EP1032017A1 - Resistive anode of a flat viewing screen - Google Patents

Resistive anode of a flat viewing screen Download PDF

Info

Publication number
EP1032017A1
EP1032017A1 EP00410018A EP00410018A EP1032017A1 EP 1032017 A1 EP1032017 A1 EP 1032017A1 EP 00410018 A EP00410018 A EP 00410018A EP 00410018 A EP00410018 A EP 00410018A EP 1032017 A1 EP1032017 A1 EP 1032017A1
Authority
EP
European Patent Office
Prior art keywords
anode
layer
deposited
elements
resistive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00410018A
Other languages
German (de)
French (fr)
Other versions
EP1032017B1 (en
Inventor
Bernard Bancal
Pascal Olivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Pixtech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixtech SA filed Critical Pixtech SA
Publication of EP1032017A1 publication Critical patent/EP1032017A1/en
Application granted granted Critical
Publication of EP1032017B1 publication Critical patent/EP1032017B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/08Electrodes intimately associated with a screen on or from which an image or pattern is formed, picked-up, converted or stored, e.g. backing-plates for storage tubes or collecting secondary electrons
    • H01J29/085Anode plates, e.g. for screens of flat panel displays

Definitions

  • the present invention relates to a flat screen anode of visualization with phosphors excited by electrons, by example of the microtip type. It concerns more particularly the polarization of phosphor elements of an anode provided phosphor elements of different colors polarized by color, for example, of alternating bands of phosphor elements organized into combs.
  • FIG. 1 shows, very schematically, a screen display dish of the type to which the invention relates.
  • This screen includes two plates.
  • a first plate 1, commonly called cathode plate, is placed opposite a second plate 2 commonly called anode plate.
  • These two plates are spaced from each other by spacers 3 regularly spread across the screen area, and a vacuum is formed in the area delimited by the two plates and a gasket peripheral sealing 4.
  • Cathode plate 1 includes generation elements of electrons and pixel selection elements (not represented) which can be organized in various ways, for example example, as described in the US patent n ° 4940916 of the French Atomic Energy Commission in the case microtip screens.
  • the anode plate 2 is, in the case a color screen, with alternating strips of phosphor elements, each strip corresponding to a color (red, green, blue).
  • FIGS. 2A and 2B show, very schematically, a front view of a portion of an anode plate and a sectional view of this portion.
  • the anode includes, for example, alternating bands 4R, 4G, 4B phosphor elements respectively red, green and blue.
  • the bands of phosphor elements are arranged on corresponding conductive strips 5R, 5G, 5B generally organized in combs, all bands 5R being connected together as well as all 5G bands and all bands 5B.
  • the phosphor elements are divided into elementary patterns, each of which corresponds usually one pixel (in fact, a sub-pixel of each color for a tri-color screen). These "pixelated" phosphor elements can then always be addressed by polarization electrodes in conductive strips (5G, 5B and 5R) as described in relation to Figures 2A and 2B, but we use a special mask for depositing phosphor elements.
  • the light emitted by the elements phosphors spreads across the anode plate (down in Figure 2B).
  • the material of the conductive strips 5R, 5G, 5B, is then transparent, commonly made of indium tin oxide (ITO).
  • the transparent electrodes 5R, 5B, 5G are replaced by opaque electrodes, and preferably reflective, so that as much of it as possible the light emitted by the phosphor elements 4R, 4G, 4B or returned to the cathode once these phosphors have been excited by electronic bombardment.
  • 1 generator plate of electrons is then at least partially transparent and the observation is made through this cathode plate.
  • the sets of bands (for example, blue, red, green) are often alternately polarized positively with respect to cathode 1, so that the electrons extracts from emissive elements (for example, microtips) of a pixel of the cathode are alternately directed towards the phosphor elements 4R, 4G, 4B opposite each of the colors.
  • the selection command of the phosphor which must be bombarded by electrons requires selectively controlling the polarization of the phosphor elements of the anode, color by color.
  • bands 5R, 5G, 5B carrying elements phosphors to be excited are polarized under a voltage several hundred volts relative to the cathode, the other bands being at zero potential.
  • the choice of values for polarization potentials is related to the characteristics of the elements luminophores and emissive means.
  • the anode may, while being constituted of multiple sets of phosphor element bands or analogues, not to be switched by set of bands. All the bands are then polarized at the same potential, at least for the duration of a display frame. We then speak of anode not switched.
  • the potential difference between the anode and the cathode is essentially related to the inter-electrode distance, i.e. to the thickness of the internal space.
  • a resistive layer is provided in the case of microtip screens to receive these microtips and thus limit the formation of destructive short circuits between microtips and a control grid associated with the cathode.
  • arcs can occur, not only between the cathode plate and those of the elements anode phosphors that are polarized to attract electrons emitted by microtips, but also between two bands neighboring phosphor elements due to the difference in potential between these two bands.
  • the risk arcs exist only between anode and cathode.
  • interstitial strips 7 made of an insulating material (generally in silicon oxide).
  • the phosphor elements 4R, 4G, 4B exceed importantly the interstitial bands.
  • the thickness bands of phosphor elements is generally of the order about ten ⁇ m and the creation of isolation strips in silicon oxide of such thickness is, in practice, incompatible with the technologies used for manufacturing anodes, so that the thickness of the strips 7 is generally on the order of 1 to 2 ⁇ m, their width being on the order of 10 at 20 ⁇ m.
  • a first known solution to try to reduce the appearance of arcs between the anode and the cathode is to provide, at the end of each conductive strip 5R, 5G, 5B, a resistor between the supply line and the strip. As soon as a fort current appears in the band, this resistance drops the voltage. It follows that the potential difference between the conductive strip and the cathode decreases and causes the overvoltage generating the arc.
  • a disadvantage of such a solution is that it does not not protect against the formation of a lateral electric arc, i.e. between two neighboring bands 5R, 5G, 5B. It can indeed produce a local current flow between two bands which is therefore not avoided by the end resistances.
  • resistors are usually made of ruthenium whose resistivity is stabilized by annealing.
  • This high temperature annealing (of the order of 600 ° C) necessary to stabilize the resistance poses problems compatibility with the screen manufacturing process which requires, in the case where the conductive strips are in aluminum in the case of a transparent cathode, temperatures less than 600 °.
  • such a manufacturing process by annealing is difficult to control.
  • interleaved series resistors with the anode conductive strips are disadvantages that they constitute heating zones of the anode conducting tracks on the periphery of the screen.
  • the anode strips each have a width close to but less than 100 ⁇ m and the isolation strips 7 have a width of around ten ⁇ m.
  • the implementation of a local protection solution per layer resistive framed laterally by polarization bands not possible due to the small gap between the bands anode.
  • the present invention aims to overcome the drawbacks classical techniques by proposing a flat screen anode of visualization which eliminates the risk of occurrence of electric arc between the anode and the cathode plate, or between two strips neighboring phosphor elements of the anode, without harming the screen brightness.
  • the present invention also aims to provide a solution that is compatible with the classic differences between two bands of phosphor elements.
  • the present invention also aims to provide a solution that is particularly suitable for a cathode screen "transparent", that is to say of which the cathode plate constitutes the display area of the screen.
  • the invention further aims to propose a solution which respects the conventional anode manufacturing processes and, in in particular, the masks used during this manufacture.
  • the present invention provides a flat screen display anode, comprising elements phosphors intended to be excited by bombardment electronic, these elements being deposited on at least one electrode of constituted polarization, at least in line with the elements phosphors, of a stack comprising a resistive layer, itself deposited on a conductive polarization layer of the phosphor elements.
  • the phosphor elements are deposited directly on the layer resistive.
  • the phosphor elements are deposited on a reflective layer conductive, itself deposited on the resistive layer.
  • said reflective layer is deposited in elementary patterns of small dimension in the surface of the anode.
  • the phosphor elements are deposited according to the elementary pattern depositing the reflective layer.
  • the resistive layer is deposited in full plate.
  • the resistive layer has the same pattern as the reflective layer.
  • the resistive layer has, at least in the active area of the screen, the same pattern as the polarizing conductive layer.
  • said conductive layer has a pattern of interconnected alternating strips in at least two sets.
  • the present invention also provides a flat screen display comprising an electronic bombardment cathode of a cathodoluminescent anode.
  • FIG 3 shows a schematic sectional view a flat screen anode according to a first embodiment of the present invention.
  • This anode includes, as before, a support plate 2, for example, a glass plate. In the case of a screen observable from the anode, this plate is good heard transparent.
  • Anode conductive strips 5R, 5G, 5B are deposited, for example in a classic way as illustrated by Figures 2A and 2B, and are interconnected by set of bands assigned to the same color.
  • a feature of the present invention is that these bands 5R, 5G, 5B are all coated with bands of a material resistive 8.
  • strips of phosphor elements 4R, 4G, 4B are then deposited on the resistive strips 8 and no longer, as in conventional screens, directly on the strips 5.
  • the polarization electrodes of the elements phosphors here consist of a stack of one conductive layer (in which the 5R, 5G bands are defined and 5B) and a resistive layer 8.
  • the resistive layer 8 can, in the first mode of realization, be deposited, at least in the active part of the screen, i.e. outside the interconnection zones of the assemblies of strips, with the same pattern as the conductive strips 5R, 5G, 5B anode, therefore by means of the same mask.
  • Another important advantage of the present invention is that while effectively protecting the screen from arcs destructive electrics, the invention does not require any increase the lateral gap between the strips of phosphor elements.
  • the present invention is therefore particularly suitable for fine resolution anodes.
  • the anode bands 5R, 5G and 5B are preferably separated laterally by interstitial bands insulating 7.
  • the invention allows protection against destructive electric arcs not only between the plate anode and the cathode plate, but also between strips of neighboring phosphor elements polarized at potentials different.
  • This side protection is particularly effective insofar as it acts against any flow of current, even local.
  • the material now accessible is the material resistive layer 8, which prevents arcing destructive electrics.
  • the choice of the material of the resistive strips 8 depends on the application and, in particular, on the need for transparency (transparent anode) or reflective (transparent cathode) of these resistive bands.
  • oxide may be used of tin, or of thin silicon, deposited with a thickness included, preferably between one and two ⁇ m.
  • Conductive strips 5R, 5G, 5B anode are, for example, made of ITO (transparent) or aluminum (reflective) with thickness on the order of a tenth of ⁇ m.
  • the present invention provides an improvement notable compared to ruthenium series resistors which must have a thickness of several tens of ⁇ m.
  • the first embodiment of this invention also applies to the case of a monochrome screen in which the anode consists of a plane of phosphor elements of the same color or in the case of a screen (color or monochrome) in which the anode consists of several sets of bands not switched.
  • the resistive layer 8 is preferably deposited on the entire conductive anode layer.
  • the structure of the phosphor elements of the anode can be very different.
  • it could be elementary patterns, each of which will correspond to a pixel.
  • the present invention provides the additional advantage to be able to be implemented while a solution by side protection would take up too much space.
  • FIGS. 4A and 4B represent, respectively, a view from the front and in section, a second embodiment of an anode flat screen according to the invention. This embodiment is more particularly intended for an anode having to reflect light towards the cathode plate (1, figure 1) which then constitutes the screen area.
  • a feature of the second embodiment of the invention is that the polarization electrodes of the elements phosphors here consist of a stack of three layers.
  • an additional conductive layer 10 is deposited on the resistive layer.
  • a characteristic of this additional layer 10 is to be reflective to return the light to the cathode. So unlike the first embodiment which, if implemented in a transparent cathode screen, provides a reflective resistive layer, the second mode of embodiment allows the use of a resistive layer having any optical properties (transparent, absorbent or reflective), the optical reflection effect towards the cathode being here provided by the additional conductive layer 10.
  • the second embodiment of the invention applies more particularly to the case where the elements phosphors are deposited in elementary patterns using a specific mask comprising openings, for example, corresponding to the respective sizes of the screen pixels or sub-pixels of each screen color.
  • This characteristic is linked to the presence of the conductive layer 10 which must itself be filed according to these elementary grounds to avoid propagation of the charges along the strips of electrodes.
  • the elements 4'B, 4'R and 4'G phosphors are deposited in small areas of elementary patterns (in this example, rectangular).
  • the distribution of the colors of the phosphor elements always takes place in a band directly above the bands polarization conductors 5B, 5R and 5G which are produced in a pattern of alternating bands.
  • the layer additional reflective conductor is deposited by means of the same mask as the phosphor elements and is therefore constituted of elementary pattern areas 10 directly above the elements phosphors.
  • An insulating layer 7 is optionally provided between the anode strips. This layer 7 is deposited, as in the first embodiment, on the resistive layer 8 '. However, when provided, the insulating layer 7 is then present not only between the anode strips but also between the different elementary grounds for defining areas reflective layers 10 and phosphor elements 4.
  • the additional conductive layer is filed according to elementary patterns allows to keep a potential floating at the level of each pixel.
  • the resistive layer 8 ′ is deposited full plate, that is to say that it extends at least over the entire active area of the anode.
  • An advantage of the second embodiment of the invention is that it applies particularly well to a screen with transparent cathode. Indeed, by dissociating the functions of reflective layer and resistive layer, we have a greater choice of material to make these different layers. In particular, it will then be possible to provide a resistive layer 8 'in an optically absorbent material (for example, silicon). In this case, the resistive layer will then form a opaque mesh (black matrix) wherever there is no element phosphor or reflective layer 10. It will then absorb the light, which improves the contrast of the screen.
  • an optically absorbent material for example, silicon
  • the resistive layer if it is deposited full plate, and if it is made of a low coefficient material secondary emission (which is generally the case for materials resistive), will protect the underlying layer between the tracks conductive 5B, 5R and 5G which is generally carried out in a material with a high secondary emission factor, and will protect then the anode against charging effects which reduces the screen degassing.
  • an advantage linked to the removal of resistors at the end of the conductive strips on the one hand is that space is saved on the anode but also that we distribute the thermal effects linked to the presence of these resistances throughout the plate anode. This avoids localized overheating risking to be harmful.
  • FIGS. 5A and 5B represent, respectively, a view from the front and in section, an alternative embodiment of an anode according to the second embodiment of the invention.
  • the resistive layer 8 " is itself deposited according to the elementary patterns for depositing the phosphor elements 4 ′.
  • FIGS. 5A and 5B alignment between elementary patterns of elements phosphors 4 ', additional conductive layer 10 and the resistive layer 8 ".
  • these different elementary patterns are obtained by means of the same mask.
  • the invention remains perfectly compatible with the methods conventional anode manufacturing and, in particular, do not requires no additional mask whatever the mode of realization used.
  • the bands polarization conductors 5B, 5R and 5G have also been shown in strips as in the first embodiment.
  • the resistive layer provided in the second embodiment of the invention may also be deposited according to the pattern of bands 5B, 5R and 5G polarizing conductors. In this case, we keep the advantage not to use an additional mask for the deposit of this resistive layer as in the first embodiment.
  • FIG. 5B an 8 "resistive layer has been illustrated. relatively thicker than that illustrated in FIG. 4B. In effect, according to the invention and whatever the embodiment, you can adjust the resistance value accordingly, for a given material, the thickness of the resistive layer deposited.
  • the present invention is capable of various variants and modifications which will appear to the man of art.
  • provision may be made that the polarizing conductive layer 5 and that the layer resistive 8 are deposited full plate.
  • the conductive layer reflective 10 and the phosphor elements will then deposited according to the elementary patterns of the screen pixels.
  • the choice of materials for the realization of an anode flat screen according to the invention is within the reach of ordinary skill profession based on the functional indications given above and applications. Note also that it will be able to to adapt the thicknesses of the different layers and in particular of the resistive layer depending on the characteristics discounted electrics.
  • the polarization layer 5 can be a conductive plane as well as the resistive layer can be full plate. There is then only one polarization electrode of the anode.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The luminophore material is supported on a resistive layer. The flat anode display screen comprises luminophorescent elements (4R, 4G, 4B) which are intended to be excited by electronic bombardment. These elements are arranged on at least one biasing electrode. The elements form a stack consisting of a resistive layer (8), itself deposited on a conductive layer (5B, 5R, 5G) forming a bias layer for the luminophorescent elements. The luminophore elements may either be deposited directly on top of the resistive layer (8) or they may be deposited on a conducting reflective layer which is itself deposited on the resistive layer.

Description

La présente invention concerne une anode d'écran plat de visualisation à luminophores excités par des électrons, par exemple du type à micropointes. Elle concerne plus, particulièrement, la polarisation d'éléments luminophores d'une anode pourvue d'éléments luminophores de différentes couleurs polarisés par couleur, par exemple, de bandes alternées d'éléments luminophores organisées en peignes.The present invention relates to a flat screen anode of visualization with phosphors excited by electrons, by example of the microtip type. It concerns more particularly the polarization of phosphor elements of an anode provided phosphor elements of different colors polarized by color, for example, of alternating bands of phosphor elements organized into combs.

La figure 1 représente, très schématiquement, un écran plat de visualisation du type auquel se rapporte l'invention. Cet écran comprend deux plaques. Une première plaque 1, couramment appelée plaque de cathode, est disposée en vis à vis d'une deuxième plaque 2 couramment appelée plaque d'anode. Ces deux plaques sont espacées l'une de l'autre par des espaceurs 3 régulièrement répartis dans la surface de l'écran, et un vide est ménagé dans la zone délimitée par les deux plaques et un joint de scellement périphérique 4.Figure 1 shows, very schematically, a screen display dish of the type to which the invention relates. This screen includes two plates. A first plate 1, commonly called cathode plate, is placed opposite a second plate 2 commonly called anode plate. These two plates are spaced from each other by spacers 3 regularly spread across the screen area, and a vacuum is formed in the area delimited by the two plates and a gasket peripheral sealing 4.

La plaque de cathode 1 comprend des éléments de génération d'électrons et des éléments de sélection de pixels (non représentés) qui peuvent être organisés de diverses manières, par exemple, comme cela est décrit dans le brevet américain n° 4940916 du Commissariat à l'Énergie Atomique dans le cas d'écrans à micropointes. La plaque d'anode 2 est, dans le cas d'un écran couleur, pourvue de bandes alternées d'éléments luminophores, chaque bande correspondant à une couleur (rouge, vert, bleu).Cathode plate 1 includes generation elements of electrons and pixel selection elements (not represented) which can be organized in various ways, for example example, as described in the US patent n ° 4940916 of the French Atomic Energy Commission in the case microtip screens. The anode plate 2 is, in the case a color screen, with alternating strips of phosphor elements, each strip corresponding to a color (red, green, blue).

Les figures 2A et 2B représentent, très schématiquement, une vue de face d'une portion d'une plaque d'anode et une vue en coupe de cette portion. En figure 2B, la face correspondant à la face interne de l'écran est tournée vers le haut. L'anode comprend, par exemple, des bandes alternées 4R, 4G, 4B d'éléments luminophores respectivement rouges, verts et bleus. Comme l'illustre la figure 2B, les bandes d'éléments luminophores sont disposées sur des bandes conductrices correspondantes 5R, 5G, 5B généralement organisées en peignes, toutes les bandes 5R étant connectées entre elles de même que toutes les bandes 5G et toutes les bandes 5B. Dans certains cas, les éléments luminophores sont répartis en motifs élémentaires dont chacun correspond généralement à un pixel (en fait, un sous-pixel de chaque couleur pour un écran trichrome). Ces éléments luminophores "pixélisés" peuvent alors toujours être adressés par des électrodes de polarisation en bandes conductrices (5G, 5B et 5R) telles que décrites en relation avec les figures 2A et 2B, mais on utilise un masque particulier pour le dépôt des éléments luminophores.FIGS. 2A and 2B show, very schematically, a front view of a portion of an anode plate and a sectional view of this portion. In FIG. 2B, the corresponding face on the inside of the screen is facing up. The anode includes, for example, alternating bands 4R, 4G, 4B phosphor elements respectively red, green and blue. As shown in Figure 2B, the bands of phosphor elements are arranged on corresponding conductive strips 5R, 5G, 5B generally organized in combs, all bands 5R being connected together as well as all 5G bands and all bands 5B. In some cases, the phosphor elements are divided into elementary patterns, each of which corresponds usually one pixel (in fact, a sub-pixel of each color for a tri-color screen). These "pixelated" phosphor elements can then always be addressed by polarization electrodes in conductive strips (5G, 5B and 5R) as described in relation to Figures 2A and 2B, but we use a special mask for depositing phosphor elements.

On distingue deux grandes catégories d'écrans plats selon que l'observateur regarde l'écran du côté anode ou du côté cathode. Dans le premier cas, la lumière émise par les éléments luminophores se propage à travers la plaque d'anode (vers le bas en figure 2B). Le matériau des bandes conductrices 5R, 5G, 5B, est alors transparent, couramment en oxyde d'indium et d'étain (ITO). Dans le second cas, les électrodes transparentes 5R, 5B, 5G sont remplacées par des électrodes opaques, et de préférence réfléchissantes, de façon que la plus grande partie possible de la lumière émise par les éléments luminophores 4R, 4G, 4B soit renvoyée vers la cathode une fois que ces luminophores ont été excités par un bombardement électronique. La plaque 1 génératrice d'électrons est alors au moins partiellement transparente et l'observation s'effectue à travers cette plaque de cathode. There are two main categories of flat screens depending on whether the observer looks at the screen from the anode side or from the side cathode. In the first case, the light emitted by the elements phosphors spreads across the anode plate (down in Figure 2B). The material of the conductive strips 5R, 5G, 5B, is then transparent, commonly made of indium tin oxide (ITO). In the second case, the transparent electrodes 5R, 5B, 5G are replaced by opaque electrodes, and preferably reflective, so that as much of it as possible the light emitted by the phosphor elements 4R, 4G, 4B or returned to the cathode once these phosphors have been excited by electronic bombardment. 1 generator plate of electrons is then at least partially transparent and the observation is made through this cathode plate.

Dans un écran couleur (ou dans un écran monochrome constitué de deux ensembles alternés de bandes d'éléments luminophores de même couleur), les ensembles de bandes (par exemple, bleues, rouges, vertes) sont souvent alternativement polarisés positivement par rapport à la cathode 1, pour que les électrons extraits des éléments émissifs (par exemple, les micropointes) d'un pixel de la cathode soient alternativement dirigés vers les éléments luminophores 4R, 4G, 4B en vis à vis de chacune des couleurs.In a color screen (or in a monochrome screen consisting of two alternating sets of bands of phosphor elements of the same color), the sets of bands (for example, blue, red, green) are often alternately polarized positively with respect to cathode 1, so that the electrons extracts from emissive elements (for example, microtips) of a pixel of the cathode are alternately directed towards the phosphor elements 4R, 4G, 4B opposite each of the colors.

La commande en sélection du luminophore qui doit être bombardé par les électrons impose de commander, sélectivement, la polarisation des éléments luminophores de l'anode, couleur par couleur. Généralement, les bandes 5R, 5G, 5B portant des éléments luminophores devant être excités sont polarisées sous une tension de plusieurs centaines de volts par rapport à la cathode, les autres bandes étant à un potentiel nul. Le choix des valeurs des potentiels de polarisation est lié aux caractéristiques des éléments luminophores et des moyens émissifs.The selection command of the phosphor which must be bombarded by electrons requires selectively controlling the polarization of the phosphor elements of the anode, color by color. Generally, bands 5R, 5G, 5B carrying elements phosphors to be excited are polarized under a voltage several hundred volts relative to the cathode, the other bands being at zero potential. The choice of values for polarization potentials is related to the characteristics of the elements luminophores and emissive means.

Dans certains cas, l'anode peut, tout en étant constituée de plusieurs ensembles de bandes d'éléments luminophores ou analogues, ne pas être commutée par ensemble de bandes. Toutes les bandes sont alors polarisées à un même potentiel, au moins pendant la durée d'une trame d'affichage. On parle alors d'anode non commutée.In some cases, the anode may, while being constituted of multiple sets of phosphor element bands or analogues, not to be switched by set of bands. All the bands are then polarized at the same potential, at least for the duration of a display frame. We then speak of anode not switched.

La différence de potentiel entre l'anode et la cathode est essentiellement liée à la distance inter-électrodes, c'est-à-dire à l'épaisseur de l'espace interne. On recherche une différence de potentiel maximale pour des raisons de brillance de l'écran, ce qui induit que l'on recherche une distance inter-électrodes qui soit la plus grande possible. Mais, la structure de l'espace inter-électrodes, qui comporte les espaceurs 3, susceptibles de créer des zones d'ombre dans l'écran s'ils présentent une taille trop importante, empêche d'augmenter cette distance inter-électrodes. The potential difference between the anode and the cathode is essentially related to the inter-electrode distance, i.e. to the thickness of the internal space. We are looking for a difference of maximum potential for reasons of gloss of the screen, which means that we are looking for an inter-electrode distance as large as possible. But, the structure the inter-electrode space, which includes the spacers 3, likely to create gray areas on the screen if they present too large a size prevents this distance between electrodes.

Le compromis nécessaire conduit à choisir une valeur de tension anode-cathode qui est critique du point de vue de la formation d'arcs électriques. Des arcs électriques destructeurs peuvent alors se produire à la moindre irrégularité dimensionnelle de la distance qui sépare un moyen émissif de la cathode des éléments luminophores de l'anode. De telles irrégularités sont, de surcroít, inévitables compte tenu des faibles dimensions et des techniques employées pour la réalisation de l'anode et de la cathode.The necessary compromise leads to choosing a value of anode-cathode voltage which is critical from a training point of view electric arcs. Destructive electric arcs can then occur at the slightest dimensional irregularity the distance between an emissive means of the cathode of the elements anode phosphors. Such irregularities are, of moreover, inevitable given the small dimensions and techniques used to produce the anode and the cathode.

Côté cathode, une couche résistive est prévue dans le cas des écrans à micropointes pour recevoir ces micropointes et limiter ainsi la formation de courts-circuits destructeurs entre les micropointes et une grille de commande associée à la cathode.On the cathode side, a resistive layer is provided in the case of microtip screens to receive these microtips and thus limit the formation of destructive short circuits between microtips and a control grid associated with the cathode.

Par contre, côté anode, des arcs peuvent se produire, non seulement entre la plaque de cathode et ceux des éléments luminophores de l'anode qui sont polarisés pour attirer des électrons émis par les micropointes, mais également entre deux bandes voisines d'éléments luminophores en raison de la différence de potentiel entre ces deux bandes. Dans le cas d'un écran monochrome où l'anode est constituée d'un plan conducteur portant des éléments luminophores de même couleur ou dans le cas d'une anode (couleur ou monochrome) à plusieurs bandes non commutées, le risque d'arcs existe uniquement entre anode et cathode.On the other hand, on the anode side, arcs can occur, not only between the cathode plate and those of the elements anode phosphors that are polarized to attract electrons emitted by microtips, but also between two bands neighboring phosphor elements due to the difference in potential between these two bands. In the case of a monochrome screen where the anode consists of a conducting plane carrying phosphor elements of the same color or in the case of an anode (color or monochrome) with several unswitched bands, the risk arcs exist only between anode and cathode.

Pour limiter l'apparition de tels arcs latéraux, on prévoit couramment de disposer, entre les bandes d'anode 5B, 5R, 5G, des bandes interstitielles 7 en un matériau isolant (généralement en oxyde de silicium).To limit the appearance of such lateral arches, we currently provides for having, between the anode strips 5B, 5R, 5G, interstitial strips 7 made of an insulating material (generally in silicon oxide).

Toutefois, en pratique, l'efficacité de telles bandes isolantes est limitée pour plusieurs raisons.However, in practice, the effectiveness of such bands insulation is limited for several reasons.

Tout d'abord, ces bandes sont inopérantes vis à vis de la formation d'arcs électriques entre l'anode et la cathode.First of all, these bands are ineffective with respect to the formation of electric arcs between the anode and the cathode.

De plus, et bien que cela n'apparaisse pas forcément aux figures 2A et 2B dans lesquelles les échelles n'ont pas été respectées, les éléments luminophores 4R, 4G, 4B dépassent de façon importante les bandes interstitielles. En effet, l'épaisseur des bandes d'éléments luminophores est généralement de l'ordre d'une dizaine de µm et la réalisation de bandes d'isolement en oxyde de silicium d'une telle épaisseur est, en pratique, incompatible avec les technologies utilisées pour la fabrication des anodes, de sorte que l'épaisseur des bandes 7 est généralement de l'ordre de 1 à 2 µm, leur largeur étant de l'ordre de 10 à 20 µm.In addition, and although this does not necessarily appear in Figures 2A and 2B in which the scales have not been respected, the phosphor elements 4R, 4G, 4B exceed importantly the interstitial bands. Indeed, the thickness bands of phosphor elements is generally of the order about ten µm and the creation of isolation strips in silicon oxide of such thickness is, in practice, incompatible with the technologies used for manufacturing anodes, so that the thickness of the strips 7 is generally on the order of 1 to 2 µm, their width being on the order of 10 at 20 µm.

En outre, lors du dépôt des éléments luminophores à travers un masque de dépôt, il peut se produire un léger désalignement de ce masque, de sorte qu'une portion des bandes conductrices 5R, 5G, 5B, ou des zones isolées, se retrouvent accessibles une fois l'écran terminé et favorisent alors la formation d'arcs.In addition, when depositing the phosphor elements at through a deposit mask, slight misalignment may occur of this mask, so that a portion of the conductive strips 5R, 5G, 5B, or isolated areas, are accessible once the screen is finished and then promote training arcs.

Une première solution connue pour tenter de réduire l'apparition d'arcs entre l'anode et la cathode est de prévoir, à l'extrémité de chaque bande conductrice 5R, 5G, 5B, une résistance entre la ligne d'alimentation et la bande. Dès qu'un fort courant apparaít dans la bande, cette résistance fait chuter la tension. Il en découle que la différence de potentiel entre la bande conductrice et la cathode diminue et fait disparaítre la surtension génératrice de l'arc.A first known solution to try to reduce the appearance of arcs between the anode and the cathode is to provide, at the end of each conductive strip 5R, 5G, 5B, a resistor between the supply line and the strip. As soon as a fort current appears in the band, this resistance drops the voltage. It follows that the potential difference between the conductive strip and the cathode decreases and causes the overvoltage generating the arc.

Un inconvénient d'une telle solution est qu'elle ne protège pas de la formation d'un arc électrique latéral, c'est-à-dire entre deux bandes voisines 5R, 5G, 5B. Il peut en effet se produire une circulation de courant local entre deux bandes qui n'est alors pas évité par les résistances d'extrémités.A disadvantage of such a solution is that it does not not protect against the formation of a lateral electric arc, i.e. between two neighboring bands 5R, 5G, 5B. It can indeed produce a local current flow between two bands which is therefore not avoided by the end resistances.

Un autre inconvénient du recours à de telles résistances en série avec les bandes est que ces résistances sont généralement réalisées en ruthénium dont la résistivité est stabilisée par recuit. Ce recuit à forte température (de l'ordre de 600°C) nécessaire pour stabiliser la résistance pose des problèmes de compatibilité avec le procédé de fabrication de l'écran qui requiert, pour le cas où les bandes conductrices sont en aluminium dans le cas d'une cathode transparente, des températures inférieures à 600°. De plus, un tel procédé de fabrication par recuit est difficilement maítrisable.Another disadvantage of using such resistances in series with the bands is that these resistors are usually made of ruthenium whose resistivity is stabilized by annealing. This high temperature annealing (of the order of 600 ° C) necessary to stabilize the resistance poses problems compatibility with the screen manufacturing process which requires, in the case where the conductive strips are in aluminum in the case of a transparent cathode, temperatures less than 600 °. In addition, such a manufacturing process by annealing is difficult to control.

Un autre inconvénient des résistances série intercalées avec les bandes conductrices d'anode est qu'elles constituent des zones d'échauffement des pistes conductrices d'anode en périphérie de l'écran.Another disadvantage of interleaved series resistors with the anode conductive strips is that they constitute heating zones of the anode conducting tracks on the periphery of the screen.

Une deuxième solution connue est décrite dans la demande de brevet français n° 2732160. Cette solution consiste à déposer les bandes d'éléments luminophores sur des bandes fortement résistives et à amener la polarisation nécessaire aux luminophores par des bandes de polarisation latérales de part et d'autre de chaque bande résistive.A second known solution is described in the French patent application no. 2732160. This solution consists of deposit the strips of phosphor elements on strips strongly resistive and bring the necessary polarization to the phosphors by side polarization bands on both sides and on the other side of each resistive strip.

Si cette solution peut donner des résultats satisfaisants dans l'ensemble, elle nécessite un espace important entre chaque bande d'éléments luminophores pour y loger deux conducteurs de polarisation respectivement associés à deux bandes voisines tout en écartant ces conducteurs de polarisation suffisamment les uns des autres afin de maintenir un isolement latéral nécessaire entre eux. Ainsi, cette solution est, en pratique, plus particulièrement destinée à des écrans de faible résolution.If this solution can give satisfactory results overall, it requires a large space between each strip of phosphor elements to accommodate two conductors of polarization respectively associated with two neighboring bands while spreading these bias conductors sufficiently from each other to maintain lateral isolation necessary between them. So this solution is, in practice, more particularly intended for low resolution screens.

A l'inverse et à titre d'exemple, pour une plaque d'anode dans laquelle la surface de chaque pixel est un carré d'environ 300 µm de côté, les bandes d'anode ont chacune une largeur voisine mais inférieure à 100 µm et les bandes d'isolement 7 ont une largeur de l'ordre de la dizaine de µm. Dans un tel cas, la mise en oeuvre d'une solution de protection locale par couche résistive encadrée latéralement par des bandes de polarisation n'est pas envisageable en raison du faible écart entre les bandes d'anode.Conversely and by way of example, for a plate anode in which the surface of each pixel is a square about 300 µm per side, the anode strips each have a width close to but less than 100 µm and the isolation strips 7 have a width of around ten µm. In such a case, the implementation of a local protection solution per layer resistive framed laterally by polarization bands not possible due to the small gap between the bands anode.

La présente invention vise à pallier les inconvénients des techniques classiques en proposant une anode d'écran plat de visualisation qui supprime le risque d'apparition d'arc électrique entre l'anode et la plaque de cathode, ou entre deux bandes voisines d'éléments luminophores de l'anode, sans nuire à la brillance de l'écran. The present invention aims to overcome the drawbacks classical techniques by proposing a flat screen anode of visualization which eliminates the risk of occurrence of electric arc between the anode and the cathode plate, or between two strips neighboring phosphor elements of the anode, without harming the screen brightness.

La présente invention vise également à proposer une solution qui soit compatible avec les écarts classiques entre deux bandes d'éléments luminophores.The present invention also aims to provide a solution that is compatible with the classic differences between two bands of phosphor elements.

La présente invention vise également à proposer une solution qui soit particulièrement adaptée à un écran à cathode "transparente", c'est-à-dire dont la plaque de cathode constitue la surface de visualisation de l'écran.The present invention also aims to provide a solution that is particularly suitable for a cathode screen "transparent", that is to say of which the cathode plate constitutes the display area of the screen.

L'invention vise en outre à proposer une solution qui respecte les procédés de fabrication classiques des anodes et, en particulier, les masques utilisés lors de cette fabrication.The invention further aims to propose a solution which respects the conventional anode manufacturing processes and, in in particular, the masks used during this manufacture.

Pour atteindre ces objets, la présente invention prévoit une anode d'écran plat de visualisation, comportant des éléments luminophores destinés à être excités par un bombardement électronique, ces éléments étant déposés sur au moins une électrode de polarisation constituée, au moins au droit des éléments luminophores, d'un empilement comprenant une couche résistive, elle-même déposée sur une couche conductrice de polarisation des éléments luminophores.To achieve these objects, the present invention provides a flat screen display anode, comprising elements phosphors intended to be excited by bombardment electronic, these elements being deposited on at least one electrode of constituted polarization, at least in line with the elements phosphors, of a stack comprising a resistive layer, itself deposited on a conductive polarization layer of the phosphor elements.

Selon un mode de réalisation de la présente invention, les éléments luminophores sont déposés directement sur la couche résistive.According to an embodiment of the present invention, the phosphor elements are deposited directly on the layer resistive.

Selon un mode de réalisation de la présente invention, les éléments luminophores sont déposés sur une couche réfléchissante conductrice, elle-même déposée sur la couche résistive.According to an embodiment of the present invention, the phosphor elements are deposited on a reflective layer conductive, itself deposited on the resistive layer.

Selon un mode de réalisation de la présente invention, ladite couche réfléchissante est déposée selon des motifs élémentaires de faible dimension dans la surface de l'anode.According to an embodiment of the present invention, said reflective layer is deposited in elementary patterns of small dimension in the surface of the anode.

Selon un mode de réalisation de la présente invention, les éléments luminophores sont déposés selon le motif élémentaire de dépôt de la couche réfléchissante.According to an embodiment of the present invention, the phosphor elements are deposited according to the elementary pattern depositing the reflective layer.

Selon un mode de réalisation de la présente invention, la couche résistive est déposée en pleine plaque.According to an embodiment of the present invention, the resistive layer is deposited in full plate.

Selon un mode de réalisation de la présente invention, la couche résistive a le même motif que la couche réfléchissante. According to an embodiment of the present invention, the resistive layer has the same pattern as the reflective layer.

Selon un mode de réalisation de la présente invention, la couche résistive a, au moins dans la zone active de l'écran, le même motif que la couche conductrice de polarisation.According to an embodiment of the present invention, the resistive layer has, at least in the active area of the screen, the same pattern as the polarizing conductive layer.

Selon un mode de réalisation de la présente invention, ladite couche conductrice a un motif de bandes alternées interconnectées en au moins deux ensembles.According to an embodiment of the present invention, said conductive layer has a pattern of interconnected alternating strips in at least two sets.

La présente invention prévoit également un écran plat de visualisation comprenant une cathode de bombardement électronique d'une anode cathodoluminescente.The present invention also provides a flat screen display comprising an electronic bombardment cathode of a cathodoluminescent anode.

Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

  • les figures 1, 2A et 2B qui ont été décrites précédemment sont destinées à exposer l'état de la technique et le problème posé ;
  • la figure 3 est une vue en coupe schématique partielle d'un premier mode de réalisation d'une plaque d'anode d'écran plat selon la présente invention ;
  • les figures 4A et 4B représentent, très schématiquement et partiellement, respectivement vue de face et en coupe, un deuxième mode de réalisation d'une anode d'écran plat selon la présente invention plus particulièrement destinée à un écran dont la surface est constituée par la cathode ; et
  • les figures 5A et 5B représentent, très schématiquement et partiellement, respectivement vue de face et en coupe, une variante du deuxième mode de réalisation de l'invention.
  • These objects, characteristics and advantages, as well as others of the present invention will be explained in detail in the following description of particular embodiments given without limitation in relation to the attached figures, among which:
  • Figures 1, 2A and 2B which have been described above are intended to show the state of the art and the problem posed;
  • Figure 3 is a partial schematic sectional view of a first embodiment of a flat screen anode plate according to the present invention;
  • FIGS. 4A and 4B show, very schematically and partially, respectively seen from the front and in section, a second embodiment of a flat screen anode according to the present invention more particularly intended for a screen whose surface is constituted by the cathode; and
  • FIGS. 5A and 5B show, very schematically and partially, respectively front view and in section, a variant of the second embodiment of the invention.
  • Les mêmes éléments ont été désignés par les mêmes références aux différentes figures. Pour des raisons de clarté, seuls les éléments qui sont nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite. En particulier, la constitution de la plaque de cathode d'un écran auquel s'applique la présente invention n'a pas été détaillée et ne fait pas l'objet de la présente invention. The same elements have been designated by the same references to the different figures. For reasons of clarity, only the elements which are necessary for understanding the invention have been shown in the figures and will be described by the after. In particular, the constitution of the cathode plate a screen to which the present invention applies has not been detailed and is not the subject of the present invention.

    La figure 3 représente une vue en coupe schématique d'une anode d'écran plat selon un premier mode de réalisation de la présente invention. Cette anode comprend, comme précédemment, une plaque support 2, par exemple, une plaque de verre. Dans le cas d'un écran observable depuis l'anode, cette plaque est bien entendue transparente.Figure 3 shows a schematic sectional view a flat screen anode according to a first embodiment of the present invention. This anode includes, as before, a support plate 2, for example, a glass plate. In the case of a screen observable from the anode, this plate is good heard transparent.

    Des bandes conductrices d'anode 5R, 5G, 5B sont déposées, par exemple de façon classique comme cela est illustré par les figures 2A et 2B, et sont interconnectées par ensemble de bandes affectées à une même couleur.Anode conductive strips 5R, 5G, 5B are deposited, for example in a classic way as illustrated by Figures 2A and 2B, and are interconnected by set of bands assigned to the same color.

    Une caractéristique de la présente invention est que ces bandes 5R, 5G, 5B sont toutes revêtues de bandes en un matériau résistif 8. Selon le premier mode de réalisation de la présente invention, des bandes d'éléments luminophores 4R, 4G, 4B sont ensuite déposées sur les bandes résistives 8 et non plus, comme dans les écrans classiques, directement sur les bandes conductrices 5. Ainsi, les électrodes de polarisation des éléments luminophores sont ici constituées d'un empilement d'une couche conductrice (dans laquelle sont définies les bandes 5R, 5G et 5B) et d'une couche résistive 8.A feature of the present invention is that these bands 5R, 5G, 5B are all coated with bands of a material resistive 8. According to the first embodiment of this invention, strips of phosphor elements 4R, 4G, 4B are then deposited on the resistive strips 8 and no longer, as in conventional screens, directly on the strips 5. Thus, the polarization electrodes of the elements phosphors here consist of a stack of one conductive layer (in which the 5R, 5G bands are defined and 5B) and a resistive layer 8.

    Un avantage important de la présente invention est qu'elle respecte le procédé de fabrication classique d'une anode. En effet, la couche résistive 8 peut, dans le premier mode de réalisation, être déposée, au moins dans la partie active de l'écran, c'est-à-dire hors des zones d'interconnexion des ensembles de bandes, avec le même motif que les bandes conductrices 5R, 5G, 5B d'anode, donc au moyen d'un même masque.An important advantage of the present invention is that it respects the conventional manufacturing process of an anode. Indeed, the resistive layer 8 can, in the first mode of realization, be deposited, at least in the active part of the screen, i.e. outside the interconnection zones of the assemblies of strips, with the same pattern as the conductive strips 5R, 5G, 5B anode, therefore by means of the same mask.

    Un autre avantage important de la présente invention est que, tout en protégeant efficacement l'écran contre des arcs électriques destructeurs, l'invention ne nécessite aucune augmentation de l'écart latéral entre les bandes d'éléments luminophores. La présente invention est donc particulièrement adaptée aux anodes de résolution fine. Another important advantage of the present invention is that while effectively protecting the screen from arcs destructive electrics, the invention does not require any increase the lateral gap between the strips of phosphor elements. The present invention is therefore particularly suitable for fine resolution anodes.

    De façon classique, les bandes d'anode 5R, 5G et 5B sont, de préférence, séparées latéralement par des bandes interstitielles isolantes 7.Conventionally, the anode bands 5R, 5G and 5B are preferably separated laterally by interstitial bands insulating 7.

    On notera que l'invention permet une protection contre des arcs électriques destructeurs non seulement entre la plaque d'anode et la plaque de cathode, mais également entre des bandes d'éléments luminophores voisines polarisées à des potentiels différents. Cette protection latérale est particulièrement efficace dans la mesure où elle agit contre toute circulation de courant, même locale.It will be noted that the invention allows protection against destructive electric arcs not only between the plate anode and the cathode plate, but also between strips of neighboring phosphor elements polarized at potentials different. This side protection is particularly effective insofar as it acts against any flow of current, even local.

    De plus, en cas de désalignement accidentel des masques de gravure servant au dépôt des éléments luminophores 4R, 4G, 4B par rapport au masque de formation des bandes conductrices d'anode 5R, 5G, 5B, le matériau désormais accessible est le matériau de la couche résistive 8, qui empêche la formation d'arcs électriques destructeurs.In addition, in case of accidental misalignment of the masks engraving used to deposit the phosphor elements 4R, 4G, 4B compared to the mask for forming conductive strips anode 5R, 5G, 5B, the material now accessible is the material resistive layer 8, which prevents arcing destructive electrics.

    Le choix du matériau constitutif des bandes résistives 8 dépend de l'application et, en particulier, du besoin de transparence (anode transparente) ou de caractère réfléchissant (cathode transparente) de ces bandes résistives.The choice of the material of the resistive strips 8 depends on the application and, in particular, on the need for transparency (transparent anode) or reflective (transparent cathode) of these resistive bands.

    A titre d'exemple de choix de matériau pour la réalisation des bandes résistives 8, on pourra recourir à de l'oxyde d'étain, ou à du silicium mince, déposé avec une épaisseur comprise, de préférence, entre un et deux µm. Les bandes conductrices 5R, 5G, 5B d'anode, sont, par exemple, réalisées en ITO (transparent) ou en aluminium (réfléchissant) avec une épaisseur de l'ordre du dixième de µm.As an example of choice of material for the realization resistive strips 8, oxide may be used of tin, or of thin silicon, deposited with a thickness included, preferably between one and two µm. Conductive strips 5R, 5G, 5B anode are, for example, made of ITO (transparent) or aluminum (reflective) with thickness on the order of a tenth of µm.

    On notera que la présente invention apporte une amélioration notable par rapport à des résistances série en ruthénium qui doivent présenter une épaisseur de plusieurs dizaines de µm.Note that the present invention provides an improvement notable compared to ruthenium series resistors which must have a thickness of several tens of µm.

    En outre, le premier mode de réalisation de la présente invention s'applique également au cas d'un écran monochrome dans lequel l'anode est constituée d'un plan d'éléments luminophores de même couleur ou au cas d'un écran (couleur ou monochrome) dans lequel l'anode est constituée de plusieurs ensembles de bandes non commutés. Dans ce cas, la couche résistive 8 est, de préférence, déposée sur toute la couche conductrice d'anode.Furthermore, the first embodiment of this invention also applies to the case of a monochrome screen in which the anode consists of a plane of phosphor elements of the same color or in the case of a screen (color or monochrome) in which the anode consists of several sets of bands not switched. In this case, the resistive layer 8 is preferably deposited on the entire conductive anode layer.

    Bien que l'on ait décrit l'anode selon la présente invention en relation avec une structure trichrome à bandes d'anodes allongées parallèles les unes aux autres dans le premier mode de réalisation, la structure des éléments luminophores de l'anode peut être très différente. Par exemple, il pourra s'agir de motifs élémentaires dont chacun correspondra à un pixel. Dans un tel cas, la présente invention apporte l'avantage supplémentaire de pouvoir être mise en oeuvre alors qu'une solution par protection latérale prendrait trop de place.Although the anode has been described according to the present invention in connection with a trichrome striped structure elongated anodes parallel to each other in the first embodiment, the structure of the phosphor elements of the anode can be very different. For example, it could be elementary patterns, each of which will correspond to a pixel. In in such a case, the present invention provides the additional advantage to be able to be implemented while a solution by side protection would take up too much space.

    Les figures 4A et 4B représentent, respectivement vue de face et en coupe, un deuxième mode de réalisation d'une anode d'écran plat selon l'invention. Ce mode de réalisation est plus particulièrement destiné à une anode devant réfléchir la lumière vers la plaque de cathode (1, figure 1) qui constitue alors la surface de l'écran.FIGS. 4A and 4B represent, respectively, a view from the front and in section, a second embodiment of an anode flat screen according to the invention. This embodiment is more particularly intended for an anode having to reflect light towards the cathode plate (1, figure 1) which then constitutes the screen area.

    Une caractéristique du deuxième mode de réalisation de l'invention est que les électrodes de polarisation des éléments luminophores sont ici constituées d'un empilement de trois couches. Comme dans le premier mode de réalisation, on retrouve la présence d'une couche conductrice de polarisation 5 et d'une couche résistive 8. Toutefois, selon ce deuxième mode de réalisation, une couche conductrice supplémentaire 10 est déposée sur la couche résistive. Une caractéristique de cette couche additionnelle 10 est d'être réfléchissante pour renvoyer la lumière vers la cathode. Ainsi, à la différence du premier mode de réalisation qui, s'il est mis en oeuvre dans un écran à cathode transparente, prévoit une couche résistive réfléchissante, le deuxième mode de réalisation permet d'utiliser une couche résistive ayant des propriétés optiques quelconques (transparente, absorbante ou réfléchissante), l'effet optique de réflexion vers la cathode étant ici assuré par la couche conductrice additionnelle 10.A feature of the second embodiment of the invention is that the polarization electrodes of the elements phosphors here consist of a stack of three layers. As in the first embodiment, we find the presence of a conductive layer of polarization 5 and a layer resistive 8. However, according to this second embodiment, an additional conductive layer 10 is deposited on the resistive layer. A characteristic of this additional layer 10 is to be reflective to return the light to the cathode. So unlike the first embodiment which, if implemented in a transparent cathode screen, provides a reflective resistive layer, the second mode of embodiment allows the use of a resistive layer having any optical properties (transparent, absorbent or reflective), the optical reflection effect towards the cathode being here provided by the additional conductive layer 10.

    On notera que le deuxième mode de réalisation de l'invention s'applique plus particulièrement au cas où les éléments luminophores sont déposés par motifs élémentaires au moyen d'un masque spécifique comprenant des ouvertures, par exemple, correspondant aux tailles respectives des pixels de l'écran ou des sous-pixels de chaque couleur de l'écran. Cette caractéristique est liée à la présence de la couche conductrice 10 qui doit elle-même être déposée selon ces motifs élémentaires pour éviter une propagation des charges le long des bandes d'électrodes.Note that the second embodiment of the invention applies more particularly to the case where the elements phosphors are deposited in elementary patterns using a specific mask comprising openings, for example, corresponding to the respective sizes of the screen pixels or sub-pixels of each screen color. This characteristic is linked to the presence of the conductive layer 10 which must itself be filed according to these elementary grounds to avoid propagation of the charges along the strips of electrodes.

    Ainsi, comme l'illustre la figure 4A, les éléments luminophores 4'B, 4'R et 4'G sont déposés par petites surfaces de motifs élémentaires (dans cet exemple, rectangulaires). On notera toutefois que, dans le mode de réalisation illustré par les figures 4A et 4B, la répartition des couleurs des éléments luminophores s'effectue toujours en bande à l'aplomb des bandes conductrices de polarisation 5B, 5R et 5G qui sont réalisées selon un motif de bandes alternées.Thus, as illustrated in FIG. 4A, the elements 4'B, 4'R and 4'G phosphors are deposited in small areas of elementary patterns (in this example, rectangular). We will note however, that in the embodiment illustrated by FIGS. 4A and 4B, the distribution of the colors of the phosphor elements always takes place in a band directly above the bands polarization conductors 5B, 5R and 5G which are produced in a pattern of alternating bands.

    Selon ce mode de réalisation de l'invention, la couche conductrice additionnelle réfléchissante est déposée au moyen du même masque que les éléments luminophores et est donc constituée de zones de motifs élémentaires 10 à l'aplomb des éléments luminophores. Une couche isolante 7 est optionnellement prévue entre les bandes d'anode. Cette couche 7 est déposée, comme dans le premier mode de réalisation, sur la couche résistive 8'. Toutefois, lorsqu'elle est prévue, la couche isolante 7 est alors présente non seulement entre les bandes d'anode mais également entre les différents motifs élémentaires de définition des zones de couches réfléchissantes 10 et d'éléments luminophores 4. On notera que le fait que la couche conductrice additionnelle est déposée selon les motifs élémentaires permet de garder un potentiel flottant au niveau de chaque pixel.According to this embodiment of the invention, the layer additional reflective conductor is deposited by means of the same mask as the phosphor elements and is therefore constituted of elementary pattern areas 10 directly above the elements phosphors. An insulating layer 7 is optionally provided between the anode strips. This layer 7 is deposited, as in the first embodiment, on the resistive layer 8 '. However, when provided, the insulating layer 7 is then present not only between the anode strips but also between the different elementary grounds for defining areas reflective layers 10 and phosphor elements 4. On note that the fact that the additional conductive layer is filed according to elementary patterns allows to keep a potential floating at the level of each pixel.

    Dans le mode de réalisation illustré par les figures 4A et 4B, la couche résistive 8' est déposée pleine plaque c'est-à-dire qu'elle s'étend au moins sur toute la zone active de l'anode.In the embodiment illustrated by FIGS. 4A and 4B, the resistive layer 8 ′ is deposited full plate, that is to say that it extends at least over the entire active area of the anode.

    Un avantage du deuxième mode de réalisation de l'invention est qu'il s'applique particulièrement bien à un écran à cathode transparente. En effet, en dissociant les fonctions de couche réfléchissante et de couche résistive, on dispose d'un plus grand choix de matériau pour réaliser ces différentes couches. En particulier, on pourra alors prévoir une couche résistive 8' en un matériau optiquement absorbant (par exemple, du silicium). Dans ce cas, la couche résistive formera alors un maillage opaque (black matrix) partout où il n'y a ni élément luminophore ni couche réfléchissante 10. Elle absorbera alors la lumière, ce qui améliore le contraste de l'écran.An advantage of the second embodiment of the invention is that it applies particularly well to a screen with transparent cathode. Indeed, by dissociating the functions of reflective layer and resistive layer, we have a greater choice of material to make these different layers. In particular, it will then be possible to provide a resistive layer 8 'in an optically absorbent material (for example, silicon). In this case, the resistive layer will then form a opaque mesh (black matrix) wherever there is no element phosphor or reflective layer 10. It will then absorb the light, which improves the contrast of the screen.

    De plus, la couche résistive, si elle est déposée pleine plaque, et si elle est en un matériau à faible coefficient d'émission secondaire (ce qui est généralement le cas des matériaux résistifs), protégera la couche sous-jacente entre les pistes conductrices 5B, 5R et 5G qui est généralement réalisée en un matériau à fort coefficient d'émission secondaire, et protégera alors l'anode contre des effets de charge ce qui réduit le dégazage de l'écran.In addition, the resistive layer, if it is deposited full plate, and if it is made of a low coefficient material secondary emission (which is generally the case for materials resistive), will protect the underlying layer between the tracks conductive 5B, 5R and 5G which is generally carried out in a material with a high secondary emission factor, and will protect then the anode against charging effects which reduces the screen degassing.

    Comme dans le premier mode de réalisation, un avantage lié à la suppression des résistances en bout des bandes conductrices d'anode est d'une part que l'on gagne de l'espace sur l'anode mais également que l'on répartit les effets thermiques liés à la présence de ces résistances dans toute la plaque d'anode. On évite ainsi les échauffements localisés risquant d'être néfastes.As in the first embodiment, an advantage linked to the removal of resistors at the end of the conductive strips on the one hand is that space is saved on the anode but also that we distribute the thermal effects linked to the presence of these resistances throughout the plate anode. This avoids localized overheating risking to be harmful.

    Les figures 5A et 5B représentent, respectivement vue de face et en coupe, une variante de réalisation d'une anode selon le deuxième mode de réalisation de l'invention. Selon cette variante, la couche résistive 8" est elle-même déposée selon les motifs élémentaires de dépôt des éléments luminophores 4'. Par souci de clarté, on a exagéré aux figures 5A et 5B les différences d'alignement entre les motifs élémentaires des éléments luminophores 4', de la couche conductrice additionnelle 10 et de la couche résistive 8". On notera toutefois que ces différents motifs élémentaires sont obtenus au moyen d'un même masque. Ainsi, l'invention reste parfaitement compatible avec les procédés classiques de fabrication des anodes et, en particulier, ne nécessite aucun masque supplémentaire quel que soit le mode de réalisation utilisé.FIGS. 5A and 5B represent, respectively, a view from the front and in section, an alternative embodiment of an anode according to the second embodiment of the invention. According to this variant, the resistive layer 8 "is itself deposited according to the elementary patterns for depositing the phosphor elements 4 ′. Through for the sake of clarity, the differences have been exaggerated in FIGS. 5A and 5B alignment between elementary patterns of elements phosphors 4 ', additional conductive layer 10 and the resistive layer 8 ". Note, however, that these different elementary patterns are obtained by means of the same mask. Thus, the invention remains perfectly compatible with the methods conventional anode manufacturing and, in particular, do not requires no additional mask whatever the mode of realization used.

    Dans la variante des figures 5A et 5B, les bandes conductrices de polarisation 5B, 5R et 5G ont encore été représentés en bandes comme dans le premier mode de réalisation.In the variant of FIGS. 5A and 5B, the bands polarization conductors 5B, 5R and 5G have also been shown in strips as in the first embodiment.

    On notera que, en variante, la couche résistive prévue dans le deuxième mode de réalisation de l'invention pourra également être déposée selon le motif des bandes 5B, 5R et 5G conductrices de polarisation. Dans ce cas, on conserve l'avantage de ne pas recourir à un masque supplémentaire pour le dépôt de cette couche résistive comme dans le premier mode de réalisation.It will be noted that, as a variant, the resistive layer provided in the second embodiment of the invention may also be deposited according to the pattern of bands 5B, 5R and 5G polarizing conductors. In this case, we keep the advantage not to use an additional mask for the deposit of this resistive layer as in the first embodiment.

    En figure 5B, on a illustré une couche résistive 8" relativement plus épaisse que celle illustrée en figure 4B. En effet, selon l'invention et quel que soit le mode de réalisation, on peut ajuster la valeur de la résistance en fonction, pour un matériau donné, de l'épaisseur de la couche résistive déposée.In FIG. 5B, an 8 "resistive layer has been illustrated. relatively thicker than that illustrated in FIG. 4B. In effect, according to the invention and whatever the embodiment, you can adjust the resistance value accordingly, for a given material, the thickness of the resistive layer deposited.

    Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, on notera que, dans le cas d'un écran monochrome ou d'un écran à anode non commutée, et en application du deuxième mode de réalisation de l'invention, on pourra prévoir que la couche conductrice de polarisation 5 et que la couche résistive 8 soient déposées pleine plaque. La couche conductrice réfléchissante 10 et les éléments luminophores seront alors déposés selon les motifs élémentaires des pixels de l'écran. De plus, le choix des matériaux pour la réalisation d'une anode d'écran plat selon l'invention est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus et des applications. On notera en outre que celui-ci sera à même d'adapter les épaisseurs des différentes couches et en particulier de la couche résistive en fonction des caractéristiques électriques escomptées. En outre, dans le cas d'une anode non commutée, on notera que seule les bandes (ou ílots) d'éléments luminophores ont besoin d'être individualisés dans la surface active de l'écran. Ainsi, la couche de polarisation 5 peut être un plan conducteur de même que la couche résistive peut être pleine plaque. Il y a alors une seule électrode de polarisation de l'anode.Of course, the present invention is capable of various variants and modifications which will appear to the man of art. In particular, it will be noted that, in the case of a screen monochrome or non-switched anode screen, and in application of the second embodiment of the invention, provision may be made that the polarizing conductive layer 5 and that the layer resistive 8 are deposited full plate. The conductive layer reflective 10 and the phosphor elements will then deposited according to the elementary patterns of the screen pixels. Of more, the choice of materials for the realization of an anode flat screen according to the invention is within the reach of ordinary skill profession based on the functional indications given above and applications. Note also that it will be able to to adapt the thicknesses of the different layers and in particular of the resistive layer depending on the characteristics discounted electrics. In addition, in the case of a non-anode switched, note that only the bands (or islands) of elements phosphors need to be individualized in the surface screen active. Thus, the polarization layer 5 can be a conductive plane as well as the resistive layer can be full plate. There is then only one polarization electrode of the anode.

    Claims (10)

    Anode d'écran plat de visualisation, comportant des éléments luminophores (4R, 4G, 4B ; 4'R, 4'G, 4'B) destinés à être excités par un bombardement électronique, ces éléments étant déposés sur au moins une électrode de polarisation, caractérisée en ce que ladite électrode de polarisation est constituée, au moins au droit des éléments luminophores, d'un empilement comprenant une couche résistive (8, 8', 8"), elle-même déposée sur une couche conductrice (5B, 5R, 5G) de polarisation des éléments luminophores.Flat screen display anode, comprising phosphor elements (4R, 4G, 4B; 4'R, 4'G, 4'B) intended for be excited by electronic bombardment, these elements being deposited on at least one polarization electrode, characterized in that said bias electrode is formed, at at least to the right of the phosphor elements, of a stack comprising a resistive layer (8, 8 ′, 8 "), itself deposited on a conductive layer (5B, 5R, 5G) for polarizing the elements phosphors. Anode selon la revendication 1, caractérisée en ce que les éléments luminophores (4B, 4R, 4G) sont déposés directement sur la couche résistive (8).Anode according to claim 1, characterized in that that the phosphor elements (4B, 4R, 4G) are deposited directly on the resistive layer (8). Anode selon la revendication 1, caractérisée en ce que les éléments luminophores (4'B, 4'G, 4'R) sont déposés sur une couche réfléchissante (10) conductrice, elle-même déposée sur la couche résistive (8', 8").Anode according to claim 1, characterized in that that the phosphor elements (4'B, 4'G, 4'R) are deposited on a reflective conductive layer (10), itself deposited on the resistive layer (8 ', 8 "). Anode selon la revendication 3, caractérisée en ce que ladite couche réfléchissante (10) est déposée selon des motifs élémentaires de faible dimension dans la surface de l'anode.Anode according to claim 3, characterized in that that said reflective layer (10) is deposited according to small elementary patterns in the surface of the anode. Anode selon la revendication 4, caractérisée en ce que les éléments luminophores (4'B, 4'R, 4'G) sont déposés selon le motif élémentaire de dépôt de la couche réfléchissante (10).Anode according to claim 4, characterized in that that the phosphor elements (4'B, 4'R, 4'G) are deposited according to the elementary pattern of deposition of the reflective layer (10). Anode selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la couche résistive (8, 8', 8") est déposée en pleine plaque.Anode according to any one of claims 1 to 5, characterized in that the resistive layer (8, 8 ', 8 ") is deposited in full plate. Anode selon l'une quelconque des revendications 3 à 5, caractérisée en ce que la couche résistive (8") a le même motif que la couche réfléchissante (10).Anode according to any one of claims 3 to 5, characterized in that the resistive layer (8 ") has the same pattern as the reflective layer (10). Anode selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la couche résistive (8) a, au moins dans la zone active de l'écran, le même motif que la couche conductrice de polarisation (5). Anode according to any one of claims 1 to 7, characterized in that the resistive layer (8) has, at least in the active area of the screen, the same pattern as the layer polarization conductor (5). Anode selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite couche conductrice a un motif de bandes alternées (5R, 5G, 5B) interconnectées en au moins deux ensembles.Anode according to any one of claims 1 to 8, characterized in that said conductive layer has a pattern of alternating bands (5R, 5G, 5B) interconnected in at least two together. Écran plat de visualisation comprenant une cathode (1) de bombardement électronique d'une anode cathodoluminescente (2) conforme à l'une quelconque des revendications 1 à 9.Flat display screen including a cathode (1) electron bombardment of a cathodoluminescent anode (2) according to any one of claims 1 to 9.
    EP00410018A 1999-02-26 2000-02-25 Resistive anode of a flat viewing screen Expired - Lifetime EP1032017B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9902654A FR2790329B1 (en) 1999-02-26 1999-02-26 RESISTIVE FLAT SCREEN ANODE
    FR9902654 1999-02-26

    Publications (2)

    Publication Number Publication Date
    EP1032017A1 true EP1032017A1 (en) 2000-08-30
    EP1032017B1 EP1032017B1 (en) 2006-04-26

    Family

    ID=9542780

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00410018A Expired - Lifetime EP1032017B1 (en) 1999-02-26 2000-02-25 Resistive anode of a flat viewing screen

    Country Status (5)

    Country Link
    US (1) US6815885B1 (en)
    EP (1) EP1032017B1 (en)
    JP (1) JP2000251755A (en)
    DE (1) DE60027494T2 (en)
    FR (1) FR2790329B1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2133900A3 (en) * 2008-06-09 2009-12-30 Canon Kabushiki Kaisha Light emitter substrate and image displaying apparatus using the same

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2002164007A (en) * 2000-11-24 2002-06-07 Toshiba Corp Display device
    JP2006120622A (en) * 2004-09-21 2006-05-11 Canon Inc Luminescent screen structure and image forming apparatus
    JP2010015870A (en) * 2008-07-04 2010-01-21 Canon Inc Image display device

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DD133615A1 (en) * 1977-11-07 1979-01-10 Hoff Siegfried Von ANODE FOR A FLUORESCENCE INDICATOR
    JPS609039A (en) * 1983-06-28 1985-01-18 Ise Electronics Corp Fluorescent character display tube
    JPS62126528A (en) * 1985-11-26 1987-06-08 Ise Electronics Corp Fluorescent character display tube
    EP0684627A1 (en) * 1994-05-24 1995-11-29 Texas Instruments Incorporated Anode comprising an opaque electrically insulating material, for use in a field emission device
    EP0734042A1 (en) * 1995-03-22 1996-09-25 Pixtech S.A. Anode of a flat viewing screen with resistive strips
    JPH10134740A (en) * 1996-10-30 1998-05-22 Futaba Corp Field emission type display element

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE133615C (en)
    JPH0326617Y2 (en) * 1984-09-17 1991-06-10
    FR2756969B1 (en) * 1996-12-06 1999-01-08 Commissariat Energie Atomique DISPLAY SCREEN COMPRISING A SOURCE OF MICROPOINT ELECTRONS, OBSERVABLE THROUGH THE SUPPORT OF MICROPOINTS, AND METHOD FOR MANUFACTURING THE SOURCE
    JPH11185674A (en) * 1997-12-24 1999-07-09 Futaba Corp Anode substrate for display tube, and manufacture thereof

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DD133615A1 (en) * 1977-11-07 1979-01-10 Hoff Siegfried Von ANODE FOR A FLUORESCENCE INDICATOR
    JPS609039A (en) * 1983-06-28 1985-01-18 Ise Electronics Corp Fluorescent character display tube
    JPS62126528A (en) * 1985-11-26 1987-06-08 Ise Electronics Corp Fluorescent character display tube
    EP0684627A1 (en) * 1994-05-24 1995-11-29 Texas Instruments Incorporated Anode comprising an opaque electrically insulating material, for use in a field emission device
    EP0734042A1 (en) * 1995-03-22 1996-09-25 Pixtech S.A. Anode of a flat viewing screen with resistive strips
    FR2732160A1 (en) * 1995-03-22 1996-09-27 Pixtech Sa RESISTANT STRIP FLAT DISPLAY ANODE
    JPH10134740A (en) * 1996-10-30 1998-05-22 Futaba Corp Field emission type display element

    Non-Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 009, no. 118 (E - 316) 23 May 1985 (1985-05-23) *
    PATENT ABSTRACTS OF JAPAN vol. 011, no. 346 (E - 556) 12 November 1987 (1987-11-12) *
    PATENT ABSTRACTS OF JAPAN vol. 1998, no. 10 31 August 1998 (1998-08-31) *

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2133900A3 (en) * 2008-06-09 2009-12-30 Canon Kabushiki Kaisha Light emitter substrate and image displaying apparatus using the same
    US8072133B2 (en) 2008-06-09 2011-12-06 Canon Kabushiki Kaisha Light emitter substrate and image displaying apparatus using the same

    Also Published As

    Publication number Publication date
    FR2790329A1 (en) 2000-09-01
    JP2000251755A (en) 2000-09-14
    US6815885B1 (en) 2004-11-09
    DE60027494T2 (en) 2007-04-19
    FR2790329B1 (en) 2001-05-18
    DE60027494D1 (en) 2006-06-01
    EP1032017B1 (en) 2006-04-26

    Similar Documents

    Publication Publication Date Title
    FR2679057A1 (en) LIQUID CRYSTAL SCREEN STRUCTURE WITH ACTIVE AND HIGH DEFINITION MATRIX.
    EP0704877B1 (en) Electric protection of an anode of a plat viewing screen
    EP0202974A1 (en) Colour matrix display, its production and device including the same
    FR2803089A1 (en) Plasma display panel for use in flat television set or information display that has two substrates that are disposed oppositely to each other
    EP1139374A1 (en) Cathode plate of a flat viewing screen
    FR2761523A1 (en) PLACING SPACERS IN A FLAT VISUALIZATION SCREEN
    EP1032017B1 (en) Resistive anode of a flat viewing screen
    EP0734042B1 (en) Anode of a flat viewing screen with resistive strips
    EP0724771B1 (en) Flat display screen with high voltage between electrodes
    EP0806788A1 (en) Anode of a flat display screen with protection ring
    EP0732723B1 (en) Flat display screen with high inter-electrode distance
    EP1096542A1 (en) Flat Viewing screen with a protective grid
    EP0877407A1 (en) Anode of a flat display screen
    EP0649162B1 (en) Flat cold cathode display with switched anode
    EP0911858A1 (en) Removal of the moire-effect of a flat panel display
    EP0844642A1 (en) Flat panel display with focusing gates
    EP0867908A1 (en) Uniforming the potential electron emission 0f a cathode of a flat screen with microtips
    EP0905670A1 (en) Simplification of the addressing of a microtips display with resetting electrode
    EP0806790B1 (en) Dual gate microtip colour display
    FR2828956A1 (en) Micropoint display screen construction having cathode grid screen plate and first/second parallel electrodes sets interconnected with pixel transmission elements and element associated localized resistive element
    WO2000021112A1 (en) Electron source comprising at least a protective electrode against spurious emissions
    FR2797092A1 (en) METHOD FOR MANUFACTURING AN ANODE OF A FLAT VISUALIZATION SCREEN
    FR2859811A1 (en) Organic electroluminescent panel for lighting or displaying video images, has upper electrode layer with electrodes comprising solid conducting sub-layer and aluminum grid that covers conducting sub-layer
    FR2794568A1 (en) IMPROVEMENT IN MATRIX TYPE PLASMA PANELS
    WO2001075927A1 (en) Ac matrix plasma panel

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010214

    AKX Designation fees paid

    Free format text: DE FR GB IT

    19U Interruption of proceedings before grant

    Effective date: 20020621

    19W Proceedings resumed before grant after interruption of proceedings

    Effective date: 20050502

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LE COMMISSARIAT AE L'ENERGIE ATOMIQUE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20060426

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60027494

    Country of ref document: DE

    Date of ref document: 20060601

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20070119

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20070222

    Year of fee payment: 8

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070129

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070622

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20070228

    Year of fee payment: 8

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20080225

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20081031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080902

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080225

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080225