EP1045473A2 - Système d'alignement en phase pour antenne multibeam - Google Patents

Système d'alignement en phase pour antenne multibeam Download PDF

Info

Publication number
EP1045473A2
EP1045473A2 EP00105188A EP00105188A EP1045473A2 EP 1045473 A2 EP1045473 A2 EP 1045473A2 EP 00105188 A EP00105188 A EP 00105188A EP 00105188 A EP00105188 A EP 00105188A EP 1045473 A2 EP1045473 A2 EP 1045473A2
Authority
EP
European Patent Office
Prior art keywords
devices
antenna device
bfn
beam shaping
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00105188A
Other languages
German (de)
English (en)
Other versions
EP1045473A3 (fr
Inventor
Jürgen Butz
Hans-Peter Diercks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesat Spacecom GmbH and Co KG
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1045473A2 publication Critical patent/EP1045473A2/fr
Publication of EP1045473A3 publication Critical patent/EP1045473A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the invention is based on a multibeam phase array antenna device with radiator elements arranged in a matrix, each of which can be controlled via beam shaping devices are.
  • EP 0 651 461 B1 is a phase carry receiving antenna known, arranged in the radiator elements in rows and columns are.
  • the reception signals of the radiator elements are summarized in rows and columns using signal combiners and then a non-linear logic circuit fed to a desired preferred direction of this receiving antenna to obtain.
  • EP 0 368 121 B1 shows an antenna device for the Reception with radiator elements arranged in a matrix, each radiator element having an amplifier and a filter device having. Those received on the radiator elements Signals are grouped using signal dividers divided and each to a beam shaping device guided. The output signals are via signal combiners the beam shaping devices to form several antenna signals summarized.
  • the measures of the main claim and the configurations according to the subclaims can be a very compact Structure of the antenna device achieve that flexibly the number of feedable antenna signals for transmission or removable antenna signals for reception and be adapted to the number of radiator elements can.
  • By accommodating the jet shaping devices in a defined line behind a radiator element is the area requirement of the jet shaping devices in the Profile (cross section) identical to the area of the radiator elements.
  • the depth of a strand depends on the Complexity of the overall system, that means especially the antenna signals to be fed or taken, and is variably adjustable.
  • Another advantage is the combination of several strands each in a tub-like module.
  • beam shaping devices is in particular only one circuit carrier substrate necessary, the back of it beyond still for accommodating signal dividing devices can be used so that no additional space is required arises.
  • the antenna device according to the invention is distinguished due to a high integration density and compactness out.
  • the antenna device according to the invention can be advantageous use as a microwave antenna in the Ku / Ka band, what but does not exclude the use in other frequency ranges.
  • Figure 1 shows a schematic overview of the signal paths within the multibeam phase array antenna. Below is described the antenna for use as a transmitting antenna. The signal curves are for use as a receiving antenna to look in the opposite direction.
  • n feedable antenna signals - so-called beams - which are each led to a signal dividing device V1 to Vn.
  • These signal dividing devices V1 to Vn are combined in block V and divide the power of the beams into m-part signals in each case, in order to control one line of n-beam shaping devices.
  • the respective m outputs of the signal distribution device V1 to Vn are routed to a beam shaping device BFN via a connection multiple KF.
  • a total of m ⁇ n beam-shaping devices BFN are accordingly provided, which generally consist of active amplitude adjusters A and phase adjusters P and possibly an intermediate amplifier (not shown). This repeater can also be used as amplitude adjuster A at the same time.
  • the control elements are usually designed as MMIC circuits (Monolithic Microwave Integrated Circuit). Several phase adjusters and / or amplitude adjusters can be accommodated in one MMIC, for example.
  • each Radiator element SE1 ... SEm from each of the n feedable antenna signals (Beams) can be fed.
  • Figure 2 shows the cross-sectional area of the beamform networks BFN the size of the radiation elements in the front surface adapted to the antenna.
  • the depth of a strand of beamform networks BFN is variable and the number of each n BFN beam shaping devices dependent.
  • Behind everyone Steel element SE1 ... SEm become the front surface in one vertical strand (channel) the active blocks A and P for beam shaping and amplification VS1 ... VSm as well as filter devices FI1 ... FIm housed.
  • the number of strands (channels) is identical to the number m of radiator elements SE1 ... SEm.
  • the number of active beam shape components per line (channel) is identical to the number n of antenna signals (beams). In total there m.times.n active beam shape components necessary.
  • the strands of beam shaping devices, which lie in one plane (row) are mechanically combined in each case in a trough-like module WM, which through mechanical intermediate walls ZW brings about both mechanical separation, electrical separation (screen wall function) and heat dissipation.
  • the strands (channels) are also mechanically and electrically protected by the outer walls AW.
  • the reinforcement and Filter devices VS1 ... VSm or FI1 ... FIm in the trough-like Modules WM housed.
  • the electrical and mechanical Separation and also the heat decoupling from the Beam shaping devices BFN is carried out by the others Screen walls SW.
  • FIG. 3 shows, the trough-like stacked one on top of the other Module WM a symmetrical stable Antenna block that is shielded on all sides.
  • the tub-like Modules WM take circuit carrier substrates SU according to Figure 2, the back of at least part of the n signal sharing devices / power sharing networks V1 ... V4 wear. In Figure 2 and Figure 4, these are designated VR1 ... VR4.
  • the tops of the circuit carrier substrates SU carry the line structures for the active beam shaping devices BFN.
  • the circuit carrier substrates SU are opposite the tub bottoms of the WM tub-like modules with spacers fixed.
  • the signal routing orthogonal to the strand direction of the line structures on the back of the Circuit carrier substrates SU is very essential for that compact structure of the antenna device, since the implementation of the connection multiple KF shown in Figure 1 simple in the form of signal bushings DK ( Figure 4) in the Circuit carrier substrates SU between the line structures for the beam shaping devices BFN on the one hand and the Line structures for the signal dividing devices VR1 ... VR4 on the other hand can be realized.
  • the exemplary embodiment according to FIG. 2 in FIG Signal dividing devices VR1 ... VR4 for m 16 lines designed.
  • a possible realization of the signal dividing devices VR1 to VR4 is the cascading of seven 3 dB power dividers in stripline technology, e.g. cascaded Wilkinson divider as shown in Figure 2.
  • the 4x8 inputs of the eight stacked tub-like Modules WM are shown on a lateral as Figure 3 shows Side of the block of the antenna device on the connectors E1 ... E32 and four other 1-to-8 power sharing networks VT1 ... VT4, which are also a component of the signal dividing devices V1 to 1 shown in FIG V4 are connected to the four beam inputs B1 to B4.
  • Figure 3 shows the antenna device for eight stacked WM modules and four beams.
  • the execution and dimensions of the power sharing networks VT1 ... VT4 can preferably be identical to the signal dividing devices VR1 ... VRn on the back of the circuit substrate SU.
  • the strands of the beam shaping devices are BFN shown in longitudinal section.
  • m 16 strands per tub-like module WM provided.
  • the Outputs of the active components of the beam shaping devices BFN are each via one of the m signal combiners SK, that means summarized in each case over a power adding network.
  • n 4 output signals per line (channel) summarized.
  • a possible realization are here too cascaded 3-dB Wilkinson divider / combiner SK1 ... SKn.
  • the clever arrangement of the active components of the Beam shaping devices and the power adding networks can the strand (channel) and thus the space required for keep the beam shaping devices BFN small.
  • the principle arrangement shows Figure 5.
  • the four inputs E1 ... E4 are connected via the active components of the beam shaping devices to the power adders - signal combiners SK1 ... SK4 - guided in the middle of the channel.
  • the common output is via the dashed line ZL connected to the power amplifiers VS1 ... VSm.
  • HS continuous heatsink
  • HP Heatpipe

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
EP00105188A 1999-04-16 2000-03-11 Système d'alignement en phase pour antenne multibeam Withdrawn EP1045473A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19917202A DE19917202A1 (de) 1999-04-16 1999-04-16 Multibeam-Phasenarray-Antenneneinrichtung
DE19917202 1999-04-16

Publications (2)

Publication Number Publication Date
EP1045473A2 true EP1045473A2 (fr) 2000-10-18
EP1045473A3 EP1045473A3 (fr) 2001-04-11

Family

ID=7904779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00105188A Withdrawn EP1045473A3 (fr) 1999-04-16 2000-03-11 Système d'alignement en phase pour antenne multibeam

Country Status (3)

Country Link
US (1) US6362780B1 (fr)
EP (1) EP1045473A3 (fr)
DE (1) DE19917202A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215750A2 (fr) * 2000-12-08 2002-06-19 KMW Inc. Emetteur-récepteur de station de base à un système d' antenne multibeam réglable
WO2003019727A1 (fr) * 2001-08-27 2003-03-06 Paratek Microwave, Inc. Antenne multifaisceaux a balayage utilisant des dephaseurs accordables dielectriquement
EP1421649A1 (fr) * 2001-06-12 2004-05-26 Interdigital Acquisition Corporation Procede et appareil de formation de faisceaux a selection de frequence
US7425928B2 (en) 2001-06-12 2008-09-16 Interdigital Technology Corporation Method and apparatus for frequency selective beam forming
CN112332075A (zh) * 2020-11-02 2021-02-05 中国电子科技集团公司第三十八研究所 一种多波束相控阵集成系统及方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965794B2 (en) * 2000-05-05 2011-06-21 Greenwich Technologies Associates Method and apparatus for broadcasting with spatially diverse signals
WO2001086320A2 (fr) * 2000-05-05 2001-11-15 Greenwich Technologies Associates Detection a distance au moyen du signalement de rayleigh
US6823021B1 (en) * 2000-10-27 2004-11-23 Greenwich Technologies Associates Method and apparatus for space division multiple access receiver
US6703976B2 (en) * 2001-11-21 2004-03-09 Lockheed Martin Corporation Scaleable antenna array architecture using standard radiating subarrays and amplifying/beamforming assemblies
DE10163455A1 (de) * 2001-12-25 2003-08-21 Detlef Mansel Antennenanordnung und Verfahren zur Richtungserkennung einer Mobilfunkaussendung, insbesondere für GSM, UMTS und Wireless LAN
US6738017B2 (en) 2002-08-06 2004-05-18 Lockheed Martin Corporation Modular phased array with improved beam-to-beam isolation
US20040196203A1 (en) * 2002-09-11 2004-10-07 Lockheed Martin Corporation Partly interleaved phased arrays with different antenna elements in central and outer region
US7050019B1 (en) 2002-09-11 2006-05-23 Lockheed Martin Corporation Concentric phased arrays symmetrically oriented on the spacecraft bus for yaw-independent navigation
US7492325B1 (en) 2005-10-03 2009-02-17 Ball Aerospace & Technologies Corp. Modular electronic architecture
US7265719B1 (en) 2006-05-11 2007-09-04 Ball Aerospace & Technologies Corp. Packaging technique for antenna systems
US10009082B2 (en) 2011-01-17 2018-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Active antenna arrangement for transmitting precoded signals in a communication system, base station, methods and computer programs
KR20180043272A (ko) * 2015-07-22 2018-04-27 블루 다뉴브 시스템스, 인크. 모듈러 위상 배열
US9577723B1 (en) * 2015-08-10 2017-02-21 The Boeing Company Systems and methods of analog beamforming for direct radiating phased array antennas
CA3009842C (fr) 2015-12-29 2024-05-28 Blue Danube Systems, Inc. Structure a faible impedance thermique dans une antenne reseau a commande de phase
CN106410396A (zh) * 2016-10-26 2017-02-15 华南理工大学 一种高低频滤波阵子交织排列的紧凑型多波束天线阵列
US10263325B2 (en) 2017-04-17 2019-04-16 Space Systems/Loral, Llc Modularized feed array arrangement
US11791570B1 (en) * 2022-07-20 2023-10-17 United States Of America As Represented By The Secretary Of The Navy Grating lobe cancellation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979754A (en) * 1975-04-11 1976-09-07 Raytheon Company Radio frequency array antenna employing stacked parallel plate lenses
US5115248A (en) * 1989-09-26 1992-05-19 Agence Spatiale Europeenne Multibeam antenna feed device
EP0368121B1 (fr) * 1988-11-03 1993-11-18 Alcatel Espace Antenne à balayage électronique
EP0702424A1 (fr) * 1994-09-15 1996-03-20 Space Systems / Loral, Inc. Alimentation d'antenne et réseau de formation de faisceaux
US5598173A (en) * 1994-05-17 1997-01-28 Space Engineering S.P.A. Shaped-beam or scanned beams reflector or lens antenna
EP0795928A2 (fr) * 1996-03-13 1997-09-17 SPACE ENGINEERING S.p.A. Antenne à seul ou double réflecteur, à faisceaux conformés et à polarisation linéaire
EP0651461B1 (fr) * 1993-11-02 1998-05-06 Thomson-Csf Antenne à réseau d'éléments rayonnants
US5812088A (en) * 1994-12-19 1998-09-22 Agence Spatiale Europeenne Beam forming network for radiofrequency antennas
US5861845A (en) * 1998-05-19 1999-01-19 Hughes Electronics Corporation Wideband phased array antennas and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162803A (en) * 1991-05-20 1992-11-10 Trw Inc. Beamforming structure for modular phased array antennas
US5488380A (en) * 1991-05-24 1996-01-30 The Boeing Company Packaging architecture for phased arrays
US5745076A (en) * 1996-09-05 1998-04-28 Northrop Grumman Corporation Transmit/receive module for planar active apertures

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979754A (en) * 1975-04-11 1976-09-07 Raytheon Company Radio frequency array antenna employing stacked parallel plate lenses
EP0368121B1 (fr) * 1988-11-03 1993-11-18 Alcatel Espace Antenne à balayage électronique
US5115248A (en) * 1989-09-26 1992-05-19 Agence Spatiale Europeenne Multibeam antenna feed device
EP0651461B1 (fr) * 1993-11-02 1998-05-06 Thomson-Csf Antenne à réseau d'éléments rayonnants
US5598173A (en) * 1994-05-17 1997-01-28 Space Engineering S.P.A. Shaped-beam or scanned beams reflector or lens antenna
EP0702424A1 (fr) * 1994-09-15 1996-03-20 Space Systems / Loral, Inc. Alimentation d'antenne et réseau de formation de faisceaux
US5812088A (en) * 1994-12-19 1998-09-22 Agence Spatiale Europeenne Beam forming network for radiofrequency antennas
EP0795928A2 (fr) * 1996-03-13 1997-09-17 SPACE ENGINEERING S.p.A. Antenne à seul ou double réflecteur, à faisceaux conformés et à polarisation linéaire
US5861845A (en) * 1998-05-19 1999-01-19 Hughes Electronics Corporation Wideband phased array antennas and methods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1215750A2 (fr) * 2000-12-08 2002-06-19 KMW Inc. Emetteur-récepteur de station de base à un système d' antenne multibeam réglable
EP1215750A3 (fr) * 2000-12-08 2004-01-14 KMW Inc. Emetteur-récepteur de station de base à un système d' antenne multibeam réglable
EP1421649A1 (fr) * 2001-06-12 2004-05-26 Interdigital Acquisition Corporation Procede et appareil de formation de faisceaux a selection de frequence
EP1421649A4 (fr) * 2001-06-12 2005-02-02 Interdigital Acquisition Corp Procede et appareil de formation de faisceaux a selection de frequence
US7425928B2 (en) 2001-06-12 2008-09-16 Interdigital Technology Corporation Method and apparatus for frequency selective beam forming
WO2003019727A1 (fr) * 2001-08-27 2003-03-06 Paratek Microwave, Inc. Antenne multifaisceaux a balayage utilisant des dephaseurs accordables dielectriquement
US6801160B2 (en) 2001-08-27 2004-10-05 Herbert Jefferson Henderson Dynamic multi-beam antenna using dielectrically tunable phase shifters
CN112332075A (zh) * 2020-11-02 2021-02-05 中国电子科技集团公司第三十八研究所 一种多波束相控阵集成系统及方法
CN112332075B (zh) * 2020-11-02 2022-04-15 中国电子科技集团公司第三十八研究所 一种多波束相控阵集成系统及方法

Also Published As

Publication number Publication date
DE19917202A1 (de) 2000-10-19
US6362780B1 (en) 2002-03-26
EP1045473A3 (fr) 2001-04-11

Similar Documents

Publication Publication Date Title
EP1045473A2 (fr) Système d'alignement en phase pour antenne multibeam
DE69323281T2 (de) Aktive phasengesteuerte Sende-Gruppenantenne
DE69514650T2 (de) Antennensystem
DE69331540T2 (de) Vorrichtung mit mehrstrahlantenne
DE69003215T2 (de) Speiseeinrichtung für eine Mehrkeulenantenne.
DE69503805T2 (de) Antennen-speisenetzwerkanordnung
DE69914354T2 (de) Zweikanaliges Mikrowellen-Sende-Empfangs-Modul für eine aktive Apertur eines Radarsystems
DE69516433T2 (de) Aktive phasengesteuerte Sende-Gruppenantenne mit ungleichmässiger Amplitudenverteilung
DE69330953T2 (de) System zur verteilung elektromagnetischer energie
DE3855343T2 (de) Phasengesteuertes Antennensystem für zwei Moden
DE69521252T2 (de) Antennenspeiseanordnung und Netzwerk zur Strahlformung
DE69321561T2 (de) Aktive Antenne mit variabler Polarisations-Synthese
DE3587491T2 (de) Antennenspeiseschaltung.
DE3911373C2 (de) Phasengesteuertes Radargerät mit Selbstüberwachung/Selbstabgleich und auswechselbare einstellbare Sende/Empfangs-Baueinheit
DE3850469T2 (de) Aus identischen festkörpermodulen bestehende phasengesteuerte gruppenantenne mit niedrigen nebenzipfeln.
DE3787956T2 (de) Elektromagnetisch gekoppelte Antennenelemente in gedruckter Schaltungstechnik bestehend aus kapazitiv an die Zuführungsleitungen gekoppelten Streifenleitern oder Schlitzen.
EP1327287B1 (fr) Reseau d'antennes a double polarisation
DE60210844T2 (de) Strahlformermodul für phasengesteuerte Gruppenantenne zur Speisung von zwei Elementen
DE69602627T2 (de) Mehrkeulenantenne von hoher Kapazität mit elektronisch gesteuertem Abtasten beim Senden
DE3883327T2 (de) Strahlformungsnetzwerk mit mehreren stufen.
WO2014005691A1 (fr) Système d'antennes pour communication satellite large bande dans la plage de fréquences ghz, doté de cornets d'émission de conceptions géométriques
DE69602113T2 (de) Radiosignalabtast- und Führungssystem für Basisstationen
DE69807883T2 (de) Telekommunikationsanordnung
DE102021211569B4 (de) Antennenmodul und Antennenantriebsverfahren
DE68911343T2 (de) Mehrweg-Addierer/Verteiler.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011011

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TESAT-SPACECOM GMBH & CO. KG

17Q First examination report despatched

Effective date: 20060630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061111