EP1036615B1 - Process for foaming metallic articles - Google Patents

Process for foaming metallic articles Download PDF

Info

Publication number
EP1036615B1
EP1036615B1 EP00105235A EP00105235A EP1036615B1 EP 1036615 B1 EP1036615 B1 EP 1036615B1 EP 00105235 A EP00105235 A EP 00105235A EP 00105235 A EP00105235 A EP 00105235A EP 1036615 B1 EP1036615 B1 EP 1036615B1
Authority
EP
European Patent Office
Prior art keywords
protective layer
space
wall
radiation
pressed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00105235A
Other languages
German (de)
French (fr)
Other versions
EP1036615A1 (en
Inventor
Bernd Rother
Andreas Mucha
Lothar Siegert
Frank Baumgärtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schunk Sintermetalltechnik GmbH
Original Assignee
Schunk Sintermetalltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1999154755 external-priority patent/DE19954755A1/en
Application filed by Schunk Sintermetalltechnik GmbH filed Critical Schunk Sintermetalltechnik GmbH
Publication of EP1036615A1 publication Critical patent/EP1036615A1/en
Application granted granted Critical
Publication of EP1036615B1 publication Critical patent/EP1036615B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0028Microwave heating

Definitions

  • the invention relates to a method for foaming one of at least a metal powder and at least one gas-releasing propellant powder existing Pressings, which is optionally connected to at least one cover layer, wherein the Pressling is placed in a room and heated to foaming. Further
  • the invention relates to the use of a device for foaming a Compact.
  • From DE 44 26 627 C2 discloses a method and an apparatus for the production of metallic Composite materials of one or more cover layers of solid material and from a core located between them, known by compression a mixture of at least one metal powder and at least one gas-releasing Propellant powder is formed. A composite thus formed is then placed in a chamber furnace introduced at a temperature of 850 ° C. At this temperature foams the Pressling to the extent necessary without melting the outer layers.
  • the heating is thus carried out by heat transfer such that initially over indirectly transfer the heat to the pellet via a foaming tool becomes.
  • a foaming tool becomes.
  • A1 relates to a device for the digestion of substances.
  • a substance to be analyzed can be placed in a quartz glass vessel be introduced, the substance side with a protective layer z.
  • the present invention is based on the problem with high efficiency and energetic low-foaming compacts, with the additional possibility to be given is intended to heat different areas of the compact different or, where appropriate to observe the foaming in order to be able to intervene in a targeted manner.
  • the problem is essentially solved by the fact that the compact is foamed by externally injected into the room radiation energy, wherein the space of a transparent, semitransparent or translucent wall is limited, at least the space inside with one opposite the foamable compact and the optional topcoat chemically inert, permeable to the coupled radiation energy or substantially permeable protective layer is provided.
  • quartz glass material or such containing is in question.
  • Al 2 O 3 and / or Si 3 N 4 and / or BN and / or SiO 2 / Al 2 O 3 and / or mixtures thereof may be used as the protective layer.
  • the protective layer can be applied to the inner surfaces of the wall, optionally via a bonding agent layer, by PVD methods.
  • electron beam evaporation, magnetron sputtering, cathodic arc evaporation or plasma immersion ion implantation come into question.
  • the protective layer such as aluminum oxide layer is coupled via at least one graded intermediate layer in particular of silicon and aluminum oxide to the wall as the quartz glass component, in particular the protective layer such as aluminum oxide layer by physical vapor deposition and / or chemical vapor deposition is deposited and preferably the alumina is formed by post-oxidation of an aluminum layer by means of plasma treatment and / or thermal oxidation or reaction with SiO 2 .
  • the invention relates to the use of a device with one of a wall limited space and a radiant energy einkoppelnden in the room Energy source, wherein the wall opposite to the input radiation energy is transparent or at least translucent and at least room inside with a chemically inert to the foamable material and to the radiant energy transparent or translucent protective layer is covered, for foaming a arranged in the space consisting of at least one metal powder and at least one gas-releasing propellant powder consisting of existing compact.
  • the thickness D of the wall itself should be in the range between 5 and 25 mm in particular about 15 mm.
  • the heat source itself is preferably IR emitters, the Radiation energy is coupled in such a way that in the foaming body Heat sinks can form. This allows a targeted foaming geometry and targeted density gradient can be achieved.
  • the thickness thereof should be in the range between 20 nm and 2 ⁇ m.
  • the quartz glass By the use of quartz glass material to form the walls, the Surrounded by frothing to press, arrive mechanically durable long-term stable Materials are used that are manufactured and used inexpensively can.
  • the quartz glass ensures that heat radiation, especially in the Infrared range up to 2 microns and in the range between 3 and 3.5 microns with a transmission coefficient between 0.8 and 0.9 can be coupled. Furthermore, results in the Use of quartz glass the possibility of visual observation during foaming, so that a controlling intervention during foaming is possible.
  • the wall can consist of quartz glass components. Quartz glass is because of its high melting point and high transparency in the infrared and in the visible spectral range for coupling heat radiation into hot, liquid and gaseous media and for the observation of the processes themselves suitable. When contact However, reactions occur with chemically aggressive media such as liquid aluminum on, the quartz glass parts or components made therefrom within a short time to destroy.
  • the invention proposes that the transparent glass block on its facing the material Side chemically passivated and provided with a protective layer of aluminum oxide. This may have a thickness between 20 nm and 2 microns.
  • the alumina layer is made up of a graded interlayer Silicon and / or alumina is coupled to the base material.
  • a device 10 in which a compact 12, on opposite Provided with metal cover layers 14, 16, foamed to a metallic composite of light weight, However, to produce high strength.
  • Appropriate composites form efficient Lightweight structures, the z. B. in traffic engineering used. Such composites are characterized by low density at relatively high Stiffness out.
  • the compact 12 may consist of a mixture of aluminum powder and z. B. 12% by weight Silicon powder and 0.8% by weight of titanium hydride powder as gas-releasing Propellant powder be composed, which then mixed precompacted into a billet become. This can be open or closed pore. Then the compact 12 has been covered with the cover layers 14, 16 by rollers. If the compact 12 was open-pored, this step becomes a necessary closed porosity achieved.
  • the temperature during rolling itself is about 400 ° C.
  • the sandwich body thus formed is then introduced into a space 18, which a wall 20 is limited, which consists of quartz glass material.
  • a wall 20 which consists of quartz glass material.
  • the space of a cup-shaped lower part 22 and this final Cover part 24 is formed.
  • the walls with a Protective layer 26, 28 provided the radiation to be coupled into the space 18 is permeable.
  • the thickness of the wall 20 itself is also chosen so that this is transparent or translucent with respect to a radiation that can be coupled in.
  • the receptacle is circumferentially surrounded in the embodiment of infrared radiators, exemplified by reference numerals 30, 32.
  • the protective layer 26 is preferably one of Al 2 O 3 , Si 3 N 4 , BN or SiO 2 / Al 2 O 3 or containing these materials.
  • the protective layer is compared to the aggressive material of the compact, so in particular when using aluminum powder against this chemically inert, so that the otherwise vulnerable to aluminum quartz material is protected.
  • the thickness of the protective layer 26, 28, however, is selected such that it is also transparent or translucent with respect to the radiation to be coupled in.
  • radiation can be coupled in from the outside into the space 18 to the extent necessary to heat the compact 12 to a temperature that allows foaming.
  • the infrared radiators 30, 32 can be arranged around the space 18 in such a way that heat sinks can form in the pressed body 12, whereby targeted geometry formation and / or density gradients can be achieved during foaming.
  • the space 18 may further have an internal geometry, that of the final geometry should correspond to the foamed workpiece.
  • the walls 20 can be modular, so that with simple measures a change is possible.
  • the protective layers 26, 28 are preferably by PVD method, in particular by electron beam evaporation, magnetron sputtering, arc evaporation or Plasma immersion ion implantation applied.
  • the protective layer 26, 28 sufficiently protects the quartz glass material, its Thickness between 5 and 25 nm, in particular in the range of 10 nm.
  • the wall itself has a thickness D of 15 mm.
  • the emitters 30, 32 preferably emit light in the mid-infrared range. Regardless, however, the wavelength should be based on the material of the wall and the Be matched protective layer to ensure a high degree of transmission.
  • Fig. 2 is purely in principle a z. B. for a Kokillenan angel particular bottom plate 34 made of quartz glass, the z. B. dimensions of 180x80x5 mm 3 has.
  • the plate 34 has on its kokilleninnen compounder surface 36 in an approximately 1 micron thick and adherent layer 38 of Al 2 O 3 .
  • the electron beam evaporation of an Al 2 O 3 melt can be used. The coating is carried out at a residual gas pressure of about 1 x 10 -4 mbar.
  • the corresponding plate 34 may be in a mold, not shown, with the layer 38 be used facing the interior. Both when pouring liquid aluminum as well as the melting of an aluminum sheet by means of infrared radiation, the was coupled through the transparent plate 36, a reaction with the Quartz glass plate 34 liquid aluminum can not be determined. After cooling could a solidified aluminum part without difficulty from the coated quartz glass plate 34 are removed.
  • the mold itself may be arranged in a carrier receptacle for transport to facilitate a heat source such as infrared radiators or away from them. hereby There is a simplification of the charging or the handling of the foaming or foamed materials.

Abstract

Semi-finished product foaming involves heating in a chamber using external radiation. A semi-finished product, consisting of metal powder and blowing agent powder and optionally joined to one or more cover layers, is foamed in a chamber by heating with external radiation. An Independent claim is also included for apparatus for carrying out the above process, comprising a chamber (10) with radiation transparent or translucent walls (20, 22, 24) and a chemically inert, radiation transparent or translucent protective layer (26, 28) enclosing the semi-finished product (12) to be foamed.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Aufschäumen eines aus mindestens einem Metallpulver und mindestens einem gasabspaltenden Treibmittelpulver bestehenden Presslings, der gegebenenfalls mit zumindest einer Deckschicht verbunden wird, wobei der Pressling in einen Raum angeordnet und zu dessen Aufschäumen erwärmt wird. Ferner bezieht sich die Erfindung auf die Verwendung einer Vorrichtung zum Aufschäumen eines Presslings.The invention relates to a method for foaming one of at least a metal powder and at least one gas-releasing propellant powder existing Pressings, which is optionally connected to at least one cover layer, wherein the Pressling is placed in a room and heated to foaming. Further The invention relates to the use of a device for foaming a Compact.

Aus der DE 44 26 627 C2 ist ein Verfahren und eine Vorrichtung zur Herstellung von metallischen Verbundwerkstoffen aus einer oder mehreren Deckschichten aus massivem Material und aus einem zwischen diesen befindlichen Kern bekannt, der durch Verdichten einer Mischung aus mindestens einem Metallpulver und mindestens einem gasabspaltenden Treibmittelpulver gebildet ist. Ein so gebildeter Verbund wird sodann in einen Kammerofen bei einer Temperatur von 850 °C eingebracht. Bei dieser Temperatur schäumt der Pressling in erforderlichem Umfang auf, ohne dass die Deckschichten schmelzen. From DE 44 26 627 C2 discloses a method and an apparatus for the production of metallic Composite materials of one or more cover layers of solid material and from a core located between them, known by compression a mixture of at least one metal powder and at least one gas-releasing Propellant powder is formed. A composite thus formed is then placed in a chamber furnace introduced at a temperature of 850 ° C. At this temperature foams the Pressling to the extent necessary without melting the outer layers.

Das Erwärmen erfolgt demzufolge durch Wärmeübertragung derart, dass zunächst über den Ofen über ein Schaumwerkzeug indirekt die Wärme auf den Pressling übertragen wird. Ein solches Verfahren ist energetisch ungünstig und führt häufig zu einer Überhitzung des Schaumes, so dass die hergestellten Verbundwerkstoffe nicht die erforderliche Güte aufweisen. Ferner ist es kaum möglich, in das Halbzeug gezielt Wärme derart einzuleiten, dass reproduzierbar Bereiche des Presslings unterschiedlich aufgeschäumt werden.The heating is thus carried out by heat transfer such that initially over indirectly transfer the heat to the pellet via a foaming tool becomes. Such a method is energetically unfavorable and often leads to overheating of the foam, so that the composites produced are not the required Have goodness. Furthermore, it is hardly possible to initiate targeted heat in the semifinished product in such a way that reproducible areas of the compact are foamed differently.

Aus der DE 197 34 394 A1 ist eine Vorrichtung und ein Verfahren zur Herstellung von Metallschaum bekannt. Dabei wird in einer Schäumzelle aufzuschäumendes Material erwärmt, das die Schäumzelle über eine Austrittsöffnung verlässt und dabei vor, während oder nach dem Austreten aufschäumt. Das Erwärmen kann durch eine Induktionsheizung erfolgen.From DE 197 34 394 A1 an apparatus and a method for the production of Metal foam known. In this case, material to be foamed in a foaming cell heated, which leaves the foaming cell via an outlet opening, while before, during or foams after exiting. Heating can be done by induction heating respectively.

Die DE 44 13 423 A1 bezieht sich auf eine Vorrichtung zum Aufschluss von Substanzen. Eine zu analysierende Substanz kann dabei in ein aus Quarzglas bestehendes Gefäß eingebracht sein, das substanzsseitig mit einer Schutzschicht z. B. aus Bornitrid versehen ist.DE 44 13 423 A1 relates to a device for the digestion of substances. A substance to be analyzed can be placed in a quartz glass vessel be introduced, the substance side with a protective layer z. B. made of boron nitride is.

Der vorliegenden Erfindung liegt das Problem zugrunde, mit hoher Effizienz und energetisch günstig Presslinge aufzuschäumen, wobei zusätzlich die Möglichkeit gegeben sein soll, unterschiedliche Bereiche des Presslings unterschiedlich zu erwärmen bzw. gegebenenfalls das Aufschäumen zu beobachten, um gezielt eingreifen zu können.The present invention is based on the problem with high efficiency and energetic low-foaming compacts, with the additional possibility to be given is intended to heat different areas of the compact different or, where appropriate to observe the foaming in order to be able to intervene in a targeted manner.

Erfindungsgemäß wird das Problem im Wesentlichen dadurch gelöst, dass der Pressling durch von außen in den Raum eingekoppelte Strahlungsenergie aufgeschäumt wird, wobei der Raum von einer transparenten, semitransparenten bzw. translucenten Wandung begrenzt ist, die zumindest rauminnenseitig mit einer gegenüber dem aufschäumbaren Pressling und der gegebenenfalls vorhandenen Deckschicht chemisch inerten, gegenüber der eingekoppelten Strahlungsenergie durchlässigen oder im Wesentlichen durchlässigen Schutzschicht versehen wird. Abweichend vom vorbekannten Stand der Technik erfolgt keine Wärmeübertragung von dem den Pressling aufnehmenden Raum selbst, sondern von außen in den Raum eingekoppelte Energie. Hierbei handelt es sich insbesondere um Strahlungsenergie im mittleren bzw. fernen Infrarotbereich. Auch Strahlung im Mikrowellenbereich kommt in Frage. According to the invention, the problem is essentially solved by the fact that the compact is foamed by externally injected into the room radiation energy, wherein the space of a transparent, semitransparent or translucent wall is limited, at least the space inside with one opposite the foamable compact and the optional topcoat chemically inert, permeable to the coupled radiation energy or substantially permeable protective layer is provided. Notwithstanding the previously known In the prior art, there is no heat transfer from the billet receiving Space itself, but energy coupled into the space from outside. This is it in particular radiation energy in the middle or far infrared range. Also Radiation in the microwave range comes into question.

Als Wandung des den Pressling aufnehmenden Raums, auf die die Schutzschicht aufgebracht wird, kommt insbesondere Quarzglasmaterial oder solches enthaltendes in Frage.As a wall of the space receiving the compact, applied to the protective layer In particular quartz glass material or such containing is in question.

Die Verwendung eines semitransparenten Materials hat den Vorteil, dass das aufzuschäumende Material nicht durch die anderenfalls wie ein kalter Pol wirkende Wandung "geschockt" wird.The use of a semi-transparent material has the advantage that the foamable Material not by the otherwise acting as a cold pole wall "shocked" is.

Als Schutzschicht kann Al2O3 und/oder Si3N4 und/oder BN und/oder SiO2/Al2O3 und/oder Mischungen dieser verwendet werden. Dabei kann die Schutzschicht auf die Innenflächen der Wandung, gegebenenfalls über eine Haftvermittlerschicht, durch PVD-Verfahren aufgebracht werden. Insbesondere Elektronenstrahlverdampfung, Magnetron-Sputtern, kathodische Lichtbogenverdampfung oder Plasmaimmersions-Ionenimplantation kommen in Frage.Al 2 O 3 and / or Si 3 N 4 and / or BN and / or SiO 2 / Al 2 O 3 and / or mixtures thereof may be used as the protective layer. In this case, the protective layer can be applied to the inner surfaces of the wall, optionally via a bonding agent layer, by PVD methods. In particular, electron beam evaporation, magnetron sputtering, cathodic arc evaporation or plasma immersion ion implantation come into question.

Insbesondere ist vorgesehen, dass die die Schutzschicht wie Aluminiumoxidschicht über zumindest eine gradierte Zwischenschicht insbesondere aus Silicium- und Aluminiumoxid an die Wandung wie das Quarzglasbauteil angekoppelt wird, insbesondere die Schutzschicht wie Aluminiumoxidschicht durch physikalische Abscheidung aus der Dampfphase und/oder durch chemische Abscheidung aus der Gasphase abgeschieden wird und vorzugsweise das Aluminiumoxid durch Nachoxidation einer Aluminiumschicht mittels Plasmabehandlung und/oder thermische Oxidation bzw. Reaktion mit SiO2 ausgebildet wird.In particular, it is provided that the protective layer such as aluminum oxide layer is coupled via at least one graded intermediate layer in particular of silicon and aluminum oxide to the wall as the quartz glass component, in particular the protective layer such as aluminum oxide layer by physical vapor deposition and / or chemical vapor deposition is deposited and preferably the alumina is formed by post-oxidation of an aluminum layer by means of plasma treatment and / or thermal oxidation or reaction with SiO 2 .

Ferner bezieht sich die Erfindung auf die Verwendung einer Vorrichtung mit einem von einer Wandung begrenzten Raum sowie einer Strahlungsenergie in den Raum einkoppelnden Energiequelle, wobei die Wandung gegenüber der einkoppelbaren Strahlungsenergie transparent oder zumindest translucent ist und zumindest rauminnenseitig mit einer gegenüber dem aufschäumbaren Material chemisch inerten und gegenüber der Strahlungsenergie transparenten oder translucenten Schutzschicht abgedeckt ist, zum Aufschäumen eines in dem Raum angeordneten aus zumindest einem Metallpulver und zumindest einem Gas abspaltenden Treibmittelpulver beste-henden Presslings. Furthermore, the invention relates to the use of a device with one of a wall limited space and a radiant energy einkoppelnden in the room Energy source, wherein the wall opposite to the input radiation energy is transparent or at least translucent and at least room inside with a chemically inert to the foamable material and to the radiant energy transparent or translucent protective layer is covered, for foaming a arranged in the space consisting of at least one metal powder and at least one gas-releasing propellant powder consisting of existing compact.

Die Dicke D der Wandung selbst sollte im Bereich zwischen 5 und 25 mm liegen insbesondere etwa 15 mm betragen.The thickness D of the wall itself should be in the range between 5 and 25 mm in particular about 15 mm.

Bei der Wärmequelle selbst handelt es sich vorzugsweise um IR-Strahler, wobei die Strahlungsenergie derart einkoppelbar ist, dass sich in dem aufzuschäumenden Körper Wärmesenken ausbilden können. Hierdurch kann eine gezielte Aufschäumgeometrie und gezielte Dichtegradiente erreicht werden.The heat source itself is preferably IR emitters, the Radiation energy is coupled in such a way that in the foaming body Heat sinks can form. This allows a targeted foaming geometry and targeted density gradient can be achieved.

Bezüglich der Schutzschicht, bei der es sich erwähntermaßen um ein Al2O3 oder Si3N4 oder BN-Material oder dieses enthaltendes handeln kann, ist anzumerken, dass deren Dicke im Bereich zwischen 20 nm und 2 µm, liegen sollte.With respect to the protective layer, which may be mentioned as being Al 2 O 3 or Si 3 N 4 or BN material or containing it, it should be noted that the thickness thereof should be in the range between 20 nm and 2 μm.

Durch die erfindungsgemäßen Lehren ist mit konstruktiv einfachem Aufbau eine Strahlungswärme in den aufzuschäumenden Pressling bzw. Körper einkoppelbar, wobei sich im Vergleich zu konventionellen Verfahren, bei denen eine Wärmeübertragung mittels von den Ofenwandungen abgegebener Wärme erfolgt, eine erhebliche Energieeinsparung und insbesondere ein Zeitgewinn von bis zu 50 % ergibt. Das Überhitzen des Schaumes ist ausgeschlossen. Auch erfolgt kein Nachheizen, wodurch die Taktzeiten des Aufschäumens anderenfalls nachteilig beeinflusst werden würden.By the teachings of the invention is a structurally simple design a radiant heat into the frothy body or body einkoppelbar, wherein compared to conventional methods, where a heat transfer by means of Heat emitted by the furnace walls takes place, a considerable energy saving and in particular a time gain of up to 50% results. Overheating of the foam is excluded. Also, no reheating takes place, whereby the cycle times of the foaming otherwise would be adversely affected.

Durch die einkoppelbare Strahlungsenergie ergibt sich auch der Vorteil, dass Bereiche des aufzuschäumenden Halbzeuges gezielt mit Wärme beaufschlagt werden können, so dass erwähntermaßen bereits durch das Aufschäumen eine gewünschte Geometrieausbildung erfolgen kann.Due to the einkoppelbare radiation energy also gives the advantage that areas the foaming semi-finished can be subjected to targeted heat, so that mentioned already by the foaming a desired geometry education can be done.

Durch die Verwendung von Quarzglasmaterial zur Ausbildung der Wandungen, die den aufzuschäumenden Pressling umgeben, gelangen mechanisch beanspruchbare langzeitstabile Materialien zum Einsatz, die kostengünstig hergestellt und benutzt werden können. Dabei stellt das Quarzglas sicher, dass Wärmestrahlung insbesondere im Infrarotbereich bis zu 2 µm und im Bereich zwischen 3 und 3,5 µm bei einem Transmissionskoeffizienten zwischen 0,8 und 0,9 einkoppelbar ist. Ferner ergibt sich bei der Verwendung von Quarzglas die Möglichkeit einer visuellen Beobachtung beim Aufschäumen, so dass ein steuerndes Eingreifen beim Aufschäumen möglich ist.By the use of quartz glass material to form the walls, the Surrounded by frothing to press, arrive mechanically durable long-term stable Materials are used that are manufactured and used inexpensively can. Here, the quartz glass ensures that heat radiation, especially in the Infrared range up to 2 microns and in the range between 3 and 3.5 microns with a transmission coefficient between 0.8 and 0.9 can be coupled. Furthermore, results in the Use of quartz glass the possibility of visual observation during foaming, so that a controlling intervention during foaming is possible.

Bevorzugterweise kann die Wandung aus Quarzglasbauteilen bestehen. Quarzglas ist wegen seines hohen Schmelzpunktes und der hohen Transparenz im infraroten und im sichtbaren Spektralbereich zur Einkopplung von Wärmestrahlung in heiße, flüssige und gasförmige Medien sowie zur Beobachtung der Prozesse selbst geeignet. Beim Kontakt mit chemisch aggressiven Medien wie etwa flüssigem Aluminium treten jedoch Reaktionen auf, die Quarzglasteile bzw. hieraus hergestellte Bauteile binnen kurzer Zeit zerstören.Preferably, the wall can consist of quartz glass components. Quartz glass is because of its high melting point and high transparency in the infrared and in the visible spectral range for coupling heat radiation into hot, liquid and gaseous media and for the observation of the processes themselves suitable. When contact However, reactions occur with chemically aggressive media such as liquid aluminum on, the quartz glass parts or components made therefrom within a short time to destroy.

Für Kokillen, Reaktionsgefäße oder Rohrleitungen, die mit flüssigem Aluminium in Kontakt gelangen, werden verschiedene Keramiken wie z. B. Si3N4 in Form von Sinterbauteilen verwendet. Allerdings sind entsprechende Materialien weder im infraroten noch im sichtbaren Spektralbereich strahlungsdurchlässig, so dass eine Erwärmung der Materialien selbst allein über Wärmeleitung erfolgt. Eine visuelle Beobachtung von Prozessen selbst innerhalb entsprechender Geräte ist ebenfalls nicht möglich.For molds, reaction vessels or pipelines that come into contact with liquid aluminum, various ceramics such. B. Si 3 N 4 is used in the form of sintered components. However, corresponding materials are neither transparent in the infrared nor in the visible spectral range, so that the materials themselves are heated by heat conduction alone. A visual observation of processes even within corresponding devices is also not possible.

Um Quarzglas hierfür zu verwenden, ohne dass die Gefahr einer unerwünschten chemischen Reaktion mit aggressiven Medien erwächst, wird erfindungsgemäß vorgeschlagen, dass der transparente Glasbaustein auf seiner dem Werkstoff zugewandten Seite chemisch passiviert und mit einer Schutzschicht aus Aluminiumoxid versehen ist. Dabei kann diese eine Dicke zwischen 20 nm und 2 µm aufweisen. Insbesondere ist vorgesehen, dass die Aluminiumoxidschicht über eine gradierte Zwischenschicht aus Silicium- und/oder Aluminiumoxid an das Grundmaterial angekoppelt ist. To use quartz glass for this, without the risk of unwanted arises chemical reaction with aggressive media, the invention proposes that the transparent glass block on its facing the material Side chemically passivated and provided with a protective layer of aluminum oxide. This may have a thickness between 20 nm and 2 microns. In particular provided that the alumina layer is made up of a graded interlayer Silicon and / or alumina is coupled to the base material.

Nach einer Weiterbildung der Erfindung ist vorgesehen, dass die insbesondere aus Quarzglasformteilen modular aufgebaute Form in einer Trägeraufnahme zur Strahlenquelle hin- bzw. von dieser wegtransportiert wird, wodurch ein Chargieren bzw. eine Handhabung der aufschäumbaren bzw. aufgeschäumten Materialien erleichtert wird.According to a development of the invention it is provided that the particular from Quartz glass moldings modular design in a carrier mount to the radiation source is transported away or from this, whereby a charging or a Handling the foamable or foamed materials is facilitated.

Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen, den diesen zu entnehmenden Merkmalen -für sich und/oder in Kombination-, sondern auch aus der nachfolgenden Beschreibung eines der Zeichnung zu entnehmenden bevorzugten Ausführungsbeispiels.Further details, advantages and features of the invention not only result from the claims, the characteristics to be taken from them-alone and / or in combination- but also from the following description of one of the drawings taking preferred embodiment.

Es zeigen:

Fig. 1
eine Vorrichtung zum Herstellen eines aufschäumbaren metallischen Werkstoffes und
Fig. 2
eine beschichtete Quarzglasplatte.
Show it:
Fig. 1
an apparatus for producing a foamable metallic material and
Fig. 2
a coated quartz glass plate.

In Fig. 1 ist eine Vorrichtung 10 dargestellt, bei der ein Pressling 12, der auf gegenüberliegenden Seiten mit aus Metall bestehenden Deckschichten 14, 16 versehen ist, aufgeschäumt werden soll, um einen metallischen Verbundwerkstoff geringen Gewichts, jedoch hoher Festigkeit herzustellen. Entsprechende Verbundwerkstoffe bilden leistungsfähige Leichtbaustrukturen, die z. B. in der Verkehrstechnik zum Einsatz gelangen. Solche Verbundwerkstoffe zeichnen sich durch niedrige Dichte bei relativ hoher Steifigkeit aus.In Fig. 1, a device 10 is shown, in which a compact 12, on opposite Provided with metal cover layers 14, 16, foamed to a metallic composite of light weight, However, to produce high strength. Appropriate composites form efficient Lightweight structures, the z. B. in traffic engineering used. Such composites are characterized by low density at relatively high Stiffness out.

Der Pressling 12 kann aus einer Mischung aus Aluminiumpulver und z. B. 12 Gewichts-% Siliziumpulver und 0,8 Gewichts-% Titanhydridpulver als gasabspaltendes Treibmittelpulver zusammengesetzt sein, die vermischt sodann zu einem Barren vorkompaktiert werden. Dieser kann offen- oder geschlossenporig sein. Sodann ist der Pressling 12 mit den Deckschichten 14, 16 durch Walzen abgedeckt worden. Sofern der Pressling 12 offenporig war, wird bei diesem Verfahrensschritt eine notwendige Geschlossenporigkeit erzielt. Die Temperatur beim Walzen selbst beträgt in etwa 400 °C.The compact 12 may consist of a mixture of aluminum powder and z. B. 12% by weight Silicon powder and 0.8% by weight of titanium hydride powder as gas-releasing Propellant powder be composed, which then mixed precompacted into a billet become. This can be open or closed pore. Then the compact 12 has been covered with the cover layers 14, 16 by rollers. If the compact 12 was open-pored, this step becomes a necessary closed porosity achieved. The temperature during rolling itself is about 400 ° C.

Der so gebildete Sandwichkörper wird sodann in einen Raum 18 eingebracht, der von einer Wandung 20 begrenzt ist, die aus Quarzglasmaterial besteht. Im Ausführungsbeispiel wird der Raum von einem topfförmigen Unterteil 22 und einem diesen abschließenden Deckelteil 24 gebildet. Rauminnenseitig sind die Wandungen mit einer Schutzschicht 26, 28 versehen, die gegenüber in den Raum 18 einzukoppelnder Strahlung durchlässig ist. Die Dicke der Wandung 20 selbst ist ebenfalls so gewählt, dass diese gegenüber einer einkoppelbaren Strahlung transparent bzw. translucent ist.The sandwich body thus formed is then introduced into a space 18, which a wall 20 is limited, which consists of quartz glass material. In the embodiment the space of a cup-shaped lower part 22 and this final Cover part 24 is formed. Inside the room are the walls with a Protective layer 26, 28 provided, the radiation to be coupled into the space 18 is permeable. The thickness of the wall 20 itself is also chosen so that this is transparent or translucent with respect to a radiation that can be coupled in.

Die Aufnahme ist im Ausführungsbeispiel umfangsseitig von Infrarotstrahlern umgeben, die beispielhaft mit den Bezugszeichen 30, 32 versehen sind.The receptacle is circumferentially surrounded in the embodiment of infrared radiators, exemplified by reference numerals 30, 32.

Bei der Schutzschicht 26 handelt es sich vorzugsweise um eine solche aus Al2O3, Si3N4, BN oder SiO2/Al2O3 oder diese Materialien enthaltend. Die Schutzschicht ist gegenüber dem aggressiven Material des Presslings, also insbesondere bei Verwendung von Aluminiumpulver gegenüber diesem chemisch inert, so dass das ansonsten von Aluminium angreifbare Quarzmaterial geschützt ist. Die Dicke der Schutzschicht 26, 28 ist jedoch so gewählt, dass diese ebenfalls gegenüber einzukoppelnder Strahlung transparent bzw. translucent ist. Somit kann im erforderlichen Umfang von außen in den Raum 18 hinein Strahlung eingekoppelt werden, um den Pressling 12 auf eine Temperatur zu erhitzen, die ein Aufschäumen ermöglicht. Die Infrarotstrahler 30, 32 können dabei derart um den Raum 18 angeordnet werden, dass sich in dem Pressling 12 Wärmesenken ausbilden können, wodurch beim Aufschäumen gezielte Geometrieausbildung und/oder Dichtegradienten erreichbar sind.The protective layer 26 is preferably one of Al 2 O 3 , Si 3 N 4 , BN or SiO 2 / Al 2 O 3 or containing these materials. The protective layer is compared to the aggressive material of the compact, so in particular when using aluminum powder against this chemically inert, so that the otherwise vulnerable to aluminum quartz material is protected. The thickness of the protective layer 26, 28, however, is selected such that it is also transparent or translucent with respect to the radiation to be coupled in. Thus, radiation can be coupled in from the outside into the space 18 to the extent necessary to heat the compact 12 to a temperature that allows foaming. The infrared radiators 30, 32 can be arranged around the space 18 in such a way that heat sinks can form in the pressed body 12, whereby targeted geometry formation and / or density gradients can be achieved during foaming.

Der Raum 18 kann des Weiteren eine Innengeometrie aufweisen, die der Endgeometrie des aufzuschäumenden Werkstücks entsprechen soll. Um eine einfache Geometrieanpassung zu ermöglichen, können die Wandungen 20 modular aufgebaut werden,so dass mit einfachen Maßnahmen eine Veränderung möglich ist.The space 18 may further have an internal geometry, that of the final geometry should correspond to the foamed workpiece. For a simple geometry adjustment to allow the walls 20 can be modular, so that with simple measures a change is possible.

Die Schutzschichten 26, 28 werden vorzugsweise durch PVD-Verfahren, insbesondere durch Elektronenstrahlverdampfung, Magnetron-Sputtern, Lichtbogenverdampfung oder Plasmaimmersions-Ionenimplantation aufgebracht.The protective layers 26, 28 are preferably by PVD method, in particular by electron beam evaporation, magnetron sputtering, arc evaporation or Plasma immersion ion implantation applied.

Damit die Schutzschicht 26, 28 das Quarzglasmaterial hinreichend schützt, sollte deren Dicke zwischen 5 und 25 nm, insbesondere im Bereich von 10 nm liegen. Die Wandung selbst weist eine Dicke D von 15 mm auf.So that the protective layer 26, 28 sufficiently protects the quartz glass material, its Thickness between 5 and 25 nm, in particular in the range of 10 nm. The wall itself has a thickness D of 15 mm.

Von den Strahlern 30, 32 wird vorzugsweise Licht im mittleren Infrarotbereich emittiert. Unabhängig davon sollte jedoch die Wellenlänge auf das Material der Wandung und der Schutzschicht abgestimmt sein, um einen hohen Transmissionsgrad sicherzustellen.The emitters 30, 32 preferably emit light in the mid-infrared range. Regardless, however, the wavelength should be based on the material of the wall and the Be matched protective layer to ensure a high degree of transmission.

In Fig. 2 ist rein prinzipiell eine z. B. für eine Kokillenanordnung bestimmte Bodenplatte 34 aus Quarzglas dargestellt, die z. B. Abmessungen von 180x80x5 mm3 aufweist. Die Platte 34 weist auf ihrer kokilleninnenseitiger Fläche 36 eine in etwa 1 µm dicke und haftfeste Schicht 38 aus Al2O3 auf. Als Beschichtungsverfahren kann die Elektronenstrahlverdampfung aus einer Al2O3 -Schmelze eingesetzt werden. Dabei erfolgt die Beschichtung bei einem Restgasdruck von in etwa 1 x 10-4 mbar.In Fig. 2 is purely in principle a z. B. for a Kokillenanordnung particular bottom plate 34 made of quartz glass, the z. B. dimensions of 180x80x5 mm 3 has. The plate 34 has on its kokilleninnenseitiger surface 36 in an approximately 1 micron thick and adherent layer 38 of Al 2 O 3 . As a coating method, the electron beam evaporation of an Al 2 O 3 melt can be used. The coating is carried out at a residual gas pressure of about 1 x 10 -4 mbar.

Die entsprechende Platte 34 kann in einer nicht dargestellten Kokille mit der Schicht 38 dem Innenraum zugewandt eingesetzt werden. Sowohl beim Eingießen flüssigen Alumimiums als auch beim Erschmelzen eines Aluminiumbleches mittels Infrarotstrahlung, die durch die transparente Platte 36 eingekoppelt wird, konnte eine Reaktion mit der Quarzglasplatte 34 flüssigem Aluminium nicht festgestellt werden. Nach dem Abkühlen konnte ein erstarrtes Aluminiumteil ohne Schwierigkeiten von der beschichteten Quarzglasplatte 34 entfernt werden. The corresponding plate 34 may be in a mold, not shown, with the layer 38 be used facing the interior. Both when pouring liquid aluminum as well as the melting of an aluminum sheet by means of infrared radiation, the was coupled through the transparent plate 36, a reaction with the Quartz glass plate 34 liquid aluminum can not be determined. After cooling could a solidified aluminum part without difficulty from the coated quartz glass plate 34 are removed.

Die Kokille selbst kann in einer Trägeraufnahme angeordnet sein, um einen Transport zu einer Wärmequelle wie Infrarotstrahlern bzw. von diesen weg zu erleichtern. Hierdurch erfolgt eine Vereinfachung des Chargierens bzw. der Handhabung der aufzuschäumenden bzw. aufgeschäumten Materialien.The mold itself may be arranged in a carrier receptacle for transport to facilitate a heat source such as infrared radiators or away from them. hereby There is a simplification of the charging or the handling of the foaming or foamed materials.

Claims (12)

  1. A method for foaming of a pressed part comprising at least one metal powder and at least one gas-separating propellant powder and if necessary connected to at least one cover layer, where said pressed part is arranged inside a space and heated in order to foam it,
    wherein
    the pressed part is foamed by a radiation energy injected from the outside into the space, the latter being limited by a transparent, semi-transparent or translucent wall which is at least on the inside of the space provided with a protective layer chemically inert to the foamable pressed part and permeable or substantially permeable for the injected radiation energy.
  2. Method according to Claim 1,
    wherein
    a protective layer is used that is chemically inert to the cover layer where provided.
  3. Method according to at least Claim 1 or Claim 2,
    wherein
    the pressed part is heated with a radiation of a wavelength λ at 700 nm < λ < 4 µm, in particular at 3.0 < λ < 3.5 µm, or with a mid infrared radiation or with a far infrared radiation or with a radiation in the microwave range.
  4. Method according to at least one of the previous claims,
    wherein
    transparent or semi-transparent shaped material such as quartz glass material or containing such material is used as the wall of the space receiving the pressed part relative to the radiation to be injected.
  5. Method according to at least one of the previous claims,
    wherein
    Al2O3 and/or Si3N4 and/or Al2O3/SiO2 and/or BN or material containing the latter is used as the protective layer, where said protective layer is preferably provided with a thickness d of 8 nm ≤ d ≤ 2 µm, in particular d approximately 20 nm to 500 nm.
  6. Method according to at least one of the previous claims,
    wherein
    the protective layer is deposited by PVD process, by electron beam evaporation, magnetron sputtering, arc evaporation or plasma immersion ion implantation.
  7. Method according to at least one of the previous claims,
    wherein
    the radiation energy is injected such that heat sinks are formed in the pressed part.
  8. Method according to at least one of the previous claims,
    wherein
    the protective layer such as aluminium oxide layer (38) is connected via at least a graduated intermediate layer, in particular of silicon and aluminium oxide, to the wall such as the quartz glass component (34), wherein in particular the protective layer such as the aluminium oxide layer is deposited by physical deposition from the vapour phase and/or by chemical deposition from the gas phase, and wherein the aluminium oxide is preferably formed by post-oxidation of an aluminium layer by means of plasma treatment and/or thermal oxidation or reaction with SiO2.
  9. Use of a device with a space limited by a wall and of an energy source injecting radiation energy into said space, where the wall is transparent or at least translucent to the injectable radiation energy and is covered at least on the inside of the space with a protective layer chemically inert to the foamable material and transparent or at least translucent to the radiation energy, for foaming of a pressed part arranged inside the space and comprising at least one metal powder and at least one gas-separating propellant powder.
  10. Use of a device according to Claim 9, where the wall is designed on a quartz glass basis, in particular in the form of quartz glass modules, where the wall is designed modular if necessary, and where the wall preferably has a thickness D of 5 mm ≤ D ≤ 25 mm, in particular with D approximately 15 min.
  11. Use of a device according to Claim 9, where the protective layer comprises Al2O3 and/or SiO2/Al2O3 and/or Si3N4 and/or BN or material containing the latter and preferably has a thickness d of 20 nm ≤ d ≤ 2 µm.
  12. Use of a device according to one of Claims 9 to 11, where the heat source is in particular at least one IR heater and where the heat source is preferably arranged outside the space such that heat sinks can form indcside the pressed part.
EP00105235A 1999-03-13 2000-03-13 Process for foaming metallic articles Expired - Lifetime EP1036615B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19911228 1999-03-13
DE19911228 1999-03-13
DE1999154755 DE19954755A1 (en) 1999-11-15 1999-11-15 Semi-finished metal product is foamed, e.g. to produce a lightweight sandwich construction material for traffic engineering, by heating in a chamber using external radiation
DE19954755 1999-11-15

Publications (2)

Publication Number Publication Date
EP1036615A1 EP1036615A1 (en) 2000-09-20
EP1036615B1 true EP1036615B1 (en) 2005-05-25

Family

ID=26052347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00105235A Expired - Lifetime EP1036615B1 (en) 1999-03-13 2000-03-13 Process for foaming metallic articles

Country Status (3)

Country Link
EP (1) EP1036615B1 (en)
AT (1) ATE296179T1 (en)
DE (1) DE50010372D1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118787A1 (en) * 2015-11-03 2017-05-04 HAVEL metal foam GmbH Method and device for producing metal foam composite bodies and metal foam composite bodies
WO2019013026A1 (en) 2017-07-14 2019-01-17 国立研究開発法人科学技術振興機構 Metal foam production method and metal foam production device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234791B2 (en) * 1980-01-14 1990-08-06 Maruzen Kk TENJITONOKEISEIHOHO
DE4413423A1 (en) * 1994-04-18 1995-10-19 Paar Anton Kg Appts. for decomposition of substances, esp. unknown samples for analysis
DE19503240C2 (en) * 1995-02-02 1997-04-10 Huels Chemische Werke Ag Mold for gelation and vulcanization of molded articles made of latex foam using microwave energy
DE19734394C2 (en) * 1996-08-13 2003-06-18 Friedrich Wilhelm Bessel Inst Method and device for producing metal foam
AT406558B (en) * 1998-05-27 2000-06-26 Illichmann Gmbh Leichtmetallgu Method and apparatus for the production of foamed metal parts

Also Published As

Publication number Publication date
ATE296179T1 (en) 2005-06-15
EP1036615A1 (en) 2000-09-20
DE50010372D1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP1829843B1 (en) Device for treating pieces of porous carbon material
DE19952998B4 (en) Device for the direct production of bodies in the layer structure of pulverulent substances
EP1251985B1 (en) Hollow balls and a method for producing hollow balls and for producing lightweight structural components by means of hollow balls
EP0887438B1 (en) Process for improving the inner surface of hollow bodies and device for carrying out the process
DE102005055524B4 (en) Method, device and system for producing a ceramic shaped body
EP1915226B1 (en) Process for the powder metallurgy production of metal foam and of parts made from metal foam
DE1771169A1 (en) Graphite susceptor
DE102018102509A1 (en) Microsynthesis of high throughput multi-component materials
DE19801861A1 (en) Hollow glass molded body production from low melting glass tube
EP0118702A1 (en) Method of manufacturing a body from powdery material by isostatic pressing
DE112015002611T5 (en) Preform of a powdery material and process for its preparation
EP2039666B1 (en) Method and device for siliconising materials containing carbon
WO2021099247A1 (en) Removable build container and apparatus for the additive manufacture of a workpiece, process station and system therefor
EP0404943A1 (en) Porous refractory material, article made thereof and method for making said article
EP1608476B1 (en) Method and device for producing dimensionally accurate foam
EP0960219A1 (en) Composite body comprising a hard metal, cermet or ceramic substrate body and method of producing the same
DE60021302T2 (en) Method and device for treating a material with electromagnetic radiation in a controlled atmosphere
EP1036615B1 (en) Process for foaming metallic articles
DE10342042A1 (en) Process for producing a Si3N4 coated SiO2 shaped body
WO2010022423A1 (en) Vacuum coating, building and insulating materials made of evacuated pores
DE19928997C2 (en) Method and device for foaming metals
DE3401700C1 (en) Process for the production of powders under space conditions
DE19954755A1 (en) Semi-finished metal product is foamed, e.g. to produce a lightweight sandwich construction material for traffic engineering, by heating in a chamber using external radiation
EP3459656A1 (en) Method and device for additive production of a component
DE4432730A1 (en) Process for the production of a metallic structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000927

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030422

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PROCESS FOR FOAMING METALLIC ARTICLES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHUNK SINTERMETALL GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010372

Country of ref document: DE

Date of ref document: 20050630

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050825

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051027

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050525

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060329

Year of fee payment: 7

Ref country code: DE

Payment date: 20060329

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060228

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070313

BERE Be: lapsed

Owner name: SCHUNK SINTERMETALL G.M.B.H.

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050525