EP1038976A1 - Method of granulating and pulverizing slag or metal melts - Google Patents

Method of granulating and pulverizing slag or metal melts Download PDF

Info

Publication number
EP1038976A1
EP1038976A1 EP00890083A EP00890083A EP1038976A1 EP 1038976 A1 EP1038976 A1 EP 1038976A1 EP 00890083 A EP00890083 A EP 00890083A EP 00890083 A EP00890083 A EP 00890083A EP 1038976 A1 EP1038976 A1 EP 1038976A1
Authority
EP
European Patent Office
Prior art keywords
cooling chamber
slag
temperatures
walls
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00890083A
Other languages
German (de)
French (fr)
Other versions
EP1038976B1 (en
Inventor
Alfred Dipl.-Ing. Edlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holcim Ltd
Original Assignee
Holderbank Financiere Glarus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holderbank Financiere Glarus AG filed Critical Holderbank Financiere Glarus AG
Publication of EP1038976A1 publication Critical patent/EP1038976A1/en
Application granted granted Critical
Publication of EP1038976B1 publication Critical patent/EP1038976B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/074Tower structures for cooling, being confined but not sealed
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery

Definitions

  • the invention relates to a method for granulating and Crushing liquid melts, especially slags or Metal melting, in which the liquid slags with a Fluid jet are sprayed into a cooling chamber.
  • a number of parameters are included in the differential equation for the particle temperature during cooling by radiation, the radiation cooling being highly dependent on the temperature difference between the particle temperature and the wall temperature of the radiation cooler.
  • the temperature dependence in such a differential equation for the particle temperature indicates the respective temperatures with the fourth power, the difference from T s 4 - T w 4 being taken into account as a factor for the decrease in the particle temperature over time.
  • T s denotes the particle temperature and T w the wall temperature.
  • other parameters that are included in the differential equation for the particle temperature T s (t) are also characteristic variables, such as the emissivity of the slag particles and the wall surface.
  • Hot slag particles largely behave as ideal emitters and therefore the known differential equations apply with very high accuracy. From the temperature dependency it now follows that an increase in the initial temperature has a great influence on the heat flux density through the surrounding walls and could thereby increase the efficiency of the radiation cooling.
  • the invention now aims to address these theoretical considerations practically implement and a process of the beginning to create the type mentioned, which with conventional spraying and particle diameters of about 50 to further increase the efficiency of radiation cooling allowed.
  • the method according to the invention exists to achieve this object essentially in that the sprayed melt droplets in Spray jet afterburning hot gases inside the Cooling chamber are heated and that the walls of the cooling chamber to surface temperatures below 400 ° C, preferably below Cooled 300 ° C. Molten slags are usually present with temperatures between 1300 ° and 1400 ° C. Because now this temperature when entering the cooling chamber is further increased by post-combustion, it succeeds in raising the particle temperature further to this Way the efficiency of radiation cooling due to the dependency of the fourth power to increase this temperature.
  • the Firing chamber temperature or the temperature in the afterburning zone can be 200 ° to 300 ° C higher than the original one Slag temperature, which results in better heat transfer at the same time with a higher turbulence and another Droplet disintegration is achieved. So it will be with the improvement heat transfer simultaneously through further disintegration and turbulence increases the residence time so that the Radiation cooling efficiency significantly above conventional Extent can be improved. At the same time leads the increase in slag temperatures after entering the Radiation cooler to reduce slag viscosity and the surface tension, which results in the turbulence shear forces cause further droplet size reduction. Due to the high temperature differences can be special highly energetic steam are generated, including supercritical Vapor states can be achieved.
  • blast furnace slags or slags from waste incineration plants can be inventively also slag from a furnace, Melting metals or melting special alloys for manufacturing of microsinter and special glass melts through the effectively disintegrate the increase in temperature according to the invention and cool quickly, with particularly favorable geometric Shapes, especially spherical contours or spheres the droplets of slag can be formed. All in all can thus be by the afterburning inside the cooling chamber further increase the efficiency of radiation cooling, the means for cooling the slag droplets designed much smaller than conventional facilities can be, so that the space required for such coolers is reduced becomes.
  • the process according to the invention is advantageously carried out in such a way that hot gases with a CO and H 2 content of 20-35% by volume are burned stoichiometrically in a post-combustion zone with hot air in the interior of the cooling chamber.
  • hot gases with such proportions of carbon monoxide and hydrogen can be effectively combusted with preheated air in order to ensure the desired combustion chamber temperature or the desired temperature in the afterburning zone, with rapid heating also being achieved with regard to the behavior of the slag droplets as largely ideal emitters , as a result of rapid cooling by the radiation cooler.
  • Effective radiation cooling can be achieved that the chamber-like walls of the radiation cooler with pressurized water be pressurized at a pressure of 10 to 220 bar and that high pressure steam at temperatures of 200 to 400 ° C and a pressure of 10 to 220 bar from the chamber-like walls is subtracted.
  • 1 denotes a slag tundish, in what molten slag at temperatures between 1300 ° and 1400 ° C is kept in stock.
  • the molten Slag is in the form of very fine droplets 3 in a radiation cooler 4 ejected, the ejection by pressing of fluid via a lance 5.
  • the fluid can be steam, hot gas sub-stoichiometrically burned hot gas or water are used, the formation of the finest droplets by a height-adjustable, tubular weir 6, which in the Meaning of the double arrow 7 can be raised and lowered, can be varied.
  • the fine droplets leave them Slag outlet opening 22 of the tundish, being a substantially tubular slag jet is formed, the wall thickness from the distance 8 between the lower edge of the tubular Weir 6 and the outlet opening 22 is determined.
  • a line 11th Pressurized water introduced at a pressure of 10 to 220 bar.
  • the wall temperature of the radiation cooler 4 can thereby reduce about 200 ° C, 12 high pressure steam via line at temperatures from 200 ° to 400 ° C under a pressure of 10 to 220 bar is deducted.
  • Due to the high temperature difference due to the extremely fine distribution of the droplets and the shear forces and turbulent forces exerted by the burner 9 Currents there is a rapid cooling of the fine Slag particles 3, which at the outlet of the radiation cooler 4th with temperatures below 600 ° C in a downstream enter further cooler 13, which is of conventional design can be and designed as a convection steam boiler with natural circulation can be.
  • the boiler tubes of this convection boiler are designated 14 here.
  • the rising hot water or the Steam formed passes into a steam drum 15, steam is withdrawn via a line 16.
  • the condensed water arrives via a downpipe 17 back into the boiler tubes 14.
  • At 18 is another cooler, which acts as a combustion air preheater can be used, indicated, the derivation 19 of this cooler with the supply of hot air via line 10 the burners 9 can be connected.
  • microgranules with particle diameters of about 50 ⁇ m discharged via a rotary valve 20, with the connection 21 exhaust gases with temperatures of about 200 ° C deducted can be.
  • the microgranules are mostly amorphous or glassy in front. Due to the extremely rapid cooling, the Spraying molten metal like metallic glass is used for the production of superconductors, educated.

Abstract

A melt granulation and comminution process, comprising gas heating of sprayed droplets within a cooling chamber having cooled walls, is new. A melt granulation and comminution process comprises spraying the melt into a cooling chamber using a fluid jet, the sprayed melt droplets being heated in the spray jet by post-combustion of hot gases within the cooling chamber and the cooling chamber walls being cooled to a surface temperature of below 400 (preferably below 300) degrees C.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Granulieren und Zerkleinern von flüssigen Schmelzen, insbesondere Schlacken oder Metallschmelzen, bei welchem die flüssigen Schlacken mit einem Fluidstrahl in eine Kühlkammer versprüht werden.The invention relates to a method for granulating and Crushing liquid melts, especially slags or Metal melting, in which the liquid slags with a Fluid jet are sprayed into a cooling chamber.

Aus theoretischen Überlegungen ist es bekannt, daß die Kühlgeschwindigkeit von Teilchen vom Durchmesser der Teilchen abhängig ist. Die Strahlungskühlung nimmt mit abnehmender Teilchengröße stark zu und ist aus diesem Grunde bereits bekannt geworden, Schlacken möglichst fein zu versprühen, wobei auf diese Weise Teilchendurchmesser zwischen 10 und 300 µm im Falle von flüssigen Schlacken mit Ausgangstemperaturen von etwa 1350° C ohne weiteres erzielbar waren. Es ist weiters aus theoretischen Überlegungen bekannt, daß die Strahlungskühlung in hohem Maße von der Verweilzeit der Teilchen im Strahlungskühler und damit von der Teilchengeschwindigkeit abhängig ist. Eine höhere Teilchengeschwindigkeit führt zu einer geringeren Strahlungskühlung, da die Verweilzeit im Kühler rasch abnimmt. Kleine Partikel werden nun durch die Treibgasströmung in einem derartigen Strahlungskühler schneller beschleunigt, was zu kleineren Verweilzeiten führt. Hohe Wärmeflußdichten setzen aber nun sowohl kleine Teilchen als auch kleine Teilchengeschwindigkeiten voraus, wobei die entsprechenden theoretischen Überlegungen sich aus den für die Abkühlung von Teilchen geltenden Differentialgleichungen ergeben.It is known from theoretical considerations that the cooling rate depends on particles on the diameter of the particles is. Radiation cooling increases with decreasing particle size strong and has already become known for this reason Spray slag as finely as possible, doing this Particle diameter between 10 and 300 µm in the case of liquid Slag with starting temperatures of around 1350 ° C without more were achievable. It is also out of theoretical considerations known that the radiation cooling to a large extent by the residence time of the particles in the radiation cooler and thus of is dependent on the particle speed. A higher particle speed leads to less radiation cooling because the dwell time in the cooler decreases rapidly. Small particles become now through the propellant gas flow in such a radiation cooler accelerated faster, resulting in shorter dwell times leads. However, high heat flux densities now set both small particles as well as small particle velocities ahead, the corresponding theoretical considerations derive from the for the Cooling of particles yield applicable differential equations.

In die Differentialgleichung für die Teilchentemperatur bei einer Abkühlung durch Strahlung gehen eine Reihe von Parametern ein, wobei die Strahlungskühlung in hohem Maße von der Temperaturdifferenz zwischen der Teilchentemperatur und der Wandtemperatur des Strahlungskühlers abhängt. Die Temperaturabhängigkeit in einer derartigen Differentialgleichung für die Teilchentemperatur weist die jeweiligen Temperaturen mit der vierten Potenz aus, wobei für die Abnahme der Teilchentemperatur über die Zeit die Differenz aus Ts 4 - Tw 4 als Faktor eingeht. Ts bezeichnet hiebei die Teilchentemperatur und Tw die Wandtemperatur. Weitere in die Differentialgleichung für die Teilchentemperatur Ts(t) eingehende Parameter sind neben der Partikelmasse und der Wärmekapazität, welche zur Temperaturabnahme umgekehrt proportional sind, auch charakteristische Größen, wie die Emissivität der Schlackenteilchen und die Wandoberfläche. Heiße Schlackenteilchen verhalten sich weitestgehend als ideale Strahler und es gelten daher die bekannten Differentialgleichungen mit sehr hoher Genauigkeit. Aus der Temperaturabhängigkeit ergibt sich nun, daß eine Erhöhung der Ausgangstemperatur in hohem Ausmaß die Wärmeflußdichte durch die umgebenden Wände beeinflußt und dadurch die Effizienz der Strahlungskühlung steigern könnte.A number of parameters are included in the differential equation for the particle temperature during cooling by radiation, the radiation cooling being highly dependent on the temperature difference between the particle temperature and the wall temperature of the radiation cooler. The temperature dependence in such a differential equation for the particle temperature indicates the respective temperatures with the fourth power, the difference from T s 4 - T w 4 being taken into account as a factor for the decrease in the particle temperature over time. T s denotes the particle temperature and T w the wall temperature. In addition to the particle mass and the heat capacity, which are inversely proportional to the temperature decrease, other parameters that are included in the differential equation for the particle temperature T s (t) are also characteristic variables, such as the emissivity of the slag particles and the wall surface. Hot slag particles largely behave as ideal emitters and therefore the known differential equations apply with very high accuracy. From the temperature dependency it now follows that an increase in the initial temperature has a great influence on the heat flux density through the surrounding walls and could thereby increase the efficiency of the radiation cooling.

Die Erfindung zielt nun darauf ab, diese theoretischen Überlegungen praktisch umzusetzen und ein Verfahren der eingangs genannten Art zu schaffen, welches bei konventionellem Versprühen und auf diese Weise erzielten Teilchendurchmessern von etwa 50 um die Effizienz der Strahlungskühlung weiter zu erhöhen gestattet.The invention now aims to address these theoretical considerations practically implement and a process of the beginning to create the type mentioned, which with conventional spraying and particle diameters of about 50 to further increase the efficiency of radiation cooling allowed.

Zur Lösung dieser Aufgabe besteht das erfindungsgemäße Verfahren im wesentlichen darin, daß die versprühten Schmelzentröpfchen im Sprühstrahl durch Nachverbrennung von Heißgasen im Inneren der Kühlkammer aufgeheizt werden und daß die Wände der Kühlkammer auf Oberflächentemperaturen von unter 400° C, vorzugsweise unter 300° C gekühlt werden. Schmelzflüssige Schlacken liegen üblicherweise mit Temperaturen zwischen 1300° und 1400° C vor. Dadurch, daß nun diese Temperatur beim Eintritt in die Kühlkammer durch eine Nachverbrennung weiter gesteigert wird, gelingt es die Teilchentemperatur weiter anzuheben, um auf diese Weise die Effizienz der Strahlungskühlung aufgrund der Abhängigkeit von der vierten Potenz dieser Temperatur zu erhöhen. Die Brennkammertemperatur bzw. die Temperatur in der Nachverbrennungszone kann 200° bis 300° C höher liegen, als die ursprüngliche Schlackentemperatur, wodurch ein besserer Wärmeübergang gleichzeitig mit einer höheren Turbulenz und einer weiteren Tröpfchendesintegration erzielt wird. Es wird somit mit der Verbesserung des Wärmeüberganges gleichzeitig durch weitere Desintegration und Turbulenz die Verweilzeit erhöht, sodaß die Effizienz der Strahlungskühlung wesentlich über das konventionelle Ausmaß hinaus verbessert werden kann. Gleichzeitig führt die Erhöhung der Schlackentemperaturen nach dem Eintritt in den Strahlungskühler zu einer Verringerung der Schlackenviskosität und der Oberflächenspannung, was dazu führt, daß die Turbulenzscherkräfte eine weitere Tröpfchenzerkleinerung bewirken. Bedingt durch die hohen Temperaturendifferenzen kann besonders hoch energetischer Dampf erzeugt werden, wobei auch überkritische Dampfzustände erzielbar sind. Neben Hochofenschlacken oder Schlacken aus Müllverbrennungsanlagen lassen sich erfindungsgemäß auch Schlacken aus einer Schmelzkammerfeuerung, Metallschmelzen oder Schmelzen von Speziallegierungen zur Herstellung von Mikrosinter und Spezialglasschmelzen durch die erfindungsgemäße Erhöhung der Temperatur wirkungsvoll desintegrieren und rasch abkühlen, wobei besonders günstige geometrische Formen, insbesondere sphärische Konturen oder Kügelchen der Schlackentröpfchen ausgebildet werden können. Insgesamt läßt sich somit durch die Nachverbrennung im Inneren der Kühlkammer die Effizienz der Strahlungskühlung weiter steigern, wobei die Einrichtungen zum Abkühlen der Schlackentröpfchen wesentlich kleiner als konventionelle Einrichtungen ausgebildet werden können, sodaß der Platzbedarf für derartige Kühler verringert wird.The method according to the invention exists to achieve this object essentially in that the sprayed melt droplets in Spray jet afterburning hot gases inside the Cooling chamber are heated and that the walls of the cooling chamber to surface temperatures below 400 ° C, preferably below Cooled 300 ° C. Molten slags are usually present with temperatures between 1300 ° and 1400 ° C. Because now this temperature when entering the cooling chamber is further increased by post-combustion, it succeeds in raising the particle temperature further to this Way the efficiency of radiation cooling due to the dependency of the fourth power to increase this temperature. The Firing chamber temperature or the temperature in the afterburning zone can be 200 ° to 300 ° C higher than the original one Slag temperature, which results in better heat transfer at the same time with a higher turbulence and another Droplet disintegration is achieved. So it will be with the improvement heat transfer simultaneously through further disintegration and turbulence increases the residence time so that the Radiation cooling efficiency significantly above conventional Extent can be improved. At the same time leads the increase in slag temperatures after entering the Radiation cooler to reduce slag viscosity and the surface tension, which results in the turbulence shear forces cause further droplet size reduction. Due to the high temperature differences can be special highly energetic steam are generated, including supercritical Vapor states can be achieved. In addition to blast furnace slags or slags from waste incineration plants can be inventively also slag from a furnace, Melting metals or melting special alloys for manufacturing of microsinter and special glass melts through the effectively disintegrate the increase in temperature according to the invention and cool quickly, with particularly favorable geometric Shapes, especially spherical contours or spheres the droplets of slag can be formed. All in all can thus be by the afterburning inside the cooling chamber further increase the efficiency of radiation cooling, the means for cooling the slag droplets designed much smaller than conventional facilities can be, so that the space required for such coolers is reduced becomes.

Mit Vorteil wird das erfindungsgemäße Verfahren so durchgeführt, daß im Inneren der Kühlkammer Heißgase mit einem CO und H2 Anteil von 20 - 35 Vol% stöchiometrisch in einer Nachverbrennungszone mit Heißluft verbrannt werden. Heißgase mit derartigen Anteilen an Kohlenmonoxid und Wasserstoff können auf diese Weise mit vorgewärmter Luft wirkungsvoll nachverbrannt werden, um die gewünschte Brennkammertemperatur bzw. gewünschte Temperatur in der Nachverbrennungszone sicherzustellen, wobei mit Rücksicht auf das Verhalten der Schlackentröpfchen als weitestgehend ideale Strahler eine rasche Erwärmung ebenso erzielt wird, wie in der Folge eine rasche Abkühlung durch den Strahlungskühler. The process according to the invention is advantageously carried out in such a way that hot gases with a CO and H 2 content of 20-35% by volume are burned stoichiometrically in a post-combustion zone with hot air in the interior of the cooling chamber. In this way, hot gases with such proportions of carbon monoxide and hydrogen can be effectively combusted with preheated air in order to ensure the desired combustion chamber temperature or the desired temperature in the afterburning zone, with rapid heating also being achieved with regard to the behavior of the slag droplets as largely ideal emitters , as a result of rapid cooling by the radiation cooler.

Mit Vorteil wird hiebei so vorgegangen, daß die Tröpfchen in einer Nachverbrennungszone des Strahlungskühler auf Temperaturen zwischen 1500° C und 1750° C aufgeheizt werden, wobei diese Temperaturen naturgemäß für Spezialgasschmelzen und Sonderanwendungen auch noch höher gewählt werden können, um die Effizienz zu steigern. Temperaturen zwischen 1500° und 1750° C und die durch die Nachverbrennung bedingten Turbulenz sind jedoch für Hochofenschlacken, Müllverbrennungsschlacken oder Schmelzen aus der Schmelzkammerfeuerung mit Vorteil einsetzbar und führen unmittelbar zu sphärischen, glasig erstarrenden Partikelchen mit besonders kleinen Durchmessern.It is advantageous to proceed in such a way that the droplets in a post-combustion zone of the radiation cooler to temperatures be heated between 1500 ° C and 1750 ° C, these Temperatures naturally for special gas melts and special applications even higher can be chosen to increase efficiency to increase. Temperatures between 1500 ° and 1750 ° C and the turbulence caused by afterburning are however for Blast furnace slag, waste incineration slag or smelting the melting chamber firing can be used and lead with advantage with spherical, glassy solidifying particles especially small diameters.

Eine wirkungsvolle Strahlungskühlung läßt sich dadurch erzielen, daß die kammerartigen Wände des Strahlungskühlers mit Druckwasser unter einem Druck von 10 bis 220 bar beaufschlagt werden und daß Hochdruckdampf bei Temperaturen von 200 bis 400° C und einem Druck von 10 bis 220 bar aus den kammerartigen Wänden abgezogen wird.Effective radiation cooling can be achieved that the chamber-like walls of the radiation cooler with pressurized water be pressurized at a pressure of 10 to 220 bar and that high pressure steam at temperatures of 200 to 400 ° C and a pressure of 10 to 220 bar from the chamber-like walls is subtracted.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles einer für die Durchführung des erfindungsgemäßen Verfahrens geeigneten Einrichtung näher erläutert.The invention is described below with reference to a drawing schematically illustrated embodiment of one for the Implementation of the method suitable device explained in more detail.

In der Zeichnung ist mit 1 ein Schlackentundish bezeichnet, in welchem schmelzflüssige Schlacken bei Temperaturen zwischen 1300° und 1400° C vorrätig gehalten ist. Die schmelzflüssige Schlacke wird in Form von feinsten Tröpfchen 3 in einen Strahlungskühler 4 ausgestossen, wobei der Ausstoß durch Einpressen von Fluid über eine Lanze 5 erfolgt. Als Fluid kann Dampf, Heißgas unterstöchiometrisch verbranntes Heißgas oder auch Wasser zum Einsatz gelangen, wobei die Ausbildung feinster Tröpfchen durch ein höhenverstellbares, rohrförmiges Wehr 6, welches im Sinne des Doppelpfeiles 7 angehoben und abgesenkt werden kann, variiert werden kann. Die feinen Tröpfchen verlassen die Schlackenaustrittsöffnung 22 des Tundish, wobei ein im wesentlichen rohrförmiger Schlackenstrahl gebildet wird, dessen Wandstärke vom Abstand 8 zwischen der Unterkante des rohrförmigen Wehres 6 und der Austrittsöffnung 22 bestimmt ist.In the drawing, 1 denotes a slag tundish, in what molten slag at temperatures between 1300 ° and 1400 ° C is kept in stock. The molten Slag is in the form of very fine droplets 3 in a radiation cooler 4 ejected, the ejection by pressing of fluid via a lance 5. The fluid can be steam, hot gas sub-stoichiometrically burned hot gas or water are used, the formation of the finest droplets by a height-adjustable, tubular weir 6, which in the Meaning of the double arrow 7 can be raised and lowered, can be varied. The fine droplets leave them Slag outlet opening 22 of the tundish, being a substantially tubular slag jet is formed, the wall thickness from the distance 8 between the lower edge of the tubular Weir 6 and the outlet opening 22 is determined.

Unmittelbar nach dem Eintritt der Schlackentröpfchen 3 in den Strahlungskühler 4 sind nun Brenner 9 angeordnet, welche über eine Leitung 10 mit Brenngasen und Heißluft versorgt werden. Die Verbrennung wird stöchiometrisch geführt und die Temperatur der Schlackentröpfchen um etwa 300° C über die Temperatur der Schlacke 2 im Schlackentundish 1 angehoben.Immediately after the slag droplets 3 enter the Radiation cooler 4 are now arranged burner 9, which a line 10 can be supplied with fuel gases and hot air. The Combustion is carried out stoichiometrically and the temperature of the Slag droplets about 300 ° C above the temperature of the Slag 2 in slag tundish 1 raised.

In die Wände des Strahlungskühlers 4 wird über eine Leitung 11 Druckwasser unter einem Druck von 10 bis 220 bar eingebracht. Die Wandtemperatur des Strahlungskühlers 4 läßt sich dadurch auf etwa 200° C herabsetzen, wobei über die Leitung 12 Hochdruckdampf bei Temperaturen von 200° bis 400° C unter einem Druck von 10 bis 220 bar abgezogen wird. Aufgrund der hohen Temperaturdifferenz, der überaus feinen Verteilung der Tröpfchen und aufgrund der durch die Brenner 9 ausgeübten Scherkräfte und turbulenten Strömungen erfolgt eine rasche Abkühlung der feinen Schlackenteilchen 3, welche am Ausgang des Strahlungskühlers 4 mit Temperaturen von unter 600° C in einen nachgeschalteten weiteren Kühler 13 eintreten, welcher konventionell ausgebildet sein kann und als Konvektionsdampfkessel mit Naturumlauf ausgebildet sein kann. Die Siederohre dieses Konvektionskessels sind hiebei mit 14 bezeichnet. Das aufsteigende Heißwasser bzw. der gebildete Dampf gelangt in eine Dampftrommel 15, wobei Dampf über eine Leitung 16 abgezogen wird. Das kondensierte Wasser gelangt über ein Fallrohr 17 wiederum zurück in die Siederohre 14.In the walls of the radiation cooler 4 is a line 11th Pressurized water introduced at a pressure of 10 to 220 bar. The wall temperature of the radiation cooler 4 can thereby reduce about 200 ° C, 12 high pressure steam via line at temperatures from 200 ° to 400 ° C under a pressure of 10 to 220 bar is deducted. Due to the high temperature difference, due to the extremely fine distribution of the droplets and the shear forces and turbulent forces exerted by the burner 9 Currents there is a rapid cooling of the fine Slag particles 3, which at the outlet of the radiation cooler 4th with temperatures below 600 ° C in a downstream enter further cooler 13, which is of conventional design can be and designed as a convection steam boiler with natural circulation can be. The boiler tubes of this convection boiler are designated 14 here. The rising hot water or the Steam formed passes into a steam drum 15, steam is withdrawn via a line 16. The condensed water arrives via a downpipe 17 back into the boiler tubes 14.

Mit 18 ist ein weiterer Kühler, welcher als Verbrennungsluftvorwärmer eingesetzt werden kann, angedeutet, wobei die Ableitung 19 dieses Kühlers mit der Heißluftzufuhr über die Leitung 10 zu den Brennern 9 verbunden werden kann.At 18 is another cooler, which acts as a combustion air preheater can be used, indicated, the derivation 19 of this cooler with the supply of hot air via line 10 the burners 9 can be connected.

Das Mikrogranulat mit Teilchendurchmessern von etwa 50 um wird über eine Zellradschleuse 20 ausgetragen, wobei über den Anschluß 21 Abgase mit Temperaturen von etwa 200° C abgezogen werden können. Das Mikrogranulat liegt überwiegend amorph bzw. glasig vor. Aufgrund der überaus raschen Abkühlung wird beim Versprühen von Metallschmelzen metallisches Glas, wie es beispielsweise für die Herstellung von Supraleitern verwendet wird, gebildet.The microgranules with particle diameters of about 50 µm discharged via a rotary valve 20, with the connection 21 exhaust gases with temperatures of about 200 ° C deducted can be. The microgranules are mostly amorphous or glassy in front. Due to the extremely rapid cooling, the Spraying molten metal like metallic glass is used for the production of superconductors, educated.

Claims (4)

Verfahren zum Granulieren und Zerkleinern von flüssigen Schmelzen, insbesondere Schlacken oder Metallschmelzen, bei welchem die flüssigen Schlacken (2) mit einem Fluidstrahl in eine Kühlkammer (4) versprüht werden, dadurch gekennzeichnet, daß die versprühten Schmelzentröpfchen (3) im Sprühstrahl durch Nachverbrennung von Heißgasen im Inneren der Kühlkammer (4) aufgeheizt werden und daß die Wände der Kühlkammer (4) auf Oberflächentemperaturen von unter 400° C, vorzugsweise unter 300° C gekühlt werden.Process for granulating and crushing liquid Melting, in particular slags or metal melts, in which the liquid slags (2) with a fluid jet in a Cooling chamber (4) are sprayed, characterized in that the sprayed melt droplets (3) in the spray jet by post-combustion heated by hot gases inside the cooling chamber (4) and that the walls of the cooling chamber (4) on surface temperatures cooled below 400 ° C, preferably below 300 ° C become. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Inneren der Kühlkammer (4) Heißgase mit einem CO und H2 Anteil von 20 - 35 Vol% in einer Nachverbrennungszone mit Heißluft verbrannt werden.Method according to claim 1, characterized in that in the interior of the cooling chamber (4) hot gases with a CO and H 2 content of 20-35% by volume are burned with hot air in a post-combustion zone. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Tröpfchen (3) in einer Nachverbrennungszone des Strahlungskühler (4) auf Temperaturen zwischen 1500° C und 1750° C aufgeheizt werden.Method according to one of claims 1 to 2, characterized in that that the droplets (3) in a post-combustion zone of the radiation cooler (4) to temperatures between 1500 ° C and 1750 ° C to be heated. Verfahren nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß die kammerartigen Wände des Strahlungskühlers (4) mit Druckwasser unter einem Druck von 10 bis 220 bar beaufschlagt werden und daß Hochdruckdampf bei Temperaturen von 200 bis 400° C und einem Druck von 10 bis 220 bar aus den kammerartigen Wänden abgezogen wird.Method according to one of claims 1, 2 or 3, characterized characterized in that the chamber-like walls of the radiation cooler (4) with pressurized water under a pressure of 10 to 220 bar be applied and that high pressure steam at temperatures of 200 to 400 ° C and a pressure of 10 to 220 bar from the chamber-like walls is pulled off.
EP00890083A 1999-03-24 2000-03-17 Method of granulating and pulverizing slag or metal melts Expired - Lifetime EP1038976B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT55099 1999-03-24
AT0055099A AT407224B (en) 1999-03-24 1999-03-24 METHOD FOR GRANULATING AND CRUSHING LIQUID MELT

Publications (2)

Publication Number Publication Date
EP1038976A1 true EP1038976A1 (en) 2000-09-27
EP1038976B1 EP1038976B1 (en) 2001-11-21

Family

ID=3493592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00890083A Expired - Lifetime EP1038976B1 (en) 1999-03-24 2000-03-17 Method of granulating and pulverizing slag or metal melts

Country Status (3)

Country Link
EP (1) EP1038976B1 (en)
AT (1) AT407224B (en)
DE (1) DE50000083D1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408956B (en) * 2000-05-11 2002-04-25 Tribovent Verfahrensentwicklg DEVICE FOR GENERATING A HOT GAS FLOW
EP1229136A1 (en) * 2001-01-25 2002-08-07 Tribovent Verfahrensentwicklung GmbH Process and device for granulating liquid slags
EP1234890A1 (en) * 2001-02-27 2002-08-28 Tribovent Verfahrensentwicklung GmbH Device for atomising melts
EP1234889A1 (en) * 2001-02-27 2002-08-28 Tribovent Verfahrensentwicklung GmbH Apparatus for granulating of liquid slag
EP1256633A2 (en) * 2001-05-10 2002-11-13 Tribovent Verfahrensentwicklung GmbH Process and apparatus for granulating molten materials such as e.g. liquid slags
WO2002090282A1 (en) * 2001-05-10 2002-11-14 Tribovent Verfahrensentwicklung Gmbh Device for granulating, pulverizing and comminuting liquid slag
EP1306450A1 (en) * 2001-10-23 2003-05-02 Tribovent Verfahrensentwicklung GmbH Method and apparatus for granulating and pulverizing liquid melts
DE10205897A1 (en) * 2002-02-13 2003-08-21 Mepura Metallpulver Process for the production of particulate material
EP1400602A2 (en) * 2002-09-10 2004-03-24 Tribovent Verfahrensentwicklung GmbH Method and apparatus for the granulation of liquid melts
WO2004046401A1 (en) * 2002-11-20 2004-06-03 Patco Engineering Gmbh Method for obtaining copper by spraying a melt containing a copper raw material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533633A (en) * 1946-04-01 1950-12-12 Charles W Schott Granulated slag and method for producing it
JPS54161596A (en) * 1978-06-12 1979-12-21 Sumitomo Metal Ind Ltd Heat recovering method for molten slag
GB1584238A (en) * 1977-10-13 1981-02-11 Nakayama Steel Works Ltd Method and apparatus for manufacturing crushed sand from melted slag from a ferrous blast furnace
DE3126709A1 (en) * 1981-07-07 1983-01-27 Klöckner-Humboldt-Deutz AG, 5000 Köln Process and apparatus for the recovery of industrial waste heat from the heat content of metallurgical slag
SU1052342A1 (en) * 1982-07-05 1983-11-07 Предприятие П/Я Г-4361 Installation for producing metal pellets
WO1995015402A1 (en) * 1993-12-03 1995-06-08 'holderbank' Financiere Glarus Ag Process and device for granulating and crushing molten materials and grinding stocks
US5609919A (en) * 1994-04-21 1997-03-11 Altamat Inc. Method for producing droplets
DE19632698A1 (en) * 1996-08-14 1998-02-19 Forschungsgemeinschaft Eisenhu Fine grained slag sand production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533633A (en) * 1946-04-01 1950-12-12 Charles W Schott Granulated slag and method for producing it
GB1584238A (en) * 1977-10-13 1981-02-11 Nakayama Steel Works Ltd Method and apparatus for manufacturing crushed sand from melted slag from a ferrous blast furnace
JPS54161596A (en) * 1978-06-12 1979-12-21 Sumitomo Metal Ind Ltd Heat recovering method for molten slag
DE3126709A1 (en) * 1981-07-07 1983-01-27 Klöckner-Humboldt-Deutz AG, 5000 Köln Process and apparatus for the recovery of industrial waste heat from the heat content of metallurgical slag
SU1052342A1 (en) * 1982-07-05 1983-11-07 Предприятие П/Я Г-4361 Installation for producing metal pellets
WO1995015402A1 (en) * 1993-12-03 1995-06-08 'holderbank' Financiere Glarus Ag Process and device for granulating and crushing molten materials and grinding stocks
US5609919A (en) * 1994-04-21 1997-03-11 Altamat Inc. Method for producing droplets
DE19632698A1 (en) * 1996-08-14 1998-02-19 Forschungsgemeinschaft Eisenhu Fine grained slag sand production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198006, Derwent World Patents Index; Class M24, AN 1980-09981C, XP002141219 *
DATABASE WPI Section Ch Week 198427, Derwent World Patents Index; Class M22, AN 1984-170428, XP002141220 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408956B (en) * 2000-05-11 2002-04-25 Tribovent Verfahrensentwicklg DEVICE FOR GENERATING A HOT GAS FLOW
EP1229136A1 (en) * 2001-01-25 2002-08-07 Tribovent Verfahrensentwicklung GmbH Process and device for granulating liquid slags
EP1234890A1 (en) * 2001-02-27 2002-08-28 Tribovent Verfahrensentwicklung GmbH Device for atomising melts
EP1234889A1 (en) * 2001-02-27 2002-08-28 Tribovent Verfahrensentwicklung GmbH Apparatus for granulating of liquid slag
EP1256633A2 (en) * 2001-05-10 2002-11-13 Tribovent Verfahrensentwicklung GmbH Process and apparatus for granulating molten materials such as e.g. liquid slags
WO2002090282A1 (en) * 2001-05-10 2002-11-14 Tribovent Verfahrensentwicklung Gmbh Device for granulating, pulverizing and comminuting liquid slag
EP1256633A3 (en) * 2001-05-10 2003-10-22 Tribovent Verfahrensentwicklung GmbH Process and apparatus for granulating molten materials such as e.g. liquid slags
EP1306450A1 (en) * 2001-10-23 2003-05-02 Tribovent Verfahrensentwicklung GmbH Method and apparatus for granulating and pulverizing liquid melts
DE10205897A1 (en) * 2002-02-13 2003-08-21 Mepura Metallpulver Process for the production of particulate material
EP1400602A2 (en) * 2002-09-10 2004-03-24 Tribovent Verfahrensentwicklung GmbH Method and apparatus for the granulation of liquid melts
EP1400602A3 (en) * 2002-09-10 2004-07-21 Tribovent Verfahrensentwicklung GmbH Method and apparatus for the granulation of liquid melts
WO2004046401A1 (en) * 2002-11-20 2004-06-03 Patco Engineering Gmbh Method for obtaining copper by spraying a melt containing a copper raw material

Also Published As

Publication number Publication date
EP1038976B1 (en) 2001-11-21
AT407224B (en) 2001-01-25
ATA55099A (en) 2000-06-15
DE50000083D1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
EP0220418B1 (en) Process and apparatus for making very fine spherical powder
EP0866881B1 (en) Process for reclaiming incineration waste
EP1038976B1 (en) Method of granulating and pulverizing slag or metal melts
DE1496434B2 (en) Method and device for the production of glass beads
EP1203102B1 (en) Device for atomising liquid melts
DE2735390A1 (en) METHOD AND DEVICE FOR HEAT RECOVERY FROM MOLTEN SLAG
EP0053848B2 (en) Process for injecting gases rich in oxygen into a molten non-ferrous metal bath
DE3315431C2 (en) Process for increasing the service life of water-cooled tuyeres when operating a blast furnace
AT411362B (en) Atomization and granulation of mineral, glass or thermoplastic melts, mixes hot combustion gases from melt chamber with propulsive jet
EP1299566B1 (en) Device for atomizing and granulating liquid slags
DE3906078A1 (en) METHOD FOR RECOVERING HEAT FROM HOT PROCESS GAS
AT410676B (en) METHOD AND DEVICE FOR GRANULATING AND CRUSHING LIQUID MELT
AT408956B (en) DEVICE FOR GENERATING A HOT GAS FLOW
AT410102B (en) MELT SPRAYING DEVICE
AT412093B (en) DEVICE FOR SPRAYING MELT
AT252973B (en) Device for heating steel melting vessels
DE2721932C2 (en) Method and device for the production of a material suitable for landfill or as an intermediate product from fly ash
AT408232B (en) METHOD FOR GRANULATING LIQUID SLAG AND DEVICE FOR CARRYING OUT THIS METHOD
EP0829550A1 (en) Method of processing incineration residues in a multi-stage metal bath converter
AT407841B (en) DEVICE FOR GRANULATING AND CRUSHING LIQUID SLAG OR FOAM SLAG
AT410099B (en) METHOD FOR GRANULATING SLAG
AT406955B (en) Process and apparatus for the granulation and comminution of liquid slags
AT410100B (en) DEVICE FOR GRANULATING, SPRAYING AND CRUSHING LIQUID MELT
AT411689B (en) Pulverizing and granulating melts, especially liquid slag, comprises expelling the molten stream as a jacket stream with a hot gas from a tundish so that the stream hits different sites on the spinner gate
DE1421094A1 (en) Process for gasifying pulverized coal by means of a vortex flow process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT LU

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000908

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010427

AKX Designation fees paid

Free format text: BE DE FR GB IT LU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOLCIM LTD.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT LU

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 50000083

Country of ref document: DE

Date of ref document: 20020221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020222

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030319

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030401

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030402

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030530

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040317

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *HOLCIM LTD

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050317