EP1050420B1 - Method and control of the temperature of an evaporator in a vehicle air conditioner - Google Patents
Method and control of the temperature of an evaporator in a vehicle air conditioner Download PDFInfo
- Publication number
- EP1050420B1 EP1050420B1 EP00107463A EP00107463A EP1050420B1 EP 1050420 B1 EP1050420 B1 EP 1050420B1 EP 00107463 A EP00107463 A EP 00107463A EP 00107463 A EP00107463 A EP 00107463A EP 1050420 B1 EP1050420 B1 EP 1050420B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- evaporator
- evaporator temperature
- innen
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00735—Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
Definitions
- the invention relates to a method for controlling the evaporator temperature in a vehicle air conditioning system according to the preamble of the claim 1.
- Air conditioning systems in vehicles are generally known. Usually compacted a compressor a gaseous refrigerant and when flowing through the Refrigerant through a condenser, an expansion device and an evaporator the air also flowing through the evaporator is cooled.
- the air temperature is usually reduced to a temperature of about 1 ° C to 3 ° C. Since these are usually below the dew point of the suctioned for cooling Air is present, water condenses on the evaporator, which becomes air dried.
- the cooled one is in most operating states Air warms up again so that it is optimally temperature-controlled in the interior arrives.
- the cooling regardless of the air conditioning requirement to 1 ° C to 3 ° C therefore usually requires too much cooling capacity.
- the air conditioning system always operate only in such a way that the air reaches a precisely required temperature is cooled. It is necessary to set the evaporator temperature and according to the requirements in the vehicle.
- DE 196 08 015 C1 describes an air mixing method for an air conditioning system Vehicle known to reduce energy consumption, in which u. a. also the specific one Enthalpy for mixing fresh and recirculated air is taken into account. In particular becomes a mixed air with the smallest specific Enthalpy difference provided. To find the specific enthalpy the temperature and the relative humidity of the air is measured. An evaporator temperature control is not known from DE 196 08 015 C1.
- DE 197 28 578 A1 describes a method for controlling the evaporator temperature depending on the dew point known in which the air temperature and the dew point temperature that of the air conditioner for air conditioning an interior of air sucked in from outside and determined from indoor temperature setpoint a counter heating-free evaporator request temperature is determined.
- a setpoint is used, which as the smaller value of an evaporator request temperature on the one hand and the Difference from air temperature minus dew point temperature of the supply air on the other hand is chosen.
- DE 42 12 680 A1 describes a control device for controlling the output power of a compressor in an automotive air conditioner.
- Target cooling temperatures are calculated based on characteristic schemes, and the first target cooling temperature depending on the heat load signals and the second target cooling temperature depending on the outside temperature.
- a Selection circuit selects the lower of the two target cooling temperatures, where as a result, a reduction in dehumidification performance is prevented.
- JP 60176809 describes a vehicle air conditioning system in which an evaporator temperature is selected from two determined temperatures, namely a first temperature to maintain the present room temperature and a dew point temperature, which is the relative humidity at or below holds a predetermined value. Using this approach can save energy A pleasant air conditioning control can be achieved.
- the object of the present invention is a method for operating an air conditioning system to develop further in all comfort and safety conditions Is taken into account.
- an evaporator temperature value is related determined a certain humidity.
- the other is an evaporator temperature value determined to ensure sufficient cooling capacity. thereupon the smallest of the aforementioned evaporator temperature values is selected.
- the evaporator temperature value which is related to a desired humidity is determined, is dependent on hardware criteria the vehicle windows and comfort criteria. With that becomes one ensures that the driver's view is not impaired. To the others are in a pleasant, not too dry indoor climate for the Respected vehicle occupants.
- a maximum permissible serves as the comfort limit Enthalpy of the air in the vehicle interior resulting from humidity and temperature is determined.
- the interior humidity is, among other things, a function of the water vapor emission of the occupants, as well as the amount and humidity of the blowing air.
- the blowing air condition is to be influenced, among other things, by the evaporator temperature. It must be set so that the interior humidity exceeds the permissible limits to comply with the hardware and comfort requirements.
- the evaporator temperature value which is based on a sufficient cooling capacity, is due to the target injection temperature and the undesired heating in the air duct components that follow the evaporator are influenced.
- the interior temperature, the ambient temperature and / or the solar radiation considered as influencing factors for undesired warming are influenced.
- a particularly preferred embodiment is characterized in that that to the aforementioned method only when certain operating conditions exist is switched. This is in critical operating conditions ensures that the evaporator temperature is always sufficiently low.
- a vehicle is shown in a schematic plan view, in which an air conditioning system with compressor 101, evaporator 102, dryer 103 and Capacitor 104 is arranged.
- an air conditioning system with compressor 101, evaporator 102, dryer 103 and Capacitor 104 is arranged.
- the Evaporator temperature is the temperature and humidity of the blowing air changed for the vehicle.
- the air humidity increases with the evaporator temperature to increase. This option is limited by the danger of the window fitting and a possible reaching of a "muggy limit”. Adequate cooling capacity must also be ensured.
- a compressor is used, the stroke volume of which can be varied.
- Such a compressor is shown in a block diagram in FIG. 2 with the reference number 201 and is controlled by a climate control 208.
- Different cooling capacities can be varied through different volume flows in the refrigeration circuit of the air conditioning system.
- the temperature of the evaporator can be adjusted.
- the compressor has an electrical input that receives a signal from the control device.
- input signals 206 such as an external temperature specification and the evaporator temperature T v are received .
- the temperature T v comes from an evaporator 202, through which the coolant is passed to the compressor, the condenser 204 and the expansion valve 205.
- the comfort rating for the interior is shown with reference to FIG. 3. Starting from the left, the development of the interior humidity X inside 307 is shown.
- An essential factor for the interior humidity X inside is the blowing-in moisture x nV 306, which depends primarily on the evaporator temperature T V_K 305, because it is responsible for drying the outside air (humidity ⁇ ⁇ , 301, and temperature T ⁇ , 302) (absolute Outside moisture x ⁇ ).
- the function of the evaporator separation efficiency 304 is decisive for the drying of the outside air.
- the interior air is also enriched with water by the occupants, which is expressed by an increase in humidity ⁇ x, 310.
- the Moisture increase ⁇ x, 310 depends on the number of occupants 308 and the humidity per occupant 309. The number of occupants 308 can over a seat occupancy detection system determines the humidity using specified parameters become.
- a specific enthalpy (enthalpy of the moist air) for the passenger compartment h inside , 311 can be determined from the interior humidity X inside , 307, and the interior temperature T inside , 312.
- This specific enthalpy 311 is now compared with a comfort limit h max , 313, and must always be smaller than this limit value in the present invention.
- the permissible specific interior thhalpy h max , 313, basically comes from a comfort assessment carried out with occupants.
- three correction factors are provided, namely a stratification setting 314, the solar radiation 316 and the T target setting 317.
- the driver selects a cold stratification setting or sets a low target temperature on an operating part 317, this can not only have the aim of cooling the interior , but possibly also the desire for fresh air. Here it is possible to correct the maximum enthalpy (h inside ) downwards.
- the evaporator temperature T V_K plays a decisive role as explained with reference to FIG. 3.
- the enthalpy has proven to be an excellent parameter for assessing interior comfort.
- Fanger PO "Air Humidity And Perceived Air Quality, Laboratory of Environment of Energy, Department of Energy Engineering, Technical University Denmark” dated November 19, 1997. Fanger has found that air quality can be determined particularly well depending on the specific enthalpy, ie on various combinations of air temperature and air humidity.
- FIG. 4 shows that the development of the interior humidity x inside , 407 , is identical to that from the comfort analysis. From X inside , 407 one can deduce the thawing temperature, which together with the pane temperature T pane , 413, is decisive for a possible pane fitting.
- the size dx inhomogeneous , 411, which is connected between the interior humidity X inside and the thawing temperature T Tau should take into account possible inhomogeneities in the air mixing. The air does not have the same humidity everywhere.
- z. B the presence of people irregularities in the moisture distribution.
- the inside pane temperature T pane , 413 which is also responsible for the fitting, is a function of the outside (T ⁇ ) and inside temperature T inside , 415.
- the influencing variable “sunshine” 414 is again found here.
- the pane temperature increases.
- the cold radiation background - sky - can be taken into account.
- the evaporator temperature T V_B in FIG. 4 must be selected accordingly. This results in another criterion for an upper evaporator temperature limit.
- the next step is to ensure sufficient cooling capacity received.
- evaporator temperature With current evaporator temperature values of 1 to 3 ° C, there is no problem with a cooling capacity limit that must be observed. However, if the evaporator temperature is set to a less low temperature, the interior may not be cooled sufficiently.
- a temperature for the air from the ventilation grilles is determined from a stratification position and the values of inside temperature, outside temperature and set target temperature. If the stratification is set to "cold", depending on the calculation of the control unit, in extreme cases only air taken directly from the evaporator can be supplied to the interior. For the evaporator temperature control, this means that the maximum temperature that can be reached is that which is required for compensation at the ventilation level. To take into account the heating of the air in heated ducts, the temperature limit T V must be adjusted.
- the blocks 502 ambient temperature
- 503 internal temperature
- 504 solar radiation
- T V A higher-level determination of the evaporator temperature T V from all of the above-described evaporator temperatures can be seen in FIG. 7.
- the lowest value from the evaporator temperature values T V_F and T V_P is selected as the evaporator temperature to be set, T V , 705, where T V_F , 703 represents the evaporator temperature from the humidity criterion and T V_P , 704, the evaporator temperature from the performance criterion .
- the moisture criterion in turn results from the fitting criterion 701, which was selected on the basis of the fitting limit, and the comfort criterion 702, which was selected on the basis of the maximum enthalpy of air in the interior.
- the fitting criterion 701 which was selected on the basis of the fitting limit
- the comfort criterion 702 which was selected on the basis of the maximum enthalpy of air in the interior.
- the evaporator temperature T V_P represents a function of the blow-out temperature T blow-out and the heating of the blow-in air ⁇ T heating .
- the solar radiation P sun , 901, the sunshine dT P_Sonne , 902, the interior temperature T inside , 905, the outside temperature T outside , 903, the inside temperature surcharge dT T_innen , 906, and the outside temperature surcharge dT T_Outer , 904 are taken into account.
- the evaporator temperature control from the humidity criterion which is shown in FIG. 7 at 703, can be determined as specified in FIG. 8.
- Sun by means of the sunlight P, 801, the solar influence ie sun, 802, the desired effect of temperature T set, 803, the target temperature that is Tset, 804, the stratification value S 805, the stratification effect ie stratification, 806, and the comfort evaluation comfort h, 807, the permissible specific enthalpy h inside , 808, can be determined.
- the inside humidity X inside_K can be determined.
- the inside temperature T inside , 813, the outside temperature T outside , 814, and the solar radiation P sun , 815, the pane temperature T pane , 816 can be determined. Taking into account the inhomogeneous distribution dx inh , 818, as well as the dew moisture X Tau , 817, the maximum permissible interior moisture x inside_B , 819 (fitting criterion ) results. The interior humidity X inside , 820, is then selected as the lowest value of X inside_K and X inside_B .
- the interior humidity x inside , 820 together with the increase in humidity by the occupants dx I , 812, which is determined from the number of occupants n I , 811, gives the blowing-in moisture x nV , 821.
- the blowing-in moisture x nV , 821 results together with the absolute outside humidity X outside , 825, and the air mass flow dm air , 827, the evaporator temperature T V_F , 828.
- the absolute outside humidity X outside , 825 can in turn be determined via the relative outside humidity rF outside , 822, and the outside temperature value T outside , 823.
- the air mass flow dm air , 827 can be determined via the vehicle speed v fzg , 824, and the blower voltage U bl , 826.
- a climate control system can be implemented that is comfortable for the conditions the occupants regarding the humidity, avoiding window fogging and ensuring sufficient cooling capacity is sufficient.
- the control according to the invention is not carried out under every environmental or operating condition. From Fig. 6 it can be seen that the control of the evaporator temperature T V is only carried out in the manner described above when six conditions are met. 1. Fresh air mode must be set (602). 2. Furthermore, the air conditioning system is to be operated in automatic mode (604). 3. Moreover, the outside temperature must be in the range from 0 to 25 ° C (606). 4. In addition, it must not rain (608) and 5. The air output should be greater than or equal to a specified automatic blower air output (612). These quantities can be derived from the respective signals and sensors (reference numbers 601, 603, 605, 607, 609, 610 and 611). In the event of deviations from, for example, fresh air or automatic mode, the evaporator temperature control can also be operated with the diagram shown, but with different limit values and safety measures.
- FIG. 10 A schematic block diagram for a control device for carrying out the inventive method described above is shown in FIG. 10.
- the signals solar radiation, outside humidity and air mass flow were not taken into account.
- the vehicle electrical system 1001 already present in the vehicle 100 provides the necessary temperature data T I (T inside ), T A (T outside ) and T V (T evaporator temperature) to a computer 1003. Furthermore, further data of the integrated automatic heating and air conditioning system (IHKA data) are communicated to the computer 1003.
- T I T inside
- T A T outside
- T V T evaporator temperature
- IHKA data integrated automatic heating and air conditioning system
- the computer 1003 is designed here as a rapid prototyping computer and comprises an evaporator temperature logic 1004, a query device for the presence of required conditions 1005 and a controller 1006.According to the data coming in from the vehicle electronics 1001, an evaporator temperature is read out from the evaporator temperature logic and the Regulated controller 1006, which outputs a voltage signal 1007 to an external input of the compressor 2 (see FIG. 2).
- the present invention is simple and inexpensive realize, since only a few new vehicle components are necessary and a corresponding computer extension in the heating and air conditioning control unit, as well as a controllable, externally controllable compressor. Nevertheless, with the method according to the invention a fuel saving by temporary Raising the evaporator temperature.
- the tension potential According to this assessment, the annual average is around 25% compared to a conventional regulation. On the total fuel consumption of a vehicle, depending on average consumption vehicle savings of the order of 1 - 4 %.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Regelung der Verdampfertemperatur
bei einer Fahrzeug-Klimaanlage gemäß dem Oberbegriff des Patentanspruchs
1.The invention relates to a method for controlling the evaporator temperature
in a vehicle air conditioning system according to the preamble of the
Klimaanlagen in Fahrzeugen sind allgemein bekannt. In der Regel verdichtet ein Kompressor ein gasförmiges Kältemittel und beim Durchströmen des Kältemittels durch einen Kondensator, ein Expansionsorgan und einen Verdampfer wird die ebenfalls durch den Verdampfer strömende Luft gekühlt. Die Absenkung der Lufttemperatur erfolgt meist auf eine Temperatur von etwa 1°C bis 3°C. Da diese meist unter dem Taupunkt der zur Kühlung angesaugten Luft liegt, kondensiert am Verdampfer Wasser aus, die Luft wird getrocknet. Nachfolgend wird in den meisten Betriebszuständen die abgekühlte Luft wieder erwärmt, damit sie optimal temperiert in den Innenraum gelangt. Die ungeachtet der Klimatisierungsanforderung erfolgende Abkühlung auf 1°C bis 3°C erfordert demzufolge meist zuviel Kühlleistung. Air conditioning systems in vehicles are generally known. Usually compacted a compressor a gaseous refrigerant and when flowing through the Refrigerant through a condenser, an expansion device and an evaporator the air also flowing through the evaporator is cooled. The air temperature is usually reduced to a temperature of about 1 ° C to 3 ° C. Since these are usually below the dew point of the suctioned for cooling Air is present, water condenses on the evaporator, which becomes air dried. In the following, the cooled one is in most operating states Air warms up again so that it is optimally temperature-controlled in the interior arrives. The cooling regardless of the air conditioning requirement to 1 ° C to 3 ° C therefore usually requires too much cooling capacity.
Daher wird es u. a. Aufgabe der nachfolgenden Erfindung sein, die Klimaanlage immer nur so zu betreiben, dass die Luft auf eine gerade erforderliche Temperatur abgekühlt wird. Dazu ist es erforderlich, die Verdampfertemperatur einzustellen und zwar entsprechend den Erfordernissen im Fahrzeug.Therefore, it will a. Object of the following invention, the air conditioning system Always operate only in such a way that the air reaches a precisely required temperature is cooled. It is necessary to set the evaporator temperature and according to the requirements in the vehicle.
Aus der DE 196 08 015 C1 ist ein Luftmischverfahren für eine Klimaanlage eines Fahrzeugs zur Energieverbrauchssenkung bekannt, bei der u. a. auch die spezifische Enthalpie zur Mischung von Frisch- und Umluft berücksichtigt wird. Insbesondere wird einem Wärmetauscher eine Mischluft mit der kleinsten spezifischen Enthalpiedifferenz zur Verfügung gestellt. Zum Auffinden der spezifischen Enthalpie wird die Temperatur und die relative Feuchtigkeit der Luft gemessen. Eine Verdampfertemperaturregelung ist aus der DE 196 08 015 C1 jedoch nicht bekannt.DE 196 08 015 C1 describes an air mixing method for an air conditioning system Vehicle known to reduce energy consumption, in which u. a. also the specific one Enthalpy for mixing fresh and recirculated air is taken into account. In particular becomes a mixed air with the smallest specific Enthalpy difference provided. To find the specific enthalpy the temperature and the relative humidity of the air is measured. An evaporator temperature control is not known from DE 196 08 015 C1.
Aus der DE 197 28 578 A1 ist ein Verfahren zur außentaupunktabhängigen Verdampfertemperatursteuerung bekannt, bei dem die Lufttemperatur und die Taupunkttemperatur der von der Klimaanlage zur Klimatisierung eines Innenraums von einem Außenraum angesaugten Luft bestimmt werden und aus Innenraum-Temperatur-Sollwertvorgabe eine gegenheizfreie Verdampfer-Anforderungstemperatur ermittelt wird. Insbesondere wird ein Sollwert verwendet, der als der kleinere Wert von einer Verdampfer-Anforderungstemperatur einerseits und der Differenz von Lufttemperatur abzüglich Taupunkttemperatur der Zuluft andererseits gewählt wird.DE 197 28 578 A1 describes a method for controlling the evaporator temperature depending on the dew point known in which the air temperature and the dew point temperature that of the air conditioner for air conditioning an interior of air sucked in from outside and determined from indoor temperature setpoint a counter heating-free evaporator request temperature is determined. In particular, a setpoint is used, which as the smaller value of an evaporator request temperature on the one hand and the Difference from air temperature minus dew point temperature of the supply air on the other hand is chosen.
In der DE 42 12 680 A1 ist eine Steuervorrichtung zur Steuerung der Abgabeleistung eines Verdichters in einem Automobil-Klimagerät beschrieben. Dabei werden Soll-Kühltemperaturen basierend auf charakteristischen Schemata berechnet, und zwar die erste Soll-Kühltemperatur in Abhängigkeit der Wärmebelastungssignale und die zweite Soll-Kühltemperatur in Abhängigkeit von der Außentemperatur. Eine Auswahlschaltung wählt die niedrigere der beiden Soll-Kühltemperaturen aus, wobei im Ergebnis eine Verringerung der Entfeuchtungsleistung verhindert wird. DE 42 12 680 A1 describes a control device for controlling the output power of a compressor in an automotive air conditioner. In doing so Target cooling temperatures are calculated based on characteristic schemes, and the first target cooling temperature depending on the heat load signals and the second target cooling temperature depending on the outside temperature. A Selection circuit selects the lower of the two target cooling temperatures, where as a result, a reduction in dehumidification performance is prevented.
In der JP 60176809 ist eine Fahrzeug-Klimaanlage beschrieben, bei der eine Verdampfertemperatur aus zwei ermittelten Temperaturen ausgewählt wird, nämlich einer ersten Temperatur zur Aufrechterhaltung der vorliegenden Raumtemperatur und einer Taupunkttemperatur, welche die relative Luftfeuchtigkeit auf oder unterhalb eines vorgegebenen Wertes hält. Mit dieser Vorgehensweise kann in energiesparender Weise eine angenehme Klimaanlagensteuerung erreicht werden.JP 60176809 describes a vehicle air conditioning system in which an evaporator temperature is selected from two determined temperatures, namely a first temperature to maintain the present room temperature and a dew point temperature, which is the relative humidity at or below holds a predetermined value. Using this approach can save energy A pleasant air conditioning control can be achieved.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Betrieb einer Klimaanlage weiterzuentwickeln, bei dem allen Komfort- und Sicherheitsbedingungen Rechnung getragen wird.The object of the present invention is a method for operating an air conditioning system to develop further in all comfort and safety conditions Is taken into account.
Diese Aufgabe wird durch die im Anspruch 1 genannten Merkmale gelöst. Zur Vermeidung
eines unnötigen Energieverbrauchs wird die Verdampfertemperatur auf
einen Temperaturwert eingeregelt, der sowohl den Komfort- als auch den Sicherheitsaspekten
Rechnung trägt. Zum einen wird ein Verdampfertemperaturwert bezüglich
einer bestimmten Luftfeuchte ermittelt. Zum anderen wird ein Verdampfertemperaturwert
zur Sicherstellung einer ausreichenden Kühlleistung ermittelt. Sodann
wird der kleinste der vorgenannten Verdampfertemperaturwerte ausgewählt.
Der Verdampfertemperaturwert, welcher bezüglich einer gewünschten Luftfeuchte
ermittelt wird, ist in Abhängigkeit von Beschlagskriterieen
der Fahrzeugscheiben und Komfortkriterien zu ermitteln. Damit wird zum
einen sichergestellt, daß die Sicht des Fahrers nicht beeinträchtigt wird. Zum
anderen wird auf ein angenehmes, nicht zu trockenes Raumklima für die
Fahrzeuginsassen geachtet. Für beide Fälle ergibt sich eine maximale zulässige
Luftfeuchtigkeit im Fahrzeug. So darf der Taupunkt der Luft die Temperatur
der Scheibeninnenflächen, die hierzu berechnet werden müssen,
nicht unterschreiten. Als Komfortgrenzwert dient eine maximal zulässige
Enthalpie der Luft im Fahrzeuginnenraum, die aus Feuchte und Temperatur
bestimmt wird.This object is achieved by the features mentioned in
Die Innenraumfeuchte ist unter anderem eine Funktion der Wasserdampfabgabe der Insassen, sowie der Einblasluftmenge und -feuchte. Der Einblasluftzustand ist unter anderem durch die Verdampfertemperatur zu beeinflussen. Sie ist so einzustellen, daß die Innenraumfeuchte die zulässigen Grenzen zur Einhaltung der Beschlags- und Komfortanforderungen nicht überschreitet.The interior humidity is, among other things, a function of the water vapor emission of the occupants, as well as the amount and humidity of the blowing air. The blowing air condition is to be influenced, among other things, by the evaporator temperature. It must be set so that the interior humidity exceeds the permissible limits to comply with the hardware and comfort requirements.
Der Verdampfertemperaturwert, der auf eine ausreichende Kühlleistung abstellt, wird durch die Soll-Einblastemperatur und die unerwünschte Erwärmung in den Luftführungsbauteilen, die dem Verdampfer nachgeschaltet sind beeinflußt. Vorzugsweise werden bei der Bestimmung der zur Sicherstellung einer ausreichenden Kühlung zugeordneten Verdampfertemperatur die Innenraumtemperatur, die Umgebungstemperatur und/oder die Sonneneinstrahlung als Einflußfaktoren für die unerwünschte Erwärmung berücksichtigt.The evaporator temperature value, which is based on a sufficient cooling capacity, is due to the target injection temperature and the undesired heating in the air duct components that follow the evaporator are influenced. Preferably, when determining which to ensure an adequate cooling assigned evaporator temperature the interior temperature, the ambient temperature and / or the solar radiation considered as influencing factors for undesired warming.
Eine besonders bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß auf das vorgenannte Verfahren erst bei Vorliegen von bestimmten Betriebsbedingungen umgeschaltet wird. Damit wird bei kritischen Betriebsbedingungen eine immer ausreichend niedrige Verdampfertemperatur sichergestellt. A particularly preferred embodiment is characterized in that that to the aforementioned method only when certain operating conditions exist is switched. This is in critical operating conditions ensures that the evaporator temperature is always sufficiently low.
Die Erfindung wird nachfolgend anhand eines speziellen Ausführungsbeispiels - auch im Hinblick auf weitere Merkmale und Vorteile - und mit Bezug auf die beiliegenden Zeichnungen näher erläutert. Die Zeichnungen zeigen in
- Fig. 1
- eine schematische Darstellung einer Klimaanlage in einem Fahrzeug,
- Fig. 2
- eine schematische Blockskizze des Kältekreislaufs einer erfindungsgemäßen Ausführungsform einer Klimaanlage mit Ansteuerung,
- Fig. 3
- ein Blockdiagramm, welches die Wirkungskette zur Ermittlung des Innenraumkomforts darstellt,
- Fig. 4
- ein Blockdiagramm, welches die Wirkungskette zur Ermittlung des Scheibenbeschlags darstellt,
- Fig. 5
- ein Blockdiagramm, weiches die Wirkungskette zur Einhaltung der Leistungsgrenze darstellt,
- Fig. 6
- ein Blockdiagramm, welches die Bedingungen für eine erfindungsgemäße Verdampfertemperaturregelung darstellt,
- Fig. 7
- ein Blockdiagramm, welches die Auswahlkriterien für die Verdampfertemperatur darstellt,
- Fig. 8
- ein Blockdiagramm, welches die Verdampfertemperatur unter Beachtung des Feuchtekriteriums darstellt
- Fig. 9
- ein Blockdiagramm, welches die Verdampfertemperatur unter dem Kriterium der Kühlleistung darstellt sowie
- Fig. 10
- Blockschaltbild, welches einen Aufbau für eine erfindungsgemäße Verdampfertemperaturregelung im Fahrzeug zeigt.
- Fig. 1
- 1 shows a schematic illustration of an air conditioning system in a vehicle,
- Fig. 2
- 1 shows a schematic block diagram of the refrigeration cycle of an embodiment of an air conditioning system with control,
- Fig. 3
- 1 shows a block diagram which shows the chain of effects for determining the interior comfort,
- Fig. 4
- 1 shows a block diagram which shows the chain of effects for determining the window fitting,
- Fig. 5
- a block diagram representing the chain of effects for compliance with the performance limit,
- Fig. 6
- 2 shows a block diagram which represents the conditions for an evaporator temperature control according to the invention,
- Fig. 7
- a block diagram showing the selection criteria for the evaporator temperature,
- Fig. 8
- a block diagram showing the evaporator temperature taking into account the humidity criterion
- Fig. 9
- a block diagram showing the evaporator temperature under the criterion of cooling capacity and
- Fig. 10
- Block diagram which shows a structure for an evaporator temperature control according to the invention in the vehicle.
In Fig. 1 ist in schematischer Draufsicht ein Fahrzeug dargestellt, in welchem
eine Klimaanlage mit Kompressor 101, Verdampfer 102, Trockner 103 und
Kondensator 104 angeordnet ist. Erfindungsgemäß wird durch Variation der
Verdampfertemperatur die Temperatur und die Feuchtigkeit der Einblasluft
für das Fahrzeug verändert. Unter Berücksichtigung der Klimabehaglichkeit
für die Insassen im Fahrzeug ist die Luftfeuchte mit Erhöhung der Verdampfertemperatur
zu steigern. Begrenzt wird diese Option durch die Gefahr
des Scheibenbeschlags und ein mögliches Erreichen einer "Schwülegrenze".
Darüber hinaus muß eine ausreichende Kühlleistung sichergestellt sein.In Fig. 1, a vehicle is shown in a schematic plan view, in which
an air conditioning system with compressor 101, evaporator 102,
Nachfolgend wird eine Ausführungsform eines erfindungsgemäßen Verfahrens beschrieben, wobei im Rahmen des Verfahrens eine Logik verwendet wird, die in Abhängigkeit von im Fahrzeug vorhandenen Parametern, wie Außentemperatur, Innentemperatur, etc., eine Wahl der Verdampfertemperatur erlaubt.The following is an embodiment of a method according to the invention described, wherein logic is used in the context of the method will, depending on the parameters present in the vehicle, such as Outside temperature, inside temperature, etc., a choice of evaporator temperature allowed.
Beim vorliegenden Ausführungsbeispiel wird ein Kompressor eingesetzt,
dessen Hubvolumen variiert werden kann. Ein solcher Kompressor ist in einem
Blockdiagramm in Fig. 2 mit dem Bezugszeichen 201 dargestellt und
wird von einer Klimaregelung 208 angesteuert. Durch unterschiedliche Volumenströme
im Kältekreislauf der Klimaanlage lassen sich verschiedene
Kälteleistungen variieren. Dies hat zur Folge, daß die Temperatur des Verdampfers
angepaßt werden kann. Zur Hubvolumenverstellung hat der Kompressor
einen elektrischen Eingang, der mit einem Signal aus der Regeleinrichtung
beaufschlagt wird. In der Klimaregelung 208 gehen Eingangssignale
206 wie eine externe Temperaturvorgabe und die Verdampfertemperatur Tv
ein. Die Temperatur Tv kommt von einem Verdampfer 202, durch den das
Kühlmittel nach dem Kompressor, dem Kondensator 204 und dem Expansionsventil
205 geleitet wird.In the present exemplary embodiment, a compressor is used, the stroke volume of which can be varied. Such a compressor is shown in a block diagram in FIG. 2 with the
Nachfolgend wird die Logik zur Verdampfertemperaturregelung dargelegt. Bei der Regelung müssen folgende Bedingungen beachtet werden. Die Behaglichkeit für die Insassen bezüglich der Luftfeuchtigkeit muß gesichert sein. Ein Scheibenbeschlag soll vermieden werden. Zur Kühlung soll eine ausreichende Kühlleistung zur Verfügung gestellt werden. Um diese Bedingungen in der Kombination zu erfüllen, müssen verschiedene Zusammenhänge berücksichtigt werden, die nachfolgend erläutert sind:The logic for evaporator temperature control is shown below. The following conditions must be observed when regulating. The comfort for the occupant regarding the humidity must be secured his. Window fogging should be avoided. For cooling a sufficient cooling capacity can be made available. To these conditions In the combination, different relationships have to be fulfilled are taken into account, which are explained below:
Die Behaglichkeitsbeurteilung für den Innenraum wird anhand von Fig. 3
dargestellt. Von links beginnend ist die Entstehung der Innenraumfeuchte
Xinnen 307 dargestellt. Ein wesentlicher Faktor für die Innenraumfeuchte Xinnen
ist die Einblasfeuchte xn.V. 306 die vor allem von der Verdampfertemperatur
TV_K 305 abhängt, weil sie für die Trocknung der Außenluft (Feuchte ϕ ∞,
301, und Temperatur T∞, 302) verantwortlich ist (absolute Außenfeuchte
x∞). Ausschlaggebend für die Trocknung der Außenluft ist die Funktion des
Verdampfer-Abscheidegrads 304.The comfort rating for the interior is shown with reference to FIG. 3. Starting from the left, the development of the
Die Innenraumluft wird ferner von den Insassen mit Wasser angereichert, was durch eine Feuchtezunahme Δx, 310, zum Ausdruck kommt. Die Feuchtezunahme Δx, 310, ist abhängig von der Anzahl der Insassen 308 sowie der Feuchte je Insassen 309. Die Anzahl der Insassen 308 kann über eine Sitzbelegungserkennung die Feuchte über vorgegebene Parameter ermittelt werden.The interior air is also enriched with water by the occupants, which is expressed by an increase in humidity Δx, 310. The Moisture increase Δx, 310, depends on the number of occupants 308 and the humidity per occupant 309. The number of occupants 308 can over a seat occupancy detection system determines the humidity using specified parameters become.
Aus der Innenraumfeuchte Xinnen, 307, und der Innenraumtemperatur Tinnen,
312 läßt sich eine spezifische Enthalpie (Enthalpie der feuchten Luft) für die
Fahrgastzelle hinnen, 311, bestimmen. Diese spezifische Enthalpie 311 wird
nun mit einer Komfortgrenze hmax, 313, verglichen und muß bei der vorliegenden
Erfindung stets kleiner als dieser Grenzwert sein. Die zulässige spezifische
Innenraumenthalpie hmax, 313, stammt grundsätzlich aus einer mit
Insassen durchgeführten Komfortbewertung. Zusätzlich sind drei Korrekturfaktoren
vorgesehen, nämlich eine Schichtungseinstellung 314, die Sonneneinstrahlung
316 und die TSoll-Einstellung 317. Falls der Fahrer eine kalte
Schichtungseinstellung wählt oder eine niedrige Solltemperatur an einem
Bedienteil 317 einstellt, so kann diesnicht nur eine Abkühlung des Innenraums
als Ziel haben, sondern möglicherweise auch den Wunsch nach einer
frischeren Luft. Hier besteht die Möglichkeit, die maximale Enthalpie (hinnen)
nach unten zu korrigieren.A specific enthalpy (enthalpy of the moist air) for the passenger compartment h inside , 311 can be determined from the interior humidity X inside , 307, and the interior temperature T inside , 312. This
Der Vergleich der ermittelten spezifischen Enthalpie (hinnen) mit der maximal zulässigen Innenraumenthalpie hmax ist durch das Kästchen 318 dargestellt.The comparison of the determined specific enthalpy (h inside ) with the maximum permissible interior enthalpy h max is shown by box 318.
Um eine behagliche Umgebung für die Fahrzeuginsassen bezüglich der Luftfeuchtigkeit zu realisieren, spielt die Verdampfertemperatur TV_K wie anhand von Fig. 3 erläutert eine entscheidende Rolle. Insbesondere ist dabei anzumerken, daß sich die Enthalpie als hervorragende Größe zur Beurteilung des Innenraumkomforts dargestellt hat. In diesem-Zusammenhang wird auf die Veröffentlichung von Fanger, P.O. "Air Humidity And Perceived Air Quality, Laboratory of Environment of Energy, Department of Energy Engineering, Technical University Denmark" vom 19.11.1997 hingewiesen. Fanger hat festgestellt, daß sich die Luftqualität besonders gut in Abhängigkeit von der spezifischen Enthalpie, d. h. von verschiedenen Kombinationen von Lufttemperatur und Luftfeuchte ermitteln läßt.In order to create a comfortable environment for the vehicle occupants with regard to the air humidity, the evaporator temperature T V_K plays a decisive role as explained with reference to FIG. 3. In particular, it should be noted that the enthalpy has proven to be an excellent parameter for assessing interior comfort. In this context, reference is made to the publication by Fanger, PO "Air Humidity And Perceived Air Quality, Laboratory of Environment of Energy, Department of Energy Engineering, Technical University Denmark" dated November 19, 1997. Fanger has found that air quality can be determined particularly well depending on the specific enthalpy, ie on various combinations of air temperature and air humidity.
Als nächsten Punkt der geforderten Bedingungen ist die Vermeidung von Scheibenbeschlag zu berücksichtigen. The next point of the required conditions is the avoidance of Window fitting to be taken into account.
Anhand von Fig. 4 wird dies nachfolgend erläutert. Dabei entsprechen die
mit den Bezugsziffern 401, 402, 403, 404, 406, 408, 409, 410, 407 und 415
dargestellten Größen den entsprechenden Größen in Fig. 3. Fig. 4 läßt erkennen,
daß die Entstehung der Innenraumfeuchte xinnen, 407, identisch mit
jener aus der Komfortbetrachtung ist. Von Xinnen, 407 läßt sich auf die Tautemperatur
schließen, die zusammen mit der Scheibentemperatur TScheibe,
413, ausschlaggebend für einen möglichen Scheibenbeschlag ist. Die Größe
dxinhomogen, 411, welche zwischen die Innenraumfeuchte XInnen und die Tautemperatur
TTau geschaltet ist, soll mögliche Inhomogenitäten der Luftdurchmischung
berücksichtigen. Nicht überall hat die Luft die gleiche Feuchtigkeit.
Vielmehr bewirkt z. B. die Anwesenheit von Menschen Ungleichmäßigkeiten
in der Feuchteverteilung. Die neben der Tautemperatur TTau, 412, für Beschlag
mitverantwortliche Scheibeninnentemperatur TScheibe, 413, ist eine
Funktion der Außen- (T∞) und Innenraumtemperatur Tinnen, 415. Hierbei findet
sich erneut die Einflußgröße "Sonneneinstrahlung" 414 wieder. Tagsüber,
bei Sonnenschein, erhöht sich die Scheibentemperatur. Bei Nacht jedoch
kann der kalte Strahlungshintergrund - Himmel - berücksichtigt werden.
Bei einem Vergleich der Scheibentemperatur TScheibe mit der Tautemperatur
TTau muß darauf geachtet werden, daß die Tautemperatur TTau nicht unterhalb
der Scheibentemperatur TScheibe liegt. Entsprechend muß die Verdampfertemperatur
TV_B in Fig. 4 gewählt werden. Damit ergibt sich ein weiteres
Kriterium für eine obere Verdampfertemperaturgrenze.This is explained below with reference to FIG. 4. The sizes shown with
Als nächstes wird auf eine Sicherstellung einer ausreichenden Kühlleistung eingegangen.The next step is to ensure sufficient cooling capacity received.
Bei momentanen Verdampfertemperaturwerten von 1 bis 3°C stellt sich kein Problem einer einzuhaltenden Kühlleistungsgrenze. Wird die Verdampfertemperatur jedoch auf eine weniger niedrige Temperatur eingestellt, ist es möglich, daß der Innenraum nicht ausreichend gekühlt wird. Aus einer Schichtungsstellung und den Werten Innentemperatur, Außentemperatur und eingestellter Solltemperatur wird eine Temperatur für die Luft aus den Belüftungsgittern bestimmt. Wird die Schichtung auf "kalt" gestellt, kann je nach Berechnung des Steuergeräts im Extremfall nur direkt dem Verdampfer entnommene Luft dem Innenraum zugeführt werden. Für die Verdampfertemperaturregelung bedeutet dies, daß nur maximal die Solltemperatur erreicht werden darf, die zum Ausgleichen auf der Belüftungsebene erforderlich ist. Um die Aufheizung der Luft in erwärmten Kanälen zu berücksichtigen muß die Temperaturgrenze TV angepaßt werden. Dies ist in Fig. 5 in schematischer Weise dargestellt. Die Blöcke 502 (Umgebungstemperatur), 503 (Innenraumtemperatur) und 504 (Sonneneinstrahlung) bestimmen die Temperatur der angrenzenden Bauteile, die sich wiederum auf die Erwärmung der Einblasluft 506 in Form einer Erwärmung Δ T Erwärmung auswirkt. Durch diesen Einfluß wird die Verdampfertemperatur TV_P noch erwärmt, bis sie als Ausblastemperatur TAusblas, 507, aus den Lüftungsgittern austritt.With current evaporator temperature values of 1 to 3 ° C, there is no problem with a cooling capacity limit that must be observed. However, if the evaporator temperature is set to a less low temperature, the interior may not be cooled sufficiently. A temperature for the air from the ventilation grilles is determined from a stratification position and the values of inside temperature, outside temperature and set target temperature. If the stratification is set to "cold", depending on the calculation of the control unit, in extreme cases only air taken directly from the evaporator can be supplied to the interior. For the evaporator temperature control, this means that the maximum temperature that can be reached is that which is required for compensation at the ventilation level. To take into account the heating of the air in heated ducts, the temperature limit T V must be adjusted. This is shown in a schematic manner in FIG. 5. The blocks 502 (ambient temperature), 503 (interior temperature) and 504 (solar radiation) determine the temperature of the adjacent components, which in turn affects the heating of the blowing air 506 in the form of a heating ΔT heating . As a result of this influence, the evaporator temperature T V_P is still heated until it emerges from the ventilation grilles as the blow-out temperature T blow-out , 507.
Eine übergeordnete Bestimmung der Verdampfertemperatur TV aus allen
vorgenannt beschriebenen Verdampfertemperaturen, kann aus Fig. 7 ersehen
werden. Im wesentlichen wird der niedrigste Wert aus den Verdampfertemperaturwerten
TV_F und TV_P als einzustellende Verdampfertemperatur
TV, 705, ausgewählt, wobei TV_F, 703 die Verdampfertemperatur aus dem
Feuchtekriterium und TV_P, 704, die Verdampfertemperatur aus dem Leistungskriterium
darstellt. Das Feuchtekriterium wiederum ergibt sich aus
dem Beschlagskriterium 701, welches aufgrund der Beschlagsgrenze gewählt
wurde, sowie dem Komfortkriterium 702, welches aufgrund der maximalen
Luftenthalpie im Innenraum gewählt wurde. In diesem Zusammenhang
wird auf die Ausführungen zu den Fig. 3 bis 5 verwiesen.A higher-level determination of the evaporator temperature T V from all of the above-described evaporator temperatures can be seen in FIG. 7. Essentially, the lowest value from the evaporator temperature values T V_F and T V_P is selected as the evaporator temperature to be set, T V , 705, where T V_F , 703 represents the evaporator temperature from the humidity criterion and T V_P , 704, the evaporator temperature from the performance criterion . The moisture criterion in turn results from the
Die Verdampfertemperaturermittlung mit Bezug auf die Leistung läßt sich
nochmals genauer aus Fig. 9 entnehmen. Die Verdampfertemperatur TV_P
stellt gemäß Bezugsziffer 909 eine Funktion der Ausblastemperatur TAusblas
und der Erwärmung der Einblasluft Δ TErwärmung dar. Gemäß der Blöcke 901
bis 908 in Fig. 9 werden dabei die Sonneneinstrahlung PSonne, 901, der Sonnenaufschlag
dTP_Sonne, 902, die Innenraumtemperatur Tinnen, 905, die Außentemperatur
Taußen, 903, der Innentemperaturaufschlag dTT_Innen, 906, und
der Außentemperaturaufschlag dTT_Außen, 904, berücksichtigt. Dies ergibt die
Aufblaslufterwärmung dTErwärmung in 907, welche zusammen mit der Ausblastemperatur
als Belüftungs-Sollwert TAusblas, 908, zu der Verdampfertemperatur
TV_P führt.The determination of the evaporator temperature with reference to the output can be seen more precisely from FIG. 9. According to reference number 909, the evaporator temperature T V_P represents a function of the blow-out temperature T blow-out and the heating of the blow-in air Δ T heating . According to
Die Verdampfertemperaturregelung aus dem Feuchtekriterium, welche in
Fig. 7, bei 703 dargestellt ist, kann wie in Fig. 8 genauer angegeben ermittelt
werden. Mittels der Sonneneinstrahlung Psonne, 801, des Sonneneinflusses
dhSonne, 802, der Solltemperatureinfluß Tsoll, 803, der Solltemperatur dhTSoll,
804, dem Schichtungswert S, 805, dem Schichtungseinfluß dhSchichtung, 806,
und der Komfortauswertung hkomfort, 807, kann die zulässige spezifische Enthalpie
hinnen, 808, ermittelt werden. Zusammen mit der Innenraumtemperatur
Tinnen, 809, läßt sich die Innenraumfeuchte Xinnen_K feststellen.The evaporator temperature control from the humidity criterion, which is shown in FIG. 7 at 703, can be determined as specified in FIG. 8. Sun by means of the sunlight P, 801, the
Auf der anderen Seite läßt sich über die Innenraumtemperatur TInnen, 813, die Außentemperatur TAussen, 814, und der Sonneneinstrahlung PSonne, 815, die Scheibentemperatur TScheibe, 816, ermitteln. Unter Berücksichtigung der inhomogenen Verteilung dxinh , 818, sowie der Taufeuchte XTau, 817, ergibt sich die maximal zulässige Innenraumfeuchte xinnen_B, 819 (Beschlagskriterium). Die Innenraumfeuchte Xinnen, 820, wird dann als niedrigster Wert von Xinnen_K und Xinnen_B ausgewählt.On the other hand, the inside temperature T inside , 813, the outside temperature T outside , 814, and the solar radiation P sun , 815, the pane temperature T pane , 816, can be determined. Taking into account the inhomogeneous distribution dx inh , 818, as well as the dew moisture X Tau , 817, the maximum permissible interior moisture x inside_B , 819 (fitting criterion ) results. The interior humidity X inside , 820, is then selected as the lowest value of X inside_K and X inside_B .
Die Innenraumfeuchte xinnen, 820, ergibt zusammen mit der Feuchtezunahme durch die Insassen dxI, 812, welche aus der Anzahl der Insassen nI, 811, ermittelt wird, die Einblasfeuchte xn.V., 821. Die Einblasfeuchte xn.V., 821, ergibt zusammen mit der absoluten Außenfeuchte XAussen, 825, und dem Luftmassenstrom dmluft, 827, die Verdampfertemperatur TV_F, 828. Die absolute Außenfeuchte XAussen, 825, läßt sich wiederum über die relative Außenfeuchte rFAussen, 822, und dem Außentemperaturwert Taussen, 823, ermitteln. Der Luftmassenstrom dmluft, 827, läßt sich über die Fahrzeuggeschwindigkeit vfzg, 824, und die Gebläsespannung Ugebl, 826, ermitteln.The interior humidity x inside , 820, together with the increase in humidity by the occupants dx I , 812, which is determined from the number of occupants n I , 811, gives the blowing-in moisture x nV , 821. The blowing-in moisture x nV , 821, results together with the absolute outside humidity X outside , 825, and the air mass flow dm air , 827, the evaporator temperature T V_F , 828. The absolute outside humidity X outside , 825, can in turn be determined via the relative outside humidity rF outside , 822, and the outside temperature value T outside , 823. The air mass flow dm air , 827, can be determined via the vehicle speed v fzg , 824, and the blower voltage U bl , 826.
Insgesamt kann mit der oben angegebenen Verdampfertemperaturregelung eine Klimaregelung realisiert werden, die den Bedingungen Behaglichkeit für die Insassen bezüglich der Luftfeuchtigkeit, Vermeidung von Scheibenbeschlag und Sicherung einer ausreichenden Kühlleistung genügt.Overall, with the evaporator temperature control specified above a climate control system can be implemented that is comfortable for the conditions the occupants regarding the humidity, avoiding window fogging and ensuring sufficient cooling capacity is sufficient.
Beim vorliegenden Ausführungsbeispiel wird die erfindungsgemäße Regelung
jedoch nicht bei jeder Umgebungs- oder Betriebsbedingung durchgeführt.
Aus Fig. 6 ist zu entnehmen, daß die Regelung der Verdampfertemperatur
TV nur dann in der oben beschriebenen Weise durchgeführt wird, wenn
sechs Bedingungen erfüllt sind. 1. Es muß der Frischluftbetrieb eingestellt
sein (602). 2. Ferner soll die Klimaanlage im Automatikmodus betrieben
werden (604). 3. Überdies muß die Außentemperatur im Bereich von 0 bis
25°C liegen (606). 4. Darüber hinaus darf es nicht regnen (608) und 5. die
Luftleistung sollte größer oder gleich einer vorgegebenen Automatikgebläseluftleistung
sein (612). Diese Größen kann man aus den jeweilig vorliegenden
Signalen und Fühlern ableiten (Bezugsziffern 601, 603, 605, 607,
609, 610 und 611). Bei Abweichungen von z.B. Frischluft- oder Automatikbetrieb
kann die Verdampfertemperaturregelung ebenso mit dem -dargestellten
Schema aber anderen Grenzwerten und Sicherheiten betrieben werden.In the present exemplary embodiment, however, the control according to the invention is not carried out under every environmental or operating condition. From Fig. 6 it can be seen that the control of the evaporator temperature T V is only carried out in the manner described above when six conditions are met. 1. Fresh air mode must be set (602). 2. Furthermore, the air conditioning system is to be operated in automatic mode (604). 3. Moreover, the outside temperature must be in the range from 0 to 25 ° C (606). 4. In addition, it must not rain (608) and 5. The air output should be greater than or equal to a specified automatic blower air output (612). These quantities can be derived from the respective signals and sensors (
Ein schematisches Blockdiagramm für eine Steuereinrichtung zur Durchführung
des oben beschriebenen erfindungsgemäßen Verfahrens ist in Fig. 10
gezeigt. Nicht berücksichtigt wurden die Signale Sonneneinstrahlung, Außenfeuchte
und Luftmassenstrom. Die bereits in dem Fahrzeug 100 vorliegende
Fahrzeugelektrik 1001 stellt die notwendigen Temperaturdaten TI
(Tinnen), TA (TAußen) und TV (TVerdampfertemperatur) einem Rechner 1003 zur Verfügung.
Ferner werden weitere Daten der integrierten Heiz- und Klimaautomatik
(IHKA-Daten) dem Rechner 1003 mitgeteilt. Der Rechner 1003 ist vorliegend
als Rapid-Prototyping-Rechner ausgeführt und umfaßt eine Verdampfertemperaturlogik
1004, eine Abfrageeinrichtung für das Vorliegen von geforderten
Bedingungen 1005 und einen Regler 1006. Entsprechend der von
der Fahrzeugelektronik 1001 eingehenden Daten wird aus der Verdampfer
temperaturlogik eine Verdampfertemperatur ausgelesen und dem Regler
1006 mitgeteilt, welcher ein Spannungssignal 1007 zu einem externen Eingang
des Kompressors 2 (vgl. Fig. 2) ausgibt.A schematic block diagram for a control device for carrying out the inventive method described above is shown in FIG. 10. The signals solar radiation, outside humidity and air mass flow were not taken into account. The vehicle electrical system 1001 already present in the
Insgesamt läßt sich die vorliegende Erfindung einfach und kostengünstig realisieren, da nur wenige neue Fahrzeugkomponenten notwendig sind und zwar eine entsprechende Rechnererweiterung im Heiz-Klima-Steuergerät, sowie ein regelbarer, extern ansteuerbarer Kompressor. Gleichwohl läßt sich mit dem erfindungsgemäßen Verfahren eine Kraftstoffersparnis durch zeitweises Anheben der Verdampfertemperatur erzielen. Das Anspannungspotential liegt nach diesseitiger Einschätzung im Jahresmittel bei etwa 25 % gegenüber einer herkömmlichen Regelung. Auf den gesamten Kraftstoffverbrauch eines Fahrzeugs umgelegt ergibt sich damit je nach Durchschnittsverbrauch des Fahrzeugs eine Einsparung in der Größenordnung von 1 - 4 %.Overall, the present invention is simple and inexpensive realize, since only a few new vehicle components are necessary and a corresponding computer extension in the heating and air conditioning control unit, as well as a controllable, externally controllable compressor. Nevertheless, with the method according to the invention a fuel saving by temporary Raising the evaporator temperature. The tension potential According to this assessment, the annual average is around 25% compared to a conventional regulation. On the total fuel consumption of a vehicle, depending on average consumption vehicle savings of the order of 1 - 4 %.
Claims (8)
- A method for controlling the evaporator temperature in a vehicle air conditioner unit with an evaporator, a compressor, a condenser and an expansion member, in which the evaporator temperature is set in dependency on operating conditions, in which
a first evaporator temperature value (TV_F) is calculated in dependency on a misting criterion (Xinnen_B) and a comfort criterion (Xinnen_K), a second evaporator temperature value (TV_P) is calculated to ensure sufficient cooling performance and
the smaller of the two evaporator temperature values is selected as the evaporator temperature (TV) to be set,
characterised in that
as comfort criterion the specific enthalpy (hinnen) is used and the first evaporator temperature value (TV_F) is set in such a manner that the specific enthalpy (hinnen) does not exceed a limiting comfort value (hmax.). - A method according to Claim 1,
characterised in that
the specific enthalpy (hinnen) is derived from the interior space humidity (xinnen) and the interior space temperature Tinnen. - A method according to one of the Claims 1 or 2,
characterised in that
the window temperature (TScheibe) serves as the misting criterion and the misting criterion is set such that the dew point temperature (TTau) does not fall below the window temperature (TScheibe). - A method according to Claim 3,
characterised in that
the window temperature (TScheibe) is established from the ambient temperature (T∞) and the interior space temperature (Tinnen). - A method according to one of the foregoing Claims,
characterised in that
the second evaporator temperature value (TV_P) is selected in dependency on the heating or cooling on the one hand and the quantity of the forced air input. - A method according to Claim 5,
characterised in that
in the determination of the second evaporator temperature value (TV_P) the ambient temperature, the interior space temperature, the temperature of the contiguous components and/or the incoming solar radiation are taken into account. - A method according to one of the foregoing Claims,
characterised in that
a switch-over takes place to a constant evaporator temperature or the generation of a suitable artificial value, if the prescribed operating conditions are not present. - A method according to Claim 7,
characterised in that
the conditions of fresh air operation, automatic operation, operation without rain, the lowest air power and/or a determined outside temperature range apply.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19920093 | 1999-05-03 | ||
DE19920093A DE19920093C1 (en) | 1999-05-03 | 1999-05-03 | Regulating air conditioning system evaporation temp. involves using specific enthalpy as comfort criterion, selecting temp. so specific enthalpy does not exceed comfort threshold |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1050420A2 EP1050420A2 (en) | 2000-11-08 |
EP1050420A3 EP1050420A3 (en) | 2000-11-15 |
EP1050420B1 true EP1050420B1 (en) | 2002-07-31 |
Family
ID=7906673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00107463A Expired - Lifetime EP1050420B1 (en) | 1999-05-03 | 2000-04-06 | Method and control of the temperature of an evaporator in a vehicle air conditioner |
Country Status (4)
Country | Link |
---|---|
US (1) | US6334325B1 (en) |
EP (1) | EP1050420B1 (en) |
DE (3) | DE19964398B4 (en) |
ES (1) | ES2180482T3 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10128166A1 (en) | 2001-06-09 | 2002-12-12 | Behr Gmbh & Co | Method for setting a proportion of recirculated air in the supply air supplied to a passenger cell |
DE10247262A1 (en) * | 2002-10-10 | 2004-04-22 | Behr Gmbh & Co. | Method for evaporation temperature control for air conditioning systems esp. for motor vehicles with adjustment dependent upon demand between min. and max. temperatures of a latent medium |
DE502005007938D1 (en) | 2004-04-19 | 2009-10-01 | Behr Gmbh & Co Kg | METHOD AND DEVICE FOR CONTROLLING A REFRIGERANT CIRCUIT OF AN AIR-CONDITIONING SYSTEM FOR A VEHICLE |
DE102004019439A1 (en) * | 2004-04-19 | 2005-11-03 | Behr Gmbh & Co. Kg | Method and apparatus for drying an evaporator and method for controlling an air conditioner |
EP1766388A4 (en) * | 2004-06-09 | 2008-08-20 | Anderson Forschung Group Llc | Stable isotope labeled polypeptide standards for protein quantitation |
DE102004029166A1 (en) * | 2004-06-17 | 2005-12-29 | Behr Gmbh & Co. Kg | Method and device for controlling a refrigerant circuit of an air conditioning system for a vehicle |
US7275379B2 (en) * | 2004-06-22 | 2007-10-02 | General Motors Corporation | Automotive HVAC system and method of operating same utilizing enthalpy-based control |
DE102007007440A1 (en) | 2007-02-15 | 2008-08-21 | Bayerische Motoren Werke Aktiengesellschaft | Method for controlling and / or regulating the evaporator temperature of an air conditioning system in a motor vehicle |
US20080196424A1 (en) * | 2007-02-20 | 2008-08-21 | Behr America, Inc. | Rear evaporator core freeze protection method |
US7690421B2 (en) * | 2007-08-10 | 2010-04-06 | Honda Motor Co., Ltd. | Low humidity detection system and method thereof |
US8209073B2 (en) * | 2009-05-06 | 2012-06-26 | Ford Global Technologies, Llc | Climate control system and method for optimizing energy consumption of a vehicle |
CN113405296B (en) * | 2021-06-18 | 2022-12-20 | 深圳拓邦股份有限公司 | Cold chain air conditioner rapid refrigerating device, method, system, equipment and storage medium |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57205219A (en) * | 1981-06-11 | 1982-12-16 | Nippon Denso Co Ltd | Controlling device of air conditioner for automobile |
JPS59134006A (en) * | 1983-01-24 | 1984-08-01 | Nissan Motor Co Ltd | Air conditioner for car |
JPS60176809A (en) * | 1984-02-24 | 1985-09-10 | Mitsubishi Heavy Ind Ltd | Air conditioning method for car |
US4759269A (en) * | 1986-12-22 | 1988-07-26 | Ford Motor Company | Airconditioning control system for an automotive vehicle |
DE3820412A1 (en) * | 1987-06-15 | 1989-01-05 | Nissan Motor | Air conditioner for motor vehicles |
DE3739372A1 (en) * | 1987-11-20 | 1989-06-01 | Sueddeutsche Kuehler Behr | AIR CONDITIONER |
JPH08494B2 (en) * | 1991-04-26 | 1996-01-10 | 株式会社ゼクセル | Compressor capacity control device for vehicle air conditioner |
JP3284648B2 (en) * | 1992-05-25 | 2002-05-20 | 日産自動車株式会社 | Heat pump type air conditioner for vehicles |
JP3237463B2 (en) * | 1995-05-17 | 2001-12-10 | 松下電器産業株式会社 | Air conditioning controller for electric vehicles |
JP3671522B2 (en) * | 1995-08-29 | 2005-07-13 | 株式会社デンソー | Air conditioner for vehicles |
DE19608015C1 (en) * | 1996-03-01 | 1997-05-15 | Kammerer Gmbh M | Air mixture regulating process for vehicle air conditioning unit |
DE19728578C2 (en) * | 1997-07-04 | 1999-11-25 | Daimler Chrysler Ag | Process for evaporator temperature control depending on the dew point |
DE19728577C2 (en) * | 1997-07-04 | 1999-11-25 | Daimler Chrysler Ag | Method for controlling the evaporator temperature of an air conditioning system depending on the dew point |
-
1999
- 1999-05-03 DE DE19964398A patent/DE19964398B4/en not_active Expired - Fee Related
- 1999-05-03 DE DE19920093A patent/DE19920093C1/en not_active Expired - Lifetime
-
2000
- 2000-04-06 EP EP00107463A patent/EP1050420B1/en not_active Expired - Lifetime
- 2000-04-06 DE DE50000326T patent/DE50000326D1/en not_active Expired - Lifetime
- 2000-04-06 ES ES00107463T patent/ES2180482T3/en not_active Expired - Lifetime
- 2000-05-03 US US09/563,530 patent/US6334325B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1050420A2 (en) | 2000-11-08 |
DE50000326D1 (en) | 2002-09-05 |
ES2180482T3 (en) | 2003-02-16 |
DE19964398B4 (en) | 2006-03-09 |
DE19920093C1 (en) | 2000-09-28 |
US6334325B1 (en) | 2002-01-01 |
EP1050420A3 (en) | 2000-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012105314B4 (en) | Heat pump system for a vehicle | |
DE69629659T2 (en) | Vehicle air conditioner with improved frost protection | |
DE102010026353B4 (en) | Vehicle air conditioning system | |
EP0316545B1 (en) | Air-conditioning system | |
DE10349280A1 (en) | Vehicle air-conditioning system | |
DE69626069T2 (en) | air conditioning | |
DE102005009100A1 (en) | Vehicle air conditioning system for providing a comfortable condition for a passenger | |
DE60110491T2 (en) | Humidity control method for variable displacement air conditioning system | |
DE3508353C2 (en) | ||
EP1050420B1 (en) | Method and control of the temperature of an evaporator in a vehicle air conditioner | |
DE112013004519T5 (en) | Vehicle air conditioning | |
DE102010024854B4 (en) | Air conditioning for a vehicle | |
DE102008059886A1 (en) | Ventilation system for a motor vehicle, method for air conditioning a motor vehicle | |
DE112018000591T5 (en) | Vehicle air conditioning device | |
DE112012005143T5 (en) | Air conditioning for vehicle | |
DE69621284T2 (en) | air conditioning | |
DE102010024853B4 (en) | Air conditioning for vehicle | |
DE69503822T2 (en) | air conditioning | |
DE19728578C2 (en) | Process for evaporator temperature control depending on the dew point | |
DE10325606B4 (en) | Method for a vehicle air conditioner with a cooling circuit with heating function | |
DE19517336B4 (en) | air conditioning | |
DE102004051912A1 (en) | Control method for air conditioning system in motor vehicle involves reducing fresh air supply if carbon dioxide level falls below predetermined value | |
DE10343818B4 (en) | Air conditioning system for a motor vehicle | |
EP2246208A2 (en) | Motor vehicle air conditioning | |
DE10324571B3 (en) | Heating and/or air-conditioning device for automobile with selective switching between different regulation characteristics for matching air output to individual user requirements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE ES FR GB IT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7B 60H 1/32 A, 7B 60H 1/00 B |
|
17P | Request for examination filed |
Effective date: 20001202 |
|
17Q | First examination report despatched |
Effective date: 20010212 |
|
AKX | Designation fees paid |
Free format text: DE ES FR GB IT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020731 |
|
REF | Corresponds to: |
Ref document number: 50000326 Country of ref document: DE Date of ref document: 20020905 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2180482 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030506 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20150323 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150430 Year of fee payment: 16 Ref country code: SE Payment date: 20150413 Year of fee payment: 16 Ref country code: DE Payment date: 20150411 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150430 Year of fee payment: 16 Ref country code: IT Payment date: 20150428 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50000326 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20161230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160502 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160406 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160407 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160407 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181203 |