EP1048721A1 - Waschmittelzusammensetzungen - Google Patents

Waschmittelzusammensetzungen Download PDF

Info

Publication number
EP1048721A1
EP1048721A1 EP99870090A EP99870090A EP1048721A1 EP 1048721 A1 EP1048721 A1 EP 1048721A1 EP 99870090 A EP99870090 A EP 99870090A EP 99870090 A EP99870090 A EP 99870090A EP 1048721 A1 EP1048721 A1 EP 1048721A1
Authority
EP
European Patent Office
Prior art keywords
tablet
clay
flocculant
weight
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99870090A
Other languages
English (en)
French (fr)
Inventor
André Cesar Baeck
Alfred Busch
Eric Tcheou
Jose Luis Vega
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8243830&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1048721(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP99870090A priority Critical patent/EP1048721A1/de
Priority to EP00870024A priority patent/EP1048712A1/de
Priority to PCT/US2000/010064 priority patent/WO2000066687A1/en
Priority to EP00928164A priority patent/EP1175480B1/de
Priority to AU46439/00A priority patent/AU4643900A/en
Priority to PCT/US2000/009890 priority patent/WO2000066692A1/en
Priority to AU44604/00A priority patent/AU4460400A/en
Priority to ES00928164T priority patent/ES2276683T3/es
Priority to AT00928164T priority patent/ATE346131T1/de
Priority to DE60031968T priority patent/DE60031968T2/de
Publication of EP1048721A1 publication Critical patent/EP1048721A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes

Definitions

  • the invention relates to softening laundry detergent tablets containing clay and flocculant for the clay.
  • the tablets should have good integrity before use, it is necessary also that they should disintegrate rapidly during use, when contacted with wash water. It is known to include a disintegrant which will promote disintegration of the tablet.
  • a disintegrant which will promote disintegration of the tablet.
  • Various classes of disintegrant are known, including the class in which disintegration is caused by swelling of the disintegrant.
  • swelling disintegrants have been proposed in the literature, with the preference being directed predominantly towards starches, celluloses and water soluble organic polymers.
  • Inorganic swelling disintegrants such as bentonite clay have also been mentioned, for instance in EP-A-466,484.
  • the same material acts as binder and disintegrant. It is also mentioned therein that the disintegrant may give supplementary building, anti-redeposition or fabric softening properties.
  • the amount of disintegrant is preferably 1 to 5%. It is proposed in EP-A-466,484 that the tablet may have a heterogeneous structure comprising a plurality of discrete regions, for example layers, inserts or coatings.
  • JP-A-9/87696 is concerned with tablets containing a non-ionic detergent composition with a non-ionic surfactant as the main component and in particular is concerned with preventing the non-ionic surfactant from oozing out of the tablets during storage, and it is also concerned with the fact that the non-ionic surfactant causes a loss in the softening effect that would be expected when a softening clay is included. It describes the formation of tablets containing finely divided clay mineral, together with a finely divided oil absorbing carrier, and a disintegrant.
  • the flocculant is usually a fine powder and the incorporation of this in a tablet containing a high clay content gives a risk of premature flocculation resulting from interaction of the clay and flocculant during and shortly after dispersion, resulting in inferior softening performance and, for instance, patchy clay deposition on fabrics. It would be desirable to alleviate this problem.
  • the flocculant which is normally a high molecular weight, water soluble, polymer
  • the flocculant can promote gelling around the tablet and can inhibit dispersion of the tablet.
  • a softening laundry detergent comprising clay, laundry surfactant and flocculant.
  • a softening laundry detergent tablet comprising clay, laundry surfactant and flocculant for the clay wherein the tablet is a compressed mass of particles, at least 50% by weight of the flocculant being present as granules which have a size of at least 100mm.
  • the flocculant is usually the major component of the granules and is usually in the granules in an amount of at least 30%, and usually at least 50% by weight. Preferably the flocculant is at least 75%, usually at least 90%, or 100%, of the granules.
  • the granules usually contain little or no clay.
  • the granules may be agglomerates or extrudates made by any other convenient process.
  • the tablet may contain at least 5%, preferably at least 8%, and most preferably at least 10%, clay by weight of the tablet.
  • the amount may be less than 25%, usually less than 20% and preferably not more than 15% by weight of the tablet.
  • At least 70% and preferably at least 90% by weight of the flocculant is present as granules which have a size of between 150mm and 850mm.
  • Preferably substantially all (e.g. at least 90% or 95% by weight) of the particles from which the tablets are formed have a size of at least 100mm, generally 100-1700mm.
  • At least 50% (and often at least 75% or at least 90%) by weight of the clay is present as granules having a size of at least 100mm, preferably 100 to 1180mm, most preferably 150-850mm.
  • the clay granules usually contain at least 50%, often at least 75% or at least 90%, clay. This can provide for faster dispersion of the clay.
  • a process for making softening laundry detergent tablets comprising clay, laundry surfactant and flocculant for the clay, comprising providing at least 50% by weight of the flocculant as flocculant granules which have a size of at least 100mm;
  • the relatively large size of flocculant granules tends to slow the dispersion rate of the flocculant in comparison with other components of the tablet, especially clay. The risk of premature interaction of clay and flocculant is thereby reduced.
  • At least 50%, preferably at least 70% and most preferably at least 90% by weight of the flocculant is in the form of granules with a size between 100mm and 1700mm, preferably between 100 and 1180mm, most preferably between 150mm and 850mm.
  • the amount of particles of flocculant in the tablet having size below 20mm, and preferably below 10mm is preferably less than 10% by weight of the total flocculant, and most preferably is less than 5%, and generally less than 1% by weight of the total flocculant.
  • Flocculant granules within the desired size range can be selected and measured by sieving. The size of any individual particle is its maximum diameter.
  • the granules can be formed by conventional flocculant granulation techniques whereby flocculant fines are granulated, for instance by agglomeration or extrusion. Formation of granules is usually facilitated by conducting the granulation in the presence of a binder.
  • the binder comprises, or most usually consists essentially of, water.
  • at least 90% by weight of the binder may be water.
  • the granules can consist essentially only of flocculant (e.g. above 90% by weight flocculant).
  • binder for instance water soluble polyhydroxy compounds (such as glycerol) or other conventional binders, which are preferably freely water soluble.
  • the total amount of binder is usually less than 10%, and generally less than 5%, by weight of the granules. If desired, other materials can be included in the granules, as a convenient way of introducing such materials into the tablet.
  • the amount of flocculant is usually at least 50%, and preferably at least 70% or 80% by weight of the granules.
  • the flocculant granules In order for the flocculant granules to disperse more slowly than clay in the tablet it is preferred that there is substantially no disintegrant in the flocculant granules, by which we mean preferably less than 10%, more preferably less than 5%, and most preferably less than 1% by weight of the flocculant granules being disintegrant, such as clay.
  • the flocculant granules can be substantially uniformly distributed throughout the tablet. Alternatively, the concentration of the granules can be higher in certain regions of the tablet than in other regions of the tablet.
  • the tablet comprises one or more first regions which may contain an amount of clay which is 1.5 times, and often 2 to 5 times the amount of clay in one or more second regions of the tablet. By this means it is possible to arrange for the first regions to disperse more rapidly than the second regions. It is convenient to construct the tablets whereby the flocculant and clay are kept physically separate from one another, which can be achieved by including flocculant in the or each second region which will disperse more slowly than the first regions containing most of the clay. Preferably substantially all the flocculant is in the or each second region.
  • the amount of clay in the second regions is usually at least 0.1%, for instance 1 to 5%, by weight of the or each second region.
  • the amount of clay in the first regions is usually at least 5% and often at least 10% by weight of the or each first region.
  • the tablet will usually contain at least 5% by weight laundry surfactant by weight of the tablet, usually including non-ionic and/or anionic surfactants. If desired, the surfactant also may be present in a higher concentration in some regions than other regions (e.g. 1.5 times and usually 2 to 5 times). Generally at least 5% by weight non-ionic and/or anionic surfactant is present in any first regions of the tablet which have a higher clay concentration than remaining regions of the tablet.
  • Laundry enzyme is often included in the tablet.
  • the clay is present in a higher concentration in one or more first regions, it is preferred for more enzyme to be in these regions than in the other regions, for instance the amount in the first regions should be normally at least 1.5 times and often at least 2 to 5 times the amount in the other regions, in order that the enzyme is dispersed as rapidly as possible with the fast dispersing first regions into the wash water.
  • the tablet often contains laundry bleach. If the clay is more highly concentrated in one or more first regions than second regions, the concentration of bleach is preferably higher in the second regions than the first regions. Preferably the concentration of the bleach in the or each second region is at least 1.5 times the bleach concentration in the or each first region and preferably substantially all the bleach is in the or each second region.
  • the second regions should be of the same composition. There can be one or more second regions having a different composition from the other second regions.
  • the discrete first and second regions may be domains or other zones within the tablet. For instance, by forming the tablet from the granules of flocculant, and other coarse particulate material of size typically above 1mm, the flocculant granules having a certain content and the remainder of the tablet having another, distinct first and second regions are created in the compressed tablet.
  • each region in the tablet is a layer and the tablet is a multi-layer tablet of at least two layers. It is often preferred that there should be three layers, with the tablet typically being a sandwich between similar layers on each outer surface and a different central layer. Different layers may be differently coloured.
  • the first regions typically contain 20 to 80%, often around 40 to 60% and usually about 50%, by weight of the tablet with the second regions containing the remainder.
  • the tablets of the invention are of a size which is convenient for dosing in a washing machine.
  • the preferred size is 10 to 150g and the size can be selected in accordance with the intended wash load and the design of the washing machine which is to be used.
  • Detergent tablets of the present invention can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry.
  • the principal ingredients in particular gelling surfactants, are used in particulate form.
  • Any liquid ingredients, for example surfactant or suds suppressor, can be incorporated in a conventional manner into the solid particulate ingredients.
  • the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure.
  • the tablets according to the invention are compressed using a force of less than 100000N, more preferably of less than 50000N, even more preferably of less than 5000N and most preferably of less than 3000 N.
  • the most preferred embodiment is a tablet compressed using a force of less than 2500N.
  • the particulate material used for making the tablet of this invention can be made by any particulation or granulation process.
  • An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower.
  • Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige(R) CB and/or Lodige(R) KM mixers).
  • Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as any particulate material made by any chemical process like flocculation, crystallisation sentering, etc.
  • Individual particles can also be any other particle, granule, sphere or grain.
  • the components of the particulate material may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s).
  • Non-gelling binder can be sprayed on to the mix of some, or all of, the components of the particulate material.
  • Other liquid ingredients may also be sprayed on to the mix of components either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed.
  • a finely divided flow aid dustting agent such as zeolites, carbonates, silicas
  • the tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy(R), Korch(R), Manesty(R), or Bonals(R)).
  • the tablets prepared according to this invention preferably have a diameter of between 20mm and 60mm, preferably of at least 35 and up to 55 mm, and a weight between 25 and 100 g.
  • the ratio of height to diameter (or width) of the tablets is preferably greater than 1:3, more preferably greater than 1:2.
  • the compaction pressure used for preparing these tablets need not exceed 100000 kN/m2, preferably not exceed 30000 kN/m2, more preferably not exceed 5000 kN/m2, even more preferably not exceed 3000kN/m2 and most preferably not exceed 1000kN/m2.
  • the tablet has a density of at least 0.9 g/cc, more preferably of at least 1.0 g/cc, and preferably of less than 2.0 g/cc, more preferably of less than 1.5 g/cc, even more preferably of less than 1.25 g/cc and most preferably of less than 1.1 g/cc.
  • Multi-layer tablets can be made by known techniques.
  • Solidity of the tablet according to the invention may be further improved by making a coated tablet, the coating covering a non-coated tablet according to the invention, thereby further improving the mechanical characteristics of the tablet while maintaining or further improving dispersion.
  • the tablets may then be coated so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate.
  • the coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition.
  • the coating is preferably brittle so that the tablet breaks up when subjected to stronger mechanical shock.
  • the coating material is dispersed under alkaline conditions, or is readily emulsified by surfactants. This contributes to avoiding the problem of visible residue in the window of a front-loading washing machine during the wash cycle, and also avoids deposition of particles or lumps of coating material on the laundry load.
  • Water solubility is measured following the test protocol of ASTM E1148-87 entitled, "Standard Test Method for Measurements of Aqueous Solubility".
  • Suitable coating materials are dicarboxylic acids. Particularly suitable dicarboxylic acids are selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid and mixtures thereof.
  • the coating material has a melting point preferably of from 40°C to 200°C.
  • the coating can be applied in a number of ways. Two preferred coating methods are a) coating with a molten material and b) coating with a solution of the material.
  • the coating material is applied at a temperature above its melting point, and solidifies on the tablet.
  • the coating is applied as a solution, the solvent being dried to leave a coherent coating.
  • the substantially insoluble material can be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material.
  • substantially insoluble materials having a melting point below 40°C are not sufficiently solid at ambient temperatures and it has been found that materials having a melting point above about 200°C are not practicable to use.
  • the materials melt in the range from 60°C to 160°C, more preferably from 70°C to 120°C.
  • melting point is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
  • a coating of any desired thickness can be applied according to the present invention.
  • the coating forms from 1% to 10%, preferably from 1.5% to 5%, of the tablet weight.
  • the tablet coatings are preferably very hard and provide extra strength to the tablet.
  • the fracture of the coating in the wash is improved by adding a disintegrant in the coating.
  • This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dispersion of the coating in the wash solution.
  • the disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5% and 20%, most preferably between 5 and 10% by weight. Possible disintegrants are described in Handbook of Pharmaceutical Excipients (1986).
  • Suitable disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacharides, ion exchange resins and mixtures thereof.
  • the used compacting force may be adjusted to not affect the tensile strength, and the disintegration time in the washing machine. This process may be used to prepare homogenous or layered tablets of any size or shape.
  • F is the maximum force (Newton) to cause tensile failure (fracture) measured by a VK 200 tablet hardness tester supplied by Van Kell industries, Inc.
  • D is the diameter of the tablet, and t the thickness of the tablet.
  • a tablet having a diametral fracture stress of less than 20 kPa is considered to be fragile and is likely to result in some broken tablets being delivered to the consumer.
  • a diametral fracture stress of at least 25 kPa is preferred.
  • the tablets further comprises an effervescent.
  • Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas, i.e. C 6 H 8 O 7 + 3NaHCO 3 Na 3 C 6 H 5 O 7 + 3CO 2 + 3H 2 O
  • An effervescent may be added to the tablet mix in addition to the detergent ingredients.
  • the addition of this effervescent to the detergent tablet improves the disintegration time of the tablet.
  • the amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet.
  • the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles.
  • the tablet Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S. and still have the same disintegration time as a tablet without effervescency.
  • the D.F.S. of the tablet with effervescency is kept the same as a tablet without, the disintegration of the tablet with effervescency will be faster.
  • dispersion aid could be provided by using compounds such as sodium acetate or urea.
  • suitable dispersion aid may also be found in Pharmaceutical Dosage Forms: Tablets, Volume 1, Second edition, Edited by H.A. Lieberman et all, ISBN 0-8247-8044-2.
  • Non gelling binders can be integrated to the particles forming the tablet in order to further facilitate dispersion.
  • suitable non-gelling binders include synthetic organic polymers such as polyethylene glycols, polyvinylpyrrolidones, polyacrylates and water-soluble acrylate copolymers.
  • binders classification Acacia, Alginic Acid, Carbomer, Carboxymethylcellulose sodium, Dextrin, Ethylcellulose, Gelatin, Guar gum, Hydrogenated vegetable oil type I, Hydroxyethyl cellulose, Hydroxypropyl methylcellulose, Liquid glucose, Magnesium aluminum silicate, Maltodextrin, Methylcellulose, polymethacrylates, povidone, sodium alginate, starch and zein.
  • binders also have an active cleaning function in the laundry wash such as cationic polymers, i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines, ethoxylated polyethylene amines, maleic acrylic polymers.
  • cationic polymers i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines, ethoxylated polyethylene amines, maleic acrylic polymers.
  • Non-gelling binder materials are preferably sprayed on and hence have an appropriate melting point temperature below 90°C, preferably below 70°C and even more preferably below 50°C so as not to damage or degrade the other active ingredients in the matrix.
  • non-aqueous liquid binders i.e. not in aqueous solution
  • they may also be solid binders incorporated into the matrix by dry addition but which have binding properties within the tablet.
  • Non-gelling binder materials are preferably used in an amount within the range from 0.1 to 15% of the composition, more preferably below 5% and especially if it is a non laundry active material below 2% by weight of the tablet.
  • gelling binders such as nonionic surfactants are avoided in their liquid or molten form.
  • Nonionic surfactants and other gelling binders are not excluded from the compositions, but it is preferred that they be processed into the detergent tablets as components of particulate materials, and not as liquids.
  • the clay minerals used to provide the softening properties of the instant compositions can be described as expandable, three-layer clays, i.e., alumino-silicates and magnesium silicates, having an ion exchange capacity of at least 50 meq/100g. of clay.
  • expandable as used to describe clays relates to the ability of the layered clay structure to be swollen, or expanded, on contact with water.
  • the three-layer expandable clays used herein are those materials classified geologically as smectites.
  • smectite-type clays There are two distinct classes of smectite-type clays; in the first, aluminum oxide is present in the silicate crystal lattice; in the second class of smectites, magnesium oxide is present in the silicate crystal lattice.
  • the general formulas of these smectites are Al 2 (Si 2 O 5 ) 2 (OH) 2 and Mg 3 (Si 2 O 5 )(OH) 2 for the aluminum and magnesium oxide type clay, respectively. It is to be recognised that the range of the water of hydration in the above formulas can vary with the processing to which the clay has been subjected.
  • the smectite clays in the present invention in that the expandable characteristics of the hydrated clays are dictated by the silicate lattice structure. Furthermore, atom substitution by iron and magnesium can occur within the crystal lattice of the smectites, while metal cations such as Na + , Ca ++ , as well as H + , can be co-present in the water of hydration to provide electrical neutrality. Except as noted hereinafter, such cation substitutions are immaterial to the use of the clays herein since the desirable physical properties of the clays are not substantially altered thereby.
  • the three-layer, expandable alumino-silicates useful herein are further characterised by a dioctahedral crystal lattice, while the expandable three-layer magnesium silicates have a trioctahedral crystal lattice.
  • the clays employed in the compositions of the instant invention contain cationic counterions such as protons, sodium ions, potassium ions, calcium ion, magnesium ion, and the like. It is customary to distinguish between clays on the basis of one cation predominantly or exclusively absorbed.
  • a sodium clay is one in which the absorbed cation is predominantly sodium.
  • Such absorbed cations can become involved in exchange reactions with cations present in aqueous solutions.
  • a typical exchange reaction involving a smectite-type clay is expressed by the following equation: smectite clay (Na) + NH 4 OH _ smectite clay (NH 4 ) + NaOH.
  • cation exchange capacity (sometimes termed “base exchange capacity") in terms of milliequivalents per 100 g. of clay (meq./100 g.).
  • base exchange capacity cation exchange capacity
  • the cation exchange capacity of clays can be measured in several ways, including by electrodialysis, by exchange with ammonium ion followed by titration or by a methylene blue procedure, all as fully set forth in Grimshaw, "The Chemistry and Physics of Clays", pp. 264-265, Interscience (1971).
  • the cation exchange capacity of a clay mineral relates to such factors as the expandable properties of the clay, the charge of the clay, which, in turn, is determined at least in part by the lattice structure, and the like.
  • the ion exchange capacity of clays varies widely in the range from about 2 meq/100 g. for kaolinites to about 150 meq/100 g., and greater, for certain clays of the montmorillonite variety.
  • Illite clays have an ion exchange capacity somewhere in the lower portion of the range, i.e., around 26 meq/100 g. for an average illite clay.
  • Illite and kaolinite clays are preferably not used as the clay in the instant compositions. Indeed, such illite and kaolinite clays constitute a major component of clay soils and, as noted above, are removed from fabric surfaces by means of the instant compositions.
  • smectites such as nontonite, having an ion exchange capacity of around 70 meq/100 g.
  • montmorillonite which has an ion exchange capacity greater than 70 meq/100 g.
  • clay minerals useful herein can be characterised as expandable, three-layer smectite-type clays having an ion exchange capacity of at least about 50 meq/100 g.
  • the smectite clays used in the compositions herein are all commercially available. Such clays include, for example, montmorillonite, volchonskoite, nontronite, hectorite, saponite, sauconite, and vermiculite.
  • the clays herein are available under various tradenames, for example, Thixogel #1 and Gelwhite GP from Georgia Kaolin Co., Elizabeth, New Jersey; Volclay BC and Volclay #325, from American Colloid Co., Skokie, Illinois; Black Hills Bentonite BH450, from International Minerals and Chemicals; and Veegum Pro and Veegum F, from R.T. Vanderbilt. It is to be recognised that such smectite-type minerals obtained under the foregoing tradenames can comprise mixtures of the various discrete mineral entities. Such mixtures of the smectite minerals are suitable for use herein.
  • smectite-type clays having a cation exchange capacity of at least about 50 meq/100 g. are useful herein, certain clays are preferred.
  • Gelwhite GP is an extremely white form of smectite clay and is therefore preferred when formulating white granular detergent compositions.
  • Volclay BC which is a smectite-type clay mineral containing at least 3% of iron (expressed as Fe 2 O 3 ) in the crystal lattice, and which has a very high ion exchange capacity, is one of the most efficient and effective clays for use in laundry compositions and is preferred from the standpoint of product performance.
  • Appropriate clay minerals for use herein can be selected by virtue of the fact that smectites exhibit a true 14 ⁇ x-ray diffraction pattern. This characteristic pattern, taken in combination with exchange capacity measurements performed in the manner noted above, provides a basis for selecting particular smectite-type minerals for use in the granular detergent compositions disclosed herein.
  • the clay is preferably mainly in the form of granules, with at least 50% (and preferably at least 75% or at least 90%) being in the form of granules having a size of at least 100mm up to 1800mm, preferably up to 1180mm, preferably 150-850mm.
  • the amount of clay in the granules is at least 50%, usually at least 70% or 90%, of the weight of the granules.
  • Non-limiting examples of surfactants useful herein typically at levels from about 1% to about 55%, by weight, anionics such as sulphonates, sulphates and ether sulphates. These include the conventional C11-C18 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C10-C20 alkyl sulfates ("AS”), the C10-C18 secondary (2,3) alkyl sulfates of the formula CH 3 (CH2) x (CHOSO 3 -M + ) CH 3 and CH 3 (CH 2 ) y (CHOSO 3 -M+) CH 2 CH 3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C10-C18 alkyl alkoxy sulfates ("AExS"; especially EO 1-7 e
  • the conventional nonionic and amphoteric surfactants such as the C12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C12-C18 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and the like, can also be included in the overall compositions.
  • the C10-C18 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C18 N-methylglucamides. See WO 92/06154.
  • sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C10-C18 N-(3-methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C12-C18 glucamides can be used for low sudsing.
  • C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used.
  • Mixtures of anionic and nonionic surfactants are especially useful.
  • Other conventional useful anionic, amphoteric, nonionic or cationic surfactants are listed in standard texts.
  • the tablet comprises at least 5% by weight of surfactant, more preferably at least 15% by weight, even more preferably at least 25% by weight, and most preferably between 35% and 55% by weight of surfactant.
  • the amount of anionic is preferably at least 1.5 times, generally at least 2 or 3 times, the total amount of other surfactants.
  • Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
  • the level of builder can vary widely depending upon the end use of the composition.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • non-phosphate builders are required in some locales.
  • compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.
  • silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
  • Hoechst commonly abbreviated herein as "SKS-6”
  • the Na SKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na 2 SiO 5 morphology form of layered silicate.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixO 2 x+1.yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
  • delta-Na 2 SiO 5 (NaSKS-6 form) is most preferred for use herein.
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the present invention.
  • Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations.
  • Aluminosilicate builders include those having the empirical formula: Mz(zAlO 2 )y].xH 2 O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X.
  • the crystalline aluminosilicate ion exchange material has the formula: Na 12 [(AlO 2 ) 12 (SiO 2 ) 12 ].xH 2 O wherein x is from about 20 to about 30, especially about 27.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • polycarboxylate builders include a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxypolycarboxylates copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid
  • various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Fatty acids e.g., C12-C18 monocarboxylic acids
  • the aforesaid builders especially citrate and/or the succinate builders, to provide additional builder activity.
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.
  • the detergent compositions herein may contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
  • bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering.
  • the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November1, 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate” bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
  • the percarbonate can be coated with silicate, borate or water-soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • Mixtures of bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • amido-derived bleach activators are those of the formulae: R1N(R5)C(O)R2C(O)L or R1C(O)N(R5)R2C(O)L wherein R1 is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to about 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenyl sulfonate.
  • bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamidocaproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin-type is:
  • Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae: wherein R6 is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms.
  • lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • the bleaching compounds can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in US-A-5,246,621, US-A-5,244,594; US-A-5,194,416; US-A-5,114,606; and EP-A-549,271, EP-A-549,272, EP-A-544,440, and EP-A-544,490; Preferred examples of these catalysts include MnlV2(u-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2(PF6)2, MnIII2(u-O)1(u-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(ClO4)2, MnIV4(u-O)6(1,4,7-triazacyclononane)4(ClO4)4, MnIIIMnIV4(u-
  • metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; and 5,227,084.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration.
  • the enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof.
  • Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • AU Anson units
  • proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo.
  • protealytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands).
  • proteases include Protease A (see EP-A-130,756, published January 9, 1985) and Protease B (see European Patent Application 87303761.8, filed April 28, 1987, and EP-A-130,756, Bott et al, published January 9, 1985).
  • Amylases include, for example, -amylases described in GB-A-1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
  • the cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5.
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander).
  • suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME (Novo) is especially useful.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P.” Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
  • lipolyticum NRRLB 3673 commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • Patent 3,600,319 issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
  • clay flocculating polymers are fairly long chained polymers and copolymers derived from such monomers as ethylene oxide, acrylamide, acrylic acid, dimethylamino ethyl methacrylate, vinyl alcohol, vinyl pyrrolidone and ethylene imine. Gums, like guar gum, are suitable as well.
  • polymers of ethylene oxide, acrylamide or acrylic acid are preferred. These polymers dramatically enhance the deposition of a fabric softening clay if their molecular weights are in the range of from 100 000 to 10 million. Preferred are such polymers having a weight average molecular weight of from 150000 to 5 million.
  • the most preferred polymer is poly (ethylene oxide).
  • Molecular weight distributions can be readily determined using gel permeation chromatography, against standards of poly (ethylene oxide) of narrow molecular weight distributions.
  • the amount of flocculant is preferably 0.5-10% by weight of the tablet, most preferably about 2 to 6%.
  • the flocculant is preferably mainly in the form of granules, with at least 50% by weighty (and preferably at least 75% and most preferably at least 90%) being in the form of granules having a size of at least 100mm up to 1800mm, preferably up to 1180mm and most preferably 150-850mm
  • the amount of flocculant in the granules is at least 50%, generally at least 70% or 90%, of the weight of the granules.
  • compositions which are commonly used in detergent compositions and which may be incorporated into the detergent tablets of the present invention include chelating agents, soil release agents, soil antiredeposition agents, dispersing agents, brighteners, suds suppressors, fabric softeners, dye transfer inhibition agents and perfumes.
  • chelating agents such as sodium citrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium tartrate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate,
  • the clay component is obtained by compression of a clay material.
  • a preferred process comprises the steps of submitting the clay material to a pressure of at least 10MPa, or even at least 20MPa or even 40MPa. This can for example be done by tabletting or roller compaction of a clay material, optionally together with one or more other ingredients, to form a clay tablet or sheet, preferably followed by size reduction, such as grinding, of the compressed clay sheet or tablet, to form compressed clay particles. The particles can then be incorporated in a tablet or cleaning composition.
  • Tabletting methods and roller compaction methods are known in the art.
  • the compression of the clay can be done in a Lloyd 50K tablet press or with a Chilsonator roller compaction equipment, available form Fitzpatrick Company.
  • Example 1 was repeated replacing flocculant raw material with flocculant agglomerate prepared as follows. 37.6g of polyethylene oxide with an average molecular weight of 300,000, 226.8g of sodium carbonate and 75.6g of sodium citrate dihydrate were added to a Braun mixer, type 4262 with blades set at 3000rpm. While the blades are mixing the clay, 15g of distilled water were progressively blended to the clay in 10 sec. After the water addition, the blend was mixed for another 2 min. The agglomerates made were then dried in a Sherwood Scientific fluid bed dryer set at 90°C for 30 min. The dried agglomerates were screened and the particles larger than 1700mm and the particles smaller than 100mm were removed from the mix.
  • Example 1 The tablets made according to Example 1 and Example 2 were observed to disintegrate efficiently in wash water.
  • the tablet containing flocculant agglomerate gave a lower % residue (dispersed better) than the tablet containing flocculant raw material, indicating that the overall dispersion process can be improved by providing flocculant in granular form.
  • Example 3 was repeated by removing the flocculant particle from the formulation and balancing it with carbonate (Composition C). Table 4 shows that the flocculant particle helped to reduce the % dispensing residue level observed with the tablet.
  • Ethylene diamine N,N-disuccinic acid sodium salt/Sulphate particle comprise of 58% of Ethylene diamine N,N-disuccinic acid sodium salt, 23% of sulphate and 19% water.
  • Zinc phthalocyanine sulphonate encapsulates are 10% active.
  • Suds suppressor comprises of 11.5% silicone oil (ex Dow Corning); 59% of zeolite and 29.5% of water.
  • composition of example B the citric acid used was replaced with micronised citric acid.
  • the citric acid used was ground with a coffee grinder to the following psd prior to use.
  • Ethylene diamine N,N-disuccinic acid sodium salt/Sulphate particle comprise of 58% of Ethylene diamine N,N-disuccinic acid sodium salt, 23% of sulphate and 19% water.
  • Zinc phthalocyanine sulphonate encapsulates are 10% active.
  • Suds suppressor comprises of 11.5% silicone oil (ex Dow Corning); 59% of zeolite and 29.5% of water.
  • the anionic particle was a blown powder with the following composition: (%) Sodium linear alkylbenzene sulphonate 17.7 Nonionic C35 7EO 2.0 Nonionic C35 3EO 5.9 Soap 0.5 Sodium tripolyphosphate, (Rhodia-Phos HPA 3.5 from Rhone Poulenc) 47.8 Sodium silicate 10.8 Sodium carboxymethly cellulose 0.4 Acrylate / maleate copolymer 2.1 Salts, moisture 12.9
  • Ethylene diamine N,N-disuccinic acid sodium salt/Sulphate particle comprise of 58% of Ethylene diamine N,N-disuccinic acid sodium salt, 23% of sulphate and 19% water.
  • Zinc phthalocyanine sulphonate encapsulates are 10% active.
  • Suds suppressor comprises of 11.5% silicone oil (ex Dow Corning); 59% of zeolite and 29.5% of water.
  • Arbocel TF-30-HG and Vivapur G22 are cellulose containing disintegration agent from the Rettenmaier company
  • Example A-G are repeated by dipping the tablets made with the indicated composition in a bath comprising 80 parts of adipic acid mixed with 18.5 parts of CSM Quest 9 clay and 1.5 parts of Coasol (Coasol being a diisobutyladipate).
  • the tablet may also comprise a high molecular weight poly(ethyleneoxide), cellulosic disintegrant, and/ or acetate. It could also further comprise high soluble salts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
EP99870090A 1999-04-30 1999-04-30 Waschmittelzusammensetzungen Withdrawn EP1048721A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP99870090A EP1048721A1 (de) 1999-04-30 1999-04-30 Waschmittelzusammensetzungen
EP00870024A EP1048712A1 (de) 1999-04-30 2000-02-17 Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel in Tablettenform
DE60031968T DE60031968T2 (de) 1999-04-30 2000-04-13 Waschmittelzusammensetzungen
AU46439/00A AU4643900A (en) 1999-04-30 2000-04-13 Detergent compositions
EP00928164A EP1175480B1 (de) 1999-04-30 2000-04-13 Waschmittelzusammensetzungen
PCT/US2000/010064 WO2000066687A1 (en) 1999-04-30 2000-04-13 A process of treating fabrics with a laundry detergent additive tablet
PCT/US2000/009890 WO2000066692A1 (en) 1999-04-30 2000-04-13 Detergent compositions
AU44604/00A AU4460400A (en) 1999-04-30 2000-04-13 A process of treating fabrics with a laundry detergent additive tablet
ES00928164T ES2276683T3 (es) 1999-04-30 2000-04-13 Composiciones detergentes.
AT00928164T ATE346131T1 (de) 1999-04-30 2000-04-13 Waschmittelzusammensetzungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP99870090A EP1048721A1 (de) 1999-04-30 1999-04-30 Waschmittelzusammensetzungen

Publications (1)

Publication Number Publication Date
EP1048721A1 true EP1048721A1 (de) 2000-11-02

Family

ID=8243830

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99870090A Withdrawn EP1048721A1 (de) 1999-04-30 1999-04-30 Waschmittelzusammensetzungen
EP00928164A Revoked EP1175480B1 (de) 1999-04-30 2000-04-13 Waschmittelzusammensetzungen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP00928164A Revoked EP1175480B1 (de) 1999-04-30 2000-04-13 Waschmittelzusammensetzungen

Country Status (6)

Country Link
EP (2) EP1048721A1 (de)
AT (1) ATE346131T1 (de)
AU (1) AU4643900A (de)
DE (1) DE60031968T2 (de)
ES (1) ES2276683T3 (de)
WO (1) WO2000066692A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466484A2 (de) * 1990-07-13 1992-01-15 Unilever Plc Detergenszusammensetzungen
GB2297977A (en) * 1995-02-07 1996-08-21 Procter & Gamble Detergent composition containing Zeolite MAP
JPH0987696A (ja) * 1995-09-27 1997-03-31 Lion Corp 錠剤型ノニオン洗剤組成物
GB2320255A (en) * 1996-12-12 1998-06-17 Procter & Gamble Process for making tabletted detergent compositions
WO1998040463A1 (de) * 1997-03-13 1998-09-17 Henkel Kommanditgesellschaft Auf Aktien Wasch- oder reinigungsaktive formkörper für den gebrauch im haushalt

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348435A (en) * 1999-04-01 2000-10-04 Procter & Gamble Softening compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466484A2 (de) * 1990-07-13 1992-01-15 Unilever Plc Detergenszusammensetzungen
GB2297977A (en) * 1995-02-07 1996-08-21 Procter & Gamble Detergent composition containing Zeolite MAP
JPH0987696A (ja) * 1995-09-27 1997-03-31 Lion Corp 錠剤型ノニオン洗剤組成物
GB2320255A (en) * 1996-12-12 1998-06-17 Procter & Gamble Process for making tabletted detergent compositions
WO1998040463A1 (de) * 1997-03-13 1998-09-17 Henkel Kommanditgesellschaft Auf Aktien Wasch- oder reinigungsaktive formkörper für den gebrauch im haushalt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 199, no. 707 31 July 1997 (1997-07-31) *

Also Published As

Publication number Publication date
AU4643900A (en) 2000-11-17
EP1175480A1 (de) 2002-01-30
DE60031968D1 (de) 2007-01-04
DE60031968T2 (de) 2007-09-20
EP1175480B1 (de) 2006-11-22
WO2000066692A1 (en) 2000-11-09
ATE346131T1 (de) 2006-12-15
ES2276683T3 (es) 2007-07-01

Similar Documents

Publication Publication Date Title
EP0896052A1 (de) Waschmitteltablette
CA2298832C (en) Detergent tablet
EP1048718A1 (de) Waschmittelzusammensetzungen
EP1228190B1 (de) Bleichmittelhaltige waschmitteltabletten
EP1175481B1 (de) Waschmittelzusammensetzungen
EP1048719A1 (de) Waschmittelzusammensetzungen
EP0971028A1 (de) Waschmitteltablette mit hoher Löslichkeit und verbesserten mechanischen Eigenschaften
EP1026228B1 (de) Beschichtetes Reinigungsmittel in Tablettenform
EP0971029B1 (de) Waschmitteltablette mit hohen mechanischen und Lösungseigenschaften
EP1175480B1 (de) Waschmittelzusammensetzungen
EP1026229A1 (de) Beschichtetes Reinigungsmittel in Tablettenform
EP1048717A1 (de) Waschmittelzusammensetzungen
EP1048714A1 (de) Verfahren zum Spenden einer Waschmittelzusammensetzung
EP1048716A1 (de) Waschmittelzusammensetzung
EP1048713B1 (de) Waschmittelzusammensetzungen in Tablettenform
CA2360660A1 (en) Coated detergent tablet
EP1072674A1 (de) Beschichtetes Reinigungsmittel in Tablettenform
EP1048715A1 (de) Verfahren zum Spenden einer Waschmittelzusammensetzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010503

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566