EP1035330B1 - Laufrad für Gebläse, dessen Herstellungsverfahren, und Gebläse - Google Patents

Laufrad für Gebläse, dessen Herstellungsverfahren, und Gebläse Download PDF

Info

Publication number
EP1035330B1
EP1035330B1 EP00104398A EP00104398A EP1035330B1 EP 1035330 B1 EP1035330 B1 EP 1035330B1 EP 00104398 A EP00104398 A EP 00104398A EP 00104398 A EP00104398 A EP 00104398A EP 1035330 B1 EP1035330 B1 EP 1035330B1
Authority
EP
European Patent Office
Prior art keywords
layer
impeller
foamed
vane
rigid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00104398A
Other languages
English (en)
French (fr)
Other versions
EP1035330A2 (de
EP1035330A3 (de
Inventor
Hironao Numoto
Masaharu Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of EP1035330A2 publication Critical patent/EP1035330A2/de
Publication of EP1035330A3 publication Critical patent/EP1035330A3/de
Application granted granted Critical
Publication of EP1035330B1 publication Critical patent/EP1035330B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/612Foam

Definitions

  • the present invention relates to a blower, and more particularly to an impeller used in the blower, and a method of manufacturing the same.
  • the impeller used in the blower was manufactured by press forming of a metal.
  • the impeller used in the blower is manufactured by molding a resin, and resin-made impellers have come to be used widely.
  • Such impellers are disclosed in GB-A-2 279 114 and US-A-3 647 317.
  • the sectional shape of vanes of the impeller is designed according to the theory of vanes, and the impeller having the shape designed by the vane theory is being proposed.
  • the impeller used in the outdoor unit of a household air conditioner measures 300 mm ⁇ in diameter and 15 mm in maximum wall thickness of vane.
  • the vane surface may have asperities due to shrinkage or warp of resin by thermal shrinkage.
  • the impeller having such vanes with asperities is used in the air conditioner, disturbance occurs in the laminar flow along the vane surface, and the noise increases.
  • to prevent such shrinkage or warp it is attempted to cool gradually by extending the cooling time in injection molding. In such method, however, the molding cycle time is longer, and the productivity is lowered.
  • the hollow molding method of impeller comprise a step of injecting the resin into the die cavity, and a step of forming a hollow part inside of a plurality of vanes by injecting inert gas such as compressed nitrogen into the cavity.
  • the multi-layer molding method of impeller has a process of molding the impeller by dividing into two steps.
  • the impeller is a rotating body
  • the plurality of vanes are required to have a mutually balanced shape.
  • it is hard to obtain the wall thickness of the vane precisely at the specified thickness. That is, the hollow portion of the vane cannot be controlled due to the correlation of gas pressure and resin flowability. It is hence hard to obtain vanes having a mutually balanced shape.
  • the same level of perfection as in injection molding method cannot be expected.
  • the general multi-layer molding method meanwhile, only a member of medium thickness can be molded. For achieving high performance of air conditioner, an impeller of a large aperture is needed.
  • the impeller used in the blower of the invention comprises:
  • the manufacturing method of the impeller used in the blower of the invention comprises:
  • the blower of the invention comprises:
  • the outdoor unit of the air conditioner of the invention comprises:
  • an impeller having a necessary wall thickness, a necessary lightness of weight, a necessary large aperture, and a necessary shape is obtained.
  • an impeller having an excellent blowing performance is obtained.
  • a blower having an excellent blowing performance is obtained.
  • an air conditioner having an excellent heat exchange function is obtained.
  • An impeller for blower in an embodiment of the invention includes a hub and vanes having multiple layers, and at least one layer of the multiple layers has a foamed molded layer, and at least one of other layers has a rigid layer.
  • the foamed molded layer is a layer of a molded body which contains multiple pores, multiple foams, or multiple hollow parts.
  • the foamed molded layer is formed, for example, by molding a molding material containing foaming agent or inflating agent.
  • the rigid layer is a layer having a rigidity such as strong mechanical strength to withstand air pressure.
  • the rigid layer is, for example, a plastic molded body having no cavities, a plastic molded body having rigidity, or a molded body containing reinforcing filler. Such rigid layer is manufactured, for example, by an ordinary injection molding method.
  • the vane has two layers, and one of the two layers is a foamed molded layer.
  • an impeller having the same performance as above is obtained.
  • the foamed molded layer is disposed at the side of the air separating in the rotating.
  • the air receiving side has a stronger rigidity than the air separating side. Accordingly, when the impeller rotates at high speed, the wind pressure is received at the air receiving side having the rigidity, and high speed rotation is enabled, and an excellent blowing performance is obtained even at high speed. Moreover, the weight of the air separating side is lighter. As a result, on the whole, a lightweight impeller is obtained.
  • the foamed molded layer has a greater thickness than other layers. In this constitution, a much lighter impeller is obtained.
  • a manufacturing method of impeller in an embodiment of the invention comprises a step of forming a rigid layer by injection molding, and a step of foaming and molding.
  • the impeller can be completed in a continuous process.
  • the foaming and molding is executed immediately after forming the rigid layer by injection molding.
  • a first surface of the rigid layer has a surface roughness Ra in a range from about 50 ⁇ m to 500 ⁇ m.
  • Foaming and molding is executed on the first surface side, and a foamed molded layer is bonded and disposed.
  • the surface roughness of the first surface of the rigid layer has an adequate roughness, the foamed molded layer is firmly bonded to the rigid layer. Therefore, the bonding strength of the foamed molded layer having a thick portion and the rigid layer is sufficiently maintained.
  • the foaming factor of the foamed molded layer is about 1.5 times to 4 times.
  • an impeller having no problem in practical use is obtained.
  • Fig. 1 is a perspective exploded view of an impeller used in a blower of an air conditioner according to an exemplary embodiment of the invention.
  • Fig. 2 is a perspective view of the impeller in the exemplary embodiment of the invention.
  • Fig. 3 is a sectional view along line 6A-6B of the vanes of the impeller shown in Fig. 2.
  • an outdoor unit main body 1 of the air conditioner includes a blower 10, and a heat exchanger 12 disposed near the blower 10.
  • the blower 10 has a fan motor 3 and an impeller 2.
  • the impeller 2 is fixed to the fan motor 3 with bolt and nut 4.
  • By rotating the blower 10 air is transmitted from the air receiving side 15 to the air separating side 16.
  • the heat exchanger is cooled or warmed.
  • the impeller 2 has a hub 5, and a plurality of vanes 6 projecting from the hub 5.
  • the vane 6 has a rigid layer 7 as a first vane layer, and a foamed molded layer 8 as a second vane layer.
  • the vane 6 receives the air from the rigid layer 7 side, and sends in the direction of the foamed molded layer 8 side.
  • the vanes 6 rotate centrifugally.
  • the hub 5 and rigid layer 7 were manufactured by injection molding, using an AES plastic material containing 20 wt.% of glass fiber.
  • AES is a copolymer of acrylic compound, EPDM, and styrene.
  • EPDM is ethylene propylene terpolymer.
  • the molded body has the hub 5 positioned in the center, and three rigid layers 7 projecting from the hub 5.
  • the air separating side 16 of the rigid layer 7 has a surface roughness Ra of 50 ⁇ m.
  • the rigid layer 7 has a uniform wall thickness of 2 mm.
  • a foamed molded layer 8 was disposed on the surface of the rigid layer 7 by injection molding, using an AES plastic material containing 1 wt.% of microcapsule inflating agent having a thermal expansion property.
  • the foamed molded layer 8 is bonded directly to the air separating side 16 of the rigid layer 7.
  • the foamed molded layer 8 has a foamed molded body of foaming factor of 1.5 times.
  • the foamed molded layer 8 that has been foamed and molded is directly bonded to the rigid layer 7.
  • the foamed molded layer 8 having a great wall thickness was manufactured.
  • the method of foaming and molding is as follows.
  • the AES plastic material containing inflating agent was injected into the cavity.
  • the contact surfaces of the vanes and die were cooled suddenly.
  • a skin layer 18 was formed, and the foamed state was stabilized when opening the die.
  • the skin layer 18 formed at this time had a thickness of about 100 ⁇ m.
  • the foamed molded layer 8 had multiple foamed cells.
  • the size of the individual foamed cells of the foamed molded layer 8 was about 1 mm or less.
  • the impeller 2 having the rigid layer 7 and foamed molded layer 8 was manufactured.
  • the weight of the manufactured impeller was about 760 g, and the thickness of the maximum wall thickness portion of the vanes 6 was 20 mm.
  • the maximum outer diameter of the impeller 2 was 400 mm ⁇ .
  • the hub 5 and rigid layer 7 were manufactured by injection molding.
  • the molded body has the hub 5 positioned in the center, and three rigid layers 7 projecting from the hub 5.
  • the air separating side 16 of the rigid layer 7 has a surface roughness Ra of 100 ⁇ m.
  • the rigid layer 7 has a uniform wall thickness of 2 mm.
  • a foamed molded layer 8 was disposed on the surface of the rigid layer 7 by injection molding, using an AES plastic material containing 2.5 wt.% of microcapsule inflating agent having a thermal expansion property.
  • the foamed molded layer 8 has a foamed molded body of foaming factor of 2.0 times.
  • the foamed molded layer 8 that has been foamed and molded is directly bonded to the rigid layer 7.
  • the method of foaming and molding was same as in embodiment 1.
  • the impeller 2 having the rigid layer 7 and foamed molded layer 8 was manufactured.
  • the weight of the manufactured impeller was about 670 g, and the thickness of the maximum wall thickness portion of the vanes 6 was 20 mm The maximum outer diameter of the impeller 2 was 400 mm ⁇ .
  • the hub 5 and rigid layer 7 were manufactured by injection molding.
  • the molded body has the hub 5 positioned in the center, and three rigid layers 7 projecting from the hub 5.
  • the air separating side 16 of the rigid layer 7 has a surface roughness Ra of 300 ⁇ m.
  • the rigid layer 7 has a uniform wall thickness of 2 mm.
  • a foamed molded layer 8 was disposed on the surface of the rigid layer 7 by injection molding, using an AES plastic material containing 4 wt.% of microcapsule inflating agent having a thermal expansion property.
  • the foamed molded layer 8 has a foamed molded body of foaming factor of 2.0.
  • the foamed molded layer 8 that has been foamed and molded is directly bonded to the rigid layer 7.
  • the method of foaming and molding was same as in embodiment 1.
  • the impeller 2 having the rigid layer 7 and foamed molded layer 8 was manufactured.
  • the weight of the manufactured impeller was about 620 g, and the thickness of the maximum wall thickness portion of the vanes 6 was 20 mm.
  • the maximum outer diameter of the impeller 2 was 400 mm ⁇ .
  • the hub 5 and rigid layer 7 were manufactured by injection molding.
  • the molded body has the hub 5 positioned in the center, and three rigid layers 7 projecting from the hub 5.
  • the air separating side 16 of the rigid layer 7 has a surface roughness Ra of 500 ⁇ m.
  • the rigid layer 7 has a uniform wall thickness of 2 mm.
  • a foamed molded layer 8 was disposed on the surface of the rigid layer 7 by injection molding, using an AES plastic material containing 6 wt.% of microcapsule inflating agent having a thermal expansion property.
  • the foamed molded layer 8 has a foamed molded body of foaming factor of 2.0.
  • the foamed molded layer 8 that has been foamed and molded is directly bonded to the rigid layer 7.
  • the method of foaming and molding was same as in embodiment 1.
  • the impeller 2 having the rigid layer 7 and foamed molded layer 8 was manufactured.
  • the weight of the manufactured impeller was about 580 g, and the thickness of the maximum wall thickness portion of the vanes 6 was 20 mm.
  • the maximum outer diameter of the impeller 2 was 400 mm ⁇ .
  • the hub 5 and rigid layer 7 were manufactured by injection molding.
  • the molded body has the hub 5 positioned in the center, and three rigid layers 7 projecting from the hub 5.
  • the air separating side 16 of the rigid layer 7 has a surface roughness Ra of 800 ⁇ m.
  • the rigid layer 7 has a uniform wall thickness of 2 mm.
  • a foamed molded layer 8 was disposed on the surface of the rigid layer 7 by injection molding, using an AES plastic material containing 8 wt.% of microcapsule inflating agent having a thermal expansion property.
  • the foamed molded layer 8 has a foamed molded body of foaming factor of 5.0.
  • the foamed molded layer 8 that has been foamed and molded is directly bonded to the rigid layer 7.
  • the method of foaming and molding was same as in embodiment 1.
  • the impeller 2 having the rigid layer 7 and foamed molded layer 8 was manufactured.
  • the weight of the manufactured impeller was about 550 g, and the thickness of the maximum wall thickness portion of the vanes 6 was 20 mm.
  • the maximum outer diameter of the impeller 2 was 400 mm ⁇ .
  • the hub 5 and rigid layer 7 were manufactured by injection molding.
  • This AES plastic material containing 20 wt.% of glass fiber is the same material as used in embodiment 1.
  • the molded body has the hub 5 positioned in the center, and three rigid layers 7 projecting from the hub 5.
  • the rigid layer 7 has the same shape as the vane 6 manufactured in embodiment 1. That is, the vane 6 in this comparative example is composed only of the rigid layer 7.
  • the weight of the manufactured impeller was about 1150 g, and the thickness of the maximum wall thickness portion of the vanes 6 was 20 mm.
  • the maximum outer diameter of the impeller 2 was 400 mm ⁇ .
  • the impeller manufactured in this comparative example 1 is heavier than the impellers manufactured in embodiments 1 to 5.
  • the surface roughness of the air separating side 16 of the rigid layer 7 is larger as the foaming factor of the formed molded body bonded to the rigid layer 7 is larger.
  • the bonding strength of the rigid layer 7 and the foamed molded layer 8 is enhanced.
  • each one of the three vanes 6 had the shape and weight exactly as designed. Also, each one of the three vanes 6 had a mutual balance exactly as designed in the shape and weight.
  • the foaming factor of the foamed molded layer is preferred to be about 1.5 times to about 4.0 times. If the foaming factor is less than 1.5 times, enough effect is not expected for the purpose of reducing the weight of the impeller. If the foaming factor is more than 4 times, the individual foamed cells in the foamed body are large, fluctuations of foamed state increase, and the rotation balance of the blower tends to declines. Moreover, if the foaming factor exceeds 4 times, the mechanical strength of the impeller tends to decline.
  • the vanes 6 having the maximum thickness of 20 mm and the impeller 2 having the maximum outer diameter of 400 mm ⁇ were manufactured, and the impeller having a larger shape can be also manufactured by the method of the invention.
  • the impeller having rigid layer and foamed molded layer of 3 mm, vanes with maximum thickness of 30 mm, and maximum outer diameter of 700 mm ⁇ was confirmed possible to manufacture an impeller having rigid layer and foamed molded layer of 3 mm, vanes with maximum thickness of 30 mm, and maximum outer diameter of 700 mm ⁇ .
  • the blower using the impeller of such large shape also exhibits the same excellent blowing performance and effect as mentioned above.
  • the foamed molded layer has a larger volume than the rigid layer.
  • the weight of the foamed molded layer is extremely lighter than the weight of the rigid layer. Therefore, when manufacturing an impeller having large vanes, if the shape of the foamed molded layer having a light weight is increased, the weight increment degree of the weight of the impeller is small. It is therefore possible to manufacture a blower having vanes of larger overall dimensions.
  • plastic materials may be used to manufacture the same impeller having the rigid layer 7 and foamed molded layer 8 as in embodiment 1.
  • Other plastic materials are not particularly limited, and may include, for example, polypropylene resin, polycarbonate, polyamide resin, polyester resin, polyacetal resin, polyacrylic resin, polystyrene resin, ethylene propylene rubber, and their copolymers.
  • the plastic material in particular, a material having an excellent weather resistance is preferred.
  • a material having an excellent weather resistance is preferred.
  • the impeller molded by using such material having an excellent weather resistance is used in the blower of the outdoor unit of the air conditioner, it can be used for a long period in a stable performance.
  • a plastic material containing other filler may be used, and the impeller having the rigid layer 7 and foamed molded layer 8 same as in embodiment 1 can be manufactured.
  • Other filler is not particularly limited, but inorganic powder, organic powder, or fibrous powder may be used. Such fillers have a function of enhancing the mechanical strength of the rigid layer.
  • the inflating agent or foaming agent is not particularly limited, but may include a material for generating gaseous substance when molding, and a material generating gaseous substance by heating when molding, among others.
  • the rigid layer and foamed molded layer are bonded, but not limited to this method, other manufacturing method may be also employed. For example, using an adhesive or the like, the rigid layer and the foamed molded body formed separately may be bonded together.
  • the rigid layer and foamed molded layer may be manufactured also by other molding method such as compression molding and transfer molding method.
  • the injection molding method is most excellent in mass producibility.
  • the foamed molded layer achieves the properties of both large thickness and light weight. Therefore, an impeller having a large aperture may be obtained easily. As a result, the blower is enhanced in performance.
  • the blower of the embodiments is used in the outdoor unit of the air conditioner, but not limited to this, it may be also used in the cooling device for electronic appliance, air circulating device for circulating air, or blower for generating wind.
  • the above effects are particularly enhanced when used in the blower requiring a large-sized impeller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (26)

  1. Laufrad, das in einem Gebläse verwendet wird, mit:
    einer Nabe (5) und
    einem Flügel (6),
       wobei der Flügel einen Mehrschichtteil (7, 8) enthält, dadurch gekennzeichnet, dass der Mehrschichtteil eine Hartschicht nur auf einer Luftaufnahmefläche an der Luftaufnahmeseite (15) des Flügels (6) enthält und dass er an der Luftabsonderungsseite (16) eine an die Hartschicht gebundene Schaumformschicht (8) enthält.
  2. Laufrad nach Anspruch 1,
       wobei die mehreren Schichten (7, 8) eine Zweischichtstruktur aus einer ersten Schicht (8) und einer zweiten Schicht (7) aufweisen und
       die erste Schicht die Schaumformschicht (8) aufweist.
  3. Laufrad nach Anspruch 2,
       wobei die Schaumformschicht bei einer Rotation des Gebläses an einer Luftabsonderungsseite (16) angebracht ist.
  4. Laufrad nach Anspruch 2 oder 3,
       wobei die Schaumformschicht eine größere Dicke als die zweite Schicht aufweist.
  5. Laufrad nach Anspruch 1,
       wobei die mehreren Schichten eine Hartschicht (7) und die auf der Hartschicht aufgeschichtete Schaumformschicht (8) aufweisen,
       die Hartschicht eine größere mechanische Festigkeit als die Schaumformschicht aufweist und
       und die Schaumformschicht ein kleineres spezifisches Gewicht als die Hartschicht hat.
  6. Laufrad nach Anspruch 1,
       wobei die mehreren Schichten eine Hartschicht (7), die auf der Hartschicht aufgeschichtete Schaumformschicht (8) und eine auf der Oberfläche der Schaumformschicht ausgebildete Hautschicht (18) aufweisen.
  7. Laufrad nach Anspruch 1,
       wobei der Flügel (das Flügelrad) eine Anzahl von Flügeln (6) aufweist und die Anzahl von Flügeln symmetrisch auf einem Umfang der Nabe angeordnet ist.
  8. Laufrad nach Anspruch 1,
       wobei die Schaumformschicht einen Aufschäumfaktor in einem Bereich von etwa dem 1,5-fachen bis zu etwa dem 4-fachen aufweist.
  9. Laufrad nach Anspruch 1,
       wobei die mehreren Schichten eine Hartschicht und die auf der Hartschicht aufgeschichtete Schaumformschicht aufweisen,
       die Hartschicht einen Plastikformkörper aufweist und
       die Schaumformschicht einen Plastik-Schaumformkörper aufweist.
  10. Laufrad nach Anspruch 1,
       wobei eine erste Oberfläche der Hartschicht eine Oberflächenrauhigkeit in einem Bereich von Ra 50 µm bis Ra 500 µm aufweist und
       die Schaumformschicht direkt an die erste Oberfläche gebunden ist.
  11. Laufrad nach Anspruch 1,
       wobei die Schaumformschicht mehrere Schaumzellen aufweist.
  12. Laufrad nach Anspruch 1,
       wobei das Gebläse als eine Außeneinheit einer Klimaanlage verwendet wird.
  13. Herstellungsverfahren eines Laufrades, das in einem Gebläse verwendet wird, mit:
    einem ersten Schritt zum Ausformen einer Nabe (5) und einer ersten Flügelschicht (7), die von der Nabe absteht, und
    einem zweiten Schritt, um auf der ersten Flügelschicht eine zweite Flügelschicht (8) aufzuschichten, die eine Schaumformschicht (8) aufweist.
  14. Herstellungsverfahren nach Anspruch 13,
       wobei der erste Schritt einen Schritt zum Spritzgießen eines Plastikmaterials einschließt.
  15. Herstellungsverfahren nach Anspruch 13 oder 14,
       wobei der erste Schritt einen Schritt zum Ausformen der ersten Flügelschicht einschließt, so dass eine Oberflächenrauhigkeit einer ersten Oberfläche der ersten Flügelschicht in einem Bereich von Ra 50 µm bis Ra 500 µm liegen kann, und
       der zweite Schritt einen Schritt zum Binden der Schaumformschicht an die erste Oberfläche einschließt.
  16. Herstellungsverfahren nach Anspruch 15,
       wobei die erste Oberfläche, welche in einer Laufrichtung des Laufrades eine Luftabsonderungsseite (16) ist, mit der Schaumformschicht (8) verklebt wird.
  17. Herstellungsverfahren nach einem der Ansprüche 13 bis 15,
       wobei der zweite Schritt einen Schritt zum Ausformen der zweiten Flügelschicht einschließt, so dass ein Aufschäumfaktor der Schaumformschicht bei etwa dem 1,5- bis zu etwa dem 4-fachen liegen kann.
  18. Herstellungsverfahren nach einem der Ansprüche 13 bis 17,
       wobei der zweite Schritt außerdem einen Schritt zum Ausbilden einer Hautschicht (18) auf einer Oberfläche der Schaumformschicht (8) einschließt.
  19. Herstellungsverfahren nach einem der Ansprüche 13 bis 18,
       wobei der zweite Schritt einen Schritt zum Spritzgießen eines Plastikmaterials einschließt, das mindestens ein Aufschäummittel und / oder ein Treibmittel enthält.
  20. Herstellungsverfahren nach einem der Ansprüche 13 bis 19,
       wobei der zweite Schritt einen Formungsschritt einschließt, so dass die Schaumformschicht mehrere Schaumzellen enthalten kann.
  21. Gebläse, mit:
    einem Motor (3),
    einer Nabe (5), die mit dem Motor verbunden ist, und
    einem Flügel (6), der von der Nabe absteht,
       wobei der Flügel einen Mehrschichtteil (7, 8) enthält, dadurch gekennzeichnet, dass der Mehrschichtteil eine Hartschicht (7) enthält, welche auf einer Luftaufnahmefläche an der Luftaufnahmeseite (15) des Flügels ist, und dass er an der Luftabsonderungsseite (16) eine an die Hartschicht gebundene Schaumformschicht (8) enthält, und
       die Flügel zusammen mit dem Antrieb des Motors drehbar sind.
  22. Gebläse nach Anspruch 21,
       wobei die Hartschicht einen Plastikformkörper aufweist und
       die Schaumformschicht einen Plastik-Schaumformkörper aufweist, der mehrere Schaumzellen aufweist.
  23. Gebläse nach Anspruch 21,
       wobei die Schaumformschicht bei einer Rotation des Flügels an einer Luftabsonderungsseite (16) angebracht ist.
  24. Außeneinheit einer Klimaanlage, mit:
    einem Wärmetauscher (12),
    einem Gebläse (10), das an einer Rückseite des Wärmetauschers eingebaut ist,
       wobei das Gebläse enthält:
    einen Motor (3),
    eine Nabe (5), die mit dem Motor verbunden ist, und
    einen Flügel (6), der von der Nabe absteht, wobei der Flügel einen Mehrschichtteil (7, 8) enthält, dadurch gekennzeichnet, dass der Mehrschichtteil eine Hartschicht (7) enthält, welche auf einer Luftaufnahmefläche an der Luftaufnahmeseite (15) des Flügels ist,
    eine Schaumformschicht (8) an die Hartschicht an der Luftabsonderungsseite (16) gebunden ist und
    die Flügel zusammen mit dem Antrieb des Motors drehbar sind.
  25. Außeneinheit nach Anspruch 24,
       wobei die Hartschicht einen Plastikformkörper aufweist und
       die Schaumformschicht einen Plastik-Schaumformkörper aufweist, der mehrere Schaumzellen aufweist.
  26. Außeneinheit nach Anspruch 24,
       wobei die Schaumformschicht bei Rotation des Flügels an einer Luftabsonderungsseite angebracht ist.
EP00104398A 1999-03-08 2000-03-02 Laufrad für Gebläse, dessen Herstellungsverfahren, und Gebläse Expired - Lifetime EP1035330B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5978899 1999-03-08
JP11059788A JP2000257592A (ja) 1999-03-08 1999-03-08 送風機用羽根車とその製造方法

Publications (3)

Publication Number Publication Date
EP1035330A2 EP1035330A2 (de) 2000-09-13
EP1035330A3 EP1035330A3 (de) 2002-05-08
EP1035330B1 true EP1035330B1 (de) 2004-11-10

Family

ID=13123387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00104398A Expired - Lifetime EP1035330B1 (de) 1999-03-08 2000-03-02 Laufrad für Gebläse, dessen Herstellungsverfahren, und Gebläse

Country Status (6)

Country Link
EP (1) EP1035330B1 (de)
JP (1) JP2000257592A (de)
CN (1) CN1116522C (de)
DE (1) DE60015628T2 (de)
ES (1) ES2232339T3 (de)
MY (1) MY122606A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009193A1 (en) * 2011-07-13 2013-01-17 Fisher & Paykel Healthcare Limited Impeller and motor assembly
US10471225B2 (en) 2012-12-18 2019-11-12 Fisher & Paykel Healthcare Limited Impeller and motor assembly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741933B1 (de) * 2005-07-04 2019-03-06 MAHLE Behr GmbH & Co. KG Laufrad und Verfahren zur Herstellung eines Laufrads
CN102022377B (zh) * 2005-08-30 2012-11-28 台达电子工业股份有限公司 风扇
DE202010011507U1 (de) * 2010-08-18 2010-11-04 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Zweikomponenten-Lüfterrad
US10137264B2 (en) 2011-07-13 2018-11-27 Fisher & Paykel Healthcare Limited Respiratory assistance apparatus
JP6132380B2 (ja) * 2012-02-06 2017-05-24 ミネベアミツミ株式会社 軸流ファンのインペラ構造
SG11201909879QA (en) 2017-04-23 2019-11-28 Fisher & Paykel Healthcare Ltd Breathing assistance apparatus
DE102022200940A1 (de) 2022-01-28 2023-08-03 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Lüfterrad eines Kraftfahrzeugs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1048479A (en) * 1959-10-17 1966-11-16 Rolls Royce Improvements in or relating to blades, vanes or struts for gas turbine engine axial flow compressors
US3647317A (en) * 1970-03-19 1972-03-07 Fluor Prod Co Inc Fiberglass fan assembly
GB2240588B (en) * 1990-01-31 1994-08-03 Toshiba Kk Ventilating fan
US5392514A (en) * 1992-02-06 1995-02-28 United Technologies Corporation Method of manufacturing a composite blade with a reinforced leading edge
DE4234292A1 (de) * 1992-10-12 1994-04-14 Behr Gmbh & Co Axiallüfter mit Kuststoffschaufeln
GB2279114A (en) * 1993-06-15 1994-12-21 Nuaire Ltd Fan impeller blade
WO1998026233A1 (en) * 1996-12-11 1998-06-18 Springer Carrier S/A Condensate drain path for a room air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009193A1 (en) * 2011-07-13 2013-01-17 Fisher & Paykel Healthcare Limited Impeller and motor assembly
EP2731656A4 (de) * 2011-07-13 2015-02-25 Fisher & Paykel Healthcare Ltd Laufrad und motoranordnung
US10471225B2 (en) 2012-12-18 2019-11-12 Fisher & Paykel Healthcare Limited Impeller and motor assembly
US11992613B2 (en) 2012-12-18 2024-05-28 Fisher & Paykel Healthcare Limited Impeller and motor assembly

Also Published As

Publication number Publication date
MY122606A (en) 2006-04-29
EP1035330A2 (de) 2000-09-13
EP1035330A3 (de) 2002-05-08
JP2000257592A (ja) 2000-09-19
DE60015628D1 (de) 2004-12-16
ES2232339T3 (es) 2005-06-01
CN1116522C (zh) 2003-07-30
DE60015628T2 (de) 2005-11-10
CN1266150A (zh) 2000-09-13

Similar Documents

Publication Publication Date Title
EP1035330B1 (de) Laufrad für Gebläse, dessen Herstellungsverfahren, und Gebläse
US7011315B2 (en) Expandable pre-formed plug
US8128780B2 (en) Reinforcement system utilizing a hollow carrier
US5981046A (en) Sound absorbing component
EP0743632B1 (de) Element zur akustischen Absorption und Herstellungsverfahren dafür
WO2001048430A1 (fr) Procede de deformation de materiau d'isolation thermique sous vide, procede de fixation de ce materiau, refrigeration, recipient de stockage refrigere, et corps de boitier isolant thermique
US5895726A (en) Lightweight high damping porous metal/phthalonitrile composites
WO2014123774A1 (en) Heat sink
KR20050058246A (ko) 자동차 조립체용 구조 강화재 부품
JP6468972B2 (ja) 繊維強化複合発泡体の製造方法
JP6200861B2 (ja) 複合体形成用樹脂発泡体および繊維強化複合体の製造方法
US20030228176A1 (en) Toner container
US4713202A (en) Process for reducing the distortion of multi-layered laminates
EP3854579B1 (de) Laminat für gehäuse und verfahren zur herstellung davon
EP0698464A2 (de) Rotationsgeformter Kunstoffgegenstand und Verfahren zu dessen Herstellung
CN214501647U (zh) 一种减胶防缩影卡扣及空调器
US20230218384A1 (en) Thermoplastic vascular structures
JPH05154950A (ja) 制振材料及びその製造方法
JP2982599B2 (ja) 中空部を有する成形品の製造方法
CN108507180B (zh) 电热水器
CA2607839C (en) Method for reinforcing structural members and reinforcement system utilizing a hollow carrier
Klang et al. A novel new resin for closed mold applications
CN102933371A (zh) 发泡铁/镍合金的模具工具
Alfrey Mechanical Fabrication of Thermoplastic Polymers
JPH08244125A (ja) 吸音部品

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020711

17Q First examination report despatched

Effective date: 20021115

AKX Designation fees paid

Designated state(s): DE ES IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60015628

Country of ref document: DE

Date of ref document: 20041216

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2232339

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090401

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090226

Year of fee payment: 10

Ref country code: IT

Payment date: 20090317

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100303