication Publication Date Title
    EP1243882B1 (en) Production of argon using a triple pressure air separation system with an argon column
    DE19904527B4 (en) Air distillation unit with several cryogenic distillation units of the same type
    EP1308680A1 (en) Process and system for production of krypton and/or xenon by cryogenic air separation
    WO2009095188A2 (en) Method and device for low-temperature air separation
    EP0669509A1 (en) Process and apparatus for obtaining pure argon
    EP1357342A1 (en) Cryogenic triple column air separation system with argon recovery
    EP3133361B1 (en) Distillation column system and system for the production of oxygen by cryogenic decomposition of air
    EP1482266A1 (en) Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air
    EP2603754B1 (en) Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
    EP2236964A1 (en) Method and device for low-temperature air separation
    EP0669508B1 (en) Process and apparatus for obtaining pure argon
    EP2520886A1 (en) Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
    DE10302389A1 (en) Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
    DE60004450T2 (en) Cryogenic rectification system for the production of high-purity oxygen
    WO2013041229A1 (en) Method and device for the cryogenic decomposition of air
    EP0768503A2 (en) Triple column air separation process
    DE10161584A1 (en) Device and method for generating gaseous oxygen under increased pressure
    WO2016146246A1 (en) Plant for producing oxygen by cryogenic air separation
    EP1052465B1 (en) Process and device for cryogenic air separation
    EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
    EP2312247A1 (en) Method and device for generating liquid nitrogen from low temperature air separation
    DE19933558B4 (en) Three-column process and apparatus for the cryogenic separation of air
    DE102013002835A1 (en) Process for the production of gaseous oxygen by cryogenic separation of air
    DE102016015446A1 (en) Process for the cryogenic separation of air and air separation plant
    DE10332862A1 (en) Cryogenic assembly to extract krypton and/or xenon gas from air has intermediate pipe on the methane removal column alongside a base panel above the sump

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010423

    AKX Designation fees paid

    Free format text: DE ES FR GB IT

    17Q First examination report despatched

    Effective date: 20020829

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59912043

    Country of ref document: DE

    Date of ref document: 20050616

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050908

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2242331

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20060214

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CA

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110621

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20110715

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120702

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20131030

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120626

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180612

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20180403

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20180625

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59912043

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20190624

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20190624