EP1046645A2 - Process for preparing vinylchlorosilanes - Google Patents

Process for preparing vinylchlorosilanes Download PDF

Info

Publication number
EP1046645A2
EP1046645A2 EP00106370A EP00106370A EP1046645A2 EP 1046645 A2 EP1046645 A2 EP 1046645A2 EP 00106370 A EP00106370 A EP 00106370A EP 00106370 A EP00106370 A EP 00106370A EP 1046645 A2 EP1046645 A2 EP 1046645A2
Authority
EP
European Patent Office
Prior art keywords
reactor
reaction
annular gap
displacer
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00106370A
Other languages
German (de)
French (fr)
Other versions
EP1046645A3 (en
EP1046645B1 (en
Inventor
Stefan Dr. Bade
Hartwig Dr. Rauleder
Uwe Dr. Schön
Franz-Michael Dr. Bollenrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP1046645A2 publication Critical patent/EP1046645A2/en
Publication of EP1046645A3 publication Critical patent/EP1046645A3/en
Application granted granted Critical
Publication of EP1046645B1 publication Critical patent/EP1046645B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/121Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20
    • C07F7/122Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20 by reactions involving the formation of Si-C linkages

Definitions

  • the invention relates to a method for producing Vinylchlorosilanes by uncatalyzed, thermal reaction of chlorosilanes with vinyl chloride using a Annular gap reactor with possibly rotating displacement body.
  • Vinyltrichlorosilane is a valuable intermediate that because of its four reactive groups for many Applications are suitable, for example in the arbitration of Glass fibers and used for the manufacture of cable materials becomes.
  • An improved process for the production of vinylchlorosilanes by reacting chlorosilanes with vinyl chloride is carried out according to DE 40 01 820 A1 in an annular gap reactor which has a heatable reaction tube with an inside diameter d 1 , inside which there is an axially symmetrical one which extends over the entire length of the reaction tube arranged and optionally rotatable cylindrical displacement body with an outer diameter d 2 is located.
  • d 1 d 2nd + 2a , where a is generally at least 1 cm and is always ⁇ 5 cm. If the displacer is significantly shorter than the reaction tube, the yield is reduced.
  • the new process combines even at high Degrees of conversion a high selectivity for the desired Vinyl chlorosilane with an economically acceptable high Reactor power. This advantageous result back that the process is a targeted temperature control and control after the reaction mixture has escaped from the annular gap reactor.
  • Follow-up or Side reactions that include for the separation of soot and / or elemental silicon and the formation of high boilers can be pushed back accordingly.
  • vinyl trichlorosilane in particular can be used advantageous to produce from trichlorosilane and vinyl chloride.
  • suitable chlorosilanes with a substitutable hydrogen atom are e.g. Methylhydrogen dichlorosilane and ethylhydrogen dichlorosilane.
  • the chlorosilane and vinyl chloride are advantageously used without a diluting liquid or gaseous inert medium and advantageously in a molar ratio of 1: 1 to 5: 1, preferably from 2: 1 to 4: 1.
  • the reaction components can with Ambient temperature or, as described in DE 46 16 021 A1, to 120 to 400 ° C, advantageously preheated to 220 to 400 ° C be introduced into the annulus reactor where they continue be heated. At about 450 ° C the exothermic continues Substitution reaction that is so high at about 550 ° C. Speed reached that no further heat input is required the reaction is essentially adiabatic can run towards balance.
  • the temperatures in this zone are generally in the range of 550 to 700 ° C, advantageously from 550 to 650 ° C.
  • the inventive method is useful at pressures from 1.1 to 2.0 bar, advantageously from 1.1 to 1.4 bar.
  • the residence times are usually 0.2 to 20 sec, advantageously 1.0 to 10 sec.
  • the annular gap reactor described in DE 40 01 820 A1 can be used Serve reactor.
  • This is preferably vertical and comprises a heatable cylindrical tube with the same long, axially symmetrically positioned displacer, which are fixed or rotate around its longitudinal axis can, e.g. at 10 to 100 rpm, advantageously at 20 to 40 RPM Annular gap reactors for the production of vinyl chlorosilanes on an industrial scale e.g. 1 to 5 m To be long.
  • the inside diameter of such reactors can for example 400 to 1,200 mm and advantageously 500 to 1,000 mm.
  • the inside of the cylindrical tube and the outside of the displacer form an annular gap in which the Educts are heated to the starting temperature and the reaction takes place.
  • the displacer can be smooth Have outer wall or on its entire surface or one Part of it, for example when the feed gases enter starting to carry elements that flow rate and / or promote the swirling of the reaction gases and thereby the annular gap of solid particle deposits keep clear.
  • the elements can e.g. around metal strips act that intermittently or continuously essentially parallel to the longitudinal axis of the displacer to run. Alternatively, the continuous or interrupted metal strip at an acute angle from 20 to 50 ° to the longitudinal axis and then a spiral guide form.
  • the metal strips can also be used as pieces or knobs at regular or irregular intervals on the Surface of the displacer are attached. When a Displacer rotates with a spiral, then happens this expediently in such a sense that the Guide spiral the reaction gases towards the exit of the annular gap reactor promotes. If the metal strips do not Form a spiral, but are attached in a way which in no case causes the reaction gases to be conveyed, the direction of rotation is not important.
  • the displacer can run the entire length of the reactor be cylindrical. Alternatively, he can from the entry of the educts to the starting point of the adiabatic reaction, which as mentioned at about 550 ° C, be cylindrical and move away from this point or from one further towards the exit point of the reactor abruptly or gradually, e.g. tapered or parabolic, taper, optionally up to on the diameter of the axis of rotation. In this way the Reactor output or capacity of a plant increases, whereby the selectivity for the desired vinylchlorosilane, based on converted vinyl chloride, remains unchanged high.
  • the distance between the inner wall of the cylindrical tube and the outer wall of the displacer in its cylindrical Part is advantageously at least 10 mm and at most 50 mm. Any existing elements that cause turbulence convey, protrude advantageously by more than half the gap width into the annular gap. Expediently they extend over 60 to 80% of the gap width.
  • the cylindrical tube, the displacer and the elements which promote the swirling of the reaction gases can the most diverse materials, which are among the Reaction conditions are stable, e.g. from scale-resistant Steels which, in addition to iron as the alloy components of chrome, Contain nickel and titanium and / or molybdenum and / or silicon.
  • the annular gap reactor is with an adjustable heating device provided, which are useful over its entire length extends and divided into several independent segments can be. It is possible that in the annular gap reactor entering, possibly preheated to 120 to 400 ° C. Heating reactant gases in the annular gap reactor so quickly that the temperature is about 550 ° C and the exothermic reaction essentially adiabatic without additional heat expires as soon as the reaction gases 1/3 to 2/3 of the reactor length have happened. A heater also in the subsequent Part of the reactor, however, ensures the desired flexibility in the event that the starting point of the adiabatic Reaction shifts towards the exit.
  • the Reaction gases are expediently heated indirectly, that is, by Heat transfer through the wall of the cylindrical tube.
  • the cylindrical tube may have a divided jacket be provided by the overheated Steam or a heavy-duty heat transfer fluid (e.g. a molten salt or liquid metal) can be.
  • a heavy-duty heat transfer fluid e.g. a molten salt or liquid metal
  • the cylindrical tube is advantageous with an electrical, possibly divided into segments Outside heating equipped.
  • reaction gases cooled rapidly by adding a liquid be quenched.
  • the quench device can immediately added below to the annular gap reactor and should at least not more than 1.5 m from the exit be distant.
  • a conical quench container has proven itself from a material that is stable under the process conditions, the one with its circular opening connects the cylindrical annular gap reactor.
  • the quench liquid can e.g. through one or more nozzles a diameter of 8 to 25 mm in the direction of flow be injected conically into the hot reaction gases.
  • a suitable quench liquid is e.g. Trichlorosilane or Silicon tetrachloride, the desired vinyl chlorosilane, such as e.g. Vinyl trichlorosilane, or the raw condensed Reaction mixture, which is usually 25 to 50 wt .-% of the contains desired vinylchlorosilane.
  • This is advantageous Mass flow of the quench liquid two to six times the mass flow of the gaseous reaction products.
  • the evaporating quench liquid cools the reaction gases, their temperature at the exit of the annular gap reactor as a rule 550 to 700 ° C, quickly to a temperature of ⁇ 200 ° C, so that the equilibrium position is practical no longer changes and unwanted follow-up reactions come in handy no longer take place.
  • the quenched reaction gases are indirectly cooled further and liquefied.
  • the desired vinyl chlorosilane is obtained Distillation, also as a by-product of silicon tetrachloride. Unreacted starting materials trichlorosilane and vinyl chloride returned to the process.
  • the hydrogen chloride can be used in other ways, e.g. for the production of chlorosilanes by reaction with silicon.
  • the process is carried out in an industrial reactor, which as an electrically heatable annular gap reactor a cylindrical outer tube and an axially arranged and also cylindrical displacement body with vertical and horizontally arranged metal strips is formed.
  • the reactor and displacement body are 2.5 m long, the inside diameter the cylindrical outer tube is 600 mm, the outer diameter of the displacer 560 mm and the Correspondingly, the width of the annular gap is 20 mm.
  • the rotatable The displacer rotates at 30 rpm during the test.
  • the annular gap reactor closes in immediately conical tapered quench vessel with a flow direction arranged quench nozzle.
  • the head of the annular gap reactor is preheated to 380 ° C gaseous mixture of 100 kg / h vinyl chloride and 700 kg / h of vinyl chloride fed.
  • the molar ratio of the two Components is 3.23.
  • the reactant gases are in the reactor heated further until the exothermic reaction at about 550 ° C starts. The temperature rises to 650 ° C.
  • the Reaction mixture occurs after a residence time of 1.5 seconds at approx. 585 ° C into the quench vessel, the quench liquid 2 t / h liquid reaction mixture at one temperature of 30 ° C are supplied. This will reduce the temperature of the Reaction mixture lowered to 145 ° C.
  • the reaction mixture minus the quench liquid has the following composition: component Flow rate (kg / h) Vinyl chloride 14.9 Trichlorosilane 495.2 Vinyl trichlorosilane 193.3 Hydrogen chloride 43.6 Silicon tetrachloride 38.1 High boilers and other secondary components 15.1
  • the reactor of Example 1 is used, but without Quench system.
  • the feed gases 100 kg / h vinyl chloride and 700 kg / h trichlorosilane (molar ratio 3.23), in turn Preheated to 380 ° C and heated in the reactor so far that the Reaction sets in.
  • the displacement body also rotates with it 30 rpm. After a residence time of 1.5 seconds, the reaction mixture occurs with a temperature of 585 ° C from the annulus out. About 40 cm below the displacer the temperature is 680 ° C.
  • the reaction mixture becomes Refurbishment into a system of indirectly cooled product coolers headed.
  • the reaction mixture has the following composition at the outlet of the reactor: component Flow rate (kg / h) Vinyl chloride 8.9 Trichlorosilane 486.5 Vinyl trichlorosilane 176.4 Hydrogen chloride 39.8 Silicon tetrachloride 55.2 High boilers and other secondary components 33.8
  • Example 2 The comparison with Example 1, in which the reaction mixture quenched immediately after exiting the annulus shows a significantly lower selectivity vinyltrichlorosilane with higher vinyl chloride conversion.
  • the lesser Vinyl trichlorosilane selectivity is enhanced by a higher Share of high boilers and other by-products as well a deposition of silicon and soot in the reactor and in the Leads to the product coolers.
  • the vinyl chloride turnover lies above the equilibrium turnover because of the high Temperatures cause vinyl chloride to become soot and Trichlorosilane decomposed to silicon. These decomposition reactions are exothermic so that the temperature is below the Displacer body high and very difficult to control is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

Preparation of vinylchlorosilanes by non-catalysed reaction of chlorosilanes with vinyl chloride at 550-700 degrees C in a split-ring reactor is such that the hot gases are rapidly cooled by a quenching liquid as they leave the reactor.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Vinylchlorsilanen durch unkatalysierte, thermische Reaktion von Chlorsilanen mit Vinylchlorid unter Verwendung eines Ringspaltreaktors mit gegebenenfalls rotierendem Verdrängerkörper.The invention relates to a method for producing Vinylchlorosilanes by uncatalyzed, thermal reaction of chlorosilanes with vinyl chloride using a Annular gap reactor with possibly rotating displacement body.

Stand der TechnikState of the art

Vinyltrichlorsilan ist ein wertvolles Zwischenprodukt, das sich aufgrund seiner vier reaktionsfähigen Gruppen für viele Anwendungen eignet, beispielsweise bei der Schlichtung von Glasfasern und für die Herstellung von Kabelmaterialien verwendet wird.Vinyltrichlorosilane is a valuable intermediate that because of its four reactive groups for many Applications are suitable, for example in the arbitration of Glass fibers and used for the manufacture of cable materials becomes.

Aus DE-PS 936 445, DE-OS 22 10 189 und insbesondere DE-PS 20 02 258 ist bekannt, daß beim Durchleiten von Vinylchlorid-Chlorsilan-Gemischen und insbesondere von Vinylchlorid-Trichlorsilan-Gemischen durch entsprechend aufgeheizte leere Rohre aus Keramik, Glas oder Eisen technisch akzeptable Ausbeuten an Vinylchlorsilanen erhalten werden. Die Reaktion verläuft rein thermisch, also ohne Katalysator. Bei der Umsetzung von Trichlorsilan mit Vinylchlorid laufen die folgenden Reaktionen ab. Hauptreaktion:

Figure 00010001
Neben dieser Gleichgewichtsreaktion gibt es die folgenden Neben- und Folgereaktionen: C2H3Cl + SiHCl3 → SiCl4 + C2H4 4 SiHCl3 → 3 SiCl4 + Si + 2 H2 C2H3Cl → C2H2 + HCl C2H2 → 2 C + H2 C2H4 + SiHCl3 → C2H5SiCl3 C2H4 + SiHCl3 → C2H3SiCl3 + H2 C2H3SiCl3 + SiHCl3 → Cl3SiC2H4SiCl3 From DE-PS 936 445, DE-OS 22 10 189 and in particular DE-PS 20 02 258 it is known that when passing through vinyl chloride-chlorosilane mixtures and in particular vinyl chloride-trichlorosilane mixtures through appropriately heated empty tubes made of ceramic, glass or iron, technically acceptable yields of vinylchlorosilanes can be obtained. The reaction proceeds purely thermally, i.e. without a catalyst. The following reactions occur when trichlorosilane is reacted with vinyl chloride. Main reaction:
Figure 00010001
In addition to this equilibrium reaction, there are the following side and follow-up reactions: C 2 H 3 Cl + SiHCl 3 → SiCl 4 + C 2 H 4 4 SiHCl 3 → 3 SiCl 4 + Si + 2 H 2 C 2 H 3 Cl → C 2 H 2 + HCl C 2 H 2 → 2 C + H 2 C 2 H 4 + SiHCl 3 → C 2 H 5 SiCl 3 C 2 H 4 + SiHCl 3 → C 2 H 3 SiCl 3 + H 2 C 2 H 3 SiCl 3 + SiHCl 3 → Cl 3 SiC 2 H 4 SiCl 3

Trotz dieser Neben- und Folgereaktionen beträgt nach DE 40 01 820 A1 die Selektivität für Vinyltrichlorsilan, bezogen auf das im Unterschuß eingesetzte Vinylchlorid, je nach dem Verhältnis der Edukte und dem Umsatzgrad 50 bis 98%, bei Rohren von 122 bis 150 cm Länge und Durchmessern von 25 bis 35 mm, Verweilzeiten von 0,2 bis 20 Sekunden, Reaktionstemperaturen von 400 bis 750°C und Drücken von 1 bis 3 bar. Dabei beträgt jedoch die Reaktorleistung (oder Kapazität) der Reaktoren nur 0,8 bis 3,2 t Vinyltrichlorsilan/Monat. Selektivität und Umsatzgrad verhalten sich zueinander umgekehrt proportional; die Reaktorleistung durchläuft ein Maximum in Abhängigkeit vom Umsatzgrad. Eine hohe Selektivität geht dementsprechend mit einer ungenügenden, wirtschaftlich nicht akzeptablen Reaktorleistung bei geringem Umsatzgrad einher. Gemäß DE-OS 20 02 258 bringt zwar die Vergrößerung des Rohrdurchmessers bis auf 50 mm eine dem größeren Reaktorvolumen proportionale Steigerung der Reaktorleistung. Bei noch größeren Durchmessern geht jedoch die spezifische Reaktorleistung, bezogen auf das Reaktorvolumen, zurück. Es ist also nicht möglich, die Raum-Zeit-Ausbeute an Vinyltrichlorsilan zu erhöhen oder auch nur zu halten, indem man den Durchmesser des Reaktorrohres über 50 mm hinaus vergrößert.Despite these side and subsequent reactions, according to DE 40 01 820 A1 the selectivity for vinyl trichlorosilane, based on the vinyl chloride used in the deficit, depending on the ratio of the starting materials and the degree of conversion 50 to 98%, Pipes from 122 to 150 cm in length and diameters from 25 to 35 mm, residence times from 0.2 to 20 seconds, reaction temperatures from 400 to 750 ° C and pressures from 1 to 3 bar. Here however, the reactor power (or capacity) is Reactors only 0.8 to 3.2 t vinyltrichlorosilane / month. selectivity and the degree of turnover are reversed proportional; the reactor power passes through a maximum in Dependence on the degree of sales. A high selectivity goes accordingly with an insufficient, economically not acceptable reactor performance with a low conversion rate. According to DE-OS 20 02 258, the enlargement of the pipe diameter brings up to 50 mm the larger reactor volume proportional increase in reactor output. For even bigger ones However, the specific reactor power goes to diameters, based on the reactor volume. So it is not possible, the space-time yield of vinyl trichlorosilane to increase or even keep it by looking at the diameter of the reactor tube enlarged beyond 50 mm.

Ein verbessertes Verfahren zur Herstellung von Vinylchlorsilanen durch Umsetzung von Chlorsilanen mit Vinylchlorid wird gemäß DE 40 01 820 A1 in einem Ringspaltreaktor durchgeführt, der ein beheizbares Reaktionsrohr mit einem Innendurchmesser d1 aufweist, in dessen Innerem sich ein über die gesamte Länge des Reaktionsrohres erstreckender, axialsymmetrisch angeordneter und gegebenenfalls rotationsfähiger zylindrischer Verdrängerkörper mit einem Außendurchmesser d2 befindet. Dabei gilt die Beziehung d1 = d2 + 2a, wobei a im allgemeinen mindestens 1 cm beträgt und stets <5 cm ist. Falls der Verdrängerkörper wesentlich kürzer ist als das Reaktionsrohr, wird die Ausbeute vermindert. Dieser Befund entspricht der Lehre der drei zuvor genannten Schriften, wonach bei Leerrohrreaktoren die Ausbeute abfällt, wenn der Rohrdurchmesser 5 cm überschreitet. Nach DE 40 16 021 A1 läßt sich die Kapazität des Reaktors bzw. die Raum-Zeit-Ausbeute des Verfahrens mit einem Ringspaltreaktor weiter steigern, wenn man die Reaktionskomponenten vor dem Eintritt in den Reaktor auf 120 bis 400°C vorwärmt. Aber auch mit dieser Maßnahme geht noch viel Reaktorvolumen verloren, in dem die Reaktionskomponenten auf ca. 550°C erhitzt werden, um dann im restlichen Reaktorvolumen adiabatisch weiterzureagieren.An improved process for the production of vinylchlorosilanes by reacting chlorosilanes with vinyl chloride is carried out according to DE 40 01 820 A1 in an annular gap reactor which has a heatable reaction tube with an inside diameter d 1 , inside which there is an axially symmetrical one which extends over the entire length of the reaction tube arranged and optionally rotatable cylindrical displacement body with an outer diameter d 2 is located. The relationship applies d 1 = d 2nd + 2a , where a is generally at least 1 cm and is always <5 cm. If the displacer is significantly shorter than the reaction tube, the yield is reduced. This finding corresponds to the teaching of the three previously mentioned documents, according to which the yield drops in empty tube reactors when the tube diameter exceeds 5 cm. According to DE 40 16 021 A1, the capacity of the reactor or the space-time yield of the process can be further increased with an annular gap reactor if the reaction components are preheated to 120 to 400 ° C. before entering the reactor. However, even with this measure, much reactor volume is lost by heating the reaction components to about 550 ° C. in order to then continue adiabatically in the remaining reactor volume.

Es wurde nun gefunden, daß sich Vinylchlorsilane durch thermische, nicht katalysierte Umsetzung von Chlorsilanen mit Vinylchlorid bei 550 bis 700°C unter Verwendung eines beheizten Ringspaltreaktors vorteilhaft herstellen lassen, wenn man die heißen Reaktionsgase nach Durchströmen des Ringspaltraumes rasch abkühlt, indem man sie mit einer Flüssigkeit quencht.It has now been found that vinyl chlorosilanes are separated by thermal, non-catalyzed conversion of chlorosilanes with Vinyl chloride at 550 to 700 ° C using a heated Can advantageously produce annular gap reactor, if you have the hot reaction gases after flowing through the Annular space cools quickly by adding it to a liquid quenched.

Bei dem neuen Verfahren verbindet sich auch bei hohen Umsatzgraden eine hohe Selektivität für das gewünschte Vinylchlorsilan mit einer wirtschaftlich akzeptablen hohen Reaktorleistung. Dieses vorteilhafte Ergebnis geht u.a. darauf zurück, daß das Verfahren eine gezielte Temperaturführung und -kontrolle nach dem Austritt des Reaktionsgemisches aus dem Ringspaltreaktor ermöglicht. Folge- oder Nebenreaktionen, die u.a. zur Abscheidung von Ruß und/oder elementarem Silicium sowie zur Bildung von Hochsiedern führen können, werden dementsprechend zurückgedrängt.The new process combines even at high Degrees of conversion a high selectivity for the desired Vinyl chlorosilane with an economically acceptable high Reactor power. This advantageous result back that the process is a targeted temperature control and control after the reaction mixture has escaped from the annular gap reactor. Follow-up or Side reactions that include for the separation of soot and / or elemental silicon and the formation of high boilers can be pushed back accordingly.

Erfindungsgemäß läßt sich insbesondere Vinyltrichlorsilan aus Trichlorsilan und Vinylchlorid vorteilhaft herstellen. Andere geeignete Chlorsilane mit einem substituierbaren Wasserstoffatom sind z.B. Methylhydrogendichlorsilan und Ethylhydrogendichlorsilan.According to the invention, vinyl trichlorosilane in particular can be used advantageous to produce from trichlorosilane and vinyl chloride. Other suitable chlorosilanes with a substitutable hydrogen atom are e.g. Methylhydrogen dichlorosilane and ethylhydrogen dichlorosilane.

Man setzt das Chlorsilan und Vinylchlorid vorteilhaft ohne ein verdünnendes flüssiges oder gasförmiges inertes Medium und zweckmäßig im Molverhältnis von 1:1 bis 5:1, vorzugsweise von 2:1 bis 4:1 ein. Die Reaktionskomponenten können mit Umgebungstemperatur oder, wie in DE 46 16 021 A1 beschrieben, auf 120 bis 400°C, vorteilhaft auf 220 bis 400°C vorerhitzt in den Ringspaltreaktor eingeführt werden, wo sie weiter aufgeheizt werden. Bei etwa 450°C setzt die exotherme Substitutionsreaktion ein, die bei etwa 550°C eine so hohe Geschwindigkeit erreicht, daß keine weitere Wärmezufuhr erforderlich ist, die Reaktion also im wesentlichen adiabatisch in Richtung auf das Gleichgewicht ablaufen kann. Die Zone des Ringspaltreaktors, in der die adiabatische Reaktion stattfindet, wird dementsprechend nicht beheizt. Die Temperaturen in dieser Zone liegen im allgemeinen im Bereich von 550 bis 700°C, vorteilhaft von 550 bis 650°C.The chlorosilane and vinyl chloride are advantageously used without a diluting liquid or gaseous inert medium and advantageously in a molar ratio of 1: 1 to 5: 1, preferably from 2: 1 to 4: 1. The reaction components can with Ambient temperature or, as described in DE 46 16 021 A1, to 120 to 400 ° C, advantageously preheated to 220 to 400 ° C be introduced into the annulus reactor where they continue be heated. At about 450 ° C the exothermic continues Substitution reaction that is so high at about 550 ° C. Speed reached that no further heat input is required the reaction is essentially adiabatic can run towards balance. The Zone of the annulus reactor in which the adiabatic reaction is not heated accordingly. The temperatures in this zone are generally in the range of 550 to 700 ° C, advantageously from 550 to 650 ° C.

Das erfindungsgemäße Verfahren wird zweckmäßig bei Drücken von 1,1 bis 2,0 bar, vorteilhaft von 1,1 bis 1,4 bar durchgeführt. Die Verweilzeiten betragen in der Regel 0,2 bis 20 sec, vorteilhaft 1,0 bis 10 sec.The inventive method is useful at pressures from 1.1 to 2.0 bar, advantageously from 1.1 to 1.4 bar. The residence times are usually 0.2 to 20 sec, advantageously 1.0 to 10 sec.

Als Ringspaltreaktor kann der in DE 40 01 820 A1 beschriebene Reaktor dienen. Dieser steht vorzugsweise senkrecht und umfaßt ein beheizbares zylindrisches Rohr mit einem gleich langen, axialsymmetrisch positionierten Verdrängerkörper, der fest angeordnet sein oder um seine Längsachse rotieren kann, z.B. mit 10 bis 100 U/min, vorteilhaft mit 20 bis 40 U/min. Ringspaltreaktoren für die Herstellung von Vinylchlorsilanen im technischen Maßstab können z.B. 1 bis 5 m lang sein. Die Innendurchmesser solcher Reaktoren können beispielsweise 400 bis 1.200 mm und vorteilhaft 500 bis 1.000 mm betragen.The annular gap reactor described in DE 40 01 820 A1 can be used Serve reactor. This is preferably vertical and comprises a heatable cylindrical tube with the same long, axially symmetrically positioned displacer, which are fixed or rotate around its longitudinal axis can, e.g. at 10 to 100 rpm, advantageously at 20 to 40 RPM Annular gap reactors for the production of vinyl chlorosilanes on an industrial scale e.g. 1 to 5 m To be long. The inside diameter of such reactors can for example 400 to 1,200 mm and advantageously 500 to 1,000 mm.

Die Innenseite des zylindrischen Rohres und die Außenseite des Verdrängerkörpers bilden einen Ringspaltraum, in dem die Edukte auf die Starttemperatur erhitzt werden und die Reaktion stattfindet. Der Verdrängerkörper kann eine glatte Außenwand haben oder auf seiner gesamten Oberfläche bzw. einem Teil davon, beispielsweise beim Eintritt der Eduktgase beginnend, Elemente tragen, die die Strömungsgeschwindigkeit und/oder die Durchwirbelung der Reaktionsgase fördern und dadurch den Ringspaltraum von Ablagerungen fester Partikel freihalten. Bei den Elementen kann es sich z.B. um Metallstreifen handeln, die mit Unterbrechungen oder ununterbrochen im wesentlichen parallel zur Längsachse des Verdrängerkörpers laufen. Alternativ können die durchgehenden oder unterbrochenen Metallstreifen im spitzen Winkel von 20 bis 50° zur Längsachse angeordnet sein und dann eine Leitspirale bilden. Die Metallstreifen können auch als Stücke oder Noppen in regelmäßigen oder unregelmäßigen Abständen auf der Oberfläche des Verdrängerkörpers angebracht werden. Wenn ein Verdrängerkörper mit einer Leitspirale rotiert, dann geschieht dies zweckmäßig in einem solchen Drehsinn, daß die Leitspirale die Reaktionsgase in Richtung auf den Ausgang des Ringspaltreaktors fördert. Wenn die Metallstreifen keine Leitspirale bilden, sondern auf eine Weise angebracht sind, die in keinem Fall eine Förderung der Reaktionsgase bewirkt, kommt es auf die Drehrichtung nicht an.The inside of the cylindrical tube and the outside of the displacer form an annular gap in which the Educts are heated to the starting temperature and the reaction takes place. The displacer can be smooth Have outer wall or on its entire surface or one Part of it, for example when the feed gases enter starting to carry elements that flow rate and / or promote the swirling of the reaction gases and thereby the annular gap of solid particle deposits keep clear. The elements can e.g. around metal strips act that intermittently or continuously essentially parallel to the longitudinal axis of the displacer to run. Alternatively, the continuous or interrupted metal strip at an acute angle from 20 to 50 ° to the longitudinal axis and then a spiral guide form. The metal strips can also be used as pieces or knobs at regular or irregular intervals on the Surface of the displacer are attached. When a Displacer rotates with a spiral, then happens this expediently in such a sense that the Guide spiral the reaction gases towards the exit of the annular gap reactor promotes. If the metal strips do not Form a spiral, but are attached in a way which in no case causes the reaction gases to be conveyed, the direction of rotation is not important.

Der Verdrängerkörper kann über die ganze Länge des Reaktors zylindrisch sein. Alternativ kann er vom Eintritt der Edukte bis zum Startpunkt der adiabatischen Reaktion, die wie erwähnt bei etwa 550°C einsetzt, zylindrisch sein und sich von diesem Punkt oder von einem weiter in Richtung auf den Ausgang des Reaktors gelegenen Punkt an abrupt oder allmählich, z.B. konisch oder parabolisch, verjüngen, gegebenenfalls bis auf den Durchmesser der Drehachse. Auf diese Weise wird die Reaktorleistung oder Kapazität einer Anlage erhöht, wobei die Selektivität für das gewünschte Vinylchlorsilan, bezogen auf umgesetztes Vinylchlorid, unverändert hoch bleibt. Dies ist überraschend, weil ein wesentlicher Teil der Reaktion in einer Zone bzw. in einem Teil des Reaktors stattfindet, in dem die kritischen Parameter <50mm Durchmesser (bei dem ersterwähnten Verfahren des Standes der Technik) bzw. <50mm Spaltbreite (bei dem Verfahren nach DE 40 01 820 A1) bei weitem überschritten werden können. Der Startpunkt der adiabatischen Reaktion liegt, je nach den Edukten, der Heizleistung (wie später beschrieben) und der Strömungsgeschwindigkeit, im allgemeinen in einem Bereich von ein bis zwei Dritteln der Länge des Reaktors, vom Eintritt der Edukte gerechnet. In dem Teil des Reaktors, in dem der Verdängerkörper nicht mehr zylindrisch ist, sind auf dessen Oberfläche im allgemeinen keine die Durchwirbelung der Reaktionsgase fördernden Elemente angebracht. The displacer can run the entire length of the reactor be cylindrical. Alternatively, he can from the entry of the educts to the starting point of the adiabatic reaction, which as mentioned at about 550 ° C, be cylindrical and move away from this point or from one further towards the exit point of the reactor abruptly or gradually, e.g. tapered or parabolic, taper, optionally up to on the diameter of the axis of rotation. In this way the Reactor output or capacity of a plant increases, whereby the selectivity for the desired vinylchlorosilane, based on converted vinyl chloride, remains unchanged high. This is surprising because an essential part of the reaction in takes place in a zone or in a part of the reactor, in which the critical parameters <50mm diameter (at which first-mentioned methods of the prior art) or <50mm Gap width (in the process according to DE 40 01 820 A1) can be exceeded by far. The starting point of the adiabatic The reaction depends on the heating output, depending on the educts (as described later) and the flow rate, generally in the range of one to two thirds the length of the reactor, calculated from the entry of the starting materials. In the part of the reactor in which the displacement body is no longer cylindrical, are on the surface of the generally none promoting the swirling of the reaction gases Elements attached.

Der Abstand zwischen der Innenwand des zylindrischen Rohres und der Außenwand des Verdrängerkörpers in seinem zylindrischen Teil beträgt vorteilhaft mindestens 10 mm und höchstens 50 mm. Etwa vorhandene Elemente, die die Durchwirbelung fördern, ragen vorteilhaft um mehr als die halbe Spaltbreite in den Ringspalt hinein. Zweckmäßig erstrecken sie sich über 60 bis 80% der Spaltbreite.The distance between the inner wall of the cylindrical tube and the outer wall of the displacer in its cylindrical Part is advantageously at least 10 mm and at most 50 mm. Any existing elements that cause turbulence convey, protrude advantageously by more than half the gap width into the annular gap. Expediently they extend over 60 to 80% of the gap width.

Das zylindrische Rohr, der Verdrängerkörper und die Elemente, die die Durchwirbelung der Reaktionsgase fördern, können aus den verschiedensten Materialien bestehen, die unter den Reaktionsbedingungen beständig sind, z.B. aus zunderfesten Stählen, die neben Eisen als Legierungsbestandteile Chrom, Nickel und Titan und/oder Molybdän und/oder Silicium enthalten.The cylindrical tube, the displacer and the elements which promote the swirling of the reaction gases can the most diverse materials, which are among the Reaction conditions are stable, e.g. from scale-resistant Steels which, in addition to iron as the alloy components of chrome, Contain nickel and titanium and / or molybdenum and / or silicon.

Der Ringspaltreaktor ist mit einer regelbaren Heizvorrichtung versehen, die sich zweckmäßig über dessen gesamte Länge erstreckt und in mehrere unabhängige Segmente unterteilt sein kann. Es ist zwar möglich, die in den Ringspaltreaktor eintretenden, gegebenenfalls auf 120 bis 400°C vorerhitzten Eduktgase im Ringspaltreaktor so schnell aufzuheizen, daß die Temperatur etwa 550°C beträgt und die exotherme Reaktion ohne weitere Wärmezufuhr im wesentlichen adiabatisch abläuft, sobald die Reaktionsgase 1/3 bis 2/3 der Reaktorlänge passiert haben. Eine Heizvorrichtung auch im anschließenden Teil des Reaktors sichert jedoch die erwünschte Flexibilität für den Fall, daß sich der Startpunkt der adiabatischen Reaktion in Richtung auf den Ausgang verschiebt. Die Reaktionsgase werden zweckmäßig indirekt erhitzt, also durch Wärmeübertragung durch die Wand des zylindrischen Rohres. Beispielsweise kann das zylindrische Rohr mit einem gegebenenfalls unterteilten Mantel versehen sein, durch den überhitzter Dampf oder eine hoch beanspruchbare Wärmeträgerflüssigkeit (z.B. eine Salzschmelze oder Flüssigmetall) geleitet werden kann. Vorteilhaft ist jedoch das zylindrische Rohr mit einer gegebenenfalls in Segmente unterteilten elektrischen Außenheizung ausgestattet. The annular gap reactor is with an adjustable heating device provided, which are useful over its entire length extends and divided into several independent segments can be. It is possible that in the annular gap reactor entering, possibly preheated to 120 to 400 ° C. Heating reactant gases in the annular gap reactor so quickly that the temperature is about 550 ° C and the exothermic reaction essentially adiabatic without additional heat expires as soon as the reaction gases 1/3 to 2/3 of the reactor length have happened. A heater also in the subsequent Part of the reactor, however, ensures the desired flexibility in the event that the starting point of the adiabatic Reaction shifts towards the exit. The Reaction gases are expediently heated indirectly, that is, by Heat transfer through the wall of the cylindrical tube. For example, the cylindrical tube may have a divided jacket be provided by the overheated Steam or a heavy-duty heat transfer fluid (e.g. a molten salt or liquid metal) can be. However, the cylindrical tube is advantageous with an electrical, possibly divided into segments Outside heating equipped.

Nach dem Passieren des Ringspaltreaktors werden die heißen Reaktionsgase rasch abgekühlt, indem sie mit einer Flüssigkeit gequencht werden. Die Quenchvorrichtung kann unmittelbar unterhalb an den Ringspaltreaktor angefügt und sollte jedenfalls nicht weiter als etwa 1,5 m von dessen Ausgang entfernt sein. Bewährt hat sich ein konischer Quenchbehälter aus einem unter den Verfahrensbedingungen beständigen Material, der mit seiner kreisförmigen Öffnung unmittelbar an den zylindrischen Ringspaltreaktor anschließt. Die Quenchflüssigkeit kann z.B. durch eine Düse oder mehrere Düsen mit einem Durchmesser von 8 bis 25 mm in Strömungsrichtung kegelförmig in die heißen Reaktionsgase eingedüst werden.After passing the annular gap reactor they will be called Reaction gases cooled rapidly by adding a liquid be quenched. The quench device can immediately added below to the annular gap reactor and should at least not more than 1.5 m from the exit be distant. A conical quench container has proven itself from a material that is stable under the process conditions, the one with its circular opening connects the cylindrical annular gap reactor. The quench liquid can e.g. through one or more nozzles a diameter of 8 to 25 mm in the direction of flow be injected conically into the hot reaction gases.

Als Quenchflüssigkeit eignet sich z.B. Trichlorsilan oder Siliciumtetrachlorid, das erwünschte Vinylchlorsilan, wie z.B. Vinyltrichlorsilan, oder auch das rohe kondensierte Reaktionsgemisch, das in der Regel 25 bis 50 Gew.-% an dem erwünschten Vinylchlorsilan enthält. Vorteilhaft beträgt der Massenstrom der Quenchflüssigkeit das Zwei- bis Sechsfache des Massenstromes der gasförmigen Reaktionsprodukte. Die verdampfende Quenchflüssigkeit kühlt die Reaktionsgase, deren Temperatur am Ausgang des Ringspaltreaktors in der Regel 550 bis 700°C beträgt, rasch auf eine Temperatur von <200°C ab, so daß sich die Gleichgewichtslage praktisch nicht mehr ändert und unerwünschte Folgereaktionen praktisch nicht mehr stattfinden. Die gequenchten Reaktionsgase werden indirekt weiter abgekühlt und verflüssigt. Aus der flüssigen Phase gewinnt man das gewünschte Vinylchlorsilan durch Destillation, ebenso als Nebenprodukt Siliciumtetrachlorid. Nicht umgesetzte Edukte Trichlorsilan und Vinylchlorid werden in das Verfahren zurückgeführt. Der Chlorwasserstoff kann auf andere Weise genutzt werden, z.B. für die Herstellung von Chlorsilanen durch Reaktion mit Silicium.A suitable quench liquid is e.g. Trichlorosilane or Silicon tetrachloride, the desired vinyl chlorosilane, such as e.g. Vinyl trichlorosilane, or the raw condensed Reaction mixture, which is usually 25 to 50 wt .-% of the contains desired vinylchlorosilane. This is advantageous Mass flow of the quench liquid two to six times the mass flow of the gaseous reaction products. The evaporating quench liquid cools the reaction gases, their temperature at the exit of the annular gap reactor as a rule 550 to 700 ° C, quickly to a temperature of <200 ° C, so that the equilibrium position is practical no longer changes and unwanted follow-up reactions come in handy no longer take place. The quenched reaction gases are indirectly cooled further and liquefied. From the liquid Phase, the desired vinyl chlorosilane is obtained Distillation, also as a by-product of silicon tetrachloride. Unreacted starting materials trichlorosilane and vinyl chloride returned to the process. The hydrogen chloride can be used in other ways, e.g. for the production of chlorosilanes by reaction with silicon.

Die Erfindung wird durch die folgenden Beispiele weiter erläutert, die jedoch nicht ihren Umfang begrenzen sollen, wie er in den Patentansprüchen definiert ist. The invention is further illustrated by the following examples, which, however, are not intended to limit their scope, such as it is defined in the claims.

Beispiel 1example 1 Herstellung von Vinyltrichlorsilan in einem Ringspaltreaktor mit QuenchsystemProduction of vinyl trichlorosilane in an annular gap reactor with quench system

Das Verfahren wird in einem technischen Reaktor durchgeführt, der als elektrisch beheizbarer Ringspaltreaktor mit einem zylindrischen Außenrohr und einem axial angeordneten und ebenfalls zylindrischen Verdrängerkörper mit vertikal und horizontal angeordneten Metallstreifen ausgebildet ist. Reaktor und Verdrängerkörper sind 2,5 m lang, der Innendurchmesser des zylindrischen Außenrohres beträgt 600 mm, der Außendurchmesser des Verdrängerkörpers 560 mm und die Breite des Ringspalts dementsprechend 20 mm. Der drehbare Verdrängerkörper rotiert während des Versuchs mit 30 U/min. An den Ringspaltreaktor schließt sich unmittelbar ein sich konisch verjüngendes Quenchgefäß mit einer in Strömungsrichtung angeordneten Quenchdüse an.The process is carried out in an industrial reactor, which as an electrically heatable annular gap reactor a cylindrical outer tube and an axially arranged and also cylindrical displacement body with vertical and horizontally arranged metal strips is formed. The reactor and displacement body are 2.5 m long, the inside diameter the cylindrical outer tube is 600 mm, the outer diameter of the displacer 560 mm and the Correspondingly, the width of the annular gap is 20 mm. The rotatable The displacer rotates at 30 rpm during the test. The annular gap reactor closes in immediately conical tapered quench vessel with a flow direction arranged quench nozzle.

Dem Kopf des Ringspaltreaktors wird ein auf 380°C vorerhitztes gasförmiges Gemisch aus 100 kg/h Vinylchlorid und 700 kg/h Vinylchlorid zugeführt. Das molare Verhältnis der beiden Komponenten beträgt 3,23. Im Reaktor werden die Eduktgase weiter aufgeheizt, bis bei etwa 550°C die exotherme Reaktion einsetzt. Die Temperatur steigt bis auf 650°C an. Das Reaktionsgemisch tritt nach einer Verweilzeit von 1,5 sec mit ca. 585°C in das Quenchgefäß ein, dem als Quenchflüssigkeit 2 t/h flüssiges Reaktionsgemisch mit einer Temperatur von 30°C zugeführt werden. Dadurch wird die Temperatur des Reaktionsgemisches auf 145°C gesenkt.The head of the annular gap reactor is preheated to 380 ° C gaseous mixture of 100 kg / h vinyl chloride and 700 kg / h of vinyl chloride fed. The molar ratio of the two Components is 3.23. The reactant gases are in the reactor heated further until the exothermic reaction at about 550 ° C starts. The temperature rises to 650 ° C. The Reaction mixture occurs after a residence time of 1.5 seconds at approx. 585 ° C into the quench vessel, the quench liquid 2 t / h liquid reaction mixture at one temperature of 30 ° C are supplied. This will reduce the temperature of the Reaction mixture lowered to 145 ° C.

Am Ausgang des Quenchgefäßes hat das Reaktionsgemisch abzüglich der Quenchflüssigkeit die folgende Zusammensetzung: Komponente Mengenstrom (kg/h) Vinylchlorid 14,9 Trichlorsilan 495,2 Vinyltrichlorsilan 193,3 Chlorwasserstoff 43,6 Siliciumtetrachlorid 38,1 Hochsieder und weitere Nebenkomponenten 15,1 At the exit of the quench vessel, the reaction mixture minus the quench liquid has the following composition: component Flow rate (kg / h) Vinyl chloride 14.9 Trichlorosilane 495.2 Vinyl trichlorosilane 193.3 Hydrogen chloride 43.6 Silicon tetrachloride 38.1 High boilers and other secondary components 15.1

Hieraus ergibt sich ein Vinylchlorid-Umsatz von 85% und eine Vinyltrichlorsilan-Selektivität, bezogen auf umgesetztes Vinylchlorid, von 88%. Die Produktionsleistung des Reaktors liegt bei 139 t Vinyltrichlorsilan pro Monat.This results in a vinyl chloride conversion of 85% and one Vinyl trichlorosilane selectivity, based on the implemented Vinyl chloride, of 88%. The production output of the reactor is 139 t of vinyl trichlorosilane per month.

Beispiel 2 - VergleichsbeispielExample 2 - Comparative Example Herstellung von Vinyltrichlorsilan in einem Ringspaltreaktor ohne QuenchsystemProduction of vinyl trichlorosilane in an annular gap reactor without quench system

Man verwendet den Reaktor des Beispiels 1, jedoch ohne Quenchsystem. Die Eduktgase, 100 kg/h Vinylchlorid und 700 kg/h Trichlorsilan (Molverhältnis 3,23), werden wiederum auf 380°C vorgeheizt und im Reaktor so weit erhitzt, daß die Reaktion einsetzt. Der Verdrängerkörper rotiert wiederum mit 30 U/min. Nach einer Verweilzeit von 1,5 sec tritt das Reaktionsgemisch mit einer Temperatur von 585°C aus dem Ringspaltraum aus. Etwa 40 cm unterhalb des Verdrängerkörpers beträgt die Temperatur 680°C. Das Reaktionsgemisch wird zur Aufarbeitung in ein System von indirekt gekühlten Produktkühlern geleitet.The reactor of Example 1 is used, but without Quench system. The feed gases, 100 kg / h vinyl chloride and 700 kg / h trichlorosilane (molar ratio 3.23), in turn Preheated to 380 ° C and heated in the reactor so far that the Reaction sets in. The displacement body also rotates with it 30 rpm. After a residence time of 1.5 seconds, the reaction mixture occurs with a temperature of 585 ° C from the annulus out. About 40 cm below the displacer the temperature is 680 ° C. The reaction mixture becomes Refurbishment into a system of indirectly cooled product coolers headed.

Das Reaktionsgemisch hat am Ausgang des Reaktors die folgende Zusammensetzung: Komponente Mengenstrom (kg/h) Vinylchlorid 8,9 Trichlorsilan 486,5 Vinyltrichlorsilan 176,4 Chlorwasserstoff 39,8 Siliciumtetrachlorid 55,2 Hochsieder und weitere Nebenkomponenten 33,8 The reaction mixture has the following composition at the outlet of the reactor: component Flow rate (kg / h) Vinyl chloride 8.9 Trichlorosilane 486.5 Vinyl trichlorosilane 176.4 Hydrogen chloride 39.8 Silicon tetrachloride 55.2 High boilers and other secondary components 33.8

Hieraus ergibt sich ein Vinylchlorid-Umsatz von 91% und eine Vinyltrichlorsilan-Selektivität, bezogen auf umgesetztes Vinylchlorid, von 75%. Die Produktionsleistung des Reaktors liegt bei 127 t Vinyltrichlorsilan pro Monat.This results in a vinyl chloride conversion of 91% and one Vinyl trichlorosilane selectivity, based on the implemented Vinyl chloride, of 75%. The production output of the reactor is 127 t of vinyl trichlorosilane per month.

Der Vergleich mit Beispiel 1, bei dem das Reaktionsgemisch unmittelbar nach dem Austritt aus dem Ringspaltraum gequencht wird, zeigt eine deutlich geringere Vinyltrichlorsilan-Selektivität bei höherem Vinylchlorid-Umsatz. Die geringere Vinyltrichlorsilan-Selektivität wird durch einen höheren Anteil an Hochsiedern und anderen Nebenprodukten sowie eine Abscheidung von Silicium und Ruß im Reaktor und in den Leitungen zu den Produktkühlern verursacht. Der Vinylchlorid-Umsatz liegt über dem Gleichgewichtsumsatz, weil die hohen Temperaturen bewirken, daß sich Vinylchlorid zu Ruß und Trichlorsilan zu Silicium zersetzt. Diese Zersetzungsreaktionen sind exotherm, so daß die Temperatur unterhalb des Verdrängerkörpers hoch und nur noch sehr schwer zu kontrollieren ist.The comparison with Example 1, in which the reaction mixture quenched immediately after exiting the annulus shows a significantly lower selectivity vinyltrichlorosilane with higher vinyl chloride conversion. The lesser Vinyl trichlorosilane selectivity is enhanced by a higher Share of high boilers and other by-products as well a deposition of silicon and soot in the reactor and in the Leads to the product coolers. The vinyl chloride turnover lies above the equilibrium turnover because of the high Temperatures cause vinyl chloride to become soot and Trichlorosilane decomposed to silicon. These decomposition reactions are exothermic so that the temperature is below the Displacer body high and very difficult to control is.

Man erkennt weiterhin, daß ein hoher Vinylchlorid-Umsatz allein nicht die Produktionsleistung des Reaktors erhöht. Das Quenchen der Reaktionsgase bewirkt eine höhere Vinyltrichlorsilan-Selektivität, die trotz geringeren Vinylchlorid-Umsatzes zu einer Steigerung der Reaktorleistung führt.It can also be seen that a high vinyl chloride conversion alone does not increase the production output of the reactor. The Quenching the reaction gases results in a higher selectivity for vinyl trichlorosilane, the despite lower vinyl chloride sales leads to an increase in reactor performance.

Claims (22)

Verfahren zur Herstellung von Vinylchlorsilanen durch thermische, nicht katalysierte Umsetzung von Chlorsilanen mit Vinylchlorid bei 550 bis 700°C unter Verwendung eines Ringspaltreaktors, dadurch gekennzeichnet, daß man die heißen Reaktionsgase nach Durchströmen des Ringspaltraumes rasch abkühlt, indem man sie mit einer Flüssigkeit quencht.Process for the preparation of vinylchlorosilanes by thermal, non-catalyzed conversion of chlorosilanes with vinyl chloride at 550 to 700 ° C using a Annular gap reactor, characterized in that they are called Reaction gases after flowing through the annular gap cools quickly by quenching it with a liquid. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Ringspaltraum durch einen in einem zylindrischen Rohr axialsymmetrisch angeordneten, sich über die gesamte Länge des Ringspaltreaktors erstreckenden und gegebenenfalls rotationsfähigen Verdrängerkörper erzeugt wird.A method according to claim 1, characterized in that the annulus through one in a cylindrical tube arranged axially symmetrically, over the entire length of the annular gap reactor extending and possibly rotatable Displacer is generated. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Verdrängerkörper in seiner gesamten Länge oder einem Teil davon Elemente trägt, die die Durchwirbelung der Reaktionsgase fördern und den Ringspaltraum von Ablagerungen fester Partikel freihalten.A method according to claim 2, characterized in that the displacer in its entire length or one Part of it carries elements that cause the vortexing of the reaction gases promote and the annulus of deposits keep solid particles free. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Elemente eine Spirale bilden oder Noppen sind.A method according to claim 3, characterized in that the elements form a spiral or are knobs. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Elemente eine Höhe haben, die 60 bis 80 % der Breite des Ringspaltraumes beträgt.Method according to one of claims 2 to 4, characterized in that that the elements have a height that is 60 to 80% of the width of the annular gap space. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Verdrängerkörper über die ganze Länge des Reaktors zylindrisch ist.Method according to one of claims 2 to 5, characterized in that that the displacer over the entire length of the reactor is cylindrical. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Verdrängerkörper vom Eintritt der Edukte bis zum Startpunkt der adiabatischen Reaktion zylindrisch ist und sich von diesem Punkt oder von einem weiter in Richtung auf den Ausgang des Reaktors gelegenen Punkt an sprunghaft oder allmählich verjüngt, gegebenenfalls bis auf den Durchmesser der Drehachse. Method according to one of claims 2 to 5, characterized in that that the displacer from the entry of the Educts cylindrical up to the starting point of the adiabatic reaction and is from that point or further towards the exit of the reactor erratic or gradually tapered, possibly down to the diameter of the axis of rotation. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Ringspaltraum in den Teilen, in denen der Verdrängerkörper zylindrisch ist, 10 bis 50 mm breit ist.Method according to one of claims 1 to 7, characterized in that that the annulus in the parts where the displacement body is cylindrical, 10 to 50 mm wide is. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Ringspaltraum 20 bis 50 mm breit ist.A method according to claim 8, characterized in that the annular gap is 20 to 50 mm wide. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Temperatur der adiabatischen Reaktion 550 bis 650°C beträgt.Method according to one of claims 1 to 9, characterized in that that the temperature of the adiabatic reaction 550 to 650 ° C. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Druck 1,1 bar bis 2,0 bar beträgt.Method according to one of claims 1 to 10, characterized in that that the pressure is 1.1 bar to 2.0 bar. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Druck 1,1 bar bis 1,4 bar beträgt.Method according to one of claims 1 to 10, characterized in that that the pressure is 1.1 bar to 1.4 bar. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gegekennzeichnet, daß die Verweilzeit 0,2 bis 20 sec beträgt.Method according to one of claims 1 to 12, characterized in that that the residence time is 0.2 to 20 seconds. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Verweilzeit 1,0 bis 10 sec beträgt.Method according to one of claims 1 to 12, characterized characterized in that the residence time is 1.0 to 10 seconds. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das molare Verhältnis von Chlorsilan zu Vinylchlorid 1:1 bis 5:1 beträgt.Method according to one of claims 1 to 14, characterized characterized in that the molar ratio of chlorosilane to Vinyl chloride is 1: 1 to 5: 1. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Chlorsilan Trichlorsilan ist.Method according to one of claims 1 to 16, characterized characterized in that the chlorosilane is trichlorosilane. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Edukte getrennt oder im Gemisch auf eine Temperatur von 120 bis 400°C vorerhitzt werden.Method according to one of claims 1 to 16, characterized characterized in that the starting materials separately or in a mixture a temperature of 120 to 400 ° C can be preheated. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Edukte getrennt oder im Gemisch auf eine Temperatur von 220 bis 400°C vorerhitzt werden. Method according to one of claims 1 to 16, characterized characterized in that the starting materials separately or in a mixture a temperature of 220 to 400 ° C can be preheated. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß man als Quenchflüssigkeit Trichlorsilan, Siliciumtetrachlorid, das erzeugte Vinylchlorsilan oder flüssiges Reaktionsgemisch verwendet.Method according to one of claims 1 to 18, characterized characterized in that the quench liquid is trichlorosilane, Silicon tetrachloride, the vinyl chlorosilane or liquid reaction mixture used. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß der Massenstrom der Quenchflüssigkeit das Zwei- bis Sechsfache des Massenstromes der Reaktionsgase beträgt.A method according to claim 19, characterized in that the mass flow of the quench liquid is two to six times of the mass flow of the reaction gases. Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß die Quenchzone an den Ringspaltreaktor unmittelbar anschließt oder maximal etwa 1,5 m vom Ausgang dieser Zone entfernt ist.A method according to claim 19 or 20, characterized in that that the quench zone directly to the annulus reactor connects or a maximum of about 1.5 m from the exit of this Zone is removed. Verfahren nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß die Quenchflüssigkeit durch eine Düse oder mehrere Düsen mit einem Durchmesser von 8 bis 25 mm in Strömungsrichtung kegelförmig in die heißen Reaktionsgase eingedüst wird.Method according to one of claims 19 to 21, characterized characterized in that the quench liquid through a nozzle or more nozzles with a diameter of 8 to 25 mm in Flow direction conical into the hot reaction gases is injected.
EP00106370A 1999-04-22 2000-03-24 Process for preparing vinylchlorosilanes Expired - Lifetime EP1046645B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19918115 1999-04-22
DE19918115A DE19918115C2 (en) 1999-04-22 1999-04-22 Process for the production of vinyl chlorosilanes

Publications (3)

Publication Number Publication Date
EP1046645A2 true EP1046645A2 (en) 2000-10-25
EP1046645A3 EP1046645A3 (en) 2002-07-03
EP1046645B1 EP1046645B1 (en) 2003-12-10

Family

ID=7905373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00106370A Expired - Lifetime EP1046645B1 (en) 1999-04-22 2000-03-24 Process for preparing vinylchlorosilanes

Country Status (5)

Country Link
US (1) US6222056B1 (en)
EP (1) EP1046645B1 (en)
JP (1) JP2000327686A (en)
AT (1) ATE256133T1 (en)
DE (2) DE19918115C2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037675A1 (en) * 2004-08-04 2006-03-16 Degussa Ag Process and apparatus for purifying hydrogen-containing silicon tetrachloride or germanium tetrachloride
DE102005041137A1 (en) * 2005-08-30 2007-03-01 Degussa Ag Plasma reactor for cleaning silicon tetrachloride or germanium tetrachloride, comprises reactor housing, micro unit for plasma treatment, metallic heat exchanger, dielectric, perforated plate, lattice or network and high voltage electrode
DE102006003464A1 (en) * 2006-01-25 2007-07-26 Degussa Gmbh Formation of silicon layer on substrate surface by gas phase deposition, in process for solar cell manufacture, employs silicon tetrachloride as precursor
DE102007007874A1 (en) * 2007-02-14 2008-08-21 Evonik Degussa Gmbh Process for the preparation of higher silanes
DE102007014107A1 (en) 2007-03-21 2008-09-25 Evonik Degussa Gmbh Work-up of boron-containing chlorosilane streams
DE102007050199A1 (en) * 2007-10-20 2009-04-23 Evonik Degussa Gmbh Removal of foreign metals from inorganic silanes
DE102007050573A1 (en) * 2007-10-23 2009-04-30 Evonik Degussa Gmbh Large containers for handling and transporting high purity and ultrapure chemicals
DE102007059170A1 (en) * 2007-12-06 2009-06-10 Evonik Degussa Gmbh Catalyst and process for dismutating hydrogen halosilanes
DE102008004396A1 (en) * 2008-01-14 2009-07-16 Evonik Degussa Gmbh Plant and method for reducing the content of elements, such as boron, in halosilanes
DE102008002537A1 (en) * 2008-06-19 2009-12-24 Evonik Degussa Gmbh Process for the removal of boron-containing impurities from halosilanes and plant for carrying out the process
DE102012212915A1 (en) 2012-07-24 2014-05-15 Evonik Industries Ag Process for the preparation of alkenylhalosilanes and reactor suitable therefor
DE102012212913A1 (en) 2012-07-24 2014-05-15 Evonik Industries Ag Process for the preparation of alkenylhalosilanes and reactor suitable therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2002258A1 (en) * 1970-01-20 1971-08-12 Dynamit Nobel Ag Process for the production of vinyltrichlorosilane
DE2210189A1 (en) * 1972-03-03 1973-09-06 Union Carbide Corp Vinylchlorosilane prodn - by heating vinyl chloride with a chlorosili hydride
US4175871A (en) * 1975-06-09 1979-11-27 Massachusetts Institute Of Technology Fluid mixing apparatus
DE4001820A1 (en) * 1990-01-23 1991-07-25 Huels Chemische Werke Ag REACTOR FOR THE PRODUCTION OF VINYL CHLORINE SILANES BY REALIZATION OF VINYL CHLORIDE WITH CHLORINE SILANES AT INCREASED TEMPERATURE
DE4016021A1 (en) * 1990-05-18 1991-11-21 Huels Chemische Werke Ag METHOD FOR PRODUCING VINYLTRICHLORSILANE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666782A (en) * 1970-09-30 1972-05-30 Union Carbide Corp Process for producing vinylchlorosilanes
EP0841342B1 (en) * 1996-11-06 2001-11-28 Degussa AG Process for the preparation of vinyl-trichlorosilane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2002258A1 (en) * 1970-01-20 1971-08-12 Dynamit Nobel Ag Process for the production of vinyltrichlorosilane
DE2210189A1 (en) * 1972-03-03 1973-09-06 Union Carbide Corp Vinylchlorosilane prodn - by heating vinyl chloride with a chlorosili hydride
US4175871A (en) * 1975-06-09 1979-11-27 Massachusetts Institute Of Technology Fluid mixing apparatus
DE4001820A1 (en) * 1990-01-23 1991-07-25 Huels Chemische Werke Ag REACTOR FOR THE PRODUCTION OF VINYL CHLORINE SILANES BY REALIZATION OF VINYL CHLORIDE WITH CHLORINE SILANES AT INCREASED TEMPERATURE
DE4016021A1 (en) * 1990-05-18 1991-11-21 Huels Chemische Werke Ag METHOD FOR PRODUCING VINYLTRICHLORSILANE

Also Published As

Publication number Publication date
DE19918115A1 (en) 2000-10-26
ATE256133T1 (en) 2003-12-15
EP1046645A3 (en) 2002-07-03
DE19918115C2 (en) 2002-01-03
EP1046645B1 (en) 2003-12-10
US6222056B1 (en) 2001-04-24
DE50004691D1 (en) 2004-01-22
JP2000327686A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
EP1046644B1 (en) Process for preparing vinylchlorosilanes
EP1046645B1 (en) Process for preparing vinylchlorosilanes
DE102005005044A1 (en) Process for the preparation of trichlorosilane by means of thermal hydrogenation of silicon tetrachloride
DE3024319A1 (en) Tri:chloro-silane continuous prodn. from silicon tetra:chloride - by high temp. reaction with hydrogen, then reaction with silicon at lower temp.
EP3858788B1 (en) Process for the preparation of chlorosilanes
EP0881206B1 (en) Process for the technical preparation of unsaturated aliphatic aldehydes in a tube bundle reactor
DE2365273C3 (en) Process for the hydrochlorination of elemental silicon
DE3877857T2 (en) FLUID BED REACTOR AND METHOD.
DE2630542C3 (en) Process for the production of trichlorosilane and silicon tetrahedral
EP2526058B1 (en) Single-chamber evaporator and the use thereof in chemical synthesis
EP2877475B1 (en) Method for the production of alkenyl halosilanes, and reactor suited therefor
DE19848668A1 (en) Phosgene with a low tetrachloro-carbon content for production of poly-carbonate or polyester-carbonate, made by ensuring that the gas leaves the phosgene generator at relatively low temperature and pressure
DE2227769C2 (en) Process for the production of olefins
DE1667371B2 (en) Process for the production of sulfur tetrafluoride
DE2652959C2 (en) Process for the preparation of ethyl chlorothioformate
EP0456901B1 (en) Process for the preparation of vinyl-trichlorosilan
WO2014016013A1 (en) Method for the production of alkenyl halosilanes, and reactor suited therefor
DE1143797B (en) Process for the production of trichlorosilane
DE3043442A1 (en) METHOD FOR PURIFYING CHLORINE HYDROGEN RECOVERED BY THERMAL 1,2-DICHLORETHANIZATION
EP0039001B1 (en) Process for the preparation of methyl chloride
EP0841342A1 (en) Process for the preparation of vinyl-trichlorosilane
EP0438666A2 (en) Reactor for the preparation of vinylchlorosilanes from vinylchloride and chlorosilanes et elevated temperature
DE1044790B (en) Process for the production of chloroform by chlorinating methane
DD297626A5 (en) METHOD FOR PRODUCING METAL NITRIDES
AT205471B (en) Process for the production of ethylene oxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000324

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 07F 7/12 A, 7B 01J 19/18 B

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50004691

Country of ref document: DE

Date of ref document: 20040122

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040310

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040324

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20031210

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: *DEGUSSA A.G.

Effective date: 20040331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20040913

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180322

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180327

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50004691

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190324