EP1046645A2 - Process for preparing vinylchlorosilanes - Google Patents
Process for preparing vinylchlorosilanes Download PDFInfo
- Publication number
- EP1046645A2 EP1046645A2 EP00106370A EP00106370A EP1046645A2 EP 1046645 A2 EP1046645 A2 EP 1046645A2 EP 00106370 A EP00106370 A EP 00106370A EP 00106370 A EP00106370 A EP 00106370A EP 1046645 A2 EP1046645 A2 EP 1046645A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- reaction
- annular gap
- displacer
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- DMZWVCJEOLBQCZ-UHFFFAOYSA-N chloro(ethenyl)silane Chemical class Cl[SiH2]C=C DMZWVCJEOLBQCZ-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title description 11
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract description 22
- 238000010791 quenching Methods 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 239000005046 Chlorosilane Substances 0.000 claims abstract description 10
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000000171 quenching effect Effects 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 32
- 239000011541 reaction mixture Substances 0.000 claims description 11
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical group Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims description 10
- 239000005052 trichlorosilane Substances 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 claims description 5
- 239000005049 silicon tetrachloride Substances 0.000 claims description 5
- 239000007858 starting material Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000003260 vortexing Methods 0.000 claims 1
- 238000006454 non catalyzed reaction Methods 0.000 abstract 1
- GQIUQDDJKHLHTB-UHFFFAOYSA-N trichloro(ethenyl)silane Chemical compound Cl[Si](Cl)(Cl)C=C GQIUQDDJKHLHTB-UHFFFAOYSA-N 0.000 description 17
- 239000005050 vinyl trichlorosilane Substances 0.000 description 17
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 230000007306 turnover Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BKOMDZHWASDNDN-UHFFFAOYSA-N Cl[SiH](Cl)Cl.C(=C)Cl Chemical compound Cl[SiH](Cl)Cl.C(=C)Cl BKOMDZHWASDNDN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- ZXZUBAFTOHRUGO-UHFFFAOYSA-N chloroethene chlorosilane Chemical compound Cl[SiH3].C(=C)Cl ZXZUBAFTOHRUGO-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009419 refurbishment Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/12—Organo silicon halides
- C07F7/121—Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20
- C07F7/122—Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20 by reactions involving the formation of Si-C linkages
Definitions
- the invention relates to a method for producing Vinylchlorosilanes by uncatalyzed, thermal reaction of chlorosilanes with vinyl chloride using a Annular gap reactor with possibly rotating displacement body.
- Vinyltrichlorosilane is a valuable intermediate that because of its four reactive groups for many Applications are suitable, for example in the arbitration of Glass fibers and used for the manufacture of cable materials becomes.
- An improved process for the production of vinylchlorosilanes by reacting chlorosilanes with vinyl chloride is carried out according to DE 40 01 820 A1 in an annular gap reactor which has a heatable reaction tube with an inside diameter d 1 , inside which there is an axially symmetrical one which extends over the entire length of the reaction tube arranged and optionally rotatable cylindrical displacement body with an outer diameter d 2 is located.
- d 1 d 2nd + 2a , where a is generally at least 1 cm and is always ⁇ 5 cm. If the displacer is significantly shorter than the reaction tube, the yield is reduced.
- the new process combines even at high Degrees of conversion a high selectivity for the desired Vinyl chlorosilane with an economically acceptable high Reactor power. This advantageous result back that the process is a targeted temperature control and control after the reaction mixture has escaped from the annular gap reactor.
- Follow-up or Side reactions that include for the separation of soot and / or elemental silicon and the formation of high boilers can be pushed back accordingly.
- vinyl trichlorosilane in particular can be used advantageous to produce from trichlorosilane and vinyl chloride.
- suitable chlorosilanes with a substitutable hydrogen atom are e.g. Methylhydrogen dichlorosilane and ethylhydrogen dichlorosilane.
- the chlorosilane and vinyl chloride are advantageously used without a diluting liquid or gaseous inert medium and advantageously in a molar ratio of 1: 1 to 5: 1, preferably from 2: 1 to 4: 1.
- the reaction components can with Ambient temperature or, as described in DE 46 16 021 A1, to 120 to 400 ° C, advantageously preheated to 220 to 400 ° C be introduced into the annulus reactor where they continue be heated. At about 450 ° C the exothermic continues Substitution reaction that is so high at about 550 ° C. Speed reached that no further heat input is required the reaction is essentially adiabatic can run towards balance.
- the temperatures in this zone are generally in the range of 550 to 700 ° C, advantageously from 550 to 650 ° C.
- the inventive method is useful at pressures from 1.1 to 2.0 bar, advantageously from 1.1 to 1.4 bar.
- the residence times are usually 0.2 to 20 sec, advantageously 1.0 to 10 sec.
- the annular gap reactor described in DE 40 01 820 A1 can be used Serve reactor.
- This is preferably vertical and comprises a heatable cylindrical tube with the same long, axially symmetrically positioned displacer, which are fixed or rotate around its longitudinal axis can, e.g. at 10 to 100 rpm, advantageously at 20 to 40 RPM Annular gap reactors for the production of vinyl chlorosilanes on an industrial scale e.g. 1 to 5 m To be long.
- the inside diameter of such reactors can for example 400 to 1,200 mm and advantageously 500 to 1,000 mm.
- the inside of the cylindrical tube and the outside of the displacer form an annular gap in which the Educts are heated to the starting temperature and the reaction takes place.
- the displacer can be smooth Have outer wall or on its entire surface or one Part of it, for example when the feed gases enter starting to carry elements that flow rate and / or promote the swirling of the reaction gases and thereby the annular gap of solid particle deposits keep clear.
- the elements can e.g. around metal strips act that intermittently or continuously essentially parallel to the longitudinal axis of the displacer to run. Alternatively, the continuous or interrupted metal strip at an acute angle from 20 to 50 ° to the longitudinal axis and then a spiral guide form.
- the metal strips can also be used as pieces or knobs at regular or irregular intervals on the Surface of the displacer are attached. When a Displacer rotates with a spiral, then happens this expediently in such a sense that the Guide spiral the reaction gases towards the exit of the annular gap reactor promotes. If the metal strips do not Form a spiral, but are attached in a way which in no case causes the reaction gases to be conveyed, the direction of rotation is not important.
- the displacer can run the entire length of the reactor be cylindrical. Alternatively, he can from the entry of the educts to the starting point of the adiabatic reaction, which as mentioned at about 550 ° C, be cylindrical and move away from this point or from one further towards the exit point of the reactor abruptly or gradually, e.g. tapered or parabolic, taper, optionally up to on the diameter of the axis of rotation. In this way the Reactor output or capacity of a plant increases, whereby the selectivity for the desired vinylchlorosilane, based on converted vinyl chloride, remains unchanged high.
- the distance between the inner wall of the cylindrical tube and the outer wall of the displacer in its cylindrical Part is advantageously at least 10 mm and at most 50 mm. Any existing elements that cause turbulence convey, protrude advantageously by more than half the gap width into the annular gap. Expediently they extend over 60 to 80% of the gap width.
- the cylindrical tube, the displacer and the elements which promote the swirling of the reaction gases can the most diverse materials, which are among the Reaction conditions are stable, e.g. from scale-resistant Steels which, in addition to iron as the alloy components of chrome, Contain nickel and titanium and / or molybdenum and / or silicon.
- the annular gap reactor is with an adjustable heating device provided, which are useful over its entire length extends and divided into several independent segments can be. It is possible that in the annular gap reactor entering, possibly preheated to 120 to 400 ° C. Heating reactant gases in the annular gap reactor so quickly that the temperature is about 550 ° C and the exothermic reaction essentially adiabatic without additional heat expires as soon as the reaction gases 1/3 to 2/3 of the reactor length have happened. A heater also in the subsequent Part of the reactor, however, ensures the desired flexibility in the event that the starting point of the adiabatic Reaction shifts towards the exit.
- the Reaction gases are expediently heated indirectly, that is, by Heat transfer through the wall of the cylindrical tube.
- the cylindrical tube may have a divided jacket be provided by the overheated Steam or a heavy-duty heat transfer fluid (e.g. a molten salt or liquid metal) can be.
- a heavy-duty heat transfer fluid e.g. a molten salt or liquid metal
- the cylindrical tube is advantageous with an electrical, possibly divided into segments Outside heating equipped.
- reaction gases cooled rapidly by adding a liquid be quenched.
- the quench device can immediately added below to the annular gap reactor and should at least not more than 1.5 m from the exit be distant.
- a conical quench container has proven itself from a material that is stable under the process conditions, the one with its circular opening connects the cylindrical annular gap reactor.
- the quench liquid can e.g. through one or more nozzles a diameter of 8 to 25 mm in the direction of flow be injected conically into the hot reaction gases.
- a suitable quench liquid is e.g. Trichlorosilane or Silicon tetrachloride, the desired vinyl chlorosilane, such as e.g. Vinyl trichlorosilane, or the raw condensed Reaction mixture, which is usually 25 to 50 wt .-% of the contains desired vinylchlorosilane.
- This is advantageous Mass flow of the quench liquid two to six times the mass flow of the gaseous reaction products.
- the evaporating quench liquid cools the reaction gases, their temperature at the exit of the annular gap reactor as a rule 550 to 700 ° C, quickly to a temperature of ⁇ 200 ° C, so that the equilibrium position is practical no longer changes and unwanted follow-up reactions come in handy no longer take place.
- the quenched reaction gases are indirectly cooled further and liquefied.
- the desired vinyl chlorosilane is obtained Distillation, also as a by-product of silicon tetrachloride. Unreacted starting materials trichlorosilane and vinyl chloride returned to the process.
- the hydrogen chloride can be used in other ways, e.g. for the production of chlorosilanes by reaction with silicon.
- the process is carried out in an industrial reactor, which as an electrically heatable annular gap reactor a cylindrical outer tube and an axially arranged and also cylindrical displacement body with vertical and horizontally arranged metal strips is formed.
- the reactor and displacement body are 2.5 m long, the inside diameter the cylindrical outer tube is 600 mm, the outer diameter of the displacer 560 mm and the Correspondingly, the width of the annular gap is 20 mm.
- the rotatable The displacer rotates at 30 rpm during the test.
- the annular gap reactor closes in immediately conical tapered quench vessel with a flow direction arranged quench nozzle.
- the head of the annular gap reactor is preheated to 380 ° C gaseous mixture of 100 kg / h vinyl chloride and 700 kg / h of vinyl chloride fed.
- the molar ratio of the two Components is 3.23.
- the reactant gases are in the reactor heated further until the exothermic reaction at about 550 ° C starts. The temperature rises to 650 ° C.
- the Reaction mixture occurs after a residence time of 1.5 seconds at approx. 585 ° C into the quench vessel, the quench liquid 2 t / h liquid reaction mixture at one temperature of 30 ° C are supplied. This will reduce the temperature of the Reaction mixture lowered to 145 ° C.
- the reaction mixture minus the quench liquid has the following composition: component Flow rate (kg / h) Vinyl chloride 14.9 Trichlorosilane 495.2 Vinyl trichlorosilane 193.3 Hydrogen chloride 43.6 Silicon tetrachloride 38.1 High boilers and other secondary components 15.1
- the reactor of Example 1 is used, but without Quench system.
- the feed gases 100 kg / h vinyl chloride and 700 kg / h trichlorosilane (molar ratio 3.23), in turn Preheated to 380 ° C and heated in the reactor so far that the Reaction sets in.
- the displacement body also rotates with it 30 rpm. After a residence time of 1.5 seconds, the reaction mixture occurs with a temperature of 585 ° C from the annulus out. About 40 cm below the displacer the temperature is 680 ° C.
- the reaction mixture becomes Refurbishment into a system of indirectly cooled product coolers headed.
- the reaction mixture has the following composition at the outlet of the reactor: component Flow rate (kg / h) Vinyl chloride 8.9 Trichlorosilane 486.5 Vinyl trichlorosilane 176.4 Hydrogen chloride 39.8 Silicon tetrachloride 55.2 High boilers and other secondary components 33.8
- Example 2 The comparison with Example 1, in which the reaction mixture quenched immediately after exiting the annulus shows a significantly lower selectivity vinyltrichlorosilane with higher vinyl chloride conversion.
- the lesser Vinyl trichlorosilane selectivity is enhanced by a higher Share of high boilers and other by-products as well a deposition of silicon and soot in the reactor and in the Leads to the product coolers.
- the vinyl chloride turnover lies above the equilibrium turnover because of the high Temperatures cause vinyl chloride to become soot and Trichlorosilane decomposed to silicon. These decomposition reactions are exothermic so that the temperature is below the Displacer body high and very difficult to control is.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Silicon Compounds (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Vinylchlorsilanen durch unkatalysierte, thermische Reaktion von Chlorsilanen mit Vinylchlorid unter Verwendung eines Ringspaltreaktors mit gegebenenfalls rotierendem Verdrängerkörper.The invention relates to a method for producing Vinylchlorosilanes by uncatalyzed, thermal reaction of chlorosilanes with vinyl chloride using a Annular gap reactor with possibly rotating displacement body.
Vinyltrichlorsilan ist ein wertvolles Zwischenprodukt, das sich aufgrund seiner vier reaktionsfähigen Gruppen für viele Anwendungen eignet, beispielsweise bei der Schlichtung von Glasfasern und für die Herstellung von Kabelmaterialien verwendet wird.Vinyltrichlorosilane is a valuable intermediate that because of its four reactive groups for many Applications are suitable, for example in the arbitration of Glass fibers and used for the manufacture of cable materials becomes.
Aus DE-PS 936 445, DE-OS 22 10 189 und insbesondere DE-PS 20
02 258 ist bekannt, daß beim Durchleiten von Vinylchlorid-Chlorsilan-Gemischen
und insbesondere von Vinylchlorid-Trichlorsilan-Gemischen
durch entsprechend aufgeheizte leere
Rohre aus Keramik, Glas oder Eisen technisch akzeptable Ausbeuten
an Vinylchlorsilanen erhalten werden. Die Reaktion
verläuft rein thermisch, also ohne Katalysator. Bei der Umsetzung
von Trichlorsilan mit Vinylchlorid laufen die folgenden
Reaktionen ab.
Hauptreaktion:
Neben dieser Gleichgewichtsreaktion gibt es die folgenden
Neben- und Folgereaktionen:
Trotz dieser Neben- und Folgereaktionen beträgt nach DE 40 01 820 A1 die Selektivität für Vinyltrichlorsilan, bezogen auf das im Unterschuß eingesetzte Vinylchlorid, je nach dem Verhältnis der Edukte und dem Umsatzgrad 50 bis 98%, bei Rohren von 122 bis 150 cm Länge und Durchmessern von 25 bis 35 mm, Verweilzeiten von 0,2 bis 20 Sekunden, Reaktionstemperaturen von 400 bis 750°C und Drücken von 1 bis 3 bar. Dabei beträgt jedoch die Reaktorleistung (oder Kapazität) der Reaktoren nur 0,8 bis 3,2 t Vinyltrichlorsilan/Monat. Selektivität und Umsatzgrad verhalten sich zueinander umgekehrt proportional; die Reaktorleistung durchläuft ein Maximum in Abhängigkeit vom Umsatzgrad. Eine hohe Selektivität geht dementsprechend mit einer ungenügenden, wirtschaftlich nicht akzeptablen Reaktorleistung bei geringem Umsatzgrad einher. Gemäß DE-OS 20 02 258 bringt zwar die Vergrößerung des Rohrdurchmessers bis auf 50 mm eine dem größeren Reaktorvolumen proportionale Steigerung der Reaktorleistung. Bei noch größeren Durchmessern geht jedoch die spezifische Reaktorleistung, bezogen auf das Reaktorvolumen, zurück. Es ist also nicht möglich, die Raum-Zeit-Ausbeute an Vinyltrichlorsilan zu erhöhen oder auch nur zu halten, indem man den Durchmesser des Reaktorrohres über 50 mm hinaus vergrößert.Despite these side and subsequent reactions, according to DE 40 01 820 A1 the selectivity for vinyl trichlorosilane, based on the vinyl chloride used in the deficit, depending on the ratio of the starting materials and the degree of conversion 50 to 98%, Pipes from 122 to 150 cm in length and diameters from 25 to 35 mm, residence times from 0.2 to 20 seconds, reaction temperatures from 400 to 750 ° C and pressures from 1 to 3 bar. Here however, the reactor power (or capacity) is Reactors only 0.8 to 3.2 t vinyltrichlorosilane / month. selectivity and the degree of turnover are reversed proportional; the reactor power passes through a maximum in Dependence on the degree of sales. A high selectivity goes accordingly with an insufficient, economically not acceptable reactor performance with a low conversion rate. According to DE-OS 20 02 258, the enlargement of the pipe diameter brings up to 50 mm the larger reactor volume proportional increase in reactor output. For even bigger ones However, the specific reactor power goes to diameters, based on the reactor volume. So it is not possible, the space-time yield of vinyl trichlorosilane to increase or even keep it by looking at the diameter of the reactor tube enlarged beyond 50 mm.
Ein verbessertes Verfahren zur Herstellung von Vinylchlorsilanen
durch Umsetzung von Chlorsilanen mit Vinylchlorid wird
gemäß DE 40 01 820 A1 in einem Ringspaltreaktor durchgeführt,
der ein beheizbares Reaktionsrohr mit einem Innendurchmesser
d1 aufweist, in dessen Innerem sich ein über die
gesamte Länge des Reaktionsrohres erstreckender, axialsymmetrisch
angeordneter und gegebenenfalls rotationsfähiger zylindrischer
Verdrängerkörper mit einem Außendurchmesser d2
befindet. Dabei gilt die Beziehung
Es wurde nun gefunden, daß sich Vinylchlorsilane durch thermische, nicht katalysierte Umsetzung von Chlorsilanen mit Vinylchlorid bei 550 bis 700°C unter Verwendung eines beheizten Ringspaltreaktors vorteilhaft herstellen lassen, wenn man die heißen Reaktionsgase nach Durchströmen des Ringspaltraumes rasch abkühlt, indem man sie mit einer Flüssigkeit quencht.It has now been found that vinyl chlorosilanes are separated by thermal, non-catalyzed conversion of chlorosilanes with Vinyl chloride at 550 to 700 ° C using a heated Can advantageously produce annular gap reactor, if you have the hot reaction gases after flowing through the Annular space cools quickly by adding it to a liquid quenched.
Bei dem neuen Verfahren verbindet sich auch bei hohen Umsatzgraden eine hohe Selektivität für das gewünschte Vinylchlorsilan mit einer wirtschaftlich akzeptablen hohen Reaktorleistung. Dieses vorteilhafte Ergebnis geht u.a. darauf zurück, daß das Verfahren eine gezielte Temperaturführung und -kontrolle nach dem Austritt des Reaktionsgemisches aus dem Ringspaltreaktor ermöglicht. Folge- oder Nebenreaktionen, die u.a. zur Abscheidung von Ruß und/oder elementarem Silicium sowie zur Bildung von Hochsiedern führen können, werden dementsprechend zurückgedrängt.The new process combines even at high Degrees of conversion a high selectivity for the desired Vinyl chlorosilane with an economically acceptable high Reactor power. This advantageous result back that the process is a targeted temperature control and control after the reaction mixture has escaped from the annular gap reactor. Follow-up or Side reactions that include for the separation of soot and / or elemental silicon and the formation of high boilers can be pushed back accordingly.
Erfindungsgemäß läßt sich insbesondere Vinyltrichlorsilan aus Trichlorsilan und Vinylchlorid vorteilhaft herstellen. Andere geeignete Chlorsilane mit einem substituierbaren Wasserstoffatom sind z.B. Methylhydrogendichlorsilan und Ethylhydrogendichlorsilan.According to the invention, vinyl trichlorosilane in particular can be used advantageous to produce from trichlorosilane and vinyl chloride. Other suitable chlorosilanes with a substitutable hydrogen atom are e.g. Methylhydrogen dichlorosilane and ethylhydrogen dichlorosilane.
Man setzt das Chlorsilan und Vinylchlorid vorteilhaft ohne ein verdünnendes flüssiges oder gasförmiges inertes Medium und zweckmäßig im Molverhältnis von 1:1 bis 5:1, vorzugsweise von 2:1 bis 4:1 ein. Die Reaktionskomponenten können mit Umgebungstemperatur oder, wie in DE 46 16 021 A1 beschrieben, auf 120 bis 400°C, vorteilhaft auf 220 bis 400°C vorerhitzt in den Ringspaltreaktor eingeführt werden, wo sie weiter aufgeheizt werden. Bei etwa 450°C setzt die exotherme Substitutionsreaktion ein, die bei etwa 550°C eine so hohe Geschwindigkeit erreicht, daß keine weitere Wärmezufuhr erforderlich ist, die Reaktion also im wesentlichen adiabatisch in Richtung auf das Gleichgewicht ablaufen kann. Die Zone des Ringspaltreaktors, in der die adiabatische Reaktion stattfindet, wird dementsprechend nicht beheizt. Die Temperaturen in dieser Zone liegen im allgemeinen im Bereich von 550 bis 700°C, vorteilhaft von 550 bis 650°C.The chlorosilane and vinyl chloride are advantageously used without a diluting liquid or gaseous inert medium and advantageously in a molar ratio of 1: 1 to 5: 1, preferably from 2: 1 to 4: 1. The reaction components can with Ambient temperature or, as described in DE 46 16 021 A1, to 120 to 400 ° C, advantageously preheated to 220 to 400 ° C be introduced into the annulus reactor where they continue be heated. At about 450 ° C the exothermic continues Substitution reaction that is so high at about 550 ° C. Speed reached that no further heat input is required the reaction is essentially adiabatic can run towards balance. The Zone of the annulus reactor in which the adiabatic reaction is not heated accordingly. The temperatures in this zone are generally in the range of 550 to 700 ° C, advantageously from 550 to 650 ° C.
Das erfindungsgemäße Verfahren wird zweckmäßig bei Drücken von 1,1 bis 2,0 bar, vorteilhaft von 1,1 bis 1,4 bar durchgeführt. Die Verweilzeiten betragen in der Regel 0,2 bis 20 sec, vorteilhaft 1,0 bis 10 sec.The inventive method is useful at pressures from 1.1 to 2.0 bar, advantageously from 1.1 to 1.4 bar. The residence times are usually 0.2 to 20 sec, advantageously 1.0 to 10 sec.
Als Ringspaltreaktor kann der in DE 40 01 820 A1 beschriebene Reaktor dienen. Dieser steht vorzugsweise senkrecht und umfaßt ein beheizbares zylindrisches Rohr mit einem gleich langen, axialsymmetrisch positionierten Verdrängerkörper, der fest angeordnet sein oder um seine Längsachse rotieren kann, z.B. mit 10 bis 100 U/min, vorteilhaft mit 20 bis 40 U/min. Ringspaltreaktoren für die Herstellung von Vinylchlorsilanen im technischen Maßstab können z.B. 1 bis 5 m lang sein. Die Innendurchmesser solcher Reaktoren können beispielsweise 400 bis 1.200 mm und vorteilhaft 500 bis 1.000 mm betragen.The annular gap reactor described in DE 40 01 820 A1 can be used Serve reactor. This is preferably vertical and comprises a heatable cylindrical tube with the same long, axially symmetrically positioned displacer, which are fixed or rotate around its longitudinal axis can, e.g. at 10 to 100 rpm, advantageously at 20 to 40 RPM Annular gap reactors for the production of vinyl chlorosilanes on an industrial scale e.g. 1 to 5 m To be long. The inside diameter of such reactors can for example 400 to 1,200 mm and advantageously 500 to 1,000 mm.
Die Innenseite des zylindrischen Rohres und die Außenseite des Verdrängerkörpers bilden einen Ringspaltraum, in dem die Edukte auf die Starttemperatur erhitzt werden und die Reaktion stattfindet. Der Verdrängerkörper kann eine glatte Außenwand haben oder auf seiner gesamten Oberfläche bzw. einem Teil davon, beispielsweise beim Eintritt der Eduktgase beginnend, Elemente tragen, die die Strömungsgeschwindigkeit und/oder die Durchwirbelung der Reaktionsgase fördern und dadurch den Ringspaltraum von Ablagerungen fester Partikel freihalten. Bei den Elementen kann es sich z.B. um Metallstreifen handeln, die mit Unterbrechungen oder ununterbrochen im wesentlichen parallel zur Längsachse des Verdrängerkörpers laufen. Alternativ können die durchgehenden oder unterbrochenen Metallstreifen im spitzen Winkel von 20 bis 50° zur Längsachse angeordnet sein und dann eine Leitspirale bilden. Die Metallstreifen können auch als Stücke oder Noppen in regelmäßigen oder unregelmäßigen Abständen auf der Oberfläche des Verdrängerkörpers angebracht werden. Wenn ein Verdrängerkörper mit einer Leitspirale rotiert, dann geschieht dies zweckmäßig in einem solchen Drehsinn, daß die Leitspirale die Reaktionsgase in Richtung auf den Ausgang des Ringspaltreaktors fördert. Wenn die Metallstreifen keine Leitspirale bilden, sondern auf eine Weise angebracht sind, die in keinem Fall eine Förderung der Reaktionsgase bewirkt, kommt es auf die Drehrichtung nicht an.The inside of the cylindrical tube and the outside of the displacer form an annular gap in which the Educts are heated to the starting temperature and the reaction takes place. The displacer can be smooth Have outer wall or on its entire surface or one Part of it, for example when the feed gases enter starting to carry elements that flow rate and / or promote the swirling of the reaction gases and thereby the annular gap of solid particle deposits keep clear. The elements can e.g. around metal strips act that intermittently or continuously essentially parallel to the longitudinal axis of the displacer to run. Alternatively, the continuous or interrupted metal strip at an acute angle from 20 to 50 ° to the longitudinal axis and then a spiral guide form. The metal strips can also be used as pieces or knobs at regular or irregular intervals on the Surface of the displacer are attached. When a Displacer rotates with a spiral, then happens this expediently in such a sense that the Guide spiral the reaction gases towards the exit of the annular gap reactor promotes. If the metal strips do not Form a spiral, but are attached in a way which in no case causes the reaction gases to be conveyed, the direction of rotation is not important.
Der Verdrängerkörper kann über die ganze Länge des Reaktors zylindrisch sein. Alternativ kann er vom Eintritt der Edukte bis zum Startpunkt der adiabatischen Reaktion, die wie erwähnt bei etwa 550°C einsetzt, zylindrisch sein und sich von diesem Punkt oder von einem weiter in Richtung auf den Ausgang des Reaktors gelegenen Punkt an abrupt oder allmählich, z.B. konisch oder parabolisch, verjüngen, gegebenenfalls bis auf den Durchmesser der Drehachse. Auf diese Weise wird die Reaktorleistung oder Kapazität einer Anlage erhöht, wobei die Selektivität für das gewünschte Vinylchlorsilan, bezogen auf umgesetztes Vinylchlorid, unverändert hoch bleibt. Dies ist überraschend, weil ein wesentlicher Teil der Reaktion in einer Zone bzw. in einem Teil des Reaktors stattfindet, in dem die kritischen Parameter <50mm Durchmesser (bei dem ersterwähnten Verfahren des Standes der Technik) bzw. <50mm Spaltbreite (bei dem Verfahren nach DE 40 01 820 A1) bei weitem überschritten werden können. Der Startpunkt der adiabatischen Reaktion liegt, je nach den Edukten, der Heizleistung (wie später beschrieben) und der Strömungsgeschwindigkeit, im allgemeinen in einem Bereich von ein bis zwei Dritteln der Länge des Reaktors, vom Eintritt der Edukte gerechnet. In dem Teil des Reaktors, in dem der Verdängerkörper nicht mehr zylindrisch ist, sind auf dessen Oberfläche im allgemeinen keine die Durchwirbelung der Reaktionsgase fördernden Elemente angebracht. The displacer can run the entire length of the reactor be cylindrical. Alternatively, he can from the entry of the educts to the starting point of the adiabatic reaction, which as mentioned at about 550 ° C, be cylindrical and move away from this point or from one further towards the exit point of the reactor abruptly or gradually, e.g. tapered or parabolic, taper, optionally up to on the diameter of the axis of rotation. In this way the Reactor output or capacity of a plant increases, whereby the selectivity for the desired vinylchlorosilane, based on converted vinyl chloride, remains unchanged high. This is surprising because an essential part of the reaction in takes place in a zone or in a part of the reactor, in which the critical parameters <50mm diameter (at which first-mentioned methods of the prior art) or <50mm Gap width (in the process according to DE 40 01 820 A1) can be exceeded by far. The starting point of the adiabatic The reaction depends on the heating output, depending on the educts (as described later) and the flow rate, generally in the range of one to two thirds the length of the reactor, calculated from the entry of the starting materials. In the part of the reactor in which the displacement body is no longer cylindrical, are on the surface of the generally none promoting the swirling of the reaction gases Elements attached.
Der Abstand zwischen der Innenwand des zylindrischen Rohres und der Außenwand des Verdrängerkörpers in seinem zylindrischen Teil beträgt vorteilhaft mindestens 10 mm und höchstens 50 mm. Etwa vorhandene Elemente, die die Durchwirbelung fördern, ragen vorteilhaft um mehr als die halbe Spaltbreite in den Ringspalt hinein. Zweckmäßig erstrecken sie sich über 60 bis 80% der Spaltbreite.The distance between the inner wall of the cylindrical tube and the outer wall of the displacer in its cylindrical Part is advantageously at least 10 mm and at most 50 mm. Any existing elements that cause turbulence convey, protrude advantageously by more than half the gap width into the annular gap. Expediently they extend over 60 to 80% of the gap width.
Das zylindrische Rohr, der Verdrängerkörper und die Elemente, die die Durchwirbelung der Reaktionsgase fördern, können aus den verschiedensten Materialien bestehen, die unter den Reaktionsbedingungen beständig sind, z.B. aus zunderfesten Stählen, die neben Eisen als Legierungsbestandteile Chrom, Nickel und Titan und/oder Molybdän und/oder Silicium enthalten.The cylindrical tube, the displacer and the elements which promote the swirling of the reaction gases can the most diverse materials, which are among the Reaction conditions are stable, e.g. from scale-resistant Steels which, in addition to iron as the alloy components of chrome, Contain nickel and titanium and / or molybdenum and / or silicon.
Der Ringspaltreaktor ist mit einer regelbaren Heizvorrichtung versehen, die sich zweckmäßig über dessen gesamte Länge erstreckt und in mehrere unabhängige Segmente unterteilt sein kann. Es ist zwar möglich, die in den Ringspaltreaktor eintretenden, gegebenenfalls auf 120 bis 400°C vorerhitzten Eduktgase im Ringspaltreaktor so schnell aufzuheizen, daß die Temperatur etwa 550°C beträgt und die exotherme Reaktion ohne weitere Wärmezufuhr im wesentlichen adiabatisch abläuft, sobald die Reaktionsgase 1/3 bis 2/3 der Reaktorlänge passiert haben. Eine Heizvorrichtung auch im anschließenden Teil des Reaktors sichert jedoch die erwünschte Flexibilität für den Fall, daß sich der Startpunkt der adiabatischen Reaktion in Richtung auf den Ausgang verschiebt. Die Reaktionsgase werden zweckmäßig indirekt erhitzt, also durch Wärmeübertragung durch die Wand des zylindrischen Rohres. Beispielsweise kann das zylindrische Rohr mit einem gegebenenfalls unterteilten Mantel versehen sein, durch den überhitzter Dampf oder eine hoch beanspruchbare Wärmeträgerflüssigkeit (z.B. eine Salzschmelze oder Flüssigmetall) geleitet werden kann. Vorteilhaft ist jedoch das zylindrische Rohr mit einer gegebenenfalls in Segmente unterteilten elektrischen Außenheizung ausgestattet. The annular gap reactor is with an adjustable heating device provided, which are useful over its entire length extends and divided into several independent segments can be. It is possible that in the annular gap reactor entering, possibly preheated to 120 to 400 ° C. Heating reactant gases in the annular gap reactor so quickly that the temperature is about 550 ° C and the exothermic reaction essentially adiabatic without additional heat expires as soon as the reaction gases 1/3 to 2/3 of the reactor length have happened. A heater also in the subsequent Part of the reactor, however, ensures the desired flexibility in the event that the starting point of the adiabatic Reaction shifts towards the exit. The Reaction gases are expediently heated indirectly, that is, by Heat transfer through the wall of the cylindrical tube. For example, the cylindrical tube may have a divided jacket be provided by the overheated Steam or a heavy-duty heat transfer fluid (e.g. a molten salt or liquid metal) can be. However, the cylindrical tube is advantageous with an electrical, possibly divided into segments Outside heating equipped.
Nach dem Passieren des Ringspaltreaktors werden die heißen Reaktionsgase rasch abgekühlt, indem sie mit einer Flüssigkeit gequencht werden. Die Quenchvorrichtung kann unmittelbar unterhalb an den Ringspaltreaktor angefügt und sollte jedenfalls nicht weiter als etwa 1,5 m von dessen Ausgang entfernt sein. Bewährt hat sich ein konischer Quenchbehälter aus einem unter den Verfahrensbedingungen beständigen Material, der mit seiner kreisförmigen Öffnung unmittelbar an den zylindrischen Ringspaltreaktor anschließt. Die Quenchflüssigkeit kann z.B. durch eine Düse oder mehrere Düsen mit einem Durchmesser von 8 bis 25 mm in Strömungsrichtung kegelförmig in die heißen Reaktionsgase eingedüst werden.After passing the annular gap reactor they will be called Reaction gases cooled rapidly by adding a liquid be quenched. The quench device can immediately added below to the annular gap reactor and should at least not more than 1.5 m from the exit be distant. A conical quench container has proven itself from a material that is stable under the process conditions, the one with its circular opening connects the cylindrical annular gap reactor. The quench liquid can e.g. through one or more nozzles a diameter of 8 to 25 mm in the direction of flow be injected conically into the hot reaction gases.
Als Quenchflüssigkeit eignet sich z.B. Trichlorsilan oder Siliciumtetrachlorid, das erwünschte Vinylchlorsilan, wie z.B. Vinyltrichlorsilan, oder auch das rohe kondensierte Reaktionsgemisch, das in der Regel 25 bis 50 Gew.-% an dem erwünschten Vinylchlorsilan enthält. Vorteilhaft beträgt der Massenstrom der Quenchflüssigkeit das Zwei- bis Sechsfache des Massenstromes der gasförmigen Reaktionsprodukte. Die verdampfende Quenchflüssigkeit kühlt die Reaktionsgase, deren Temperatur am Ausgang des Ringspaltreaktors in der Regel 550 bis 700°C beträgt, rasch auf eine Temperatur von <200°C ab, so daß sich die Gleichgewichtslage praktisch nicht mehr ändert und unerwünschte Folgereaktionen praktisch nicht mehr stattfinden. Die gequenchten Reaktionsgase werden indirekt weiter abgekühlt und verflüssigt. Aus der flüssigen Phase gewinnt man das gewünschte Vinylchlorsilan durch Destillation, ebenso als Nebenprodukt Siliciumtetrachlorid. Nicht umgesetzte Edukte Trichlorsilan und Vinylchlorid werden in das Verfahren zurückgeführt. Der Chlorwasserstoff kann auf andere Weise genutzt werden, z.B. für die Herstellung von Chlorsilanen durch Reaktion mit Silicium.A suitable quench liquid is e.g. Trichlorosilane or Silicon tetrachloride, the desired vinyl chlorosilane, such as e.g. Vinyl trichlorosilane, or the raw condensed Reaction mixture, which is usually 25 to 50 wt .-% of the contains desired vinylchlorosilane. This is advantageous Mass flow of the quench liquid two to six times the mass flow of the gaseous reaction products. The evaporating quench liquid cools the reaction gases, their temperature at the exit of the annular gap reactor as a rule 550 to 700 ° C, quickly to a temperature of <200 ° C, so that the equilibrium position is practical no longer changes and unwanted follow-up reactions come in handy no longer take place. The quenched reaction gases are indirectly cooled further and liquefied. From the liquid Phase, the desired vinyl chlorosilane is obtained Distillation, also as a by-product of silicon tetrachloride. Unreacted starting materials trichlorosilane and vinyl chloride returned to the process. The hydrogen chloride can be used in other ways, e.g. for the production of chlorosilanes by reaction with silicon.
Die Erfindung wird durch die folgenden Beispiele weiter erläutert, die jedoch nicht ihren Umfang begrenzen sollen, wie er in den Patentansprüchen definiert ist. The invention is further illustrated by the following examples, which, however, are not intended to limit their scope, such as it is defined in the claims.
Das Verfahren wird in einem technischen Reaktor durchgeführt, der als elektrisch beheizbarer Ringspaltreaktor mit einem zylindrischen Außenrohr und einem axial angeordneten und ebenfalls zylindrischen Verdrängerkörper mit vertikal und horizontal angeordneten Metallstreifen ausgebildet ist. Reaktor und Verdrängerkörper sind 2,5 m lang, der Innendurchmesser des zylindrischen Außenrohres beträgt 600 mm, der Außendurchmesser des Verdrängerkörpers 560 mm und die Breite des Ringspalts dementsprechend 20 mm. Der drehbare Verdrängerkörper rotiert während des Versuchs mit 30 U/min. An den Ringspaltreaktor schließt sich unmittelbar ein sich konisch verjüngendes Quenchgefäß mit einer in Strömungsrichtung angeordneten Quenchdüse an.The process is carried out in an industrial reactor, which as an electrically heatable annular gap reactor a cylindrical outer tube and an axially arranged and also cylindrical displacement body with vertical and horizontally arranged metal strips is formed. The reactor and displacement body are 2.5 m long, the inside diameter the cylindrical outer tube is 600 mm, the outer diameter of the displacer 560 mm and the Correspondingly, the width of the annular gap is 20 mm. The rotatable The displacer rotates at 30 rpm during the test. The annular gap reactor closes in immediately conical tapered quench vessel with a flow direction arranged quench nozzle.
Dem Kopf des Ringspaltreaktors wird ein auf 380°C vorerhitztes gasförmiges Gemisch aus 100 kg/h Vinylchlorid und 700 kg/h Vinylchlorid zugeführt. Das molare Verhältnis der beiden Komponenten beträgt 3,23. Im Reaktor werden die Eduktgase weiter aufgeheizt, bis bei etwa 550°C die exotherme Reaktion einsetzt. Die Temperatur steigt bis auf 650°C an. Das Reaktionsgemisch tritt nach einer Verweilzeit von 1,5 sec mit ca. 585°C in das Quenchgefäß ein, dem als Quenchflüssigkeit 2 t/h flüssiges Reaktionsgemisch mit einer Temperatur von 30°C zugeführt werden. Dadurch wird die Temperatur des Reaktionsgemisches auf 145°C gesenkt.The head of the annular gap reactor is preheated to 380 ° C gaseous mixture of 100 kg / h vinyl chloride and 700 kg / h of vinyl chloride fed. The molar ratio of the two Components is 3.23. The reactant gases are in the reactor heated further until the exothermic reaction at about 550 ° C starts. The temperature rises to 650 ° C. The Reaction mixture occurs after a residence time of 1.5 seconds at approx. 585 ° C into the quench vessel, the quench liquid 2 t / h liquid reaction mixture at one temperature of 30 ° C are supplied. This will reduce the temperature of the Reaction mixture lowered to 145 ° C.
Am Ausgang des Quenchgefäßes hat das Reaktionsgemisch abzüglich
der Quenchflüssigkeit die folgende Zusammensetzung:
Hieraus ergibt sich ein Vinylchlorid-Umsatz von 85% und eine Vinyltrichlorsilan-Selektivität, bezogen auf umgesetztes Vinylchlorid, von 88%. Die Produktionsleistung des Reaktors liegt bei 139 t Vinyltrichlorsilan pro Monat.This results in a vinyl chloride conversion of 85% and one Vinyl trichlorosilane selectivity, based on the implemented Vinyl chloride, of 88%. The production output of the reactor is 139 t of vinyl trichlorosilane per month.
Man verwendet den Reaktor des Beispiels 1, jedoch ohne Quenchsystem. Die Eduktgase, 100 kg/h Vinylchlorid und 700 kg/h Trichlorsilan (Molverhältnis 3,23), werden wiederum auf 380°C vorgeheizt und im Reaktor so weit erhitzt, daß die Reaktion einsetzt. Der Verdrängerkörper rotiert wiederum mit 30 U/min. Nach einer Verweilzeit von 1,5 sec tritt das Reaktionsgemisch mit einer Temperatur von 585°C aus dem Ringspaltraum aus. Etwa 40 cm unterhalb des Verdrängerkörpers beträgt die Temperatur 680°C. Das Reaktionsgemisch wird zur Aufarbeitung in ein System von indirekt gekühlten Produktkühlern geleitet.The reactor of Example 1 is used, but without Quench system. The feed gases, 100 kg / h vinyl chloride and 700 kg / h trichlorosilane (molar ratio 3.23), in turn Preheated to 380 ° C and heated in the reactor so far that the Reaction sets in. The displacement body also rotates with it 30 rpm. After a residence time of 1.5 seconds, the reaction mixture occurs with a temperature of 585 ° C from the annulus out. About 40 cm below the displacer the temperature is 680 ° C. The reaction mixture becomes Refurbishment into a system of indirectly cooled product coolers headed.
Das Reaktionsgemisch hat am Ausgang des Reaktors die folgende
Zusammensetzung:
Hieraus ergibt sich ein Vinylchlorid-Umsatz von 91% und eine Vinyltrichlorsilan-Selektivität, bezogen auf umgesetztes Vinylchlorid, von 75%. Die Produktionsleistung des Reaktors liegt bei 127 t Vinyltrichlorsilan pro Monat.This results in a vinyl chloride conversion of 91% and one Vinyl trichlorosilane selectivity, based on the implemented Vinyl chloride, of 75%. The production output of the reactor is 127 t of vinyl trichlorosilane per month.
Der Vergleich mit Beispiel 1, bei dem das Reaktionsgemisch unmittelbar nach dem Austritt aus dem Ringspaltraum gequencht wird, zeigt eine deutlich geringere Vinyltrichlorsilan-Selektivität bei höherem Vinylchlorid-Umsatz. Die geringere Vinyltrichlorsilan-Selektivität wird durch einen höheren Anteil an Hochsiedern und anderen Nebenprodukten sowie eine Abscheidung von Silicium und Ruß im Reaktor und in den Leitungen zu den Produktkühlern verursacht. Der Vinylchlorid-Umsatz liegt über dem Gleichgewichtsumsatz, weil die hohen Temperaturen bewirken, daß sich Vinylchlorid zu Ruß und Trichlorsilan zu Silicium zersetzt. Diese Zersetzungsreaktionen sind exotherm, so daß die Temperatur unterhalb des Verdrängerkörpers hoch und nur noch sehr schwer zu kontrollieren ist.The comparison with Example 1, in which the reaction mixture quenched immediately after exiting the annulus shows a significantly lower selectivity vinyltrichlorosilane with higher vinyl chloride conversion. The lesser Vinyl trichlorosilane selectivity is enhanced by a higher Share of high boilers and other by-products as well a deposition of silicon and soot in the reactor and in the Leads to the product coolers. The vinyl chloride turnover lies above the equilibrium turnover because of the high Temperatures cause vinyl chloride to become soot and Trichlorosilane decomposed to silicon. These decomposition reactions are exothermic so that the temperature is below the Displacer body high and very difficult to control is.
Man erkennt weiterhin, daß ein hoher Vinylchlorid-Umsatz allein nicht die Produktionsleistung des Reaktors erhöht. Das Quenchen der Reaktionsgase bewirkt eine höhere Vinyltrichlorsilan-Selektivität, die trotz geringeren Vinylchlorid-Umsatzes zu einer Steigerung der Reaktorleistung führt.It can also be seen that a high vinyl chloride conversion alone does not increase the production output of the reactor. The Quenching the reaction gases results in a higher selectivity for vinyl trichlorosilane, the despite lower vinyl chloride sales leads to an increase in reactor performance.
Claims (22)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19918115 | 1999-04-22 | ||
DE19918115A DE19918115C2 (en) | 1999-04-22 | 1999-04-22 | Process for the production of vinyl chlorosilanes |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1046645A2 true EP1046645A2 (en) | 2000-10-25 |
EP1046645A3 EP1046645A3 (en) | 2002-07-03 |
EP1046645B1 EP1046645B1 (en) | 2003-12-10 |
Family
ID=7905373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00106370A Expired - Lifetime EP1046645B1 (en) | 1999-04-22 | 2000-03-24 | Process for preparing vinylchlorosilanes |
Country Status (5)
Country | Link |
---|---|
US (1) | US6222056B1 (en) |
EP (1) | EP1046645B1 (en) |
JP (1) | JP2000327686A (en) |
AT (1) | ATE256133T1 (en) |
DE (2) | DE19918115C2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004037675A1 (en) * | 2004-08-04 | 2006-03-16 | Degussa Ag | Process and apparatus for purifying hydrogen-containing silicon tetrachloride or germanium tetrachloride |
DE102005041137A1 (en) * | 2005-08-30 | 2007-03-01 | Degussa Ag | Plasma reactor for cleaning silicon tetrachloride or germanium tetrachloride, comprises reactor housing, micro unit for plasma treatment, metallic heat exchanger, dielectric, perforated plate, lattice or network and high voltage electrode |
DE102006003464A1 (en) * | 2006-01-25 | 2007-07-26 | Degussa Gmbh | Formation of silicon layer on substrate surface by gas phase deposition, in process for solar cell manufacture, employs silicon tetrachloride as precursor |
DE102007007874A1 (en) * | 2007-02-14 | 2008-08-21 | Evonik Degussa Gmbh | Process for the preparation of higher silanes |
DE102007014107A1 (en) | 2007-03-21 | 2008-09-25 | Evonik Degussa Gmbh | Work-up of boron-containing chlorosilane streams |
DE102007050199A1 (en) * | 2007-10-20 | 2009-04-23 | Evonik Degussa Gmbh | Removal of foreign metals from inorganic silanes |
DE102007050573A1 (en) * | 2007-10-23 | 2009-04-30 | Evonik Degussa Gmbh | Large containers for handling and transporting high purity and ultrapure chemicals |
DE102007059170A1 (en) * | 2007-12-06 | 2009-06-10 | Evonik Degussa Gmbh | Catalyst and process for dismutating hydrogen halosilanes |
DE102008004396A1 (en) * | 2008-01-14 | 2009-07-16 | Evonik Degussa Gmbh | Plant and method for reducing the content of elements, such as boron, in halosilanes |
DE102008002537A1 (en) * | 2008-06-19 | 2009-12-24 | Evonik Degussa Gmbh | Process for the removal of boron-containing impurities from halosilanes and plant for carrying out the process |
DE102012212915A1 (en) | 2012-07-24 | 2014-05-15 | Evonik Industries Ag | Process for the preparation of alkenylhalosilanes and reactor suitable therefor |
DE102012212913A1 (en) | 2012-07-24 | 2014-05-15 | Evonik Industries Ag | Process for the preparation of alkenylhalosilanes and reactor suitable therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2002258A1 (en) * | 1970-01-20 | 1971-08-12 | Dynamit Nobel Ag | Process for the production of vinyltrichlorosilane |
DE2210189A1 (en) * | 1972-03-03 | 1973-09-06 | Union Carbide Corp | Vinylchlorosilane prodn - by heating vinyl chloride with a chlorosili hydride |
US4175871A (en) * | 1975-06-09 | 1979-11-27 | Massachusetts Institute Of Technology | Fluid mixing apparatus |
DE4001820A1 (en) * | 1990-01-23 | 1991-07-25 | Huels Chemische Werke Ag | REACTOR FOR THE PRODUCTION OF VINYL CHLORINE SILANES BY REALIZATION OF VINYL CHLORIDE WITH CHLORINE SILANES AT INCREASED TEMPERATURE |
DE4016021A1 (en) * | 1990-05-18 | 1991-11-21 | Huels Chemische Werke Ag | METHOD FOR PRODUCING VINYLTRICHLORSILANE |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3666782A (en) * | 1970-09-30 | 1972-05-30 | Union Carbide Corp | Process for producing vinylchlorosilanes |
EP0841342B1 (en) * | 1996-11-06 | 2001-11-28 | Degussa AG | Process for the preparation of vinyl-trichlorosilane |
-
1999
- 1999-04-22 DE DE19918115A patent/DE19918115C2/en not_active Expired - Fee Related
-
2000
- 2000-03-24 AT AT00106370T patent/ATE256133T1/en not_active IP Right Cessation
- 2000-03-24 DE DE50004691T patent/DE50004691D1/en not_active Expired - Lifetime
- 2000-03-24 EP EP00106370A patent/EP1046645B1/en not_active Expired - Lifetime
- 2000-04-19 JP JP2000118307A patent/JP2000327686A/en active Pending
- 2000-04-24 US US09/556,404 patent/US6222056B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2002258A1 (en) * | 1970-01-20 | 1971-08-12 | Dynamit Nobel Ag | Process for the production of vinyltrichlorosilane |
DE2210189A1 (en) * | 1972-03-03 | 1973-09-06 | Union Carbide Corp | Vinylchlorosilane prodn - by heating vinyl chloride with a chlorosili hydride |
US4175871A (en) * | 1975-06-09 | 1979-11-27 | Massachusetts Institute Of Technology | Fluid mixing apparatus |
DE4001820A1 (en) * | 1990-01-23 | 1991-07-25 | Huels Chemische Werke Ag | REACTOR FOR THE PRODUCTION OF VINYL CHLORINE SILANES BY REALIZATION OF VINYL CHLORIDE WITH CHLORINE SILANES AT INCREASED TEMPERATURE |
DE4016021A1 (en) * | 1990-05-18 | 1991-11-21 | Huels Chemische Werke Ag | METHOD FOR PRODUCING VINYLTRICHLORSILANE |
Also Published As
Publication number | Publication date |
---|---|
DE19918115A1 (en) | 2000-10-26 |
ATE256133T1 (en) | 2003-12-15 |
EP1046645A3 (en) | 2002-07-03 |
DE19918115C2 (en) | 2002-01-03 |
EP1046645B1 (en) | 2003-12-10 |
US6222056B1 (en) | 2001-04-24 |
DE50004691D1 (en) | 2004-01-22 |
JP2000327686A (en) | 2000-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1046644B1 (en) | Process for preparing vinylchlorosilanes | |
EP1046645B1 (en) | Process for preparing vinylchlorosilanes | |
DE102005005044A1 (en) | Process for the preparation of trichlorosilane by means of thermal hydrogenation of silicon tetrachloride | |
DE3024319A1 (en) | Tri:chloro-silane continuous prodn. from silicon tetra:chloride - by high temp. reaction with hydrogen, then reaction with silicon at lower temp. | |
EP3858788B1 (en) | Process for the preparation of chlorosilanes | |
EP0881206B1 (en) | Process for the technical preparation of unsaturated aliphatic aldehydes in a tube bundle reactor | |
DE2365273C3 (en) | Process for the hydrochlorination of elemental silicon | |
DE3877857T2 (en) | FLUID BED REACTOR AND METHOD. | |
DE2630542C3 (en) | Process for the production of trichlorosilane and silicon tetrahedral | |
EP2526058B1 (en) | Single-chamber evaporator and the use thereof in chemical synthesis | |
EP2877475B1 (en) | Method for the production of alkenyl halosilanes, and reactor suited therefor | |
DE19848668A1 (en) | Phosgene with a low tetrachloro-carbon content for production of poly-carbonate or polyester-carbonate, made by ensuring that the gas leaves the phosgene generator at relatively low temperature and pressure | |
DE2227769C2 (en) | Process for the production of olefins | |
DE1667371B2 (en) | Process for the production of sulfur tetrafluoride | |
DE2652959C2 (en) | Process for the preparation of ethyl chlorothioformate | |
EP0456901B1 (en) | Process for the preparation of vinyl-trichlorosilan | |
WO2014016013A1 (en) | Method for the production of alkenyl halosilanes, and reactor suited therefor | |
DE1143797B (en) | Process for the production of trichlorosilane | |
DE3043442A1 (en) | METHOD FOR PURIFYING CHLORINE HYDROGEN RECOVERED BY THERMAL 1,2-DICHLORETHANIZATION | |
EP0039001B1 (en) | Process for the preparation of methyl chloride | |
EP0841342A1 (en) | Process for the preparation of vinyl-trichlorosilane | |
EP0438666A2 (en) | Reactor for the preparation of vinylchlorosilanes from vinylchloride and chlorosilanes et elevated temperature | |
DE1044790B (en) | Process for the production of chloroform by chlorinating methane | |
DD297626A5 (en) | METHOD FOR PRODUCING METAL NITRIDES | |
AT205471B (en) | Process for the production of ethylene oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000324 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DEGUSSA AG |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7C 07F 7/12 A, 7B 01J 19/18 B |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031210 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031210 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031210 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031210 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031210 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50004691 Country of ref document: DE Date of ref document: 20040122 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040310 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040310 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040324 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20031210 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: *DEGUSSA A.G. Effective date: 20040331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20040913 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040510 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180322 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180327 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50004691 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190324 |