EP1043547B1 - Device for evaluating the dirt condition of an oven cavity - Google Patents

Device for evaluating the dirt condition of an oven cavity Download PDF

Info

Publication number
EP1043547B1
EP1043547B1 EP20000400611 EP00400611A EP1043547B1 EP 1043547 B1 EP1043547 B1 EP 1043547B1 EP 20000400611 EP20000400611 EP 20000400611 EP 00400611 A EP00400611 A EP 00400611A EP 1043547 B1 EP1043547 B1 EP 1043547B1
Authority
EP
European Patent Office
Prior art keywords
cell
temperature
dirt
oven
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000400611
Other languages
German (de)
French (fr)
Other versions
EP1043547A1 (en
Inventor
Jean Thomson-CSF Propriéte Intellectuelle Sauton
Francis homson-CSF Propriéte Intell. Autin
Fabien homson-CSF Propriéte Intell. Oberle
Didier Thomson-CSF Propriéte Intell. Auger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brandt Industries SAS
Original Assignee
Brandt Cooking SAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brandt Cooking SAC filed Critical Brandt Cooking SAC
Publication of EP1043547A1 publication Critical patent/EP1043547A1/en
Application granted granted Critical
Publication of EP1043547B1 publication Critical patent/EP1043547B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C14/00Stoves or ranges having self-cleaning provisions, e.g. continuous catalytic cleaning or electrostatic cleaning
    • F24C14/02Stoves or ranges having self-cleaning provisions, e.g. continuous catalytic cleaning or electrostatic cleaning pyrolytic type

Definitions

  • the invention relates to a system for assessing a state of soiling of an oven cavity. Indeed, when the oven is dirty, that is to say when grease or other projections have been deposited on the walls of the cavity oven during previous cooking, bad smells and fumes can be released during a new cooking.
  • the oven In order to clean the oven cavity, the oven usually includes a pyrolysis device.
  • Pyrolysis is triggered by the oven user, when the oven is dirty. But there is no device measuring the state of soiling of walls of an oven cavity; this state of soiling is appreciated subjectively by the user who notices for example the presence of spots on the walls of the cavity.
  • the temperature in the cavity rises to high values, typically above 500 ° C, for a while, for example about two to three hours. The user will perform this pyrolysis operation at the frequency he will choose. But this frequency is not optimized because of subjective assessment of the state of soiling in the cavity.
  • the invention is based on the use of a cracking cell in which grease or dirt from cooking is cracked during of an exothermic reaction which gives off cracking energy.
  • the measurement, direct or indirect, of this cracking energy makes it possible to go back to the amount of cracked cooking soiling and also to the amount of dirt deposited on the walls of the cavity.
  • a system for evaluating a state of dirt from an oven cavity comprising at least one dirt cracking cell, the cracking giving off cracking energy, associated temperature measurement means intermittent heating of the cell to an sufficient temperature to cause cracking of dirt, energy cracking influences the measured temperature, and means of treatment associating a level of soiling with the measured temperature.
  • Figure 1 shows schematically an evaluation system according to the invention. Arrows between blocks represent transmissions of data, symbolized by letters, and the double arrows of supplies of quantities of energy, symbolized by underlined letters.
  • the system comprises a cracking cell 1, to which are connected temperature measurement means 2. Attaching means 2 to the cell 1 is symbolized by dotted lines.
  • the means 2 for measuring temperature measure the temperature T at cell level 1.
  • the treatment means 5 associate a level of soiling N with the temperature T measured at cell level 1.
  • the energy E of the reaction of cracking dirt in cell 1 influences the temperature T at cell level 1.
  • the system also includes means 4 for intermittent heating.
  • the intermittent heating means 4 supply the cell 1 with a quantity Q of heat in order to bring the cell 1 to a temperature sufficient to cause cracking of the dirt.
  • the processing means 5 evaluate the level N of dirt from the temperature T measured by means of the temperature measurement means 2. The intermittent nature of the heating means 4 makes it possible to save the energy supplied by these heating means 4.
  • the intermittent heating means 4 comprise a heating element associated with cell 1 and providing heat to the cell 1 per pulse.
  • Each cooking preferably comprises two or three heating pulses.
  • the duration of the heating pulses is advantageously substantially eight minutes.
  • the first impulse takes place substantially thirty minutes after the start of cooking and the following pulses are succeed at intervals worth approximately twenty minutes.
  • the processing means 5 can associate a level N of soiling at temperature T measured by means 2 for measuring temperature, either directly or indirectly by evaluating a intermediate parameter such as for example the duration ⁇ t during which the measured temperature T remains above a threshold temperature TS, as explained in Figure 2.
  • the crossed arrows indicate the direction of traffic air passing through cell 1.
  • the air Upstream of cell 1, the air is charged with dirt which is for example grease from cooking.
  • this soiling undergoes cracking, that is to say that the soiling which are large molecules are divided into larger molecules small ones which are called residues here.
  • the air Downstream of cell 1, the air is charged residue.
  • Cracking is an exothermic reaction, i.e. it provides some energy per amount of cracked dirt.
  • Energy E is therefore indicative of the amount of dirt having passed through cell 1.
  • a quantity data of dirt crosses cell 1, a certain amount of dirt is deposited on the walls of the oven cavity.
  • the quantity of soiling through cell 1 is therefore indicative of the amount of dirt deposited on the walls of the oven cavity, quantity called here level N of soiling. Therefore a calibration for example allows to establish a correspondence between the energy E of cracking and the level N of dirt. As the cracking energy E influences the temperature T measured by means 2 of temperature measurement, a calibration also allows either to establish a correspondence between the energy E and the temperature T, that is to establish a direct correspondence between the level N of soiling and temperature T. Instead of the energy of cracking E, a representative parameter can be used, such as duration ⁇ t during which the measured temperature T remains above a TS threshold temperature, as explained in Figure 2. During a cooking, this correspondence is carried out by the processing means 5.
  • Cell 1 is preferably a catalytic cell, i.e. that it contains a catalyst responsible for a cracking of dirt by catalyzes within cell 1.
  • Cell 1 is, for example, made up of a cylinder, ceramic or cordierite, pierced with small channels whose axis is parallel to the cylinder axis and the interior of which is lined by the catalyst. The channels have for example a diameter of the order of one or more millimeters.
  • the catalyst can be palladium or platinum.
  • the different means are functional representations, and that the device can include a microprocessor responsible for carrying out all or part of the previously described operations as well as to coordinate them.
  • the temperature measurement means 2 comprise at least a temperature sensor measuring a temperature at the level of the cell.
  • the processing means 5 compare with each heating pulse the temperature response measured by the means 2 for temperature measurement T associated with cell 1 with a response of reference, called standard curve.
  • a response of reference called standard curve.
  • Different types of comparison are possible such as for example the evaluation of the surface difference covered by the curves representing the temperature responses at over time or else the evaluation of the difference in the peak values of temperature between temperature responses.
  • the processing means 5 evaluate at each heating pulse the duration during which the temperature measurement means T associated with the cell 1 measure a temperature above a given threshold temperature TS and compare this duration with a reference duration ⁇ t 0 .
  • FIG. 2 represents temperature curves T measured at the level of cell 1 as a function of time t for different states of the oven cavity, in response to a heating pulse produced by the intermittent heating means 4, the heating pulse starting at t i .
  • Curve 2A represents the reference response, also called standard curve, and corresponds to a clean oven.
  • the level N of dirt corresponding to a clean oven is substantially zero.
  • the horizontal line TS represents the given threshold temperature, for example 200 ° C.
  • the reference duration ⁇ t 0 is the duration during which the temperature T at the level of cell 1 remains greater than the threshold temperature TS.
  • the durations ⁇ t 1 and ⁇ t 2 corresponding respectively to curves 2B and 2C are greater than the duration ⁇ t 0 , which means that curves 2B and 2C correspond to oven cavities which are dirty.
  • the duration ⁇ t 2 is greater than the duration ⁇ t 1 , which means that the curve 2C corresponds to a dirtier oven cavity than the curve 2B.
  • a calibration makes it possible to associate with each duration, ⁇ t 1 or ⁇ t 2 , a corresponding level N of soiling.
  • the reference response or the reference duration is then advantageously modulated for example by the supply voltage of the intermittent heating means 4 during cooking.
  • Other parameters such as the temperature of the cavity, can modulate the reference response or the reference duration.
  • the modulation of the reference time can consist of a value of ⁇ t 0 increased or decreased depending on whether the supply voltage of the intermittent heating means 4 during cooking is higher or lower.
  • the processing means 5 advantageously use, to modulate the reference response or the reference duration as explained in FIG. 2, means 13 for measuring the voltage V of the means 9 for supplying the means 4 of intermittent heating of the cell 1, shown in FIG. 3.
  • the supply means 9 supply power P to the intermittent heating means 4.
  • the supply means 9 can for example be the electrical sector.
  • Figure 4 shows schematically a layout preferential in the exhaust duct of a furnace of a cell cracking of an evaluation system according to the invention.
  • the sensors temperature are noted sensors T in the figure.
  • Cell 1 is placed in an evacuation duct 6 connecting an oven cavity 7 and an external medium 8 which can be the kitchen in which the oven is located.
  • the arrows represent the movement of air from the cavity 7 to the outside environment 8.
  • the air upstream of cell 1, that is to say on the side of cavity 7, is charged of dirt.
  • the air downstream of cell 1, i.e. on the middle side exterior 8, is loaded with residues.
  • the cell 1 must satisfy the air flow constraints imposed by the duct 6 exhaust and the ventilation system not shown here.
  • the means 2 of temperature measurement consists of a second sensor 12 of temperature placed in the exhaust duct 6.
  • the second temperature sensor 12 is placed downstream and preferably near cell 1, and in a second variant, the second temperature sensor 12 consists of a sensor located at inside cell 1. This sensor is preferably a thermocouple or a platinum probe.
  • the treatment means 5 can add the level N of dirt obtained to the sum ⁇ of the soiling levels of the heating pulses of the previous cooking or previous heating pulses of the cooking in progress, generally called previous pulses, sum ⁇ stored in these same processing means 5, to obtain a level total NT of dirt which will be stored again to constitute the sum ⁇ for the first pulse of the next cooking or for the pulse next of the cooking in progress.
  • Treatment means 5 compare then the total level NT at a predefined threshold Sp. When the total level NT is above the Sp threshold, the oven cavity is considered dirty.
  • the the system then advantageously comprises means 10 for viewing, shown in Figure 5, which display an IS indication of dirt from the oven cavity, indication transmitted to the display means 10 by the 5 means of treatment.
  • the processing means 5 can still have several thresholds Sp and the display means 10 will display the corresponding dirt indications, for example: “lightly soiled oven”, “Dirty oven”, “very dirty oven”.
  • the visualization means can still display other indications such as "pyrolysis proposal" for a certain predefined particular threshold Sp.
  • the user then has reliable information to be able to trigger pyrolysis wisely.
  • the predefined threshold Sp at which the total level NT of dirt is higher, exceeds a predefined value Vp, the heating intermittent from cell 1 becomes continuous and cell 1 is then active during all the rest of the cooking, which allows the complete cracking of soiling, thus preventing unpleasant odors and fumes from oven cavity too dirty.
  • FIG. 6 represents a pyrolysis device 11 connected to the means 5 treatment.
  • Pyrolysis is an operation in which the temperature rises to high values, for example of the order of 500 ° C., and during which the dirt deposited on the walls is transformed solid ash that the user collects on the bottom surface of the oven cavity and in gaseous dirt which are evacuated by the exhaust duct 6, not shown in FIG. 6, and broken down by cracking in cell 1 which is active during pyrolysis.
  • a level N of non-zero dirt is transmitted by the processing means 5 to the device pyrolysis.
  • the device of pyrolysis stops the pyrolysis.
  • the value of "substantially zero" is chosen by the oven manufacturer according to the type of oven envisaged. The duration of the pyrolysis has therefore been minimized while remaining sufficiently long to make the cavity clean.
  • the sum ⁇ of the levels dirt stored in the processing means 5 is reset to zero.
  • Another option is to set the duration of the pyrolysis to this amount ⁇ : this method has the disadvantage of not being able to take into account a possible sponge stroke by the user between two pyrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Electric Ovens (AREA)
  • Electric Stoves And Ranges (AREA)

Description

L'invention concerne un système d'évaluation d'un état de salissures d'un cavité de four. En effet, lorsque le four est sale, c'est-à-dire lorsque des graisses ou d'autres projections ont été déposées sur les parois de la cavité de four lors de cuissons précédentes, de mauvaises odeurs et des fumées peuvent être dégagées au cours d'une nouvelle cuisson. Afin de nettoyer la cavité de four, le four comporte habituellement un dispositif de pyrolyse.The invention relates to a system for assessing a state of soiling of an oven cavity. Indeed, when the oven is dirty, that is to say when grease or other projections have been deposited on the walls of the cavity oven during previous cooking, bad smells and fumes can be released during a new cooking. In order to clean the oven cavity, the oven usually includes a pyrolysis device.

La pyrolyse est déclenchée par l'utilisateur du four, lorsque le four est sale. Mais il n'existe pas de dispositif mesurant l'état de salissures des parois de la cavité d'un four ; cet état de salissures est apprécié subjectivement par l'utilisateur qui constate par exemple la présence de taches sur les parois de la cavité. Pendant l'opération de pyrolyse, la température dans la cavité monte à des valeurs élevées, typiquement au-dessus de 500°C, pendant un certain temps, par exemple environ deux à trois heures. L'utilisateur effectuera cette opération de pyrolyse à la fréquence qu'il choisira. Mais cette fréquence n'est pas optimisée à cause de l'évaluation subjective de l'état de salissures de la cavité. En effet, soit l'utilisateur effectue des pyrolyses rarement et les cuissons réalisées dans une cavité de four sale entraíneront le dégagement de mauvaises odeurs et de fumées, soit l'utilisateur effectue des pyrolyses souvent et la consommation électrique nécessitée par ces pyrolyses sera importante. D'où l'intérêt d'un système d'évaluation de l'état de salissures de la cavité de four, afin d'optimiser la fréquence des pyrolyses, ce qui permet à l'utilisateur d'avoir toujours un four sensiblement propre tout en ayant une consommation électrique réduite.Pyrolysis is triggered by the oven user, when the oven is dirty. But there is no device measuring the state of soiling of walls of an oven cavity; this state of soiling is appreciated subjectively by the user who notices for example the presence of spots on the walls of the cavity. During the pyrolysis operation, the temperature in the cavity rises to high values, typically above 500 ° C, for a while, for example about two to three hours. The user will perform this pyrolysis operation at the frequency he will choose. But this frequency is not optimized because of subjective assessment of the state of soiling in the cavity. Indeed, either the user performs pyrolysis rarely and the cooking carried out in a dirty oven cavity will cause the release of bad odors and smoke, or the user performs pyrolysis often and the electrical consumption required by these pyrolysis will be significant. From where the advantage of a system for evaluating the state of soiling in the oven cavity, to optimize the frequency of pyrolysis, which allows the user always have a substantially clean oven while having a reduced power consumption.

L'invention repose sur l'utilisation d'une cellule de craquage dans laquelle les graisses ou salissures de la cuisson sont craquées au cours d'une réaction exothermique qui dégage une énergie de craquage. La mesure, directe ou indirecte, de cette énergie de craquage permet de remonter à la quantité de salissures de cuisson craquées et aussi à la quantité de salissures déposées sur les parois de la cavité. The invention is based on the use of a cracking cell in which grease or dirt from cooking is cracked during of an exothermic reaction which gives off cracking energy. The measurement, direct or indirect, of this cracking energy makes it possible to go back to the amount of cracked cooking soiling and also to the amount of dirt deposited on the walls of the cavity.

Selon l'invention, il est prévu un système d'évaluation d'un état de salissures d'une cavité d'un four, le système comportant au moins une cellule de craquage des salissures, le craquage dégageant une énergie de craquage, des moyens de mesure de température associés à la cellule, des moyens de chauffage intermittent de la cellule à une température suffisante pour provoquer le craquage des salissures, l'énergie de craquage influençant la température mesurée, et des moyens de traitement associant un niveau de salissures à la température mesurée.According to the invention, there is provided a system for evaluating a state of dirt from an oven cavity, the system comprising at least one dirt cracking cell, the cracking giving off cracking energy, associated temperature measurement means intermittent heating of the cell to an sufficient temperature to cause cracking of dirt, energy cracking influences the measured temperature, and means of treatment associating a level of soiling with the measured temperature.

L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaítront à l'aide de la description ci-après et des dessins joints, donnés à titre d'exemples non limitatifs, où :

  • la figure 1 représente schématiquement un système d'évaluation selon l'invention ;
  • la figure 2 représente schématiquement des profils de température au cours du temps d'un système d'évaluation selon l'invention ;
  • la figure 3 représente schématiquement des réalisations préférentielles d'une partie d'un système d'évaluation selon l'invention ;
  • la figure 4 représente schématiquement l'implantation dans le conduit d'évacuation d'un four d'une cellule de craquage d'un système d'évaluation selon l'invention ;
  • les figures 5 à 6 représentent schématiquement des réalisations préférentielles de différentes parties d'un système d'évaluation selon l'invention.
The invention will be better understood and other characteristics and advantages will appear with the aid of the description below and of the attached drawings, given by way of nonlimiting examples, where:
  • FIG. 1 schematically represents an evaluation system according to the invention;
  • FIG. 2 schematically represents temperature profiles over time of an evaluation system according to the invention;
  • FIG. 3 schematically represents preferred embodiments of part of an evaluation system according to the invention;
  • FIG. 4 schematically represents the installation in the evacuation duct of an oven of a cracking cell of an evaluation system according to the invention;
  • Figures 5 to 6 schematically show preferred embodiments of different parts of an evaluation system according to the invention.

La figure 1 représente schématiquement un système d'évaluation selon l'invention. Les flèches entre les blocs représentent des transmissions de données, symbolisées par des lettres, et les doubles flèches des fournitures de quantités d'énergie, symbolisées par des lettres soulignées. Le système comporte une cellule 1 de craquage, à laquelle sont reliés des moyens 2 de mesure de température. Le rattachement des moyens 2 à la cellule 1 est symbolisé par des traits pointillés. Les moyens 2 de mesure de température mesurent la température T au niveau de la cellule 1. Les moyens 5 de traitement associent un niveau de salissures N à la température T mesurée au niveau de la cellule 1. L'énergie E de la réaction de craquage des salissures au niveau de la cellule 1, influence la température T au niveau de la cellule 1.Figure 1 shows schematically an evaluation system according to the invention. Arrows between blocks represent transmissions of data, symbolized by letters, and the double arrows of supplies of quantities of energy, symbolized by underlined letters. The system comprises a cracking cell 1, to which are connected temperature measurement means 2. Attaching means 2 to the cell 1 is symbolized by dotted lines. The means 2 for measuring temperature measure the temperature T at cell level 1. The treatment means 5 associate a level of soiling N with the temperature T measured at cell level 1. The energy E of the reaction of cracking dirt in cell 1, influences the temperature T at cell level 1.

Le système comporte également des moyens 4 de chauffage intermittent. Les moyens 4 de chauffage intermittent fournissent à la cellule 1 une quantité Q de chaleur afin d'amener la cellule 1 à une température suffisante pour provoquer le craquage des salissures. Les moyens 5 de traitement évaluent le niveau N de salissures à partir de la température T mesurée par le biais des moyens 2 de mesure de température. Le caractère intermittent des moyens 4 de chauffage permet d'économiser l'énergie d'alimentation de ces moyens 4 de chauffage.The system also includes means 4 for intermittent heating. The intermittent heating means 4 supply the cell 1 with a quantity Q of heat in order to bring the cell 1 to a temperature sufficient to cause cracking of the dirt. The processing means 5 evaluate the level N of dirt from the temperature T measured by means of the temperature measurement means 2. The intermittent nature of the heating means 4 makes it possible to save the energy supplied by these heating means 4.

De préférence, les moyens 4 de chauffage intermittent comportent un élément chauffant associé à la cellule 1 et apportant de la chaleur à la cellule 1 par impulsions. Chaque cuisson comporte préférentiellement deux ou trois impulsions de chauffage. La durée des impulsions de chauffage vaut avantageusement sensiblement huit minutes. Dans un mode de réalisation préférentiel, pendant une cuisson, la première impulsion a lieu sensiblement trente minutes après le début de la cuisson et les impulsions suivantes se succèdent à intervalle valant sensiblement vingt minutes.Preferably, the intermittent heating means 4 comprise a heating element associated with cell 1 and providing heat to the cell 1 per pulse. Each cooking preferably comprises two or three heating pulses. The duration of the heating pulses is advantageously substantially eight minutes. In one embodiment preferential, during cooking, the first impulse takes place substantially thirty minutes after the start of cooking and the following pulses are succeed at intervals worth approximately twenty minutes.

Les moyens 5 de traitement peuvent associer un niveau N de salissures à la température T mesurée par les moyens 2 de mesure de température, soit directement, soit indirectement par l'évaluation d'un paramètre intermédiaire comme par exemple la durée Δt pendant laquelle la température T mesurée reste au-dessus d'une température seuil TS, comme expliqué au niveau de la figure 2.The processing means 5 can associate a level N of soiling at temperature T measured by means 2 for measuring temperature, either directly or indirectly by evaluating a intermediate parameter such as for example the duration Δt during which the measured temperature T remains above a threshold temperature TS, as explained in Figure 2.

Sur la figure 1, les flèches barrées indiquent le sens de la circulation de l'air qui traverse la cellule 1. En amont de la cellule 1, l'air est chargé de salissures qui sont par exemple des graisses provenant de la cuisson. Dans la cellule 1, ces salissures subissent un craquage, c'est-à-dire que les salissures qui sont de grosses molécules sont divisées en molécules plus petites qui sont appelées ici résidus. En aval de la cellule 1, l'air est chargé de résidus. Le craquage est une réaction exothermique, c'est-à-dire qu'elle fournit une certaine énergie par quantité de salissures craquées. L'énergie E est donc révélatrice de la quantité de salissures ayant traversé la cellule 1. Par ailleurs pour une structure de cavité de four donnée, lorsqu'une quantité donnée de salissures traverse la cellule 1, une certaine quantité de salissures se dépose sur les parois de la cavité de four. La quantité de salissures traversant la cellule 1 est donc révélatrice de la quantité de salissures déposée sur les parois de la cavité de four, quantité appelée ici niveau N de salissures. Par conséquent une calibration par exemple permet d'établir une correspondance entre l'énergie E de craquage et le niveau N de salissures. Comme l'énergie E de craquage influence la température T mesurée par les moyens 2 de mesure de température, une calibration permet également soit d'établir une correspondance entre l'énergie E et la température T, soit d'établir une correspondance directe entre le niveau N de salissures et la température T. Au lieu de l'énergie E de craquage, un paramètre qui en est représentatif peut être utilisé, comme la durée Δt pendant laquelle la température T mesurée reste au-dessus d'une température seuil TS, comme expliqué au niveau de la figure 2. Lors d'une cuisson, cette correspondance est effectuée par les moyens 5 de traitement.In Figure 1, the crossed arrows indicate the direction of traffic air passing through cell 1. Upstream of cell 1, the air is charged with dirt which is for example grease from cooking. In cell 1, this soiling undergoes cracking, that is to say that the soiling which are large molecules are divided into larger molecules small ones which are called residues here. Downstream of cell 1, the air is charged residue. Cracking is an exothermic reaction, i.e. it provides some energy per amount of cracked dirt. Energy E is therefore indicative of the amount of dirt having passed through cell 1. In addition, for a given oven cavity structure, when a quantity data of dirt crosses cell 1, a certain amount of dirt is deposited on the walls of the oven cavity. The quantity of soiling through cell 1 is therefore indicative of the amount of dirt deposited on the walls of the oven cavity, quantity called here level N of soiling. Therefore a calibration for example allows to establish a correspondence between the energy E of cracking and the level N of dirt. As the cracking energy E influences the temperature T measured by means 2 of temperature measurement, a calibration also allows either to establish a correspondence between the energy E and the temperature T, that is to establish a direct correspondence between the level N of soiling and temperature T. Instead of the energy of cracking E, a representative parameter can be used, such as duration Δt during which the measured temperature T remains above a TS threshold temperature, as explained in Figure 2. During a cooking, this correspondence is carried out by the processing means 5.

La cellule 1 est de préférence une cellule catalytique, c'est-à-dire qu'elle contient un catalyseur responsable d'un craquage des salissures par catalyse au sein de la cellule 1. La cellule 1 est par exemple constituée d'un cylindre, en céramique ou en cordiérite, percé de petits canaux dont l'axe est parallèle à l'axe du cylindre et dont l'intérieur est tapissé par le catalyseur. Les canaux ont par exemple un diamètre de l'ordre du ou de plusieurs millimètres. Le catalyseur peut être du palladium ou du platine. Dans la figure 1 comme dans les figures suivantes, il est entendu que les différents moyens sont des représentations fonctionnelles, et que le dispositif peut comporter un microprocesseur chargé de réaliser tout ou partie des opérations précédemment décrites ainsi que de les coordonner. De préférence, les moyens 2 de mesure de température comportent au moins un capteur de température mesurant une température au niveau de la cellule.Cell 1 is preferably a catalytic cell, i.e. that it contains a catalyst responsible for a cracking of dirt by catalyzes within cell 1. Cell 1 is, for example, made up of a cylinder, ceramic or cordierite, pierced with small channels whose axis is parallel to the cylinder axis and the interior of which is lined by the catalyst. The channels have for example a diameter of the order of one or more millimeters. The catalyst can be palladium or platinum. In the Figure 1 as in the following figures, it is understood that the different means are functional representations, and that the device can include a microprocessor responsible for carrying out all or part of the previously described operations as well as to coordinate them. Of preferably, the temperature measurement means 2 comprise at least a temperature sensor measuring a temperature at the level of the cell.

Dans un mode de réalisation préférentiel de l'invention décrit en liaison avec la figure 2, les moyens 5 de traitement comparent à chaque impulsion de chauffage la réponse en température mesurée par les moyens 2 de mesure de température T associés à la cellule 1 avec une réponse de référence, appelée courbe étalon. Différents types de comparaison sont possibles comme par exemple l'évaluation de la différence de surface couvertes par les courbes représentant les réponses en température au cours du temps ou bien l'évaluation de la différence des valeurs crête de température entre les réponses en température.In a preferred embodiment of the invention described in connection with FIG. 2, the processing means 5 compare with each heating pulse the temperature response measured by the means 2 for temperature measurement T associated with cell 1 with a response of reference, called standard curve. Different types of comparison are possible such as for example the evaluation of the surface difference covered by the curves representing the temperature responses at over time or else the evaluation of the difference in the peak values of temperature between temperature responses.

Préférentiellement, les moyens 5 de traitement évaluent à chaque impulsion de chauffage la durée pendant laquelle les moyens de mesure de température T associés à la cellule 1 mesurent une température supérieure à une température seuil TS donnée et comparent cette durée à une durée de référence Δt0. Un bon compromis entre la précision et la complexité des mesures effectuées est ainsi réalisé. Plus précisément, la figure 2 représente des courbes de température T mesurée au niveau de la cellule 1 en fonction du temps t pour différents états de cavité de four, en réponse à une impulsion de chauffage produite par les moyens 4 de chauffage intermittent, l'impulsion de chauffage débutant à ti. La courbe 2A représente la réponse de référence, encore appelée courbe étalon, et correspond à un four propre. Le niveau N de salissures correspondant à un four propre est sensiblement nul. La ligne horizontale TS représente la température seuil donnée, par exemple 200°C. La durée de référence Δt0 est la durée pendant laquelle la température T au niveau de la cellule 1 reste supérieure à la température seuil TS. Plus la cavité de four est sale, plus l'énergie E de craquage libérée au niveau de la cellule 1 est importante et plus la température T va rester longtemps au-dessus de la température seuil TS. Les durées Δt1 et Δt2 correspondant respectivement aux courbes 2B et 2C sont plus importantes que la durée Δt0, ce qui signifie que les courbes 2B et 2C correspondent à des cavités de four qui sont sales. La durée Δt2 est plus importante que la durée Δt1, ce qui signifie que la courbe 2C correspond à une cavité de four plus sale que la courbe 2B. Un étalonnage par exemple permet d'associer à chaque durée, Δt1 ou Δt2, un niveau N de salissures correspondant. En fonction de différents paramètres, comme la température de la cavité pendant la cuisson par exemple, il peut y avoir différentes courbes étalon et/ou différentes températures de seuil. De préférence, il existe une seule courbe étalon et une seule température de seuil. La réponse de référence ou la durée de référence est alors avantageusement modulée par exemple par la tension d'alimentation des moyens 4 de chauffage intermittent pendant la cuisson. D'autres paramètres, comme la température de la cavité, peuvent moduler la réponse de référence ou la durée de référence. La modulation de la durée de référence peut consister en une valeur de Δt0 augmentée ou diminuée selon que la tension d'alimentation des moyens 4 de chauffage intermittent pendant la cuisson est plus ou moins élevée. Les moyens 5 de traitement utilisent avantageusement, pour moduler la réponse de référence ou la durée de référence comme expliqué à la figure 2, des moyens 13 de mesure de la tension V des moyens 9 d'alimentation des moyens 4 de chauffage intermittent de la cellule 1, représentés sur la figure 3. Les moyens 9 d'alimentation fournissent une puissance P aux moyens 4 de chauffage intermittent. Les moyens 9 d'alimentation peuvent par exemple être le secteur électrique.Preferably, the processing means 5 evaluate at each heating pulse the duration during which the temperature measurement means T associated with the cell 1 measure a temperature above a given threshold temperature TS and compare this duration with a reference duration Δt 0 . A good compromise between the precision and the complexity of the measurements made is thus achieved. More specifically, FIG. 2 represents temperature curves T measured at the level of cell 1 as a function of time t for different states of the oven cavity, in response to a heating pulse produced by the intermittent heating means 4, the heating pulse starting at t i . Curve 2A represents the reference response, also called standard curve, and corresponds to a clean oven. The level N of dirt corresponding to a clean oven is substantially zero. The horizontal line TS represents the given threshold temperature, for example 200 ° C. The reference duration Δt 0 is the duration during which the temperature T at the level of cell 1 remains greater than the threshold temperature TS. The dirtier the oven cavity, the greater the cracking energy E released at cell 1 and the longer the temperature T will remain above the threshold temperature TS. The durations Δt 1 and Δt 2 corresponding respectively to curves 2B and 2C are greater than the duration Δt 0 , which means that curves 2B and 2C correspond to oven cavities which are dirty. The duration Δt 2 is greater than the duration Δt 1 , which means that the curve 2C corresponds to a dirtier oven cavity than the curve 2B. A calibration, for example, makes it possible to associate with each duration, Δt 1 or Δt 2 , a corresponding level N of soiling. Depending on different parameters, such as the temperature of the cavity during cooking for example, there may be different standard curves and / or different threshold temperatures. Preferably, there is a single standard curve and a single threshold temperature. The reference response or the reference duration is then advantageously modulated for example by the supply voltage of the intermittent heating means 4 during cooking. Other parameters, such as the temperature of the cavity, can modulate the reference response or the reference duration. The modulation of the reference time can consist of a value of Δt 0 increased or decreased depending on whether the supply voltage of the intermittent heating means 4 during cooking is higher or lower. The processing means 5 advantageously use, to modulate the reference response or the reference duration as explained in FIG. 2, means 13 for measuring the voltage V of the means 9 for supplying the means 4 of intermittent heating of the cell 1, shown in FIG. 3. The supply means 9 supply power P to the intermittent heating means 4. The supply means 9 can for example be the electrical sector.

La figure 4 représente schématiquement une implantation préférentielle dans le conduit d'évacuation d'un four d'une cellule de craquage d'un système d'évaluation selon l'invention. Les capteurs de température sont notés capteurs T sur la figure. La cellule 1 est placée dans un conduit 6 d'évacuation reliant une cavité 7 de four et un milieu extérieur 8 qui peut être la cuisine dans laquelle est situé le four. Les flèches représentent le mouvement de l'air de la cavité 7 vers le milieu extérieur 8. L'air en amont de la cellule 1, c'est-à-dire du côté de la cavité 7, est chargé de salissures. L'air en aval de la cellule 1, c'est-à-dire du côté du milieu extérieur 8, est chargé de résidus. Pour pouvoir fonctionner correctement, la cellule 1 doit satisfaire les contraintes de débit d'air imposées par le conduit 6 d'évacuation et le système de ventilation non représenté ici. Pour renouveler l'air de la cavité 7, le débit imposé dans la cellule 1 doit être compatible avec la cinétique de la réaction par exemple de catalyse se déroulant dans la cellule 1. De préférence, tout l'air qui traverse le conduit 6 d'évacuation traverse aussi la cellule 1, ceci afin qu'il n'y ait pas ou très peu de salissures dans l'air arrivant dans le milieu extérieur 8. Les moyens 2 de mesure de température consistent en un deuxième capteur 12 de température placé dans le conduit 6 d'évacuation. Dans une première variante, le deuxième capteur 12 de température est placé en aval et de préférence à proximité de la cellule 1, et dans une deuxième variante, le deuxième capteur 12 de température consiste en un capteur situé à l'intérieur de la cellule 1. Ce capteur est préférentiellement un thermocouple ou une sonde platine. Figure 4 shows schematically a layout preferential in the exhaust duct of a furnace of a cell cracking of an evaluation system according to the invention. The sensors temperature are noted sensors T in the figure. Cell 1 is placed in an evacuation duct 6 connecting an oven cavity 7 and an external medium 8 which can be the kitchen in which the oven is located. The arrows represent the movement of air from the cavity 7 to the outside environment 8. The air upstream of cell 1, that is to say on the side of cavity 7, is charged of dirt. The air downstream of cell 1, i.e. on the middle side exterior 8, is loaded with residues. In order to function properly, the cell 1 must satisfy the air flow constraints imposed by the duct 6 exhaust and the ventilation system not shown here. For renew the air in cavity 7, the flow rate imposed in cell 1 must be compatible with the kinetics of the reaction for example of catalysis taking place in cell 1. Preferably, all the air which passes through the duct 6 also passes through cell 1, so that there is little or no of dirt in the air arriving in the external environment 8. The means 2 of temperature measurement consists of a second sensor 12 of temperature placed in the exhaust duct 6. In a first variant, the second temperature sensor 12 is placed downstream and preferably near cell 1, and in a second variant, the second temperature sensor 12 consists of a sensor located at inside cell 1. This sensor is preferably a thermocouple or a platinum probe.

Dans une réalisation préférentielle d'un système d'évaluation, les moyens 5 de traitement peuvent ajouter le niveau N de salissures obtenu à la somme Σ des niveaux de salissures des impulsions de chauffage des cuissons précédentes ou des impulsions de chauffage précédentes de la cuisson en cours, globalement appelées impulsions précédentes, somme Σ stockée dans ces mêmes moyens 5 de traitement, pour obtenir un niveau total NT de salissures qui sera à nouveau stocké pour constituer la somme Σ pour la première impulsion de la cuisson suivante ou pour l'impulsion suivante de la cuisson en cours. Les moyens 5 de traitement comparent alors le niveau total NT à un seuil prédéfini Sp. Lorsque le niveau total NT est supérieur au seuil Sp, la cavité de four est considérée comme sale. Le système comporte alors avantageusement des moyens 10 de visualisation, représentés sur la figure 5, qui affichent une indication IS de saleté de la cavité de four, indication transmise aux moyens 10 de visualisation par les moyens 5 de traitement. Les moyens 5 de traitement peuvent encore comporter plusieurs seuils Sp et les moyens 10 de visualisation afficheront les indications de saleté correspondantes, par exemple : « four peu sale », « four sale », « four très sale ». Les moyens de visualisation peuvent encore afficher d'autres indications comme par exemple « proposition de pyrolyse » pour un certain seuil prédéfini Sp particulier. L'utilisateur dispose alors d'informations fiables pour pouvoir déclencher une pyrolyse à bon escient. Préférentiellement, lorsque le seuil prédéfini Sp, auquel le niveau total NT de salissures est supérieur, dépasse une valeur prédéfinie Vp, le chauffage intermittent de la cellule 1 devient continu et la cellule 1 est alors active pendant tout le reste de la cuisson, ce qui permet le craquage complet des salissures, évitant ainsi les mauvaises odeurs et les fumées provenant d'une cavité de four trop sale.In a preferred embodiment of an evaluation system, the treatment means 5 can add the level N of dirt obtained to the sum Σ of the soiling levels of the heating pulses of the previous cooking or previous heating pulses of the cooking in progress, generally called previous pulses, sum Σ stored in these same processing means 5, to obtain a level total NT of dirt which will be stored again to constitute the sum Σ for the first pulse of the next cooking or for the pulse next of the cooking in progress. Treatment means 5 compare then the total level NT at a predefined threshold Sp. When the total level NT is above the Sp threshold, the oven cavity is considered dirty. The the system then advantageously comprises means 10 for viewing, shown in Figure 5, which display an IS indication of dirt from the oven cavity, indication transmitted to the display means 10 by the 5 means of treatment. The processing means 5 can still have several thresholds Sp and the display means 10 will display the corresponding dirt indications, for example: "lightly soiled oven", "Dirty oven", "very dirty oven". The visualization means can still display other indications such as "pyrolysis proposal" for a certain predefined particular threshold Sp. The user then has reliable information to be able to trigger pyrolysis wisely. Preferably, when the predefined threshold Sp, at which the total level NT of dirt is higher, exceeds a predefined value Vp, the heating intermittent from cell 1 becomes continuous and cell 1 is then active during all the rest of the cooking, which allows the complete cracking of soiling, thus preventing unpleasant odors and fumes from oven cavity too dirty.

La figure 6 représente un dispositif de pyrolyse 11 relié aux moyens 5 de traitement. Une pyrolyse est une opération au cours de laquelle la température monte à des valeurs élevées, par exemple de l'ordre de 500°C, et pendant laquelle les salissures déposées sur les parois sont transformées en cendres solides que l'utilisateur récupère sur la surface inférieure de la cavité de four et en salissures gazeuses lesquelles sont évacuées par le conduit 6 d'évacuation, non représentée sur la figure 6, et décomposées par craquage dans la cellule 1 qui est active pendant la pyrolyse. Lors d'une pyrolyse, tant que des salissures se trouvent dans la cavité, un niveau N de salissures non nul est transmis par les moyens 5 de traitement au dispositif de pyrolyse. Lorsque le niveau N de salissures devient sensiblement nul, la cavité ne contient plus de salissures et ses parois sont propres ; le dispositif de pyrolyse arrête alors la pyrolyse. La valeur du « sensiblement nul » est choisie par le fabricant de four selon le type de four envisagé. La durée de la pyrolyse a donc été réduite au minimum tout en restant suffisamment longue pour rendre la cavité propre. Après une pyrolyse, la somme Σ des niveaux de salissures stockée dans les moyens 5 de traitement est remise à zéro. Une autre option consiste à régler la durée de la pyrolyse sur cette somme Σ: cette méthode a l'inconvénient de ne pas pouvoir prendre en compte un éventuel coup d'éponge de l'utilisateur entre deux pyrolyses.FIG. 6 represents a pyrolysis device 11 connected to the means 5 treatment. Pyrolysis is an operation in which the temperature rises to high values, for example of the order of 500 ° C., and during which the dirt deposited on the walls is transformed solid ash that the user collects on the bottom surface of the oven cavity and in gaseous dirt which are evacuated by the exhaust duct 6, not shown in FIG. 6, and broken down by cracking in cell 1 which is active during pyrolysis. During a pyrolysis, as long as dirt remains in the cavity, a level N of non-zero dirt is transmitted by the processing means 5 to the device pyrolysis. When the level N of dirt becomes substantially zero, the cavity no longer contains dirt and its walls are clean; the device of pyrolysis then stops the pyrolysis. The value of "substantially zero" is chosen by the oven manufacturer according to the type of oven envisaged. The duration of the pyrolysis has therefore been minimized while remaining sufficiently long to make the cavity clean. After a pyrolysis, the sum Σ of the levels dirt stored in the processing means 5 is reset to zero. Another option is to set the duration of the pyrolysis to this amount Σ: this method has the disadvantage of not being able to take into account a possible sponge stroke by the user between two pyrolysis.

Claims (17)

  1. System for assessing how dirty the cavity of an oven is, the system comprising at least one cell (1) for cracking the dirt, the cracking releasing a cracking energy (E), means (2) of measuring the temperature (T) associated with the cell (1), means for the intermittent heating of the cell (1) to a sufficient temperature for causing the cracking of the dirt, the cracking energy (E) influencing the temperature (T) measured, and processing means (5) associating a dirt level (N) with the temperature (T) measured.
  2. System according to Claim 1, characterised in that the intermittent heating means (4) comprise a heating element associated with the cell (1) and supplying heat to the cell (1) in pulses.
  3. System according to Claim 2, characterised in that each cooking includes two or three heating pulses.
  4. System according to either one of Claims 2 to 3, characterised in that the duration of the heating pulses is approximately eight minutes.
  5. System according to any one of Claims 2 to 4, characterised in that, during a cooking, the first pulse takes place substantially thirty minutes after the start of the cooking and the following pulses follow at intervals of approximately 20 minutes.
  6. System according to any one of Claims 2 to 5, characterised in that the processing means (5) compare the temperature response (2B, 2C) measured by the means (2) of measuring the temperature (T) associated with the cell (1) with a reference response (2A).
  7. System according to Claim 6, characterised in that the processing means (5) at each pulse assess the time (Δt1, Δt2) during which the means (2) of measuring the temperature (T) associated with the cell (1) measure a temperature higher than a given threshold temperature (TS) and compare this time (Δt1, Δt2) with a reference time (Δt0).
  8. System according to either one of Claims 6 to 7, characterised in that the reference response (2A) or the reference time (Δt0) are modulated by the supply voltage (V) of the intermittent heating means (4).
  9. System according to any one of the preceding claims, characterised in that the oven has a discharge conduit (6) in which the cell (1) is placed and which is situated between the cavity (7) and an outside environment (8), and in that the means (2) of measuring the temperature (T) comprise a first and a second temperature sensor (12), the second sensor situated in the discharge conduit (6), either downstream of the cell (1) or in the cell (1).
  10. System according to Claim 9, characterised in that the second temperature sensor (12) is a platinum probe.
  11. System according to Claim 9, characterised in that the second temperature sensor (12) is a thermocouple.
  12. System according to any one of the preceding claims, characterised in that the oven has a discharge conduit (6) in which the cell (1) is placed and which is situated between the cavity (7) and an external environment (8), and in that all the air coming from the cavity (7) and passing through the conduit (6) towards the external environment (8) also passes through the cell (1).
  13. System according to any one of the preceding claims, characterised in that the processing means (5) add the dirt level (N) to the sum (Σ) of the dirt levels of the preceding pulses in order to obtain a total dirt level (NT) and compare the total level (NT) with at least one predefined threshold (Sp), and in that the system comprises display means (10) displaying an indication (IS) of dirt in the oven corresponding to the threshold (Sp) when the total level (NT) is higher than the threshold (Sp).
  14. System according to Claim 13, characterised in that at least one indication (IS) includes a pyrolysis suggestion to the user of the oven.
  15. System according to either one of Claims 13 to 14, characterised in that, if the predefined threshold (Sp) is higher than a predefined value (Vp), the intermittent heating of the cell (1) becomes continuous.
  16. System according to any one of the preceding claims, characterised in that the system comprises a pyrolysis device (11) and in that the pyrolysis device (11) stops pyrolysis when the dirt level (N) becomes substantially zero.
  17. System according to any one of the preceding claims, characterised in that the cell (1) is a catalytic cell.
EP20000400611 1999-03-16 2000-03-07 Device for evaluating the dirt condition of an oven cavity Expired - Lifetime EP1043547B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9903232 1999-03-16
FR9903232A FR2791127B1 (en) 1999-03-16 1999-03-16 SYSTEM FOR ASSESSING THE SOIL CONDITION OF THE OVEN CAVITY

Publications (2)

Publication Number Publication Date
EP1043547A1 EP1043547A1 (en) 2000-10-11
EP1043547B1 true EP1043547B1 (en) 2003-06-11

Family

ID=9543244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000400611 Expired - Lifetime EP1043547B1 (en) 1999-03-16 2000-03-07 Device for evaluating the dirt condition of an oven cavity

Country Status (4)

Country Link
EP (1) EP1043547B1 (en)
DE (1) DE60003252T2 (en)
ES (1) ES2200792T3 (en)
FR (1) FR2791127B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007005501B4 (en) * 2007-01-30 2012-06-21 Rational Ag Method for cleaning a food processing device, in particular by determining a degree of purification, and food processing device therefor
DE202007014318U1 (en) 2007-10-12 2007-12-13 Rational Ag Display device for displaying the care state of a cooking appliance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954694A (en) * 1989-01-31 1990-09-04 Matsushita Electric Industrial Co., Ltd. Cooking oven having function to automatically clean soils attached to inner walls thereof
DE4127389A1 (en) * 1991-08-19 1993-02-25 Bosch Siemens Hausgeraete COOKER WITH SENSOR CONTROLLED PYROLYSIS
DE19758860B4 (en) * 1997-02-17 2007-06-06 Miele & Cie. Kg Method for controlling a pyrolysis cleaning process
FR2777345B1 (en) * 1998-04-10 2000-06-30 Europ Equip Menager SYSTEM FOR ASSESSING THE SOIL CONDITION OF THE OVEN CAVITY

Also Published As

Publication number Publication date
FR2791127B1 (en) 2001-07-06
FR2791127A1 (en) 2000-09-22
EP1043547A1 (en) 2000-10-11
DE60003252T2 (en) 2004-04-29
ES2200792T3 (en) 2004-03-16
DE60003252D1 (en) 2003-07-17

Similar Documents

Publication Publication Date Title
AU597521B1 (en) Cooking oven having function to automatically clean soils attached to inner walls thereof
US6195581B1 (en) Process for evaluating the signal of an infrared thermometer, and infrared thermometer
CN107886688B (en) Clean method, system and the household electrical appliance of reminder time
JP5001257B2 (en) Temperature prediction system and method
EP3254092B1 (en) Determination of the thermal resistance of a wall
CN105222194B (en) The control method of smoke exhaust ventilator and smoke exhaust ventilator
FR2932886A1 (en) METHOD AND DEVICE FOR DETECTION AND / OR MEASUREMENT OF ENCRAGEMENT IN EXCHANGERS
FR2890172A1 (en) METHOD FOR MANAGING A PARTICLE DETECTOR IN A GAS FLOW AND DEVICE FOR IMPLEMENTING THE METHOD.
EP1043547B1 (en) Device for evaluating the dirt condition of an oven cavity
WO2015101751A1 (en) Method and device for determining the heat loss coefficient of a room
WO2008123487A1 (en) Abnormal measurement detection device and method for infrared radiation thermometer
EP0950862B1 (en) Device of evaluating the dirt condition of an oven cavity
EP1297284B1 (en) Oven with a cleaning cycle time controlling-assembly and method of controlling the cleaning cycle time of a self cleaning ofen
FR2621716A1 (en) METHOD FOR CONTROLLING AUTOMATIC COOKING FOR A MICROWAVE OVEN
EP0663568B1 (en) Domestic cooking oven
FR2808989A1 (en) RESPIRATORY CURRENT DETECTOR
EP1083389B1 (en) Managing pyrolysis time
JP3920155B2 (en) Flyer
CN209235868U (en) Cooking utensil
JP4761270B2 (en) Water quality measuring instrument, water quality measuring system, water quality measuring method, water quality management system, and water quality management method
TR201819327A2 (en) METHOD FOR STARTING A BURNER DEVICE AND A BURNER DEVICE
FR2462465A1 (en) DEVICE FOR CLEANING THE DOOR CHASSIS AND / OR THE DOORS OF THE COKEFACTION CHAMBERS OF A COKING OVEN
CN116569008A (en) Thermometer with diagnostic function
EP0536271B1 (en) Device for sensing/detecting the presence of volatile matter and non-burned gases in a gaseous flow or medium
CN109859449A (en) The analysis method and server of therrmodynamic system combustion state

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010326

AKX Designation fees paid

Free format text: DE ES FR GB IT NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60003252

Country of ref document: DE

Date of ref document: 20030717

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031017

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2200792

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040312

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

NLS Nl: assignments of ep-patents

Owner name: BRANDT INDUSTRIES

Effective date: 20071018

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090417

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100307

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: FAGORBRANDT SAS, FR

Effective date: 20110826

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FAGORBRANDT SAS

Effective date: 20111021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60003252

Country of ref document: DE

Owner name: FAGORBRANDT SAS, FR

Free format text: FORMER OWNER: BRANDT INDUSTRIES, RUEIL MALMAISON, FR

Effective date: 20120322

Ref country code: DE

Ref legal event code: R082

Ref document number: 60003252

Country of ref document: DE

Representative=s name: PRINZ & PARTNER PATENTANWAELTE RECHTSANWAELTE, DE

Effective date: 20120322

Ref country code: DE

Ref legal event code: R082

Ref document number: 60003252

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

Effective date: 20120322

Ref country code: DE

Ref legal event code: R081

Ref document number: 60003252

Country of ref document: DE

Owner name: GROUPE BRANDT, FR

Free format text: FORMER OWNER: BRANDT INDUSTRIES, RUEIL MALMAISON, FR

Effective date: 20120322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150327

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150409

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150331

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GROUPE BRANDT

Effective date: 20160226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60003252

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

Ref country code: DE

Ref legal event code: R081

Ref document number: 60003252

Country of ref document: DE

Owner name: GROUPE BRANDT, FR

Free format text: FORMER OWNER: FAGORBRANDT SAS, RUEIL-MALMAISON, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GROUPE BRANDT, FR

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20160426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60003252

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160307

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160308

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180622

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331