EP1035199A2 - Comprimé détergent parfumé - Google Patents

Comprimé détergent parfumé Download PDF

Info

Publication number
EP1035199A2
EP1035199A2 EP99870082A EP99870082A EP1035199A2 EP 1035199 A2 EP1035199 A2 EP 1035199A2 EP 99870082 A EP99870082 A EP 99870082A EP 99870082 A EP99870082 A EP 99870082A EP 1035199 A2 EP1035199 A2 EP 1035199A2
Authority
EP
European Patent Office
Prior art keywords
tablet
coating
acid
tablet according
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99870082A
Other languages
German (de)
English (en)
Other versions
EP1035199A3 (fr
EP1035199B1 (fr
Inventor
José Arnau, (NMN)
Philip Andrew Cunningham
Michael Green, (NMN)
Allan Campbell Mcritchie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP99870082A priority Critical patent/EP1035199B1/fr
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to ES99870082T priority patent/ES2300138T3/es
Priority to DE69938228T priority patent/DE69938228T2/de
Priority to AT99870082T priority patent/ATE387486T1/de
Priority to BR0009469-2A priority patent/BR0009469A/pt
Priority to PCT/US2000/005985 priority patent/WO2000055294A2/fr
Priority to CN00807434.8A priority patent/CN1359419A/zh
Priority to AU38706/00A priority patent/AU3870600A/en
Priority to EP00917788A priority patent/EP1159398A2/fr
Priority to CA002361344A priority patent/CA2361344A1/fr
Priority to US09/914,494 priority patent/US7084102B1/en
Priority to ARP000101063A priority patent/AR022893A1/es
Publication of EP1035199A2 publication Critical patent/EP1035199A2/fr
Publication of EP1035199A3 publication Critical patent/EP1035199A3/fr
Application granted granted Critical
Publication of EP1035199B1 publication Critical patent/EP1035199B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0082Coated tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates or phosphonites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/364Organic compounds containing phosphorus containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Definitions

  • the present invention relates to perfumed detergent tablets, especially those adapted for use in washing machines, and to processes for making such tablets.
  • perfumed products are well-known in the art. However, consumer acceptance of such perfumed products like laundry and cleaning products is determined not only by the performance achieved with these products but also by the aesthetics associated therewith. The perfume components are therefore an important aspect of the successful formulation of such commercial products.
  • a clay mineral compound is a desirable ingredient of such laundry and cleaning product, in particular those products which are in tablet form.
  • the clay can provide softening benefit but can also serve as a disintegrant of such detergent tablets.
  • a perfumed detergent tablet comprising a clay mineral compound which exhibit good perfume performance with reduced discoloration of the clay.
  • cleaning compositions in tablet form have often been proposed, however these have not (with the exception of soap bars for personal washing) gained any substantial success, despite the several advantages of products in a unit dispensing form.
  • One of the reasons for this may be that detergent tablets require a relatively complex manufacturing process.
  • coating of tablets is often desired for aesthetic reasons, to improve the outer appearance of the tablet or to achieve some particular aesthetic effect.
  • GB-A-0 989 683 published on 22nd April 1965, discloses a process for preparing a particulate detergent from surfactants and inorganic salts; spraying on water-soluble silicate; and pressing the detergent particles into a solid form-retaining tablet.
  • a readily water-soluble organic film-forming polymer for example, polyvinyl alcohol
  • EP-A-0 002 293 published on 13th June 1979, discloses a tablet coating comprising hydrated salt such as acetate, metaborate, orthophosphate, tartrate, and sulphate.
  • EP-A-0 716 144 published on 12th June 1996, also discloses laundry detergent tablets with water-soluble coatings which may be organic polymers including acrylic/maleic co-polymer, polyethylene glycol, PVPVA, and sugar.
  • WO9518215 published on 6th July 1995, provides water-insoluble coatings for solid cast tablets.
  • the tablets are provided with hydrophobic coatings including wax, fatty acid, fatty acid amides, and polyethylene glycol.
  • EP-A-0 846 754 published on the 10 th of June 1998, provides a tablet having a coating comprising a dicarboxylic acid, the coating material typically having a melting point of from 40°C to 200°C.
  • EP-A-0 846 755 published on the 10 th of June 1998, provides a tablet having a coating comprising a material insoluble in water at 25°C, such as C12-C22 fatty acids, adipic acid or C8-C13 dicarboxylic acids.
  • coated tablets can be provided with a coating so that they can be stored, shipped and handled without damage, the coating being easily broken when the tablet is in the washing machine, releasing the active ingredients into the wash solution.
  • Typical of such disclosure can be found in pending European patent applications EP 99870017.3, EP 99870018.1, and EP 99870019.9.
  • the coating also comprises an acid having a melting point of at least 40°C, more particularly with a melting point of at least 145°C.
  • the detergent formulator is also faced with the problems of providing a coated tablet having a coating which has satisfactory appearance, is sufficiently hard to protect the tablet from mechanical forces when stored, shipped and handled, and disperses readily in an aqueous solution whilst still giving satisfactory perfume performance.
  • the perfuming of detergent tablet is a concern to the detergent formulator.
  • the presence of the coating on the tablet can reduce the diffusion of the perfume from the tablet resulting in a less attractive odour.
  • the present invention is a perfumed detergent tablet, the coating comprising a clay mineral compound and a heavy metal ion sequestrant.
  • perfume tablet it is meant that the perfume can be present in the coating if present, or in the detergent composition, or both.
  • An essential ingredient of the detergent tablet is a clay.
  • the clay may be present in any of the detergent composition, the coating if present, or both.
  • clay mineral compound or in abbreviation, "clay”
  • clay mineral compound it is meant herein a hydrous phyllosilicate, typically having a two or three layer crystal structure.
  • clay mineral compound excludes sodium aluminosilicate zeolite builder compounds, which however, may be included in the compositions of the invention as optional components. Further description of clays may be found in Kirk-Othmer, Encyclopaedia of Chemical Technology, 4th edition, Volume 6, page 381, as published by John Wiley and Sons.
  • the clay mineral compound is preferably a smectite clay compound.
  • Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647 and European Patents No.s EP-A-299,575 and EP-A-313,146 all in the name of the Procter and Gamble Company.
  • smectite clays herein includes both the clays in which aluminium oxide is present in a silicate lattice and the clays in which magnesium oxide is present in a silicate lattice.
  • Typical smectite clay compounds include the compounds having the general formula Al 2 (Si 2 O 5 ) 2 (OH) 2 .nH 2 O and the compounds having the general formula Mg 3 (Si 2 O 5 ) 2 (OH) 2 .nH 2 O. Smectite clays tend to adopt an expandable three layer structure.
  • Suitable smectite clays include those selected from the classes of the montmorillonites, hectorites, volchonskoites, nontronites, saponites and sauconites, particularly those having an alkali or alkaline earth metal ion within the crystal lattice structure.
  • Sodium or calcium montmorillonite are particularly preferred.
  • Suitable smectite clays are sold by various suppliers including English China Clays, Laviosa, Fordamin, Georgia Kaolin and Colin Stewart Minerals (CSM).
  • Preferred smectite clays are sold under the tradename of White Bentonite STP by Fordamin and Detercal P7 by Laviosa Chemical Mineria SPA.
  • Clays for use herein may be subjected to an acid washing treatment with any suitable mineral or organic acid. Such clays give rise to an acid pH on dissolution in distilled water.
  • a commercially available "acid clay” of this type is sold under the tradename Tonsil P by Sud Chemie AG.
  • Substitution of small cations, such as protons, sodium ions, potassium ions, magnesium ions and calcium ions, and of certain organic molecules including those having positively charged functional groups can typically take place within the crystal lattice structure of the smectite clays.
  • a clay may be chosen for its ability to preferentially absorb one cation type, such ability being assessed by measurements of relative ion exchange capacity.
  • the smectite clays suitable herein typically have a cation exchange capacity of at least 50 meq/100g.
  • U.S. Patent No. 3,954,632 describes a method for measurement of cation exchange capacity.
  • the crystal lattice structure of the clay mineral compounds may have, in a preferred execution, a cationic fabric softening agent substituted therein.
  • a cationic fabric softening agent substituted therein Such substituted clays have been termed 'hydrophobically activated' clays.
  • the cationic fabric softening agents are typically present at a weight ratio, cationic fabric softening agent to clay, of from 1:200 to 1:10, preferably from 1:100 to 1:20.
  • Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
  • a preferred commercially available "hydrophobically activated" clay is a bentonite clay containing approximately 40% by weight of a dimethyl ditallow quaternary ammonium salt sold under the tradename Claytone EM by English China Clays International.
  • the clay which is present in the detergent composition is present in an intimate mixture or in a particle with a humectant and a hydrophobic compound, preferably a wax or oil, such as paraffin oil.
  • humectants are organic compounds, including propylene glycol, ethylene glycol, dimers or trimers of glycol, most preferably glycerol.
  • the particle is preferably an agglomerate.
  • the particle may be such that the wax or oil and optionally the humectant form an encapsulate on the clay or alternatively, the clay be an encapsulate for the wax or oil and the humectant. It may be preferred that the particle comprises an organic salt or silica or silicate.
  • the clay in the detergent composition is preferably mixed with one or more surfactants and optionally builders and optionally water, in which case the mixture is preferably subsequently dried.
  • a mixture is further processed in a spray-drying method to obtain a spray dried particle comprising the clay.
  • the intimate mixture comprises a chelating agent.
  • the clay will preferably be present in different particles size.
  • at least 50% by weight, preferably substantially all (e.g. at least 90% or 95%) by weight of the clay is present as granules.
  • granules it is meant that the particles of the clay mineral compound which is present in the detergent composition are included as components of agglomerate particles optionally containing other detergent compounds.
  • the term "largest particle dimension" of the clay mineral compound refers to the largest dimension of the clay mineral component as such, and not to the agglomerated particle as a whole.
  • the granules will have a particle size of at least 100 micrometers, generally 100-1700 micrometers.
  • the clay is preferably present in the coating, having a particle size of less than 75 ⁇ m, more preferably of less than 53 ⁇ m.
  • the tablet is a softening tablet.
  • softening tablet it is meant that the level of clay will typically be of at least 5%, preferably at least 8%, and most preferably at least 10% by weight of the tablet.
  • the amount may be less than 25%, usually less than 20%, and preferably not more than 15% by weight of the tablet.
  • the detergent compositions tablet of the invention also contains a heavy metal ion sequestrant, that being either present in the coating if present or in the detergent composition, or even in both the coating and the detergent composition, preferably, it is present in both the coating and the detergent composition or only in the detergent composition.
  • heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the tablet.
  • Heavy metal ion sequestrants which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • any salts/complexes are water soluble.
  • the molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1:1.
  • Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
  • Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
  • Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
  • EDDS ethylenediamine-N,N'-disuccinic acid
  • Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
  • Examples of such preferred sodium salts of EDDS include Na 2 EDDS and Na 3 EDDS.
  • Examples of such preferred magnesium complexes of EDDS include MgEDDS and Mg 2 EDDS.
  • Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
  • the iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
  • the ⁇ -alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
  • EP-A-476,257 describes suitable amino based sequestrants.
  • EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
  • EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable.
  • Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N,N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine- N,N'-disuccinic acid (HPDDS) are also suitable.
  • alkali metal ethane 1-hydroxy diphosphonates in particular when used in combination with diethylene triamine penta (methylene phosphonate).
  • the tablets of the present invention may also optionally comprise a perfume composition, that being either present in the coating if present or in the detergent composition, or even in both the coating and the detergent composition.
  • Suitable perfumes herein include materials which provide an olfactory aesthetic benefit such as to make such tablets more aesthetically pleasing to the consumer, imparting a pleasant fragrance to fabrics treated therewith and/or cover any "chemical" odor that the product may have.
  • perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances.
  • natural i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants
  • artificial i.e., a mixture of different nature oils or oil constituents
  • synthetic i.e., synthetically produced
  • perfumes are complex mixtures of a plurality of organic compounds.
  • perfume ingredients useful in the perfume compositions include, but are not limited to, hexyl cinnamic aldehyde; amyl cinnamic aldehyde; amyl salicylate; hexyl salicylate; terpineol; 3,7-dimethyl- cis -2,6-octadien-1-ol; 2,6-dimethyl-2-octanol; 2,6-dimethyl-7-octen-2-ol; 3,7-dimethyl-3-octanol; 3,7-dimethyl- trans -2,6-octadien-1-ol; 3,7-dimethyl-6-octen-1-ol; 3,7-dimethyl-1-octanol; 2-methyl-3-(para-tert-butylphenyl)-propionaldehyde; 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboxaldehyde
  • fragrance materials include, but are not limited to, orange oil; lemon oil; grapefruit oil; bergamot oil; clove oil; dodecalactone gamma; methyl-2-(2-pentyl-3-oxo-cyclopentyl) acetate; beta-naphthol methylether; methyl-beta-naphthylketone; coumarin; decylaldehyde; benzaldehyde; 4-tert-butylcyclohexyl acetate; alpha,alpha-dimethylphenethyl acetate; methylphenylcarbinyl acetate; cyclic ethyleneglycol diester of tridecandioic acid; 3,7-dimethyl-2,6-octadiene-1-nitrile; ionone gamma methyl; ionone alpha; ionone beta; petitgrain; methyl cedrylone; 7-acetyl-1,2,3,4,5
  • perfume components are geraniol; geranyl acetate; linalool; linalyl acetate; tetrahydrolinalool; citronellol; citronellyl acetate; dihydromyrcenol; dihydromyrcenyl acetate; tetrahydromyrcenol; terpinyl acetate; nopol; nopyl acetate; 2-phenylethanol; 2-phenylethyl acetate; benzyl alcohol; benzyl acetate; benzyl salicylate; benzyl benzoate; styrallyl acetate; dimethylbenzylcarbinol; trichloromethylphenylcarbinyl methylphenylcarbinyl acetate; isononyl acetate; vetiveryl acetate; vetiverol; 2-methyl-3-(p-tert-butylphenyl)-propanal; 2-methyl-3-(
  • the perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.
  • the perfume composition contains less than 0.6% by weight of the perfume composition of Schiff-base.
  • the perfume for use herein is used at levels of up to 5 grams per tablet and preferably is substantially free of Schiff-Base.
  • the perfume composition comprises less than 0.4 % by weight of Schiff Base, and more preferably is free of Schiff base.
  • Schiff-Bases are the condensation of an aldehyde perfume ingredient with an anthranilate. A typical description can be found in US 4853369.
  • the Schiff Bases can be added directly to the perfume composition or can be formed in situ in the perfume composition by adding to it an Anthranilate such as Methyl or Ethyl Anthranilate along with an aldehyde which can react with the Anthranilate to form the Schiff Base.
  • Typical of Schiff bases are selected from Schiffs base of 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; condensation products of: hydroxycitronellal and methyl anthranilate; 4-(4-hydroxy-4-methyl pentyl)-3-cyclohexene-1-carboxaldehyde and methyl anthranilate; Methyl Anthranilate and HydroxyCitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Methyl anthranilate and Lyral commercially available under the tradename Lyrame; Methyl Anthranilate and Ligustral commercially available under the tradename Ligantral; and mixtures thereof.
  • the perfume composition is free of perfume ingredients selected from Methyl Anthranilate and HydroxyCitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Methyl anthranilate and Lyral commercially available under the tradename Lyrame; Methyl Anthranilate and Ligustral commercially available under the tradename Ligantral; and mixtures thereof.
  • perfume ingredients selected from Methyl Anthranilate and HydroxyCitronellal commercially available under the tradename Aurantiol; Methyl Anthranilate and Methyl Nonyl Acetaldehyde commercially available under the tradename Agrumea; Methyl Anthranilate and PT Bucinal commercially available under the tradename Verdantiol; Meth
  • Suitable solvents, diluents or carriers for perfumes ingredients mentioned above are for examples, ethanol, isopropanol, diethylene glycol, monoethyl ether, dipropylene glycol, diethyl phthalate, triethyl citrate, etc.
  • the amount of such solvents, diluents or carriers incorporated in the perfumes is preferably kept to the minimum needed to provide a homogeneous perfume solution.
  • Tablets of the present invention as well as coated tablets according to the invention provide improved fabric perfume deposition.
  • the perfume composition is present in an amount of 0.001% to 10%, preferably from 0.005% to 5%, more preferably from 0.01% to 3%, and even more preferably from 0.02% to 2% by weight of the tablet.
  • the perfume can be incorporated to the tablet by any conventional means known to the skilled person.
  • One preferred means is by spray-on of the perfume composition onto the tablet.
  • the tablets may comprise components such as surfactants, enzymes, detergent etc....
  • Typical tablet compositions for the preferred embodiment of the present invention are disclosed in the pending European applications of the Applicant n° 96203471.6, 96203462.5, 96203473.2 and 96203464.1 for example.
  • Elements typically entering in the composition of detergent tablets or of other forms of detergents such as liquids or granules are detailed in the following paragraphs.
  • Surfactant are typically comprised in a detergent composition.
  • the dissolution of surfactants is favoured by the addition of the highly soluble compound.
  • Nonlimiting examples of surfactants useful herein typically at levels from about 1% to about 55%, by weight, include the conventional C 11 -C 18 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C 10 -C 20 alkyl sulfates (“AS”), the C 10- C 18 secondary (2,3) alkyl sulfates of the formula CH 3 (CH 2 ) x (CHOSO 3- M + ) CH 3 and CH 3 (CH 2 ) y (CHOSO 3- M + ) CH 2 CH 3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C 10- C 18 alkyl alkoxy sulfates (“
  • the conventional nonionic and amphoteric surfactants such as the C 12- C 18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C 6 -C 12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C 12- C 18 betaines and sulfobetaines ("sultaines"), C 10- C 18 amine oxides, and the like, can also be included in the overall compositions.
  • the C 10 -C 18 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C 12 -C 18 N-methylglucamides. See WO 9,206,154.
  • sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C 10 -C 18 N-(3-methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C 12 -C 18 glucamides can be used for low sudsing.
  • C 10 -C 20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C 10 -C 16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful.
  • the tablet comprises at least 5% per weight of surfactant, more preferably at least 15% per weight, even more preferably at least 25% per weight, and most preferably between 35% and 45% per weight of surfactant.
  • Non gelling binders can be integrated in detergent compositions to further facilitate dissolution. If non gelling binders are used, suitable non-gelling binders include synthetic organic polymers such as polyethylene glycols, polyvinylpyrrolidones, polyacrylates and water-soluble acrylate copolymers.
  • binders classification Acacia, Alginic Acid, Carbomer, Carboxymethylcellulose sodium, Dextrin, Ethylcellulose, Gelatin, Guar gum, Hydrogenated vegetable oil type I, Hydroxyethyl cellulose, Hydroxypropyl methylcellulose, Liquid glucose, Magnesium aluminum silicate, Maltodextrin, Methylcellulose, polymethacrylates, povidone, sodium alginate, starch and zein. Most preferable binders also have an active cleaning function in the laundry wash such as cationic polymers, i.e.
  • Non-gelling binder materials are preferably sprayed on and hence have an appropriate melting point temperature below 90°C, preferably below 70°C and even more preferably below 50°C so as not to damage or degrade the other active ingredients in the matrix.
  • non-aqueous liquid binders i.e. not in aqueous solution
  • they may also be solid binders incorporated into the matrix by dry addition but which have binding properties within the tablet.
  • Non-gelling binder materials are preferably used in an amount within the range from 0.1 to 15% of the composition, more preferably below 5% and especially if it is a non laundry active material below 2% by weight of the tablet. It is preferred that gelling binders, such as nonionic surfactants are avoided in their liquid or molten form. Nonionic surfactants and other gelling binders are not excluded from the compositions, but it is preferred that they be processed into the detergent tablets as components of particulate materials, and not as liquids.
  • Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness.
  • Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils. The level of builder can vary widely depending upon the end use of the composition.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • non-phosphate builders are required in some locales.
  • the compositions herein function surprisingly well even in the presence of the so-called "weak” builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt” situation that may occur with zeolite or layered silicate builders.
  • silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na 2 SiO 5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x O 2x+1 ⁇ yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na 2 SiO 5 (NaSKS-6 form) is most preferred for use herein.
  • silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations.
  • Aluminosilicate builders include those having the empirical formula: M z (zAlO 2 ) y ] ⁇ xH 2 O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived.
  • a method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred. Included among the polycarboxylate builders are a variety of categories of useful materials.
  • polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxypolycarboxylates copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid
  • various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations. Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986.
  • succinic acid builders include the C 5 -C 20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986. Other suitable polycarboxylates are disclosed in U.S.
  • Fatty acids e.g., C 12 -C 18 monocarboxylic acids
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.
  • the detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
  • bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering.
  • the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide.
  • Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
  • the percarbonate can be coated with silicate, borate or water-soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka. Mixtures of bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • amido-derived bleach activators are those of the formulae: R 1 N(R 5 )C(O)R 2 C(O)L or R 1 C(O)N(R 5 )R 2 C(O)L wherein R 1 is an alkyl group containing from about 6 to about 12 carbon atoms, R 2 is an alkylene containing from 1 to about 6 carbon atoms, R 5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenyl sulfonate.
  • bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzene-sulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin-type is: Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae: wherein R 6 is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms.
  • lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S.
  • metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; and 5,227,084.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration.
  • the enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof.
  • Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition.
  • the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
  • Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms.
  • protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo.
  • Proteolytic enzymes suitable for removing protein-based stains include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands).
  • Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No.
  • Amylases include, for example, ⁇ -amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
  • the cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S.
  • Patent 4,435,307, Barbesgoard et al issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander).
  • suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
  • CAREZYME Novo is especially useful.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P.” Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
  • lipolyticum NRRLB 3673 commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • a wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S.
  • the detergent composition may contain a clay flocculating agent, preferably present at a level of from 0.005% to 10%, more preferably from 0.05% to 5%, most preferably from 0.1% to 2% by weight of the composition.
  • the clay flocculating agent functions such as to bring together the particles of clay compound in the wash solution and hence to aid their deposition onto the surface of the fabrics in the wash. This functional requirement is hence different from that of clay dispersant compounds which are commonly added to laundry detergent compositions to aid the removal of clay soils from fabrics and enable their dispersion within the wash solution.
  • Preferred as clay flocculating agents herein are organic polymeric materials having an average weight of from 100,000 to 10,000,000, preferably from 150,000 to 5,000,000, more preferably from 200,000 to 2,000,000.
  • Suitable organic polymeric materials comprise homopolymers or copolymers containing monomeric units selected from alkylene oxide, particularly ethylene oxide, acrylamide, acrylic acid, vinyl alcohol, vinyl pyrrolidone, and ethylene imine. Homopolymers of, on particular, ethylene oxide, but also acrylamide and acrylic acid are preferred.
  • EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe preferred organic polymeric clay flocculating agents for use herein.
  • Inorganic clay flocculating agents are also suitable herein, typical examples of which include lime and alum.
  • the flocculating agent is preferably present in a detergent base granule such as a detergent agglomerate, extrudate or spray-dried particle, comprising generally one or more surfactants and builders.
  • the flocculating agent is also comprised in the particle or granule comprising the clay.
  • the weight ratio of clay to the flocculating polymer is preferably from 1000:1 to 1:1, more preferably from 500:1 to 1:1, most preferably from 300:1 to 1:1, or even more preferably from 80:1 to 10:1, or in certain applications even from 60:1 to 20:1.
  • detergent compositions include chelating agents, soil release agents, soil antiredeposition agents, dispersing agents, suds suppressors, fabric softeners, dye transfer inhibition agents and mixtures thereof.
  • the tablet may comprise a highly soluble compound.
  • a highly soluble compound is defined as follow:
  • a solution is prepared as follows comprising de-ionised water as well as 20 grams per litre of a specific compound:
  • the tablet may comprise a compound having a Cohesive Effect on the particulate material of a detergent matrix forming the tablet.
  • the Cohesive Effect on the particulate material of a detergent matrix forming the tablet or a layer of the tablet is characterised by the force required to break a tablet or layer based on the examined detergent matrix pressed under controlled compression conditions. For a given compression force, a high tablet or layer strength indicates that the granules stuck highly together when they were compressed, so that a strong cohesive effect is taking place.
  • Means to assess tablet or layer strength are given in Pharmaceutical dosage forms : tablets volume 1 Ed. H.A. Lieberman et al, published in 1989.
  • the cohesive effect is measured by comparing the tablet or layer strength of the original base powder without compound having a cohesive effect with the tablet or layer strength of a powder mix which comprises 97 parts of the original base powder and 3 parts of the compound having a cohesive effect.
  • the compound having a cohesive effect is preferably added to the matrix in a form in which it is substantially free of water (water content below 10% (pref. below 5%)).
  • the temperature of the addition is between 10 and 80C, more pref. between 10 and 40C.
  • a compound is defined as having a cohesive effect on the particulate material according to the invention when at a given compacting force of 3000N, tablets with a weight of 50g of detergent particulate material and a diameter of 55mm have their tablet tensile strength increased by over 30% (preferably 60 and more preferably 100%) by means of the presence of 3% of the compound having a cohesive effect in the base particulate material.
  • An example of a compound having a cohesive effect is Sodium di isoalkylbenzene sulphonate.
  • At least 1 % per weight of a tablet or layer is formed from the highly soluble compound, more preferably at least 2%, even more preferably at lest 3% and most preferably at least 5% per weight of the tablet or layer being formed from the highly soluble compound having a cohesive effect on the particulate material.
  • composition comprising a highly soluble compound as well as a surfactant is disclosed in EP-A-0 524 075, this composition being a liquid composition.
  • a highly soluble compound having a cohesive effect on the particulate material allows to obtain a tablet having a higher tensile strength at constant compacting force or an equal tensile strength at lower compacting force when compared to traditional tablets.
  • a whole tablet will have a tensile strength of more than 5kPa, preferably of more than 10kPa, more preferably, in particular for use in laundry applications, of more than 15kPa, even more preferably of more than 30 kPa and most preferably of more than 50 kPa, in particular for use in dish washing or auto dish washing applications; and a tensile strength of less than 300 kPa, preferably of less than 200 kPa, more preferably of less than 100 kPa, even more preferably of less than 80 kPa and most preferably of less than 60 kPa.
  • the tablets should be less compressed than in case of auto dish washing applications for example, whereby the dissolution is more readily achieved, so that in a laundry application
  • the tablet may comprise several layers.
  • the layer may be considered as a tablet itself.
  • Detergent tablets can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry.
  • the principal ingredients in particular gelling surfactants, are used in particulate form.
  • Any liquid ingredients, for example surfactant or suds suppressor, can be incorporated in a conventional manner into the solid particulate ingredients.
  • the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure.
  • the tablets according to the invention are compressed using a force of less than 100000N, more preferably of less than 50000N, even more preferably of less than 5000N and most preferably of less than 3000 N.
  • the most preferred embodiment is a tablet suitable for laundry compressed using a force of less than 2500N, but tablets for auto dish washing may also be considered for example, whereby such auto dish washing tablets are usually more compressed than laundry tablets.
  • the particulate material used for making a tablet can be made by any particulation or granulation process.
  • An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower.
  • Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige® CB and/or Lodige® KM mixers).
  • Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as any particulate material made by any chemical process like flocculation, crystallisation sentering, etc.
  • Individual particles can also be any other particle, granule, sphere or grain.
  • the components of the particulate material may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s).
  • Non-gelling binder can be sprayed on to the mix of some, or all of, the components of the particulate material.
  • Other liquid ingredients may also be sprayed on to the mix of components either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed.
  • a finely divided flow aid dustting agent such as zeolites, carbonates, silicas
  • the tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®, Manesty®, or Bonals®).
  • the tablets prepared according to this invention preferably have a diameter of between 20mm and 60mm, preferably of at least 35 and up to 55 mm, and a weight between 25 and 100 g.
  • the ratio of height to diameter (or width) of the tablets is preferably greater than 1:3, more preferably greater than 1:2.
  • the compaction pressure used for preparing these tablets need not exceed 100000 kN/m 2 , preferably not exceed 30000 kN/m 2 , more preferably not exceed 5000 kN/m 2 , even more preferably not exceed 3000kN/m 2 and most preferably not exceed 1000kN/m 2 .
  • the tablet has a density of at least 0.9 g/cc, more preferably of at least 1.0 g/cc, and preferably of less than 2.0 g/cc, more preferably of less than 1.5 g/cc, even more preferably of less than 1.25 g/cc and most preferably of less than 1.1 g/cc.
  • Multi layered tablets are typically formed in rotating presses by placing the matrices of each layer, one after the other in matrix force feeding flasks. As the process continues, the matrix layers are then pressed together in the precompression and compression stages stations to form the multilayer layer tablet. With some rotating presses it is also possible to compress the first feed layer before compressing the whole tablet.
  • a highly soluble compound having a cohesive effect may be integrated to a detergent tablet, whereby this compound is also a hydrotrope compound.
  • Such hydrotrope compound may be generally used to favour surfactant dissolution by avoiding gelling.
  • a specific compound is defined as being hydrotrope as follows (see S.E. Friberg and M. Chiu, J. Dispersion Science and Technology, 9(5&6), pages 443 to 457, (1988-1989)):
  • Compounds of interest also include:
  • the layer may be considered as a tablet itself.
  • the used compacting force may be adjusted to not affect the tensile strength, and the disintegration time in the washing machine. This process may be used to prepare homogenous or layered tablets of any size or shape.
  • a tablet having a diametral fracture stress of less than 20 kPa is considered to be fragile and is likely to result in some broken tablets being delivered to the consumer.
  • a diametral fracture stress of at least 25 kPa is preferred. This applies similarly to non cylindrical tablets, to define the tensile strength, whereby the cross section normal to the height of the tablet is non round, and whereby the force is applied along a direction perpendicular to the direction of the height of the tablet and normal to the side of the tablet, the side being perpendicular to the non round cross section.
  • Detergent tablets may further comprise an effervescent.
  • Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas, i.e. C 6 H 8 O 7 + 3NaHCO 3 ⁇ Na 3 C 6 H 5 O 7 + 3CO 2 ⁇ + 3H 2 O
  • acid and carbonate sources and other effervescent systems may be found in : (Pharmaceutical Dosage Forms : Tablets Volume 1 Page 287 to 291).
  • An effervescent may be added to the tablet mix in addition to the detergent ingredients.
  • this effervescent improves the disintegration time of the tablet.
  • the amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet.
  • the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles. Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S. and still have the same disintegration time as a tablet without effervescency. When the D.F.S. of the tablet with effervescency is kept the same as a tablet without, the disintegration of the tablet with effervescency will be faster.
  • dissolution aid could be provided by using compounds such as sodium acetate or urea.
  • suitable dissolution aid may also be found in Pharmaceutical Dosage Forms: Tablets, Volume 1, Second edition, Edited by H.A. Lieberman et all, ISBN 0-8247-8044-2.
  • Solidity of a tablet may be improved by making a coated tablet, the coating covering a non-coated tablet, thereby further improving the mechanical characteristics of the tablet while maintaining or further improving dissolution.
  • the tablets may then be coated so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate.
  • the coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition.
  • the coating is preferably brittle so that the tablet breaks up quickly when subjected to stronger mechanical shock.
  • the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This contributes to avoiding the problem of visible residue in the window of a front-loading washing machine during the wash cycle, and also avoids deposition of undissolved particles or lumps of coating material on the laundry load.
  • Water solubility is measured following the test protocol of ASTM E1148-87 entitled, "Standard Test Method for Measurements of Aqueous Solubility".
  • Fracture of the coating in the wash is improved by adding a disintegrant in the coating.
  • This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dissolution of the coating in the wash solution.
  • the disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5% and 20%, most preferably between 5 and 10% by weight.
  • Clay mineral compound as above described, is a disintegrant for use herein.
  • disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacharides, ion exchange resins, polymers containing cationic (e.g. quaternary ammonium) groups, amine-substituted polyacrylates, polymerised cationic amino acids such as poly-L-lysine, polyallylamine hydrochloride) and mixtures thereof.
  • cationic e.g. quaternary ammonium
  • the coating material has a melting point of at least 40°C, preferably of from 40°C to 200 °C.
  • melting point is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
  • the coating material which has a melting point of at least 40°C is an acid.
  • Acid having a melting temperature of at least 40°C are for example dicarboxylic acids.
  • Particularly suitable dicarboxylic acids are selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid and mixtures thereof. Most preferred is adipic acid.
  • the coating comprises a crystallised structure.
  • crystallised it should be understood that the coating comprises a material which is solid at ambient temperature (25°C) and has a structure exhibiting some order. This can be detected typically by usual crystallography techniques e.g. X-ray analysis, on the material itself.
  • the material forming the crystallised structure does not co-crystallised or only partially with the optional component which is liquid at 25°C mentioned above. Indeed, it is preferred that the optional component remains in the liquid state at 25°C in the coating crystalline structure in order to provide flexibility to the structure and resistance to mechanical stress.
  • the above mentioned acid having a melting temperature of at least 40°C comprises a crystallised structure.
  • substantially insoluble materials having a melting point below 40 °C are not sufficiently solid at ambient temperatures and it has been found that materials having a melting point above about 200 °C are not practicable to use.
  • an acid having a melting point of more than 90°C such as azelaic, sebacic acid, dodecanedioic acid.
  • sebacic acid is less preferred as it provides a detrimental odour to the resulting product.
  • an acid having a melting point of more than 145°C such as adipic was found particularly suitable.
  • the coating can be applied in a number of ways. Two preferred coating methods are a) coating with a molten material and b) coating with a solution of the material.
  • the coating material is applied at a temperature above its melting point, and solidifies on the tablet.
  • the coating is applied as a solution, the solvent being dried to leave a coherent coating.
  • the substantially insoluble material can be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material. During the solidification phase, the coating undergoes some internal stress (e.g.
  • the coating comprises a component which is liquid at 25°C.
  • this liquid component will allow the coating to better withstand and absorb mechanical stress by rendering the coating structure more flexible.
  • the component which is liquid at 25°C is preferably added to the coating materials in proportions of less than 10% by weight of the coating, more preferably less than 5% by weight, and most preferably of less than 3% by weight.
  • the component which is liquid at 25°C is preferably added to the coating materials in proportions of more than 0.1% by weight of the coating, more preferably more than 0.3% by weight, and most preferably of more than 0.5% by weight.
  • optional components which are liquid at 25°C includes polyethylene glycols, thermal oil, silicon oil, esters of dicarboxylic acids, mono carboxylic acids, parafin, triacetin, perfumes or alkaline solutions.
  • polyethylene glycols thermal oil, silicon oil, esters of dicarboxylic acids, mono carboxylic acids, parafin, triacetin, perfumes or alkaline solutions.
  • NaOH solution particularly good results were obtained by use of NaOH solution as alkaline solution.
  • the structure of the components which is liquid at 25°C is close to the material forming the crystallised structure, so that the structure is not excessively disrupted.
  • the optional component which is liquid at 25°C may advantageously have a functionality in the washing of laundry, for example silicone oil which provides suds suppression benefits or perfume oil.
  • the perfume oil may be the perfume composition as per described herein, or a different perfume composition to that already contained by the tablet, provided it contains less than 0.6% by weight of Schiff-Base.
  • the coating may also comprise materials other than the optional component which is liquid at 25°C. Hence, further preferred, is the addition of reinforcing fibres to the coating in order to further reinforce the structure.
  • the crystallised structure is made of adipic acid, the component which is liquid at 25°C being available under the name CoasolTM from Chemoxy International, being a blend of the di-isobutyl esters of the glutaric, succinic and adipic acid.
  • CoasolTM from Chemoxy International
  • the advantage of the use of this component being the good dispersion in the adipic acid to provide flexibility. It should be noted that disintegration of the adipic acid is further improved by the adipate content of CoasolTM.
  • the coating comprises an acid having a melting temperature of at least 145°C, such as adipic acid for example, as well as a clay, such as a bentonite clay for example, whereby the clay is used as a disintegrant and also to render the structure of adipic acid more favourable for water penetration, thus improving the dispersion of the adipic acid in a aqueous medium.
  • a clay such as a bentonite clay for example
  • Preferred clays are bentonite clays.
  • the acid has a melting point such that traditional cellulosic disintegrants undergo a thermal degradation during the coating process, whereas such clays are found to be more heat stable. Further, traditional cellulosic disintegrant such as NymcelTM for example are found to turn brown at these temperatures.
  • the coating further comprises reinforcing fibres.
  • Such fibres have been found to improve further the resistance of the coating to mechanical stress and minimise the splitting defect occurence.
  • Such fibres are preferably having a length of at least 100 ⁇ m, more preferably of at least 200 ⁇ m and most preferably of at least 250 ⁇ m to allow structure reinforcement.
  • Such fibres are preferably having a length of at less than 500 ⁇ m, more preferably of less than 400 ⁇ m and most preferably of less than 350 ⁇ m in order not to impact onto dispersion of the coating in an aqueous medium.
  • Materials which may be used for these fibres include viscose rayon, natural nylon, synthetic nylon (polyamides types 6 and 6,6), acrylic, polyester, cotton and derivatives of cellulose such as CMCs. Most preferred is a cellulosic material available under the trade mark Solka-FlocTM from Fibers Sales & Development. It should be noted that such fibres do not normally need precompression for reinforcing the coating structure. Such fibres are preferably added at a level of less than 5% by weight of the coating, more preferably less than 3% by weight. Such fibres are preferably added at a level of more than 0.5% by weight of the coating, more preferably more than 1% by weight.
  • a coating of any desired thickness can be applied according to the present invention.
  • the coating forms from 1% to 10%, preferably from 1.5% to 5%, of the tablet weight.
  • Tablet coatings are very hard and provide extra strength to the tablet.
  • a preferred process for making a tablet according to the invention comprises the steps of:
  • Another preferred process for making a tablet according to the invention comprises the steps of:
  • the compounds disclosed above for a product are advantageously packed in a packaging system.
  • a packaging system may be formed from a sheet of flexible material.
  • Materials suitable for use as a flexible sheet include mono-layer, co-extruded or laminated films.
  • Such films may comprise various components, such as poly-ethylene, poly-propylene, poly-styrene, poly-ethylene-terephtalate.
  • the packaging system is composed of a poly-ethylene and bi-oriented-poly-propylene co-extruded film with an MVTR of less than 5 g/day/m 2 .
  • the MVTR of the packaging system is preferably of less than 10 g/day/m 2 , more preferably of less than 5 g/day/m 2 .
  • the film (2) may have various thicknesses.
  • the thickness should typically be between 10 and 150 ⁇ m, preferably between 15 and 120 ⁇ m, more preferably between 20 and 100 ⁇ m, even more preferably between 25 and 80 ⁇ m and most preferably between 30 and 40 ⁇ m.
  • a packaging material preferably comprises a barrier layer typically found with packaging materials having a low oxygen transmission rate, typically of less than 300 cm 3 /m 2 /day, preferably of less than 150 cm 3 /m 2 /day, more preferably of less than 100 cm 3 /m 2 /day, even more preferably of less than 50 cm 3 /m 2 /day and most preferably of less than 10 cm 3 /m 2 /day.
  • Typical materials having such barrier properties include bi oriented polypropylene, poly ethylene terephthalate, Nylon, poly(ethylene vinyl alcohol) , or laminated materials comprising one of these, as well as SiOx (Silicium oxydes), or metallic foils such as aluminium foils for example.
  • Such packaging material may have a beneficial influence on the stability of the product during storage for example.
  • the packing method used are typically the wrapping methods disclosed in WO92/20593, including flow wrapping or over wrapping.
  • a longitudinal seal is provided, which may be a fin seal or an overlapping seal, after which a first end of the packaging system is closed with a first end seal, followed by closure of the second end with a second end seal.
  • the packaging system may comprise re-closing means as described in WO92/20593.
  • a cold seal or an adhesive is particularly suited.
  • a band of cold seal or a band of adhesive may be applied to the surface of the packaging system at a position adjacent to the second end of the packaging system, so that this band may provide both the initial seal and re-closure of the packaging system.
  • the adhesive or cold seal band may correspond to a region having a cohesive surface, i.e. a surface which will adhere only to another cohesive surface.
  • Such re-closing means may also comprise spacers which will prevent unwanted adhesion. Such spacers are described in WO 95/13225, published on the 18 th of May 1995.
  • a cold seal may be used, and in particular a grid of cold seal, whereby the cold seal is adapted so as to facilitate opening of the packaging system.
  • perfume composition A which is used in the following non-limiting detergent tablet examples 1 and 2 according to the present invention: Perfume Component % in Perfume Composition Geraniol 5.0 Citronellol 5.0 4 t-Butyl Cyclo Hexyl Acetate 5.0 Phenyl Ethyl Alcohol 10.0 Hexahydro-4,7-Methano-Inden-5-yl Acetate commercially available under the tradename Cyclacet 6.0 Citronellyl Acetate 2.5 Geranyl Acetate 2.5 Hexyl Cinnamic Aldehyde 4.5 Para Hydroxy Phenyl Butanone 3.0 PT Bucinal 24.0 Methyl lonone 10.0 Rosalva 2.0 Methyl Dihydro Jasmonate 7.0 Undecylenic Aldehyde 0.5 Methyl Iso Butenyl Tetra Hydro Pyran 1.0 Ortho t Butyl Cyclo Hexyl Acetate 6.0 Hexyl Salicylate 6.0
  • Alcalase Proteolytic enzyme having 5.3% by weight of active enzyme, sold by NOVO Industries A/S Cellulase Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Carezyme Amylase Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl 120T Amylase II Amylolytic enzyme, as disclosed in PCT/US9703635 Lipase Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Lipase II Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra Endolase Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S PB4 Sodium perborate tetrahydrate of nominal formula NaBO 2 .3H 2 O.H 2 O 2 PB1 Anhydrous sodium perfluor
  • Photoactivated Sulfonated zinc phthlocyanine encapsulated in bleach (1) dextrin soluble polymer Photoactivated Sulfonated alumino phthlocyanine encapsulated in bleach (2) dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl)amino) stilbene-2:2'-disulfonate HEDP 1,1-hydroxyethane diphosphonic acid PEGx Polyethylene glycol, with a molecular weight of x (typically 4,000) PEO Polyethylene oxide, with an average molecular weight of 50,000 TEPAE Tetraethylenepentaamine ethoxylate PVI Polyvinyl imidasole, with an average molecular weight of 20,000 PVP Polyvinylpyrolidone polymer, with an average mole
  • detergent compositions according to the invention which may be used as is or in place of Composition A, above described, in any one of Examples 1-6.
  • compositions suitable for use herein F G H I J K L Sodium C 11 -C 13 alkylbenzenesulfonate 12.0 16.0 23.0 19.0 18.0 20.0 16.0 Sodium C 14 -C 15 alcohol sulfate 4.5 - - - 4.0 C 14 -C 15 alcohol ethoxylate (0.5) sulfate - - - - - C 14 -C 15 alcohol ethoxylate (3) sulfate - - 2.0 - 1.0 1.0 1.0 1.0 Sodium C 14 -C 15 alcohol ethoxylate 2.0 2.0 - 1.3 - - 5.0 C 9 -C 14 alkyl dimethyl hydroxy ethyl quaternary ammonium salt - - 1.0 0.5 2.0 Tallow fatty acid - - - - 1.0 Tallow alcohol ethoxylate (50) - - - - - - - - Sodium tripolyphosphate / Zeolite 23.0 2
  • detergent compositions suitable for use herein M N O P Sodium C 11 -C 13 alkylbenzenesulfonate 23.0 13.0 20.0 18.0 Sodium C 14 -C 15 alcohol sulfate - 4.0 - - Clay I or II 5.0 10.0 14.0 6.0 Flocculating agent I or II 0.2 0.3 0.1 0.9 Wax 0.5 0.5 1.0 - Humectant (glycerol/ silica) 0.5 2.0 1.5 - C 14 -C 15 alcohol ethoxylate sulfate - - 2.0 Sodium C 14 -C 15 alcohol ethoxylate ( 2.5 3.5 - - C 9 -C 14 alkyl dimethyl hydroxy ethyl quaternary ammonium salt - - 0.5 Tallow fatty acid 0.5 - - - Tallow alcohol ethoxylate (50) - - 1.3 Sodium tripolyphosphate - 41.0 - 20.0 Zeolite A, hydrate (0.1-10 micropo
EP99870082A 1999-03-12 1999-04-30 Comprimé détergent parfumé Expired - Lifetime EP1035199B1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
ES99870082T ES2300138T3 (es) 1999-03-12 1999-04-30 Pastilla de detergente perfumada.
DE69938228T DE69938228T2 (de) 1999-03-12 1999-04-30 Parfümierte Waschmitteltablette
AT99870082T ATE387486T1 (de) 1999-03-12 1999-04-30 Parfümierte waschmitteltablette
EP99870082A EP1035199B1 (fr) 1999-03-12 1999-04-30 Comprimé détergent parfumé
AU38706/00A AU3870600A (en) 1999-03-12 2000-03-08 Perfumed detergent tablet
CN00807434.8A CN1359419A (zh) 1999-03-12 2000-03-08 加香片状洗涤剂
BR0009469-2A BR0009469A (pt) 1999-03-12 2000-03-08 Tablete perfumado de detergente
EP00917788A EP1159398A2 (fr) 1999-03-12 2000-03-08 Pastilles de detergent parfumees
CA002361344A CA2361344A1 (fr) 1999-03-12 2000-03-08 Pastilles de detergent parfumees
US09/914,494 US7084102B1 (en) 1999-03-12 2000-03-08 Perfumed detergent tablet
PCT/US2000/005985 WO2000055294A2 (fr) 1999-03-12 2000-03-08 Pastilles de detergent parfumees
ARP000101063A AR022893A1 (es) 1999-03-12 2000-03-10 Tableta de detergente perfumada

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP99870043 1999-03-12
EP99870043 1999-03-12
EP99870082A EP1035199B1 (fr) 1999-03-12 1999-04-30 Comprimé détergent parfumé

Publications (3)

Publication Number Publication Date
EP1035199A2 true EP1035199A2 (fr) 2000-09-13
EP1035199A3 EP1035199A3 (fr) 2000-12-20
EP1035199B1 EP1035199B1 (fr) 2008-02-27

Family

ID=26153843

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99870082A Expired - Lifetime EP1035199B1 (fr) 1999-03-12 1999-04-30 Comprimé détergent parfumé
EP00917788A Withdrawn EP1159398A2 (fr) 1999-03-12 2000-03-08 Pastilles de detergent parfumees

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP00917788A Withdrawn EP1159398A2 (fr) 1999-03-12 2000-03-08 Pastilles de detergent parfumees

Country Status (10)

Country Link
EP (2) EP1035199B1 (fr)
CN (1) CN1359419A (fr)
AR (1) AR022893A1 (fr)
AT (1) ATE387486T1 (fr)
AU (1) AU3870600A (fr)
BR (1) BR0009469A (fr)
CA (1) CA2361344A1 (fr)
DE (1) DE69938228T2 (fr)
ES (1) ES2300138T3 (fr)
WO (1) WO2000055294A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009278A1 (fr) * 1999-07-30 2001-02-08 Unilever N.V. Compositions detergentes
US6313080B1 (en) 1998-02-04 2001-11-06 Unilever Home & Personal Care, Usa Division Of Conopco, Inc. Detergent compositions
WO2003054129A1 (fr) * 2001-12-20 2003-07-03 Unilever N.V. Procede de production de pastilles de detergent
EP1398368A1 (fr) * 2002-09-16 2004-03-17 Unilever N.V. Compositions de nettoyage
WO2005099782A1 (fr) * 2004-04-13 2005-10-27 Eastman Kodak Company Composition comprenant des sequestrants d'ions metalliques en intercalation
WO2006021284A1 (fr) * 2004-08-20 2006-03-02 Henkel Kommanditgesellschaft Auf Aktien Corps moule detergent ou nettoyant pourvu d'un revetement
WO2021115705A1 (fr) * 2019-12-11 2021-06-17 Unilever Ip Holdings B.V. Composition détergente

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114635241A (zh) * 2022-03-24 2022-06-17 薛强 一种纺织长纱漂洗工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020030A1 (fr) * 1994-01-25 1995-07-27 Unilever N.V. Co-granules et pastilles detergentes produites a l'aide desdits co-granules
WO1997005226A1 (fr) * 1995-07-25 1997-02-13 The Procter & Gamble Company Compositions detergentes sous forme solide compacte
EP0846755A1 (fr) * 1996-12-06 1998-06-10 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP0846756A1 (fr) * 1996-12-06 1998-06-10 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP0846754A1 (fr) * 1996-12-06 1998-06-10 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
WO1999006521A1 (fr) * 1997-08-02 1999-02-11 The Procter & Gamble Company Pastille detergente
WO1999027069A1 (fr) * 1997-11-26 1999-06-03 The Procter & Gamble Company Pastille de detergent
WO1999031215A1 (fr) * 1997-12-17 1999-06-24 The Procter & Gamble Company Comprime detergent
WO1999040171A1 (fr) * 1998-02-04 1999-08-12 Unilever Plc Compositions detergentes
EP1026229A1 (fr) * 1999-02-03 2000-08-09 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP1026228A1 (fr) * 1999-02-03 2000-08-09 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP1026227A1 (fr) * 1999-02-03 2000-08-09 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020030A1 (fr) * 1994-01-25 1995-07-27 Unilever N.V. Co-granules et pastilles detergentes produites a l'aide desdits co-granules
WO1997005226A1 (fr) * 1995-07-25 1997-02-13 The Procter & Gamble Company Compositions detergentes sous forme solide compacte
EP0846755A1 (fr) * 1996-12-06 1998-06-10 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP0846756A1 (fr) * 1996-12-06 1998-06-10 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP0846754A1 (fr) * 1996-12-06 1998-06-10 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
WO1999006521A1 (fr) * 1997-08-02 1999-02-11 The Procter & Gamble Company Pastille detergente
WO1999027069A1 (fr) * 1997-11-26 1999-06-03 The Procter & Gamble Company Pastille de detergent
WO1999031215A1 (fr) * 1997-12-17 1999-06-24 The Procter & Gamble Company Comprime detergent
WO1999040171A1 (fr) * 1998-02-04 1999-08-12 Unilever Plc Compositions detergentes
EP1026229A1 (fr) * 1999-02-03 2000-08-09 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP1026228A1 (fr) * 1999-02-03 2000-08-09 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée
EP1026227A1 (fr) * 1999-02-03 2000-08-09 The Procter & Gamble Company Comprimé détergent sous forme de tablette enrobée

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313080B1 (en) 1998-02-04 2001-11-06 Unilever Home & Personal Care, Usa Division Of Conopco, Inc. Detergent compositions
WO2001009278A1 (fr) * 1999-07-30 2001-02-08 Unilever N.V. Compositions detergentes
US6436889B1 (en) 1999-07-30 2002-08-20 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Detergent compositions
WO2003054129A1 (fr) * 2001-12-20 2003-07-03 Unilever N.V. Procede de production de pastilles de detergent
EP1398368A1 (fr) * 2002-09-16 2004-03-17 Unilever N.V. Compositions de nettoyage
WO2005099782A1 (fr) * 2004-04-13 2005-10-27 Eastman Kodak Company Composition comprenant des sequestrants d'ions metalliques en intercalation
WO2006021284A1 (fr) * 2004-08-20 2006-03-02 Henkel Kommanditgesellschaft Auf Aktien Corps moule detergent ou nettoyant pourvu d'un revetement
WO2021115705A1 (fr) * 2019-12-11 2021-06-17 Unilever Ip Holdings B.V. Composition détergente

Also Published As

Publication number Publication date
WO2000055294A3 (fr) 2001-01-18
CA2361344A1 (fr) 2000-09-21
BR0009469A (pt) 2001-11-27
EP1035199A3 (fr) 2000-12-20
AU3870600A (en) 2000-10-04
ATE387486T1 (de) 2008-03-15
ES2300138T3 (es) 2008-06-01
WO2000055294A2 (fr) 2000-09-21
CN1359419A (zh) 2002-07-17
DE69938228T2 (de) 2009-02-19
DE69938228D1 (de) 2008-04-10
EP1035199B1 (fr) 2008-02-27
AR022893A1 (es) 2002-09-04
EP1159398A2 (fr) 2001-12-05

Similar Documents

Publication Publication Date Title
WO1998024874A1 (fr) Detergent en tablette a enrobage
EP1035198B1 (fr) Comprimé détergent parfumé
US6630438B1 (en) Perfumed detergent tablet
EP1035199B1 (fr) Comprimé détergent parfumé
AU740611B2 (en) Detergent tablet
US7084102B1 (en) Perfumed detergent tablet
EP1119610A1 (fr) Compositions detergentes
EP0971028A1 (fr) Comprimé détergent à caractéristiques de dissolution et mécaniques améliorées
EP1026228B1 (fr) Comprimé détergent sous forme de tablette enrobée
EP1026229A1 (fr) Comprimé détergent sous forme de tablette enrobée
US6846794B1 (en) Production process for detergent tablet
EP1072674A1 (fr) Comprimé détergent sous forme de tablette enrobée
WO2000046338A1 (fr) Comprime detergent enrobe
EP0949327A1 (fr) Forme et stabilité de comprimés détergents
MXPA01009257A (en) Perfumed detergent tablet
EP1035197B1 (fr) Procédé de production pour détergent comprimé
WO2001025391A1 (fr) Comprime detergent presentant des caracteristiques dissolvantes et mecaniques puissantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 20010823

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69938228

Country of ref document: DE

Date of ref document: 20080410

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2300138

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080721

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

26N No opposition filed

Effective date: 20081128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090409

Year of fee payment: 11

Ref country code: IT

Payment date: 20090418

Year of fee payment: 11

Ref country code: DE

Payment date: 20090430

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100420

Year of fee payment: 12

Ref country code: ES

Payment date: 20100422

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120327

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430