EP1023738B1 - Method for producing a coil from a high temperature superconductive material, and a high temperature superconductive coil with low alternating current loss - Google Patents

Method for producing a coil from a high temperature superconductive material, and a high temperature superconductive coil with low alternating current loss Download PDF

Info

Publication number
EP1023738B1
EP1023738B1 EP98949001A EP98949001A EP1023738B1 EP 1023738 B1 EP1023738 B1 EP 1023738B1 EP 98949001 A EP98949001 A EP 98949001A EP 98949001 A EP98949001 A EP 98949001A EP 1023738 B1 EP1023738 B1 EP 1023738B1
Authority
EP
European Patent Office
Prior art keywords
coil
superconducting
cuts
reinforcement
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98949001A
Other languages
German (de)
French (fr)
Other versions
EP1023738A2 (en
Inventor
Jürgen EHRENBERG
Joachim Bock
Günter BROMMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans Industrial Solutions GmbH
Original Assignee
Nexans Superconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997144984 external-priority patent/DE19744984A1/en
Application filed by Nexans Superconductors GmbH filed Critical Nexans Superconductors GmbH
Publication of EP1023738A2 publication Critical patent/EP1023738A2/en
Application granted granted Critical
Publication of EP1023738B1 publication Critical patent/EP1023738B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/048Superconductive coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Definitions

  • the invention relates to a method for producing a coil from a high-temperature superconducting material.
  • Superconducting coils are used to assemble heavy-current transformers with a current of usually well over 50 A, magnets for research purposes, high-energy physics, ore separators, semi-conductor manufacturing, medical applications such as solar cells. Magnetic resonance tomographs as well as resistive current limiters needed.
  • Coils formed from wound superconducting wire today typically have a coil length of 50 mm to 110 mm and a length of the superconducting wire of 40 mm to 80 m, for example a coil outer diameter of 49 mm and for example a coil inner diameter of 13 mm. They are today as a high-temperature superconductor mainly from a BSCCO material with higher proportions of the phases BSCCO 2212 and BSCCO 2223 with wrapping by a Made of silver alloy.
  • Cryogenic superconductive coils usually contain niobium-titanium, niobium-tin or niobium-aluminum. Such coils are used today mostly at the temperature of the liquid helium of 4.2 K or of liquid nitrogen at 77 K as magnets.
  • These magnet systems can be used as high-temperature superconducting insert coils in superconducting magnets together with low-temperature superconducting coils in DC operation.
  • These magnet systems are preferably used for the construction of very homogeneous magnetic fields and are used in particular in magnetic resonance imaging MRI. They are also a prerequisite for building strong deflection magnetic fields in particle accelerators.
  • AC coils in transformers can also be used as AC coils in transformers to serve as secondary or primary coils in AC or sheath transformers for AC transformation.
  • Superconductive coils can also be used as resistive current limiters, especially in the case of alternating current, in order to prevent the formation of high short-circuit currents, especially in power plants, and to prevent the destruction of system components such as generators and transformers.
  • the extremely short response times are advantageous.
  • the fewest superconducting coils are used today in practice. They are wound from a high temperature superconducting wire made by the Oxide Powder-in-Tube (OPIT) process.
  • the metal sheath is usually made of an alloy with an electrically conductive noble metal, which in use leads to a certain part of the transported current leading to the formation of shielding currents and thus to additional electrical losses, the AC losses.
  • AC loss energy is converted into heat and must then through the Cooling be removed.
  • reversing the alternating current also changes the magnetic self-fields constantly; the dissipated energy - called hysteretic losses - contributes significantly to the AC losses.
  • Thin wire filaments lead to lower AC losses than thick wall thicknesses. The AC losses are therefore significantly dependent on the frequency and the wall thickness or the diameter of the superconducting body or filaments.
  • the OPIT process particularly fine-grained powders having the chemical composition of a superconductor are filled in a tube containing predominantly silver, and e.g. reduced, compacted, textured, annealed and converted to the desired superconducting material or further crystallized by rolling in cross section.
  • These wires often have a diameter of 0.1 to 0.3 mm including their metal sheath. They are almost always covered with a silver-containing metal tube.
  • the process is relatively complicated and takes a very long time overall; The pure process time is usually more than 1 month today.
  • the coils made therefrom have the disadvantage that their production is very complicated and - due to the quality of the superconductor powder used and the subsequent steps of the mechanical and thermal treatment - very large performance differences occur up to the loss of superconducting properties at 77 K.
  • the superconductivity breaks down and the superconductor becomes the normal conductor. This is related to the increased heating of the conductor and possibly the melting of the superconducting material.
  • High temperature superconducting materials based on YBCO would be particularly advantageous for use in coils because of their particularly favorable values of critical current density and current carrying capacity; however, they are not yet suitable for stripping wires.
  • US 4,970,483 describes a coil of YBCO which i.a. was prepared by isostatic pressing and sintering of a pipe section and subsequent sawing, with no stabilization was used during processing. Therefore, the handling and processing of such coils is to be carried out with extreme caution and is at high risk that this irreparable damage is introduced.
  • the object is achieved with a method according to claim 1 and with a coil according to one of claims 20 to 32.
  • a shaped body of a prefired, sintered or nachgegivier superconducting material in question As a starting material for the shaped body, which is treated according to the invention, a shaped body of a prefired, sintered or nachgegivier superconducting material in question. Basically, the process steps of pre-firing such as calcination, sintering and possibly the Afterglow, which are carried out in a single fire or in several, possibly even repeated, sub-steps to go through in order to arrive at a high-quality superconductor material.
  • a high-quality superconducting material which has a high proportion of one or more superconducting phases can already be assumed.
  • the superconductive material preferably contains at least one of the superconducting phases having a composition substantially based on (Bi, Pb) -Ea-Cu-O, (Y, SE) -Ea-Cu-O or (Ti, Pb) - (Ea , Y) -Cu-O, where Ea is alkaline earth elements and in particular Ba, Ca or / and Sr.
  • the resulting phases have a composition of approximately (Bi, Pb) 2 (Sr, Ca) 2 Cu 1 O x , (Bi, Pb) 2 (Sr, Ca) 3 Cu 2 O x " , (Bi, Pb ) 2 (Sr, Ca) 4 Cu 3 O x "' , (Y, SE) 1 Ba 2 Cu 3 O y' , (Y, SE) 2 Ba 1 Cu 1 O y" , (Tl, Pb) 2 ( Ba Ca) 2 Cu 1 O z ' , (Tl, Pb) 2 (CaBa) 3 Cu 2 O z " , (Tl, Pb) 2 (Ca Ba) 4 Cu 3 O z" , (Tl, Pb) 1 (Ca Ba) 3 Cu 2 O z '', (Tl, Pb) 1 (Ca Ba) 4 Cu 3 O z" , (Tl, Pb) 1 (Ca Ba) 3 Cu 2 O z '', (Tl, Pb)
  • the superconducting material in addition to the one or more superconducting phases have a content on one or more compounds which melt above 950 ° C and do not decompose below 950 ° C, in particular BaSO 4 , SrSO 4 or / and (Ba, Sr) SO 4 .
  • a superconducting material which is as heavily textured and as possible oriented so that the platelet planes corresponding to the plane of best superconductivity, are largely aligned in the direction of the coil course.
  • a molded article produced by the melt-casting method in particular a shaped article produced by a centrifugal casting method, is used.
  • Shaped bodies are particularly suitable which have been prepared by a process as described in DE-A-38 30 092, EP-A-0 451 532, EP-A-0 462 409 or / and EP-A-0 477 493; these publications are considered to be fully included in the description because of their quotation.
  • the starting geometry of the superconducting shaped body is a rod or a tube, a cuboid, a cuboid with strongly rounded edge regions or a similar geometry, especially with a substantially cylindrical outer geometry suitable.
  • Solid bodies can be converted by mechanical processing into corresponding hollow bodies.
  • the shaped body should have as uniform a wall thickness as possible, in particular a cylindrical cavity concentric with the outer surface. In principle, however, other cross sections for the molded body and the cavity can be used.
  • the cavity need not be concentric with the outer surface and need not have a uniform wall thickness.
  • the coil to be produced usually has a cylindrical or substantially cylindrical basic shape. This coil may optionally have. Shape and angle deviations, in particular with respect to the deviation from the roundness of a cylinder and the deviation from the right angle of the cylinder axis of the plane from which an angle of the coil path is determined.
  • the inventive method is used to produce superconducting coils or spirals from hollow bodies, which may contain different superconductor materials and may have different geometries, but especially for the production of high-temperature superconducting coils (HTSC coils) such as. based on bismuth-strontium-calcium-copper-oxide.
  • the coils can be made of tubes or similar hollow or solid bodies and preferably have at their ends contact surfaces, which are preferably formed from silver sheets. However, these contacts can also have burnt-on metal contacts, sheet metal contacts based on metals other than silver or possibly no electrically conductive contact surfaces.
  • Superconductive bodies of the type and geometry described generally have a total electrical resistance ⁇ 0.1 ohms, measured at room temperature, which should be checked before starting the actual work by means of a 2-point measurement. Since tubular bodies made of oxide superconductor materials have predominantly ceramic properties, they are in the In general, susceptible to cracking and breakage, especially in the case of further mechanical processing. For this reason, it is necessary to stabilize the superconducting or, in the case of further thermal treatment, superconducting bodies, preferably BSCCO tubes, by appropriate measures at least externally, if necessary also internally. Depending on the handling, it may happen in externally stabilized bodies that the finished coil more and / or micro-cracks, which lower the current carrying capacity, as a stabilized inside coil. Therefore, it may be advantageous to internally connect an externally reinforced body with a holder acting as an internal reinforcement and to use the step of claim 4 in the manufacture.
  • an external image formation is applied to the surface of the superconductor tube before the introduction of indentations or averages for the production of the coil windings.
  • This external stabilization can be achieved by wrapping the tubular body with suitable, self-adhesive tapes, with adhesive-impregnated, organic or inorganic fabrics (eg cotton sheets, glass fiber mats, hemp cord), with self-curing one- or multi-component adhesive mixtures (eg styrene resins, epoxy resins), with composite materials based on organic or inorganic / and inorganic adhesive and fabric components (eg textile fabric and gypsum compound), by gluing the superconductor tube in precisely fitting metal, wood or plastic pipes or by encapsulating the outer shell of the superconductor tube with low-melting metals, metal alloys, plastics and / or inorganic binders (eg Base tin, Wood's alloy, wax, polyethylene PE, gypsum, cement) are produced.
  • a holder can be fitted, mainly for clamping the superconductor tube in corresponding tools or machine tools (eg Vise, lathe) is used. It is preferably fitted in a cylindrical cavity.
  • the fitting of a holder is particularly recommended for pipe diameters greater than about 30 to 120 mm outer diameter or pipe wall thicknesses less than about 5 mm, but is dependent on the raw fracture strength of the material, as well as the forces and the geometry. Since this mount must absorb large forces, in particular shear forces caused by mechanical machining operations, it should expediently consist of a thick-walled metallic tube, a solid metal rod or a thick metallic threaded tube.
  • All brackets should preferably, in order to fulfill their task as a clamping aid, at least 100 mm project beyond the respective ends of the superconductor tube.
  • the provided thread pitch with a corresponding pitch can be recorded on the outer reinforcement or the outer surface of the molded body.
  • either the immediate severing of the superconducting material along the predetermined spiral course can be done, e.g. by means of sawing, turning or milling or, in particular, in the case of small wall thicknesses of the superconducting tube after removal of the corresponding external reinforcement in the area of the spiral marking, e.g. by dissolution of the superconducting material in suitable acids or alkalis or - after filling the outer sections and removing the inner core - by turning the superconducting material until the externally applied filling material is visible.
  • the superconducting material is susceptible to cracking and breakage, it is advisable to fill the incorporated cuts immediately to stabilize the coil.
  • an application for example of one of the following adhesive systems, can take place on the outer surfaces of the superconductor material.
  • Both the filling of the cuts / averages, as well as the order on the outer surfaces is referred to in the following as external reinforcement.
  • the order on the inner surfaces of the cavity is referred to as internal reinforcement.
  • These reinforcements are expediently carried out, for example, by using self-curing single- or multi-component adhesive systems which may be mixed with fine ceramic powders such as, for example, aluminum nitride, silicon nitride, aluminum oxide or / and silicon dioxide.
  • adhesive systems on a purely organic basis such as adhesives mixed with wood flour or fine cotton or hemp cords, which are inserted into the cuts or inserted and then glued.
  • inorganic-based adhesive systems such as gypsum or cement mixtures may also be used, again under the precondition of previously performed lacquer impregnation or coating, such as plastic melts of polyethylene PE or polyvinyl chloride PVC.
  • the holder located inside the tubular coil is removed and, if necessary, the inner reinforcement. Is an indirect separation of the superconductor material by further, inside turning provided so eliminates the backfilling of any, already available free cuts. Otherwise, the kerfs are preferably filled with appropriate materials, as has already been done for the outer cuts.
  • the outer reinforcement which projects beyond the outer diameter of the coil and / or the inner reinforcement, which projects beyond the inner diameter of the coil, partially or completely processed.
  • the (remaining) outer and / or inner reinforcement can optionally also be removed by the user.
  • the outer reinforcement may connect the spools outside the cuts / averages between the spool flights and / or directly between the spool flights, or / and an inner reinforcement may strengthen mechanically.
  • the use of a reinforcement in which the spaces between the adjacent coil turns are not filled, is favorable for a better cooling.
  • the backfilling of these interspaces must be done essentially with a non-conductive material so as not to increase eddy currents.
  • the finished coil must be reinforced at least in the intermediate spaces, the outer diameter or the inner diameter.
  • the external stabilization can be removed depending on its nature and the requirements of the surface of the superconducting coil or spiral - ie at the contact surfaces for the electrical connection - and then again the total electrical resistance value of the coil at room temperature by means of a 2- Point measurement can be determined to check for impairment in particular by cracks and / or cracks.
  • coils with correspondingly different diameters can be selected, the windings of which can be held apart from one another at a distance of at least 0.1 mm, preferably at least 0.3 mm, at their ends be connected without interruption of the superconducting material.
  • This can be done, for example, by a method as described in EP-A-0 442 289; This publication is considered to be fully included in the description because of its citation.
  • non-conductive or metallic reinforcements in particular in the area around the joints, may be advantageous in order to increase the mechanical stability.
  • mono-, bi- or multifilament coils can be produced by inserting incisions in a shaped body in such a way that the resulting shaped body has the geometry of a mono-, bi- or multifilar coil.
  • the incisions are advantageously introduced along the prescribed spiral course by means of mechanical separation processes such as sawing, milling, drilling, turning, etc. and then filled with one of the adhesive combinations already described above.
  • To produce the bifilar or multifilar coil geometry is - after completion of the above-described separation - a coil end by sawing, milling, drilling, turning, etc. preferably divided so that - after cutting the opposite coil end at other locations - opposite spiral turns arise.
  • Bifilar or multifilament coils which were produced by appropriate arrangement of the incisions in a shaped body or by joining coils of different sizes, have the advantage that the magnetic self-fields of the opposing coil sections can mutually reduce or cancel each other; As a result, inductions and AC losses can be further reduced.
  • bi- or multifilament coils in which at least one "monofilament” coil has a smaller inside and / or outside diameter than at least one other "monofilamentary" coil associated therewith and applies in particular to those bi- or multifilament coils in which at least one coil has an outer diameter which is smaller than the inner diameter of at least one other associated therewith coil, as well as for such bi- or multifilar coils, in which the winding paths of several contiguous coils the same or approximately the same inner and / or Have outer diameter and in which alternate in the longitudinal direction of the coil, the coil turns of the various "monofilar" coils regularly. In the latter type, the same inner and outer diameters are preferred for production reasons.
  • spiral bodies can be used as a coil or otherwise as a superconducting spiral.
  • a coil according to the invention can be used as a semi-finished product for the production of high-temperature superconducting transformers, windings, magnets, current limiting or power supply lines.
  • Such coils may be used as transformer coils on the secondary side of a transformer or as current limiting coils, also in e.g. bifilar version, be used as a resistive current limiter.
  • They can also be used to reinforce the magnetic field of an external magnet, in particular in the center of the coil, as internal coils, while the outer portions of the coil can also be wound from wires, because the magnetic field generated by superconducting wire windings in the inner part of the coil if necessary, is not sufficiently strong.
  • a high temperature superconducting BSCCO tube having an inner diameter of 103 mm, an outer diameter of 113 mm and a length of 100 mm was used. At the respective ends of the BSCCO tube were silver contacts with a height of 20 mm. The total electrical resistance of the tube, as determined by a 2-point measurement at room temperature, was 0.1 ohms. After this resistance measurement, the The outer surface of the BSCCO pipe is tightly wrapped with TESA 4651 insulating tape. Then, the positioning and centering of the metal holder was carried out in the inner part of the tube. Subsequently, the entire tube interior was foamed with a mixture of isocyanate and polyether polyol.
  • a BSCCO tube with the specification as in Example 1 was used.
  • the outer surface of the tube has now been provided with a 5 mm thick jacket of glass fiber fabric and epoxy resin.
  • the HTSC spiral test piece was clamped in a lathe and the epoxide glass fiber composite sheath and the supernatant, cured filling material turned off.
  • the removal of the metal holder and the hard foam core was carried out as described in Example 1.
  • the measurement of the terminal resistance gave a value of 1.8 ohms.
  • Example 1 a BSCCO tube was used to make the HTS coil as described in Example 1. After measuring the total resistance and applying the Isolierbandwicklung the pipe interior was coated with a paint layer. Then the metal support was positioned and centered. Subsequently, the pipe interior was poured with a model plaster. Further processing was carried out as described in Example 1. The cured gypsum compound was removed from the interior of the spiral tube by means of a small piercing iron. The measured final resistance value of the coil was 1.6 ohms. The critical current density of the coil at 77 K was 548 A / cm 2 .
  • a BSCCO tube according to the specification described in Example 1 was used for the production of the HTSC coil. Then, the measurement of the total resistance and the application of the tightly stretched insulating tape layer on the outer surface of the BSCCO pipe. Subsequently, the positioning of the metal support was made, which was now also equipped with a thread and had a diameter of 30 mm. Now, the insertion of a cylindrical plastic foam body took place in such a way that the cylinder provided with an inner opening was placed by selbige on the metal support and lowered along this into the interior of the tube.
  • the diameter of the inner opening of the plastic cylinder was equal to the outer diameter of the metal holder, whereas the outer diameter of the cylinder was 2 mm larger than the inner diameter of the BSCCO tube.
  • the length of the plastic foam body was 10 mm larger than the length of the superconducting tube.
  • Example 1 Then the processing according to Example 1 was continued. After the filling of the saw cuts was completed, the removal of the soft foam plastic body took place from the interior of the coil, so that the final work described in Example 1 could be made. The final value of the total electrical resistance was 1.9 ohms.
  • Example 2 the use of a BSCCO tube was carried out according to the specification described in Example 1. The measurement of the total resistance and the processing were also carried out as listed under Example 1. However, the backfilling of the saw cuts in this example was carried out with a mixture of styrene embedding compound and aluminum oxide powder in a ratio of 1: 1. The final resistance of the HTSC coil was 1.8 ohms.
  • Example 5 but using an epoxy resin-aluminum nitride powder mixture in the ratio 1: 1.
  • the final resistance value of the HTSC coil was 1.7 ohms.
  • Example 1 but using a BSCCO tube with an inner diameter of 55 mm, an outer diameter of 70 mm and a length of 200 mm.
  • the height of the silver contacts at the ends of the tube was 20 mm.
  • the end resistance value after processing was 1.1 ohms.
  • the critical current density J c of the coils of the examples listed above was at least 100 A / cm 2 at 77 K, preferably at least 400 A / cm 2 and particularly preferably at least 500 A / cm 2 , at 64 K at least 400 A / cm 2 and at 4 K at least 2000 A / cm 2 or preferably at least 5000 A / cm 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Spule aus einem Hochtemperatursupraleitermaterial. Supraleitende Spulen werden zur Montage von Transformatoren für starke Ströme mit einer Stromstärke von üblicherweise weit mehr als 50 A, von Magneten insbesondere für Forschungszwecke, in der Hochenergiephysik, in Erzscheidern, in der Fertigung von Halbleitermaterialien sowie für medizinische Zwecke wie z.B. Kernspintomographen sowie für resistive Strombegrenzer benötigt.The invention relates to a method for producing a coil from a high-temperature superconducting material. Superconducting coils are used to assemble heavy-current transformers with a current of usually well over 50 A, magnets for research purposes, high-energy physics, ore separators, semi-conductor manufacturing, medical applications such as solar cells. Magnetic resonance tomographs as well as resistive current limiters needed.

Spulen aus einem Hochtemperatursupraleitermaterial z.B. auf Basis Wismut-(Blei)-Strontium-Calcium-Kupfer-Oxid (= BSCCO bzw. PbBSCCO) oder Seltenerdelement(e)-Erdalkalielement(e)-Kupfer-Oxid (= YBCO) sind bereits bekannt. Da Yttrium bei der letzten genannten Werkstoffklasse üblicherweise und auch im Sinne dieser Anmeldung zu den Seltenerdelementen gezählt wird, da Yttrium meistens als das wichtigste oder alleinige Seltenerdelement bei dieser Werkstoffklasse angesehen wird und da Barium das wichtigste und oft einzige Erdalkalielement ist (B für Barium), wird im folgenden die Bezeichnung "YBCO" für diese Werkstoffklasse verwendet.Coils of a high temperature superconducting material e.g. Based on bismuth (lead) trontium-calcium-copper oxide (= BSCCO or PbBSCCO) or rare earth element (s) -Erdalkalielemente- (copper) oxide (= YBCO) are already known. Since yttrium is usually considered to be one of the rare earth elements in the latter class of materials, as yttrium is usually considered to be the most important or sole rare earth element in this class of materials, and barium is the most important and often the only alkaline earth element (B for barium), In the following, the term "YBCO" will be used for this material class.

Spulen, die aus gewickeltem supraleitenden Draht aufgebaut sind, weisen heute üblicherweise eine Spulenlänge von 50 mm bis 110 mm und eine Länge des supraleitenden Drahtes von 40 mm bis 80 m, beispielsweise einen Spulenaußendurchmesser von 49 mm und beispielsweise einen Spuleninnendurchmesser von 13 mm auf. Sie werden heute als Hochtemperatursupraleiter vorwiegend aus einem BSCCO-Material mit höheren Anteilen an den Phasen BSCCO 2212 bzw. BSCCO 2223 mit Umhüllung durch eine Silberlegierung gefertigt. Tieftemperatursupraleitende Spulen enthalten meistens Niob-Titan, Niob-Zinn oder Niob-Aluminium. Derartige Spulen dienen heute meistens bei der Temperatur des flüssigen Heliums von 4,2 K bzw. von flüssigem Stickstoff bei 77 K als Magnete.Coils formed from wound superconducting wire today typically have a coil length of 50 mm to 110 mm and a length of the superconducting wire of 40 mm to 80 m, for example a coil outer diameter of 49 mm and for example a coil inner diameter of 13 mm. They are today as a high-temperature superconductor mainly from a BSCCO material with higher proportions of the phases BSCCO 2212 and BSCCO 2223 with wrapping by a Made of silver alloy. Cryogenic superconductive coils usually contain niobium-titanium, niobium-tin or niobium-aluminum. Such coils are used today mostly at the temperature of the liquid helium of 4.2 K or of liquid nitrogen at 77 K as magnets.

Sie können als hochtemperatursupraleitende Einsatzspulen in Supraleitermagneten zusammen mit Tieftemperatursupraleiterspulen im Gleichstrombetrieb verwendet werden. Diese Magnetsystemen dienen vorzugsweise zum Aufbau von sehr homogenen Magnetfeldern und werden insbesondere in der Kernspintomographie MRI eingesetzt. Sie sind auch Voraussetzung, um starke Ablenkungsmagnetfelder in Teilchenbeschleunigern aufzubauen.They can be used as high-temperature superconducting insert coils in superconducting magnets together with low-temperature superconducting coils in DC operation. These magnet systems are preferably used for the construction of very homogeneous magnetic fields and are used in particular in magnetic resonance imaging MRI. They are also a prerequisite for building strong deflection magnetic fields in particle accelerators.

Sie können auch als Wechselstromspulen in Transformatoren Verwendung finden, um als Sekundär- bzw. Primärspule in Kern- oder Manteltransformatoren für die Wechselspannungsumformung zu dienen.They can also be used as AC coils in transformers to serve as secondary or primary coils in AC or sheath transformers for AC transformation.

Supraleitende Spulen können auch als resistive Strombegrenzer, insbesondere bei Wechselstrom, eingesetzt werden, um die Entstehung hoher Kurzschlußströme, besonders in Kraftwerken, zu vermeiden und einer Zerstörung von Anlagenteilen wie Generatoren und Transformatoren vorzubeugen. Hierbei sind insbesondere die außerordentlich kurzen Ansprechzeiten von Vorteil.Superconductive coils can also be used as resistive current limiters, especially in the case of alternating current, in order to prevent the formation of high short-circuit currents, especially in power plants, and to prevent the destruction of system components such as generators and transformers. In particular, the extremely short response times are advantageous.

Die wenigsten supraleitenden Spulen werden heute in der Praxis eingesetzt. Sie werden aus einem hochtemperatursupraleitenden Draht, der mit dem Oxide-Powder-in-Tube-Verfahren (OPIT) hergestellt wurde, gewickelt. Die Metallummantelung besteht üblicherweise aus einer Legierung mit einem elektrisch leitenden Edelmetall, das im Einsatz dazu führt, daß ein gewisser Teil des transportierten Stromes zur Ausbildung von Abschirmströmen führt und somit zu zusätzlichen elektrischen Verlusten, den Wechselstromverlusten, führt.The fewest superconducting coils are used today in practice. They are wound from a high temperature superconducting wire made by the Oxide Powder-in-Tube (OPIT) process. The metal sheath is usually made of an alloy with an electrically conductive noble metal, which in use leads to a certain part of the transported current leading to the formation of shielding currents and thus to additional electrical losses, the AC losses.

Wechselstromverlustenergie wird in Wärme umgewandelt und muß dann durch die Kühlung abtransportiert werden. Im Supraleitermaterial werden mit der Umpolung des Wechselstromes auch die magnetischen Eigenfelder ständig geändert; die dabei dissipierte Energie - hysteretische Verluste genannt - trägt wesentlich zu den Wechselstromverlusten bei. Dünne Drahtfilamente führen dabei zu geringeren Wechselstromverlusten als dicke Wandstärken. Die Wechselstromverluste sind daher wesentlich von der Frequenz und von der Wandstärke bzw. dem Durchmesser der supraleitenden Körper bzw. Filamente abhängig.AC loss energy is converted into heat and must then through the Cooling be removed. In the superconductor material, reversing the alternating current also changes the magnetic self-fields constantly; the dissipated energy - called hysteretic losses - contributes significantly to the AC losses. Thin wire filaments lead to lower AC losses than thick wall thicknesses. The AC losses are therefore significantly dependent on the frequency and the wall thickness or the diameter of the superconducting body or filaments.

Die mit dem Wechselstrom verbundenen magnetischen Wechselfelder induzieren in einem konventionellen elektrischen Leiter wie metallischen Leitern, also etwa in Silberlegierungen, Wirbelströme. Aufgrund der normalleitenden Eigenschaften des metallischen Materials bedingt dies resistive Verluste entsprechend dem Ohm'schen Gesetz. Die Wechselstromverluste nehmen jedoch mit abnehmendem Widerstand des Normalleiters zu. Daher sind auch die Wechselstromverluste in Silberlegierungen bei 20 K deutlich größer als bei 77 K. Schließlich können auch Wechselstrom-Kopplungsverluste bei nahe beieinanderliegenden Körpern wie z.B. in einem Filamentbündel auftreten. Alle drei Verlustmechanismen steigen exponentiell mit n = 3 und daher drastisch mit der Stromstärke und linear mit der Frequenz an. Die Werte des Wechselstromverlustes sind auch von der Probengeometrie und Leiteranordnung abhängig und können daher nur unter standardisierten Meßbedingungen verglichen werden.The alternating magnetic fields connected to the alternating current induce eddy currents in a conventional electrical conductor, such as metallic conductors, for example in silver alloys. Due to the normal conducting properties of the metallic material, this causes resistive losses in accordance with Ohm's law. However, AC losses increase with decreasing resistance of the normal conductor. Therefore, the AC losses in silver alloys at 20 K are significantly greater than at 77 K. Finally, AC coupling losses in close-coupled bodies such. occur in a filament bundle. All three loss mechanisms increase exponentially with n = 3 and therefore drastically with the current and linearly with the frequency. The values of the alternating current loss are also dependent on the sample geometry and conductor arrangement and can therefore only be compared under standardized measuring conditions.

Diese Stromverluste hat man zu verringern versucht, indem der Anteil des verwendeten Metalls verringert wurde und gegebenenfalls auch isolierende Zwischenschichten eingebracht oder elektrisch geringer leitende Legierungen gewählt wurden. Trotzdem ist der Anteil der Abschirmströme immer noch hoch geblieben.These power losses have been tried to reduce by the proportion of the metal used was reduced and optionally introduced insulating interlayers or electrically lower conductive alloys were selected. Nevertheless, the proportion of shielding currents has still remained high.

Mit OPIT-Draht werden üblicherweise Spulen gefertigt, die auch aufgrund der Drahtabmessungen nur relativ kleine Ströme etwa in der Größenordnung von bis zu 20 A tragen können, so daß meistens sehr viele Wicklungen erforderlich sind.With OPIT wire usually coils are made, which can carry only relatively small currents on the order of up to 20 A due to the wire dimensions, so that usually very many windings are required.

Sie können z.B. mit hochtemperatursupraleitenden Drähten, die nach dem OPIT-Verfahren gefertigt wurden, hergestellt werden. Bei dem OPIT-Verfahren werden besonders feinkörnige Pulver mit der chemischen Zusammensetzung eines Supraleiters in ein vorwiegend Silber enthaltendes Rohr eingefüllt und z.B. durch Walzen im Querschnitt verringert, verdichtet, texturiert, geglüht und zu dem gewünschten Supraleitermaterial umgesetzt bzw. weiter kristallisiert. Diese Drähte haben oft einen Durchmesser von 0,1 bis 0,3 mm einschließlich ihrer Metallummantelung. Sie sind fast immer mit einem Silber-haltigen Metallrohr ummantelt. Das Verfahren ist vergleichsweise aufwendig und dauert insgesamt sehr lange; die reine Prozeßzeit beträgt meistens heute mehr als 1 Monat. Die hieraus gefertigten Spulen haben den Nachteil, daß ihre Herstellung sehr aufwendig ist und - bedingt durch die eingesetzte Qualität des Supraleiterpulvers und die nachfolgenden Schritte der mechanischen und thermischen Behandlung - sehr große Leistungsunterschiede auftreten bis hin zum Verlust der supraleitenden Eigenschaften bei 77 K.You can e.g. with high-temperature superconducting wires manufactured by the OPIT method. In the OPIT process, particularly fine-grained powders having the chemical composition of a superconductor are filled in a tube containing predominantly silver, and e.g. reduced, compacted, textured, annealed and converted to the desired superconducting material or further crystallized by rolling in cross section. These wires often have a diameter of 0.1 to 0.3 mm including their metal sheath. They are almost always covered with a silver-containing metal tube. The process is relatively complicated and takes a very long time overall; The pure process time is usually more than 1 month today. The coils made therefrom have the disadvantage that their production is very complicated and - due to the quality of the superconductor powder used and the subsequent steps of the mechanical and thermal treatment - very large performance differences occur up to the loss of superconducting properties at 77 K.

Aufgrund der heute oft noch zu geringen Stromtragfähigkeiten und zu hohen Wechselstromverluste vieler supraleitender Bauteile ist deren Einsatz begrenzt. Eine Weiterentwicklung derartiger Bauteile ist erforderlich, damit noch größere Ströme durch diese Bauteile supraleitend und verlustarm bzw. verlustfrei fließen können.Due to the still often low current carrying capacity and high AC losses of many superconducting components whose use is limited. A further development of such components is required so that even larger currents can flow through these components superconducting and low loss or loss.

Wenn die kritische Stromdichte Jc überschritten wird, bricht die Supraleitfähigkeit zusammen und der Supraleiter wird zum Normalleiter. Dies steht mit dem stärkeren Erwärmen des Leiters und gegebenenfalls mit dem Aufschmelzen des supraleitenden Materials in Zusammenhang.If the critical current density J c is exceeded, the superconductivity breaks down and the superconductor becomes the normal conductor. This is related to the increased heating of the conductor and possibly the melting of the superconducting material.

Für die Herstellung von Hochtemperatursupraleitern geringer Wechselstromverluste bzw. hoher kritischer Stromdichte ist es erforderlich, das supraleitende Material bezüglich Reinheit, Phasenreinheit, Phasenzusammensetzung, Kristallisationsgrad und Orientierung zu optimieren.For the production of high-temperature superconductors low AC losses or high critical current density, it is necessary to optimize the superconducting material in terms of purity, phase purity, phase composition, degree of crystallinity and orientation.

Besonders große Querschnitte oder große Breiten bzw. große Wandstärken wären wegen der damit weitaus höheren kritischen Stromdichte und Stromtragfähigkeit vorteilhaft. Bei der Herstellung sind nichtsupraleitende Fremdkörper und Gaseinschlüsse im Querschnitt zu vermeiden, da sie die elektrischen Eigenschaften beeinträchtigen.Particularly large cross sections or large widths or large wall thicknesses would be advantageous because of the much higher critical current density and current carrying capacity. In the production of non-superconducting foreign bodies and gas inclusions should be avoided in cross-section, as they affect the electrical properties.

Hochtemperatursupraleitermaterialien auf Basis YBCO wären wegen Ihrer besonders günstigen Werte der kritischen Stromdichte und Stromtragfähigkeit für die Verwendung in Spulen besonders vorteilhaft; jedoch lassen sie sich bisher nicht geeignet zu Drähten ausziehen.High temperature superconducting materials based on YBCO would be particularly advantageous for use in coils because of their particularly favorable values of critical current density and current carrying capacity; however, they are not yet suitable for stripping wires.

US 4,970,483 beschreibt eine Spule aus YBCO, die u.a. durch isostatisches Pressen und Sintern eines Rohrabschnittes und anschließendes Sägen hergestellt wurde, wobei bei der Bearbeitung keine Stabilisierung verwendet wurde. Daher ist die Handhabung und Bearbeitung derartiger Spulen mit äußerster Vorsicht durchzuführen und unterliegt einem hohen Risiko, daß hierbei irreparable Beschädigungen eingebracht werden.US 4,970,483 describes a coil of YBCO which i.a. was prepared by isostatic pressing and sintering of a pipe section and subsequent sawing, with no stabilization was used during processing. Therefore, the handling and processing of such coils is to be carried out with extreme caution and is at high risk that this irreparable damage is introduced.

Es bestand daher die Aufgabe, ein Verfahren zur Herstellung von supraleitenden Spulen vorzuschlagen, mit dem es möglich ist, weitgehend oder gänzlich rißfreie supraleitende Spulen aus massiven Materiallen herzustellen, und die Spulen bezüglich ihrer supraleitenden Eigenschaften weiter zu verbessern. Vorzugsweise sollten diese Spulen keine metallische Ummantelung aufweisen.It was therefore an object to propose a method for the production of superconducting coils, with which it is possible to produce substantially or completely crack-free superconducting coils made of massive materials, and to further improve the coils with respect to their superconducting properties. Preferably, these coils should not have a metallic sheath.

Die Aufgabe wird gelöst mit einem Verfahren entsprechend Anspruch 1 und mit einer Spule entsprechend einem der Ansprüche 20 bis 32.The object is achieved with a method according to claim 1 and with a coil according to one of claims 20 to 32.

Als Ausgangsmaterial für den Formkörper, der erfindungsgemäß behandelt wird, kommt ein Formkörper aus einem vorgebrannten, gesinterten oder nachgegichten supraleitenden Material in Frage. Grundsätzlich müssen die Prozeßschritte des Vorbrennens wie z.B. Kalzinieren, des Sinterns und gegebenenfalls des Nachglühens, die in einem einzigen Brand oder in mehreren, u.U. auch wiederholten, Teilschritten durchgeführt werden, durchlaufen werden, um zu einem hochwertigen Supraleitermaterial zu gelangen. Andererseits kann zu Beginn des erfindungsgemäßen Verfahrens auch bereits von einem hochwertigen supraleitenden Material ausgegangen werden, das einen hohen Anteil an einer oder mehreren supraleitenden Phasen aufweist.As a starting material for the shaped body, which is treated according to the invention, a shaped body of a prefired, sintered or nachgegichten superconducting material in question. Basically, the process steps of pre-firing such as calcination, sintering and possibly the Afterglow, which are carried out in a single fire or in several, possibly even repeated, sub-steps to go through in order to arrive at a high-quality superconductor material. On the other hand, at the beginning of the process according to the invention, a high-quality superconducting material which has a high proportion of one or more superconducting phases can already be assumed.

Das supraleitende Material enthält vorzugsweise mindestens eine der supraleitenden Phasen mit einer Zusammensetzung im wesentlichen auf der Basis (Bi,Pb)-Ea-Cu-O, (Y,SE)-Ea-Cu-O oder (Ti,Pb)-(Ea,Y)-Cu-O, wobei Ea für Erdalkalielemente und insbesondere für Ba, Ca oder/und Sr steht. Hierbei weisen die auftretenden Phasen insbesondere eine Zusammensetzung auf von annähernd (Bi,Pb)2(Sr,Ca)2Cu1Ox, (Bi,Pb)2(Sr,Ca)3Cu2Ox", (Bi,Pb)2(Sr,Ca)4Cu3Ox"', (Y,SE)1Ba2Cu3Oy', (Y,SE)2Ba1Cu1Oy", (Tl,Pb)2(Ba Ca)2Cu1Oz', (Tl,Pb)2(CaBa)3Cu2Oz", (Tl,Pb)2(Ca Ba)4Cu3Oz"', (Tl,Pb)1(Ca Ba)3Cu2Oz"", (Tl,Pb)1(Ca Ba)4Cu3Oz""'. In manchen Fällen empfiehlt es sich, daß das supraleitende Material neben der oder den supraleitenden Phasen einen Gehalt an einer oder mehreren Verbindungen aufweist, die erst oberhalb von 950 °C schmelzen und sich nicht unterhalb von 950 °C zersetzen, insbesondere an BaSO4, SrSO4 oder/und (Ba,Sr)SO4.The superconductive material preferably contains at least one of the superconducting phases having a composition substantially based on (Bi, Pb) -Ea-Cu-O, (Y, SE) -Ea-Cu-O or (Ti, Pb) - (Ea , Y) -Cu-O, where Ea is alkaline earth elements and in particular Ba, Ca or / and Sr. Specifically, the resulting phases have a composition of approximately (Bi, Pb) 2 (Sr, Ca) 2 Cu 1 O x , (Bi, Pb) 2 (Sr, Ca) 3 Cu 2 O x " , (Bi, Pb ) 2 (Sr, Ca) 4 Cu 3 O x "' , (Y, SE) 1 Ba 2 Cu 3 O y' , (Y, SE) 2 Ba 1 Cu 1 O y" , (Tl, Pb) 2 ( Ba Ca) 2 Cu 1 O z ' , (Tl, Pb) 2 (CaBa) 3 Cu 2 O z " , (Tl, Pb) 2 (Ca Ba) 4 Cu 3 O z" , (Tl, Pb) 1 (Ca Ba) 3 Cu 2 O z '', (Tl, Pb) 1 (Ca Ba) 4 Cu 3 O z '''. In some cases, it is recommended that the superconducting material in addition to the one or more superconducting phases have a content on one or more compounds which melt above 950 ° C and do not decompose below 950 ° C, in particular BaSO 4 , SrSO 4 or / and (Ba, Sr) SO 4 .

Besonders bevorzugt ist ein Supraleitermaterial, das möglichst stark texturiert und dabei möglichst so orientiert ist, daß die Plättchenebenen, die der Ebene der besten Supraleitfähigkeit entsprechen, weitgehend in Richtung des Spulenverlaufes ausgerichtet sind. Das ist insbesondere dann möglich, wenn ein im Schmelzgußverfahren, insbesondere ein in einem Schleudergußverfahren hergestellter Formkörper verwendet wird. Insbesondere eignen sich Formkörper, die nach einem Verfahren wie in DE-A-38 30 092, EP-A-0 451 532, EP-A-0 462 409 oder/und EP-A-0 477 493 beschrieben hergestellt wurden; diese Publikationen gelten aufgrund ihres Zitats als vollständig in die Beschreibung einbezogen.Particularly preferred is a superconducting material which is as heavily textured and as possible oriented so that the platelet planes corresponding to the plane of best superconductivity, are largely aligned in the direction of the coil course. This is particularly possible when a molded article produced by the melt-casting method, in particular a shaped article produced by a centrifugal casting method, is used. Shaped bodies are particularly suitable which have been prepared by a process as described in DE-A-38 30 092, EP-A-0 451 532, EP-A-0 462 409 or / and EP-A-0 477 493; these publications are considered to be fully included in the description because of their quotation.

Als Ausgangsgeometrie des supraleitenden Formkörpers ist ein Stab oder ein Rohr, ein Quader, ein Quader mit stark verrundeten Kantenbereichen oder eine ähnliche Geometrie, vor allem mit im wesentlichen zylindrischer Außengeometrie, geeignet. Vollkörper können durch mechanische Bearbeitung in entsprechende Hohlkörper überführt werden. Der Formkörper sollte ggbfs. eine möglichst gleichmäßige Wandstärke, insbesondere einen zylindrischen Hohlraum konzentrisch zu der Außenfläche, aufweisen. Grundsätzlich können jedoch auch andere Querschnitte für den Formkörper und den Hohlraum verwendet werden. Der Hohlraum muß nicht konzentrisch zu der Außenfläche liegen und muß nicht eine gleichmäßige Wandstärke aufweisen. Die zu fertigende Spule weist üblicherweise eine zylindrische oder im wesentlichen zylindrische Grundform auf. Diese Spule kann ggbfs. Form- und Winkelabweichungen insbesondere bezüglich der Abweichung von der Rundheit eines Zylinders und der Abweichung vom rechten Winkel der Zylinderachse von der Ebene, von der aus ein Winkel des Spulenganges aus bestimmt wird, aufweisen.The starting geometry of the superconducting shaped body is a rod or a tube, a cuboid, a cuboid with strongly rounded edge regions or a similar geometry, especially with a substantially cylindrical outer geometry suitable. Solid bodies can be converted by mechanical processing into corresponding hollow bodies. If appropriate, the shaped body should have as uniform a wall thickness as possible, in particular a cylindrical cavity concentric with the outer surface. In principle, however, other cross sections for the molded body and the cavity can be used. The cavity need not be concentric with the outer surface and need not have a uniform wall thickness. The coil to be produced usually has a cylindrical or substantially cylindrical basic shape. This coil may optionally have. Shape and angle deviations, in particular with respect to the deviation from the roundness of a cylinder and the deviation from the right angle of the cylinder axis of the plane from which an angle of the coil path is determined.

Das erfindungsgemäße Verfahren dient zur Herstellung von supraleitenden Spulen bzw. Spiralen aus Hohlkörpern, die unterschiedliche Supraleitermaterialien enthalten können und unterschiedliche Geometrien aufweisen können, besonders aber zur Herstellung von hochtemperatursupraleitenden Spulen (HTSL-Spulen) wie z.B. auf Basis von Wismut-Strontium-Calcium-Kupfer-Oxid. Die Spulen können aus Rohren oder ähnlichen Hohl- oder Vollkörpern gefertigt werden und besitzen an ihren Enden bevorzugt Kontaktflächen, die vorzugsweise aus Silberblechen geformt werden. Diese Kontakte können aber auch über eingebrannte Metallkontakte, Blechkontakte auf Basis anderer Metalle als Silber oder gegebenenfalls über keinerlei elektrisch leitende Kontaktflächen verfügen.The inventive method is used to produce superconducting coils or spirals from hollow bodies, which may contain different superconductor materials and may have different geometries, but especially for the production of high-temperature superconducting coils (HTSC coils) such as. based on bismuth-strontium-calcium-copper-oxide. The coils can be made of tubes or similar hollow or solid bodies and preferably have at their ends contact surfaces, which are preferably formed from silver sheets. However, these contacts can also have burnt-on metal contacts, sheet metal contacts based on metals other than silver or possibly no electrically conductive contact surfaces.

Supraleitende Körper der beschriebenen Art und Geometrie besitzen in der Regel einen elektrischen Gesamtwiderstand < 0,1 Ohm, gemessen bei Raumtemperatur, der vor Beginn der eigentlichen Arbeiten mittels einer 2-Punkt-Messung überprüft werden sollte. Da rohrförmige Körper, die aus oxidischen Supraleitermaterialien hergestellt wurden, überwiegend keramische Eigenschaften aufweisen, sind sie im Regelfall riß- und bruchanfällig, insbesondere bei einer weiterführenden mechanischen Bearbeitung. Aus diesem Grund ist es erforderlich, die supraleitenden oder bei weiterer thermischer Behandlung supraleitenden Körper, vorzugsweise BSCCO-Rohre, durch entsprechende Maßnahmen zumindest außen, ggbfs. auch innen zu stabilisieren. Je nach der Handhabung kann es bei nur außen stabillisierten Körpern dazu kommen, daß die fertige Spule mehr An- oder/und Mikrorisse aufweist, die die Stromtragfähigkeit absenken, als eine auch innen stabilisierte Spule. Daher kann es vorteilhaft sein, einen außen verstärkten Körper innen mit einer als Innenverstärkung wirkenden Halterung fest zu verbinden und den Schritt des Patentanspruches 4 beim Herstellen zu nutzen.Superconductive bodies of the type and geometry described generally have a total electrical resistance <0.1 ohms, measured at room temperature, which should be checked before starting the actual work by means of a 2-point measurement. Since tubular bodies made of oxide superconductor materials have predominantly ceramic properties, they are in the In general, susceptible to cracking and breakage, especially in the case of further mechanical processing. For this reason, it is necessary to stabilize the superconducting or, in the case of further thermal treatment, superconducting bodies, preferably BSCCO tubes, by appropriate measures at least externally, if necessary also internally. Depending on the handling, it may happen in externally stabilized bodies that the finished coil more and / or micro-cracks, which lower the current carrying capacity, as a stabilized inside coil. Therefore, it may be advantageous to internally connect an externally reinforced body with a holder acting as an internal reinforcement and to use the step of claim 4 in the manufacture.

Dazu wird vorzugsweise eine Außcnhtsbilisierung auf die Oberfläche des Supraleiterrohres aufgebracht vor dem Einbringen von Ein- oder Durchschnitten zur Erzeugung der Spulengänge. Diese Außenstabilisierung kann durch Umwicklung des Rohrkörpers mit geeigneten, selbstklebenden Bändern, mit klebstoffgetränkten, organischen bzw. anorganischen Geweben (z.B. Baumwollagen, Glasfasermatten, Hanfkordel), mit selbsthärtenden Ein- oder Mehrkomponenten-Klebstoffgemischen (z.B. Styrolharze, Epoxidharze), mit Verbundmateriallen auf Basis organischeroder/und anorganischer Kleber- und Gewebekomponenten (z.B. Textilgewebe und Gipsmasse), durch Einkleben des Supraleiterrohres in paßgenaue Metall-, Holz- oder Kunststoffrohre bzw. durch Umgießen der Außenhülle des Supraleiterrohres mit niedrigschmeizenden Metallen, Metallegierungen, Kunststoffen oder/und anorganischen Bindern (z.B. auf Basis Zinn, Wood'sche Legierung, Wachs, Polyethylen PE, Gips, Zement) hergestellt werden. Bei Anwendung anorganischer Bindersysteme muß allerdings beachtet werden, daß diese meistens in wässriger Lösung suspensiert sind, so daß vor deren Einsatz das feuchtigkeitsempfindliche Supraleitermaterial mit einer Lackschicht oder anderen wasserbeständigen Beschichtungen zu versiegeln ist.For this purpose, preferably an external image formation is applied to the surface of the superconductor tube before the introduction of indentations or averages for the production of the coil windings. This external stabilization can be achieved by wrapping the tubular body with suitable, self-adhesive tapes, with adhesive-impregnated, organic or inorganic fabrics (eg cotton sheets, glass fiber mats, hemp cord), with self-curing one- or multi-component adhesive mixtures (eg styrene resins, epoxy resins), with composite materials based on organic or inorganic / and inorganic adhesive and fabric components (eg textile fabric and gypsum compound), by gluing the superconductor tube in precisely fitting metal, wood or plastic pipes or by encapsulating the outer shell of the superconductor tube with low-melting metals, metal alloys, plastics and / or inorganic binders (eg Base tin, Wood's alloy, wax, polyethylene PE, gypsum, cement) are produced. When using inorganic binder systems, however, it must be noted that these are usually suspended in aqueous solution, so that the moisture-sensitive superconductor material is to be sealed with a lacquer layer or other water-resistant coatings prior to their use.

Nach dem Auftrag der Außenstiabillsierung auf die Oberfläche des Supralelterrohres kann eine Halterung eingepaßt werden, die hauptsächlich zum Einspannen des Supraleiterrohres in entsprechende Werkzeuge bzw. Werkzeugmaschinen (z.B. Schraubstock, Drehbank) dient. Sie wird vorzugsweise in einen zylinderförmigen Hohlraum eingepaßt. Das Einpassen einer Halterung empfiehlt sich insbesondere bei Rohrdurchmessern größer als etwa 30 bis 120 mm Außendurchmesser bzw. bei Rohrwandstärken kleiner als etwa 5 mm, ist aber sowohl von der Rohbruchfestigkeit des Materials, als auch den eingesetzten Kräften und der Geometrie abhängig. Da diese Halterung große Kräfte aufnehmen muß, insbesondere Scherkräfte, verursacht durch mechanische Bearbeitungsvorgänge, sollte sie zweckmäßigerweise aus einem dickwandigen metallischen Rohr, einer Vollmetallstange oder einem dicken metallischen Gewinderohr bestehen. Es können aber auch andere Materialien verwendet werden wie z.B. Holzstäbe, Vierkanthölzer, dickwandige Kunststoffrohre oder Vollstäbe aus Kunststoff. Alle Halterungen sollten bevorzugt, um ihre Aufgabe als Einspannhilfe erfüllen zu können, wenigstens 100 mm über die jeweiligen Enden des Supraleiterrohres hinausragen.After the order of Außenstiabillsierung on the surface of the Supralelterrohres a holder can be fitted, mainly for clamping the superconductor tube in corresponding tools or machine tools (eg Vise, lathe) is used. It is preferably fitted in a cylindrical cavity. The fitting of a holder is particularly recommended for pipe diameters greater than about 30 to 120 mm outer diameter or pipe wall thicknesses less than about 5 mm, but is dependent on the raw fracture strength of the material, as well as the forces and the geometry. Since this mount must absorb large forces, in particular shear forces caused by mechanical machining operations, it should expediently consist of a thick-walled metallic tube, a solid metal rod or a thick metallic threaded tube. But it can also be used other materials such as wood rods, square wood, thick-walled plastic pipes or solid rods made of plastic. All brackets should preferably, in order to fulfill their task as a clamping aid, at least 100 mm project beyond the respective ends of the superconductor tube.

Die Verbindung des supraleitenden Rohres mit der darin befindlichen Halterung kann beispielsweise wie folgt vorgenommen werden:

  1. a) durch das Ausfüllen des Zwischenraumes mit selbsthärtenden Ein- oder/und Mehrkomponentenklebstoffmischungen, mit niedrigschmelzenden Metallen oder/und Metallegierungen, mit Kunststoffen, Wachs oder/und - nach Lackpräparation oder ähnlicher Abdichtung - mit anorganischen Bindersystemen,
  2. b) durch Umwicklung der Halterung mit selbstklebenden Bändern oder/und Verbundsystemen aus organischen- bzw. anorganischen Geweben, vorzugsweise kombiniert mit selbsthärtenden organischen- oder anorganischen Klebern, solange bis ein paßgenauer Zylinder entstanden ist, auf den das supraleitende Rohrstück aufgeklebt werden kann,
  3. c) durch Aufschrauben eines mit einer Innenbohrung versehenen Zylinderabschnitts aus Holz, Metall, Legierung oder Kunststoff, das über die Halterung geschoben werden kann und paßgenau zum Innendurchmesser des supraleitenden Rohres gefertigt ist, so daß dieses dann darauf aufgeklebt werden kann,
  4. d) durch Einführen eines flexiblen Zylinderabschnitts, z.B. aus Weichschaumkunststoff oder Styropor, in den Raum zwischen der Halterung und der Innenwandung des supraleitenden Rohres, das dann z.B. mittels geeigneter Schraubvorrichtungen - wie z.B. einer metallischen Halterung ausgeführt als Gewindestange, mit einer kreisförmigen metallischen Platte mit einem Durchmesser, der kleiner ist als der Innendurchmesser des supraleitenden Rohres, und einer Mutter auf der Gewindestange zum Niederdrücken der kreisförmigen Metallplatte - paßgenau in den auszufüllenden Zwischenraum hineingedrückt werden kann.
The connection of the superconducting tube with the holder therein can be carried out, for example, as follows:
  1. a) by filling the intermediate space with self-curing single and / or multicomponent adhesive mixtures, with low-melting metals and / or metal alloys, with plastics, wax or / and - after paint preparation or similar sealing - with inorganic binder systems,
  2. b) by wrapping the holder with self-adhesive tapes and / or composite systems of organic or inorganic tissues, preferably combined with self-hardening organic or inorganic adhesives, until a true-fit cylinder is formed, to which the superconducting pipe section can be adhered,
  3. c) by screwing a provided with an inner bore cylinder portion of wood, metal, alloy or plastic, which can be slid over the holder and is made in register with the inner diameter of the superconducting tube, so that it can then be glued thereto,
  4. d) by introducing a flexible cylinder section, for example made of soft foam plastic or Styrofoam, in the space between the holder and the inner wall of the superconducting tube, which then eg by means of suitable Schraubvorrichtungen - such as a metallic support designed as a threaded rod, with a circular metallic plate having a diameter smaller than the inner diameter of the superconducting tube, and a nut on the threaded rod for depressing the circular metal plate - can be pressed in register in the space to be filled.

Wenn die Stabilisierungsmaßnahmen für das supraleitende Rohr abgeschlossen sind, kann auf der Außenverstärkung oder der Außenfläche des Formkörpers der vorgesehene Gewindeverlauf mit entsprechender Steigung aufgezeichnet werden. Danach kann entweder die sofortige Durchtrennung des supraleitenden Materials entlang des vorgegebenen Spiralverlaufs erfolgen z.B. mittels Sägens, Drehens oder Fräsens bzw. insbesondere im Fall geringer Wandstärken des supraleitenden Rohres nach Entfernen der entsprechenden Außenverstärkung im Bereich der Spiralkennzeichnung z.B. durch Auflösung des Supraleitermaterials in geeigneten Säuren bzw. Laugen oder - nach Verfüllung der Außenschnitte und Entfernens des Innenkerns - durch Abdrehen des supraleitenden Materials, bis die von außen aufgebrachte Füllmasse sichtbar wird.When the stabilization measures for the superconducting pipe have been completed, the provided thread pitch with a corresponding pitch can be recorded on the outer reinforcement or the outer surface of the molded body. Thereafter, either the immediate severing of the superconducting material along the predetermined spiral course can be done, e.g. by means of sawing, turning or milling or, in particular, in the case of small wall thicknesses of the superconducting tube after removal of the corresponding external reinforcement in the area of the spiral marking, e.g. by dissolution of the superconducting material in suitable acids or alkalis or - after filling the outer sections and removing the inner core - by turning the superconducting material until the externally applied filling material is visible.

Da das supraleitende Material riß- und bruchanfällig ist, empfiehlt es sich, die eingearbeiteten Schnitte vorzugsweise umgehend zur Stabilisierung der Spule zu verfüllen. Hierbei kann zusätzlich oder alternativ ein Auftrag z.B. eines der nachfolgenden Klebstoffsysteme auf den Außenflächen des Supraleitermaterials erfolgen. Sowohl die Verfüllung der Einschnitte/Durchschnitte, als auch der Auftrag auf den Außenflächen wird im folgenden als Außenverstärkung bezeichnet. Der Auftrag auf den Innenflächen des Hohlraumes wird als Innenverstärkung bezeichnet. Diese Verstärkungen erfolgen zweckmäßigerweise z.B. durch Verwendung von selbsthärtenden Ein- bzw. Mehrkomponentenklebstoffsystemen, die mit feinen Keramikpulvern wie z.B. Aluminiumnitrid, Siliciumnitrid, Aluminiumoxid oder/und Siliciumdioxid vermischt sein können. Es können aber auch Klebstoffsysteme auf rein organischer Basis verwendet werden wie z.B. Kleber vermischt mit Holzmehl oder feinen Baumwoll- bzw. Hanfschnüren, die in die Schnitte eingefügt bzw. eingelegt und dann verklebt werden. Alternativ können auch Klebstoffsysteme auf anorganischer Basis wie z.B. Gips- oder Zementmischungen verwendet werden, wiederum unter der Voraussetzung einer zuvor durchgeführten Lackimprägnierung oder Beschichtung wie z.B. aus Kunststoffschmelzen aus Polyethylen PE oder Polyvinylchlorid PVC.Since the superconducting material is susceptible to cracking and breakage, it is advisable to fill the incorporated cuts immediately to stabilize the coil. Here, additionally or alternatively, an application, for example of one of the following adhesive systems, can take place on the outer surfaces of the superconductor material. Both the filling of the cuts / averages, as well as the order on the outer surfaces is referred to in the following as external reinforcement. The order on the inner surfaces of the cavity is referred to as internal reinforcement. These reinforcements are expediently carried out, for example, by using self-curing single- or multi-component adhesive systems which may be mixed with fine ceramic powders such as, for example, aluminum nitride, silicon nitride, aluminum oxide or / and silicon dioxide. But it can also be used adhesive systems on a purely organic basis such as adhesives mixed with wood flour or fine cotton or hemp cords, which are inserted into the cuts or inserted and then glued. Alternatively, inorganic-based adhesive systems such as gypsum or cement mixtures may also be used, again under the precondition of previously performed lacquer impregnation or coating, such as plastic melts of polyethylene PE or polyvinyl chloride PVC.

Nach Abschluß der Herstellung der Außenverstärkung wird die im Inneren der rohrförmigen Spule befindliche Halterung entfernt und ggbfs. die Innenverstärkung. Ist eine indirekte Durchtrennung des Supraleitermaterials durch weiteres, innenseitiges Abdrehen vorgesehen, so entfällt die Verfüllung etwaiger, schon frei vorliegender Schnitte. Anderenfalls werden die Schnittspalten vorzugsweise, wie schon zuvor bei den Außenschnitten geschehen, mit entsprechenden Materialien ausgefüllt. Gegebenenfalls wird die Außenverstärkung, die über den Außendurchmesser der Spule hinausragt oder/und die Innenverstärkung, die über den Innendurchmesser der Spule hinausragt, teilweise oder gänzlich abgearbeitet. Die (restliche) Außen- oder/und Innenverstärkung kann gegebenenfalls auch beim Anwender entfernt werden.After completion of the production of the outer reinforcement, the holder located inside the tubular coil is removed and, if necessary, the inner reinforcement. Is an indirect separation of the superconductor material by further, inside turning provided so eliminates the backfilling of any, already available free cuts. Otherwise, the kerfs are preferably filled with appropriate materials, as has already been done for the outer cuts. Optionally, the outer reinforcement, which projects beyond the outer diameter of the coil and / or the inner reinforcement, which projects beyond the inner diameter of the coil, partially or completely processed. The (remaining) outer and / or inner reinforcement can optionally also be removed by the user.

Die Außenverstärkung kann die Spulengänge außerhalb der Einschnitte/Durchschnitte zwischen den Spulengängen oder/und direkt zwischen den Spulengängen verbinden, oder/und eine Innenverstärkung kann mechanisch verstärken. Die Verwendung einer Verstärkung, bei der die Zwischenräume zwischen den angrenzenden Spulengängen nicht verfüllt sind, ist für eine bessere Kühlung günstig. Umgekehrt ist es für die mechanische Stabilität günstig, gerade diese Zwischenräume zwischen den angrenzenden Spulengängen verfüllt zu haben, da Spulen im Wechselfeld in der Regel vibrieren und somit mechanisch belastet sind. Die Verfüllung dieser Zwischenräume muß jedoch im wesentlichen mit einem nichtleitenden Material erfolgen, um Wirbelströme nicht zu verstärken. Die fertige Spule muß jedoch zumindest in den Zwischenräumen, am Außendurchmesser oder am Innendurchmesser verstärkt sein.The outer reinforcement may connect the spools outside the cuts / averages between the spool flights and / or directly between the spool flights, or / and an inner reinforcement may strengthen mechanically. The use of a reinforcement in which the spaces between the adjacent coil turns are not filled, is favorable for a better cooling. Conversely, it is beneficial for the mechanical stability, just to have filled these spaces between the adjacent coil turns, since coils in the alternating field usually vibrate and thus are mechanically stressed. The backfilling of these interspaces, however, must be done essentially with a non-conductive material so as not to increase eddy currents. However, the finished coil must be reinforced at least in the intermediate spaces, the outer diameter or the inner diameter.

Zum Abschluß kann die Außenstabilisierung in Abhängigkeit von ihrer Art und den Erfordernissen von der Oberfläche der supraleitenden Spule bzw. Spirale entfernt werden - also an den Kontaktflächen für den elektrischen Anschluß - und kann daran anschließend nochmals der elektrische Gesamtwiderstandswert der Spule bei Raumtemperatur mittels einer 2-Punkt-Messung bestimmt werden, um sie auf ein Beeinträchtigung insbesondere durch Anrisse oder/und Risse zu prüfen. Gegebenenfalls empfiehlt sich aus Gründen der Stabilität danach ein erneutes Aufbringen einer Außenverstärkung, evtl. auf die metallisierten Kontaktbereiche.Finally, the external stabilization can be removed depending on its nature and the requirements of the surface of the superconducting coil or spiral - ie at the contact surfaces for the electrical connection - and then again the total electrical resistance value of the coil at room temperature by means of a 2- Point measurement can be determined to check for impairment in particular by cracks and / or cracks. Optionally, it is recommended for reasons of stability thereafter a re-applying an external reinforcement, possibly on the metallized contact areas.

Um Spulen mit mehreren möglichst konzentrisch angeordneten Wicklungen fertigen zu können, können Spulen mit entsprechend unterschiedlichen Durchmessern gewählt werden, deren Wicklungen in ausreichendem Abstand - mindestens 0,1 mm, vorzugsweise mindestens 0,3 mm - voneinander gehalten werden können, an ihren Enden fest und ohne Unterbrechung des supraleitenden Materials verbunden werden. Das kann beispielsweise nach einem Verfahren wie in EP-A-0 442 289 beschrieben erfolgen; diese Publikation gilt aufgrund ihres Zitats als vollständig in die Beschreibung einbezogen. Hierbei können nichtleitende oder metallische Verstärkungen, insbesondere im Bereich um die Fügestellen, von Vorteil sein, um die mechanische Stabilität zu erhöhen.To be able to produce coils with several windings arranged as concentrically as possible, coils with correspondingly different diameters can be selected, the windings of which can be held apart from one another at a distance of at least 0.1 mm, preferably at least 0.3 mm, at their ends be connected without interruption of the superconducting material. This can be done, for example, by a method as described in EP-A-0 442 289; This publication is considered to be fully included in the description because of its citation. In this case, non-conductive or metallic reinforcements, in particular in the area around the joints, may be advantageous in order to increase the mechanical stability.

Alternativ können mono-, bi- oder multifilare Spulen dadurch hergestellt werden, daß Einschnitte in einen Formkörper derart eingebracht werden, daß der resultierende Formkörper die Geometrie einer mono-, bi- oder multifilaren Spule aufweist. Die Einschnitte werden vorteilhaft entlang des vorgezeichneten Spiralverlaufs mittels mechanischer Trennvorgänge wie z.B. Sägen, Fräsen, Bohren, Drehen etc. eingebracht und anschließend mit einer der schon zuvor beschriebenen Klebstoffkombinationen ausgefüllt. Zur Herstellung der bi- bzw. multifilaren Spulengeometrie wird - nach Abschluß der oben beschriebenen Trennarbeiten - ein Spulenende mittels Sägen, Fräsen, Bohren, Drehen etc. bevorzugt so geteilt, daß - nach dem Einschneiden des gegenüberliegenden Spulenendes an weiteren Stellen - gegenläufige Spiralgänge entstehen.Alternatively, mono-, bi- or multifilament coils can be produced by inserting incisions in a shaped body in such a way that the resulting shaped body has the geometry of a mono-, bi- or multifilar coil. The incisions are advantageously introduced along the prescribed spiral course by means of mechanical separation processes such as sawing, milling, drilling, turning, etc. and then filled with one of the adhesive combinations already described above. To produce the bifilar or multifilar coil geometry is - after completion of the above-described separation - a coil end by sawing, milling, drilling, turning, etc. preferably divided so that - after cutting the opposite coil end at other locations - opposite spiral turns arise.

Das Einbringen von Einschnitten in einen Formkörper für bi- oder multifilare Spulen ist insoweit gegenüber dem Zusammenfügen von monofilaren oder z.B. in einem Sonderfall von zwei bifilaren Spulen von Vorteil, daß mögliche Qualitätseinbußen an der Fügestelle vermieden werden. Rechteckige Querschnitte der Spulengänge stören grundsätzlich nicht. Aus mechanischen Gründen ist es jedoch vorteilhaft, wenn die Kanten der Spulengänge gebrochen werden (Fasen oder Verrundungen). Wegen der magnetischen Eigenschaften sind runde, möglichst kreisrunde, oder annähernd oktagonale Querschnitte der Spulengänge zu bevorzugen, verursachen aber bei der Herstellung einen erheblichen Mehraufwand.The introduction of incisions into a shaped body for bi- or multifilament coils is so far compared to the assembly of monofilaren or e.g. in a special case of two bifilar coils advantage that possible loss of quality at the joint can be avoided. Rectangular cross sections of the spooling do not disturb in principle. For mechanical reasons, however, it is advantageous if the edges of the coil turns are broken (chamfers or rounding). Because of the magnetic properties are round, circular or circular as possible, or approximately octagonal cross sections of the coil paths to prefer, but cause a considerable additional effort in the production.

Aus einem einzigen Formkörper mechanisch herausgearbeitete bi- oder multifilare Spulen können gegenüber zusammengefügten monofilaren Spulen von Vorteil sein, wenn es beim Fügen nicht gelingt, die Fügestelle gegenüber dem umgebenden supraleitenden Material homogen und gleichartig zugestalten. Beispielsweise können nicht-hochtemperatursupraleitende Bereiche in der Fügestelle vermieden werden.From a single mold mechanically machined bi- or multifilament coils may be advantageous over assembled monofilament coils, if it fails to join, the joint against the surrounding superconducting material homogeneous and similar shape. For example, non-high temperature superconducting regions in the joint can be avoided.

Bifilare oder multifilare Spulen, die durch entsprechende Anordnung der Einschnitte in einem Formkörper oder durch Fügen von unterschiedlich großen Spulen hergestellt wurden, weisen hierbei den Vorteil auf, daß sich die magnetischen Eigenfelder der gegenüber liegenden Spulenabschnitte gegenseitig verringern bzw. aufheben können; hierdurch können Induktionen und Wechselstromverluste weiter verringert werden.Bifilar or multifilament coils, which were produced by appropriate arrangement of the incisions in a shaped body or by joining coils of different sizes, have the advantage that the magnetic self-fields of the opposing coil sections can mutually reduce or cancel each other; As a result, inductions and AC losses can be further reduced.

Dies gilt sowohl für bi- oder multifilare Spulen, bei denen mindestens eine "monofilare" Spule einen geringeren Innen- oder/und Außendurchmesser hat als mindestens eine andere "monofilare" hiermit zusammenhängende Spule und gilt insbesondere für solche bi- oder multifilare Spulen, bei denen mindestens eine Spule einen Außendurchmesser aufweist, der geringer ist als der Innendurchmesser von mindestens einer anderen hiermit zusammenhängenden Spule, als auch für solche bi- oder multifilaren Spulen, bei denen die Spulengänge mehrerer zusammenhängender Spulen den gleichen oder annähernd gleichen Innenoder/und Außendurchmesser aufweisen und bei denen sich die in Längsrichtung der Spule die Spulengänge der verschiedenen "monofilaren" Spulen regelmäßig abwechseln. Bei letztgenanntem Typ sind aus Fertigungsgründen gleiche Innen- und Außendurchmesser zu bevorzugen.This applies both to bi- or multifilament coils in which at least one "monofilament" coil has a smaller inside and / or outside diameter than at least one other "monofilamentary" coil associated therewith and applies in particular to those bi- or multifilament coils in which at least one coil has an outer diameter which is smaller than the inner diameter of at least one other associated therewith coil, as well as for such bi- or multifilar coils, in which the winding paths of several contiguous coils the same or approximately the same inner and / or Have outer diameter and in which alternate in the longitudinal direction of the coil, the coil turns of the various "monofilar" coils regularly. In the latter type, the same inner and outer diameters are preferred for production reasons.

Alle diese spiralförmigen Körper können als Spule oder auch in anderer Weise als supraleitende Spirale eingesetzt werden. Insbesondere kann eine erfindungsgemäße Spule als Halbzeug für die Herstellung von hochtemperatur-supraleitenden Transformatoren, Wicklungen, Magneten, Strombegrenzungen oder Stromzuführungen verwendet werden. Derartige Spulen können als Transformatorenspulen auf der Sekundärseite eines Transformators oder als strombegrenzende Spulen, auch in z.B. bifilarer Ausführung, als resistive Strombegrenzer eingesetzt werden. Sie können auch zur Verstärkung des Magnetfeldes eines äußeren Magneten, insbesondere im Zentrum der Spule, als Innenspulen eingesetzt werden, während die äußeren Abschnitte der Spule auch aus Drähten gewickelt sein können, weil das Magnetfeld, das sich durch supraleitende Drahtwicklungen im inneren Teil der Spule erzeugen läßt, ggbfs. nicht ausreichend stark ist.All of these spiral bodies can be used as a coil or otherwise as a superconducting spiral. In particular, a coil according to the invention can be used as a semi-finished product for the production of high-temperature superconducting transformers, windings, magnets, current limiting or power supply lines. Such coils may be used as transformer coils on the secondary side of a transformer or as current limiting coils, also in e.g. bifilar version, be used as a resistive current limiter. They can also be used to reinforce the magnetic field of an external magnet, in particular in the center of the coil, as internal coils, while the outer portions of the coil can also be wound from wires, because the magnetic field generated by superconducting wire windings in the inner part of the coil if necessary, is not sufficiently strong.

Für die Vermessung des Wechselstromverlustes können auch Spulen mit anderen Querschnitten als 5 x 5 mm verwerdet werden, da sich die Querschnitte entsprechend hierauf umrechnen lassen.For measuring the AC loss, it is also possible to use coils with cross sections other than 5 x 5 mm, since the cross sections can be converted accordingly.

Beispiele:Examples: Beispiel 1:Example 1:

Zur Herstellung der HTSL-Spule wurde ein hochtemperatursupraleitendes BSCCO-Rohr mit einem Innendurchmesser von 103 mm, einem Außendurchmesser von 113 mm und einer Länge von 100 mm eingesetzt. An den jeweiligen Enden des BSCCO-Rohres befanden sich Silberkontakte mit einer Höhe von 20 mm. Der elektrische Gesamtwiderstand des Rohres, bestimmt mittels einer 2-Punkt-Messung bei Raumtemperatur, betrug 0,1 Ohm. Nach dieser Widerstandsmessung wurde die Außenfläche des BSCCO-Rohres straff mit Isolierband des Typs TESA 4651 umwickelt. Dann erfolgte die Positionierung und Zentrierung der Metallhalterung im Innenteil des Rohres. Im Anschluß daran wurde der gesamte Rohrinnenraum mit einer Mischung aus Isocyanat und Polyether-Polyol ausgeschäumt. Nach einer Stunde erfolgte die Beseitigung des resultierenden, überstehenden Polyurethan-Hartschaummaterials. Anschließend wurde auf die äußere Isolierbandschicht ein Gewindeverlauf aufgezeichnet, dessen Steigung mit 7 mm festgelegt worden war. Dann erfolgte das Einspannen des HTSL-Rohraufbaus in einen Schraubstock. Im Anschluß daran wurde mittels einer Eisensäge, in der sich ein Sägeblatt vom Typ LUX-PROFI-400780 befand, entlang des vorgezeichneten Gewindeverlaufs, das BSCCO-Material des Rohres vollständig durchtrennt. Nach Abschluß der Sägearbeiten erfolgte die Reinigung der Sägeschnitte und deren Verfüllung mit einer Mischung aus Styroleinbettmasse vom Typ SCANDIPLAST 9101 und Aluminiumnitridpulver im Verhältnis 1:1. Nachdem diese Mischung ausgehärtet war, wurde zuerst die Metallstange aus dem Hartschaumkern herausgezogen und dann der Hartschaumkern selbst mittels eines Messers aus dem Innenraum der Rohrspule herausgeschnitten. Die nun innen teilweise noch freiliegenden Sägeschnitte wurden ebenfalls mit einer Mischung aus Polystyroleinbettmasse und Aluminiumnitridpulver 1 : 1 verfüllt. Nach dem Abbinden der Innensägeschnittverfüllung erfolgte die Entfernung des außen aufliegenden Isolierbandes und die erneute Messung des elektrischen Gesamtwiderstands bei Raumtemperatur. Dieser wies einen Endwert von 1,6 Ohm auf. Die kritische Stromdichte der Spule betrug bei 77 K 476 A/cm2.To produce the HTSC coil, a high temperature superconducting BSCCO tube having an inner diameter of 103 mm, an outer diameter of 113 mm and a length of 100 mm was used. At the respective ends of the BSCCO tube were silver contacts with a height of 20 mm. The total electrical resistance of the tube, as determined by a 2-point measurement at room temperature, was 0.1 ohms. After this resistance measurement, the The outer surface of the BSCCO pipe is tightly wrapped with TESA 4651 insulating tape. Then, the positioning and centering of the metal holder was carried out in the inner part of the tube. Subsequently, the entire tube interior was foamed with a mixture of isocyanate and polyether polyol. After one hour, the removal of the resulting, overhanging rigid polyurethane foam material took place. Subsequently, a thread trace whose inclination was set to 7 mm was recorded on the outer insulating tape layer. Then the clamping of the HTSC pipe structure was done in a vise. Following this, an iron saw holding a LUX-PROFI-400780 saw blade along the pre-marked threadline completely cut through the BSCCO material of the pipe. After completion of the sawing work, the saw cuts and their backfilling were cleaned with a mixture of SCANDIPLAST 9101 styrene embedding compound and aluminum nitride powder in a ratio of 1: 1. After this mixture was cured, first the metal rod was pulled out of the hard foam core and then the hard foam core itself cut out by means of a knife from the interior of the tube coil. The now partly still exposed saw cuts were also filled with a mixture of Polystyroleinbettmasse and aluminum nitride powder 1: 1. After setting the Innensägeschnittverfüllung the removal of the outside lying insulating tape and the new measurement of the total electrical resistance was carried out at room temperature. This had a final value of 1.6 ohms. The critical current density of the coil was 77 K 476 A / cm 2 .

Beispiel 2:Example 2:

Zur Herstellung der HTSL-Spule wurde wiederum ein BSCCO-Rohr mit der Spezifikation wie bei Beispiel 1 eingesetzt. Die Außenfläche des Rohres wurde nun mit einem 5 mm starken Mantel aus Glasfasergewebe und Epoxidharz versehen. Dann erfolgte das Anbringen der Metallhalterung, das Ausschäumen des Rohrinnenraumes, die Aufzeichnung des Gewindeverlaufs, das Einsägen des BSCCO-Materials und die Verfüllung der Sägeschnitte mit der Styroleinbettmasse-Aluminiumnitridpulver-Mischung, wie unter Beispiel 1 beschrieben. Nachdem die Füllmasse ausgehärtet war, wurde das HTSL-Spiral-probestück in eine Drehbank eingespannt und der Epoxid-Glasfaserverbundmantel sowie die überstehende, ausgehärtete Füllmasse abgedreht. Anschließend erfolgte die Entfernung der Metallhalterung und des Hartschaumkerns wie unter Beispiel 1 beschrieben. Die Messung des Endwiderstands ergab einen Wert von 1,8 Ohm.For the production of the HTSC coil, in turn, a BSCCO tube with the specification as in Example 1 was used. The outer surface of the tube has now been provided with a 5 mm thick jacket of glass fiber fabric and epoxy resin. Then, attaching the metal fixture, foaming the tube interior, recording the thread trace, sawing the BSCCO material and filling the saw cuts with the styrene embedding compound aluminum nitride powder mixture, as described in Example 1. After the filler had cured, the HTSC spiral test piece was clamped in a lathe and the epoxide glass fiber composite sheath and the supernatant, cured filling material turned off. Subsequently, the removal of the metal holder and the hard foam core was carried out as described in Example 1. The measurement of the terminal resistance gave a value of 1.8 ohms.

Beispiel 3:Example 3:

Erneut wurde zur Herstellung der HTSL-Spule ein BSCCO-Rohr eingesetzt wie unter Beispiel 1 beschrieben. Nach Messung des Gesamtwiderstandes und Aufbringen der Isolierbandwicklung wurde der Rohrinnenraum mit einer Lackschicht überzogen. Dann wurde die Metallhalterung positioniert und zentriert. Anschließend wurde der Rohrinnenraum mit einer Modellgipsmasse ausgegossen. Die weitere Verarbeitung erfolgte wie unter Beispiel 1 beschrieben. Die ausgehärtete Gipsmasse wurde mittels eines kleinen Stecheisens aus dem Spiralrohrinnenraum entfernt. Der gemessene Endwiderstandswert der Spule lag bei 1,6 Ohm. Die kritische Stromdichte der Spule betrug bei 77 K 548 A/cm2.Again, a BSCCO tube was used to make the HTS coil as described in Example 1. After measuring the total resistance and applying the Isolierbandwicklung the pipe interior was coated with a paint layer. Then the metal support was positioned and centered. Subsequently, the pipe interior was poured with a model plaster. Further processing was carried out as described in Example 1. The cured gypsum compound was removed from the interior of the spiral tube by means of a small piercing iron. The measured final resistance value of the coil was 1.6 ohms. The critical current density of the coil at 77 K was 548 A / cm 2 .

Beispiel 4:Example 4:

Für die Herstellung der HTSL-Spule wurde wiederum ein BSCCO-Rohr gemäß der Spezifikation, beschrieben unter Beispiel 1, verwendet. Dann erfolgte die Messung des Gesamtwiderstands und das Aufbringen der straff gespannten Isolierbandschicht auf die Außenfläche des BSCCO-Rohres. Anschließend wurde die Positionierung der Metallhalterung vorgenommen, die nun zusätzlich mit einem Gewinde ausgestattet war und einen Durchmesser von 30 mm besaß. Nun erfolgte das Einsetzen eines zylinderförmigen Kunststoffweichschaumkörpers in der Weise, daß der mit einer Innenöffnung versehene Zylinder durch selbige auf die Metallhalterung aufgesetzt und entlang dieser in den Innenraum des Rohres abgesenkt wurde. Der Durchmesser der Innenöffnung des Kunststoffzylinders war gleich dem Außendurchmesser der Metallhalterung, wohingegen der Außendurchmesser des Zylinders 2 mm größer war, als der Innendurchmesser des BSCCO-Rohres. Zudem war die Länge des Kunststoffweichschaumkörpers 10 mm größer, als die Länge des supraleitendes Rohres. Nach dem Einpassen des Kunststoffzylinders wurde eine Metallplatte (Materialstärke = 3 mm, Innenbohrung = 32 mm, Außendurchmesser = 100 mm) über die Metallhalterung auf die Stirnseite des Zylinders aufgelegt. Anschließend erfolgte das Zusammenpressen des Kunststoffweichschaumkörpers mittels einer Mutter, die durch das Gewinde der Metallhalterung geführt wurde, so daß sich eine Versteifung des BSCCO-Rohres von innen mittels dieses Vorgangs ergab. Dann wurde die Bearbeitung gemäß Beispiel 1 fortgeführt. Nachdem die Verfüllung der Sägeschnitte abgeschlossen war, erfolgte die Herausnahme des Weichschaumkunststoffkörpers aus dem Innenraum der Spule, so daß die unter Beispiel 1 beschriebenen Abschlußarbeiten vorgenommen werden konnten. Der Endwert des elektrischen Gesamtwiderstands betrug 1,9 Ohm.For the production of the HTSC coil, in turn, a BSCCO tube according to the specification described in Example 1 was used. Then, the measurement of the total resistance and the application of the tightly stretched insulating tape layer on the outer surface of the BSCCO pipe. Subsequently, the positioning of the metal support was made, which was now also equipped with a thread and had a diameter of 30 mm. Now, the insertion of a cylindrical plastic foam body took place in such a way that the cylinder provided with an inner opening was placed by selbige on the metal support and lowered along this into the interior of the tube. The diameter of the inner opening of the plastic cylinder was equal to the outer diameter of the metal holder, whereas the outer diameter of the cylinder was 2 mm larger than the inner diameter of the BSCCO tube. In addition, the length of the plastic foam body was 10 mm larger than the length of the superconducting tube. After fitting the plastic cylinder, a metal plate (material thickness = 3 mm, inner bore = 32 mm, outer diameter = 100 mm) was placed over the metal holder on the front side of the cylinder. Subsequently, the compression of the flexible plastic foam body was carried out by means of a nut which was guided by the thread of the metal support, so that a stiffening of the BSCCO tube resulted from the inside by means of this process. Then the processing according to Example 1 was continued. After the filling of the saw cuts was completed, the removal of the soft foam plastic body took place from the interior of the coil, so that the final work described in Example 1 could be made. The final value of the total electrical resistance was 1.9 ohms.

Beispiel 5:Example 5:

Erneut erfolgte der Einsatz eines BSCCO-Rohres gemäß der unter Beispiel 1 beschriebenen Spezifikation. Die Messung des Gesamtwiderstandes und die Verarbeitung wurden ebenfalls, wie unter Beispiel 1 aufgeführt, vorgenommen. Die Verfüllung der Sägeschnitte in diesem Beispiel erfolgte jedoch mit einer Mischung aus Styroleinbettmasse und Aluminiumoxidpulver im Verhältnis 1:1. Der Endwiderstand der HTSL-Spule betrug 1,8 Ohm.Again, the use of a BSCCO tube was carried out according to the specification described in Example 1. The measurement of the total resistance and the processing were also carried out as listed under Example 1. However, the backfilling of the saw cuts in this example was carried out with a mixture of styrene embedding compound and aluminum oxide powder in a ratio of 1: 1. The final resistance of the HTSC coil was 1.8 ohms.

Beispiel 6:Example 6:

Gemäß Beispiel 5, jedoch unter Verwendung einer Epoxidharz- Aluminiumnitrid-Pulvermischung im Verhältnis 1 : 1. Der Endwiderstandswert der HTSL-Spule betrug 1,7 Ohm.According to Example 5, but using an epoxy resin-aluminum nitride powder mixture in the ratio 1: 1. The final resistance value of the HTSC coil was 1.7 ohms.

Beispiel 7:Example 7:

Wie unter Beispiel 1 beschrieben, jedoch ohne Silberkontaktflächen an den Enden des BSCCO-Rohres. Endwiderstandswert der HTSL-Spule 1,9 Ohm.As described in Example 1, but without silver contact surfaces at the ends of the BSCCO tube. Final resistance of the HTSC coil 1.9 ohms.

Beispiel 8:Example 8:

Entsprechend Beispiel 1, aber unter Verwendung eines BSCCO-Rohres mit einem Innendurchmesser von 55 mm, einem Außendurchmesser von 70 mm und einer Länge von 200 mm. Die Höhe der Silberkontakte an den Enden des Rohres betrug 20 mm. Der Endwiderstandswert lag nach der Bearbeitung bei 1,1 Ohm.According to Example 1, but using a BSCCO tube with an inner diameter of 55 mm, an outer diameter of 70 mm and a length of 200 mm. The height of the silver contacts at the ends of the tube was 20 mm. The end resistance value after processing was 1.1 ohms.

Beispiel 9:Example 9:

Herstellung einer bifilaren Spule entsprechend der in Beispiel 1 beschriebenen Grundverfahrensweise und unter Verwendung eines BSCCO-Rohres mit einem Innendurchmesser von 55 mm, einem Außendurchmesser von 70 mm und einer Länge von 200 mm. Zur Schaffung eines gegenläufigen Spiralgangs wurde der einfach geschnittene Spiralgang mit Klebstoffmasse verfüllt und dann erneut mittels einer Säge in einen zweiten Spiralgang unterteilt. Durch entsprechende Einschnitte am gegenüberliegenden Ende der Spule wurden die notwendige Stromzuführungen hergestellt. Die Höhe der Silberkontakte an den jeweiligen Enden des Rohres betrug 20 mm, der Endwiderstandswert nach erfolgter Bearbeitung lag bei 1,7 Ohm.Preparation of a bifilar coil according to the basic procedure described in Example 1 and using a BSCCO tube with an inner diameter of 55 mm, an outer diameter of 70 mm and a length of 200 mm. To create an opposite spiral course, the simply cut spiral passage was filled with adhesive compound and then subdivided again by means of a saw into a second spiral passage. By appropriate cuts at the opposite end of the coil, the necessary power supplies were made. The height of the silver contacts at the respective ends of the tube was 20 mm, the final resistance after processing was 1.7 ohms.

Die kritische Stromdichte Jc der Spulen der oben aufgeführten Beispiele betrug bei 77 K mindestens 100 A/cm2, vorzugsweise mindestens 400 A/cm2 und besonders bevorzugt mindestens 500 A/cm2, bei 64 K mindestens 400 A/cm2 und bei 4 K mindestens 2000 A/cm2 bzw. vorzugsweise mindestens 5000 A/cm2.The critical current density J c of the coils of the examples listed above was at least 100 A / cm 2 at 77 K, preferably at least 400 A / cm 2 and particularly preferably at least 500 A / cm 2 , at 64 K at least 400 A / cm 2 and at 4 K at least 2000 A / cm 2 or preferably at least 5000 A / cm 2 .

Claims (33)

  1. A method for making a superconducting coil,
    characterized in that
    a) a molded body in a material which is superconducting or which becomes superconducting in a further heat treatment, insofar the molded body is not provided with a suitable cavity, is machined into a suitable hollow body,
    b) a reinforcement is provided, which is selected from an external reinforcement, with which the molded body or resulting hollow body is coated on the outside, a support acting as an internal reinforcement, to which the hollow body is securely attached, or a combination thereof,
    c) the hollow body after provision of the reinforcement is provided with through-cuts or sectional cuts in the form of the future coil geometry,
    d) the through-cuts or sectional cuts as a reinforcement are filled with a reinforcing material and/or a reinforcing material is applied on the outside on the molded body,
    e) in the case of through-cuts, the hollow body is machined off, inside, to the extent that the through-cuts become sectional cuts, and
    f) the reinforcement is totally or partially removed.
  2. The method according to claim 1,
    characterized in that
    the sectional cuts obtained after step f) are filled with a reinforcing material.
  3. The method according to claim 1 or 2,
    characterized in that
    the through-cuts or sectional cuts are filled from the outside with the reinforcing material.
  4. The method according to any of the preceding claims, characterized in that
    before the machining of the through-cuts, the support acting as an inner reinforcement is totally or partially removed.
  5. The method according to claim 4,
    characterized in that,
    the hollow body after machining of the through-cuts is coated in the inside with a reinforcement material.
  6. The method according to claim 5, characterized in that,
    the obtained sectional cuts are filled with a reinforcing material.
  7. The method according to any of the preceding claims,
    characterized in that,
    after completing the coil geometry, the reinforcement and/or the reinforcing material is totally or partially removed.
  8. The method according to claim 7, characterized in that,
    after completion of the coil geometry, the filling of the sectional cuts is achieved totally or partially.
  9. The method according to any of claims 1 to 8,
    characterized in that,
    the superconducting material contains one of the superconduction phases with a composition based on (Bi,Pb)-Ea-Cu-O, (Y,SE)-Ea-Cu-O or (Tl,Pb)-(Ea,Y)-Cu-O, wherein Ea stands for earth alkali elements.
  10. The method according claim 9,
    characterized in that,
    Ea stands for at least one earth alkali element selected from Ba, Ca and Sr.
  11. The method according to any of claims 1 to 10,
    characterized in that,
    the superconducting material in addition to the superconduction phase(s) has a content of one or several compounds, which only melt above 950°C and do not decompose under 950°C.
  12. The method according to claim 11,
    characterized in that,
    said at least one compound is selected from BaSO4, SrSO4 and (Ba,Sr)SO4.
  13. The method according to any of the preceding claims,
    characterized in that,
    the electric connection surfaces are free of any reinforcing material and are coated or covered with an electrically conducting metal material.
  14. The method according to any of claim 13,
    characterized in that,
    the electrically conducting metal material is a silver alloy.
  15. The method according to any of the preceding claims,
    characterized in that,
    a molded body is used, which is textured in the direction of the current flow in the coil.
  16. The method according to any of the preceding claims,
    characterized in that,
    a molded body is used, which was prepared according to a molten casting method.
  17. The method according 16,
    characterized in that,
    the molded body was prepared according to a spin casting method.
  18. The method according to any of the preceding claims,
    characterized in that,
    through-cuts in a molded body are incorporated so that the resulting molded body has the geometry of a monofilar, bifilar or multifilar coil.
  19. The method according to any of the preceding claims,
    characterized in that,
    at least two superconducting coils with different diameters are placed inside each other at a distance from each other and are fitted together as superconductors into a bifilar or multifilar coil.
  20. A superconducting coil which may be obtained in accordance with a method according to any of claims 1 to 19,
    characterized in that,
    the superconducting coil is at least partly provided with a reinforcement, wherein this reinforcement is selected from an external reinforcement, an internal reinforcement, a filling of the sectional cuts with a reinforcing material and a combination of the aforementioned.
  21. The superconducting coil according to claim 20,
    characterized in that,
    the coil consists of a superconducting material which is strongly textured and therefore oriented so that the platelet planes, which correspond to the plane of best superconductivity, are largely aligned in the direction of the coil extension, wherein the coil is elaborated from a superconducting massive part.
  22. The superconducting coil according to claim 20 or 21,
    characterized in that,
    the superconducting material contains at least one or the superconducting phases with a composition essentially based on (Bi,Pb)-Ea-Cu-O, (Y,SE)-Ea-Cu-O or (Tl,Pb)-(Ea,Y)-Cu-O, wherein Ea stands for earth alkali elements.
  23. The superconducting coil according to claim 22,
    characterized in that,
    at least one earth alkali element is selected from Ba, Ca and Sr.
  24. The superconducting coil according to any of claims 20 to 23,
    characterized in that,
    the superconducting material in addition to the superconducting phase(s) has a content of one or several compounds which only melt above 950°C and do not decompose below 950°C.
  25. The superconducting coil according to claim 24,
    characterized in that,
    the compound is selected from BaSO4, SrSO4 and (Ba,Sr)SO4.
  26. The superconducting coil according to any of claims 20 to 25,
    characterized in that,
    it is elaborated from a molded body produced in a molten casting method.
  27. The superconducting coil according to claim 26,
    characterized in that,
    the coil is elaborated from a molded body, which was obtained according to a spin casting method.
  28. The superconducting coil according to any of claims 20 to 27,
    characterized in that,
    its contact surfaces are coated with an electrically conducting metal material or covered with a sheet or a metal sheet of this material.
  29. The superconducting coil according to any of claims 20 to 28,
    characterized in that,
    it does not have any metal casing or cover over the whole surface.
  30. The superconducting coil according to any of claims 20 to 29,
    characterized in that,
    at least the middle area of the coils is free from any metal or electrically normally-conducting coating or covering of another kind.
  31. The superconducting coil according to any of claims 20 to 30,
    characterized in that,
    it has an external reinforcement of the coil passages, which reinforces the coil passages outside the through-cuts or/and between the coil passages.
  32. The superconducting coil according to claim 31,
    characterized in that,
    the external reinforcement contains an organic or inorganic adhesive system or a multi-component adhesive system, with a filler if need be, such as for example aluminum nitride, silicon nitride, aluminum oxide or/and silicon dioxide.
  33. The use of a superconducting coil according to any of claims 20 to 32, as a half-finished product for preparing high temperature superconducting transformers, windings, magnets, inner coils of magnets, current limiters or current feeds.
EP98949001A 1997-10-13 1998-10-01 Method for producing a coil from a high temperature superconductive material, and a high temperature superconductive coil with low alternating current loss Expired - Lifetime EP1023738B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1997144984 DE19744984A1 (en) 1997-10-13 1997-10-13 Low a.c. loss superconducting coil is produced from a hollow superconductor body
DE19744984 1997-10-13
DE19841636 1998-09-11
DE19841636 1998-09-11
PCT/EP1998/006262 WO1999022386A2 (en) 1997-10-13 1998-10-01 Method for producing a coil from a high temperature superconductive material, and a high temperature superconductive coil with low alternating current loss

Publications (2)

Publication Number Publication Date
EP1023738A2 EP1023738A2 (en) 2000-08-02
EP1023738B1 true EP1023738B1 (en) 2007-03-21

Family

ID=26040760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98949001A Expired - Lifetime EP1023738B1 (en) 1997-10-13 1998-10-01 Method for producing a coil from a high temperature superconductive material, and a high temperature superconductive coil with low alternating current loss

Country Status (6)

Country Link
US (1) US6646528B2 (en)
EP (1) EP1023738B1 (en)
JP (1) JP4362009B2 (en)
CA (1) CA2305500C (en)
DE (1) DE59813951D1 (en)
WO (1) WO1999022386A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125429B4 (en) * 2001-05-25 2004-06-17 Bruker Biospin Gmbh Superconducting high field magnetic coil with HTS coil section and manufacturing process
GB0209892D0 (en) * 2002-04-30 2002-06-05 Oxford Instr Superconductivity Imaging assembly
EP1408519B1 (en) * 2002-10-04 2007-12-05 Nexans Current supply for high temperature superconducting devices
EP1406272A1 (en) * 2002-10-04 2004-04-07 Nexans Current supply for superconducting devices
DE102004043988B3 (en) * 2004-09-11 2006-05-11 Bruker Biospin Gmbh Superconductive magnet coil arrangement
EP1681731A1 (en) * 2005-01-12 2006-07-19 Nexans Compact superconducting current limiting component in coil configuration with low inductance
DE102008011317A1 (en) 2008-02-27 2009-09-03 Nexans Superconducting component, has monofilament superconducting coil positioned in superconducting pipe, where superconducting pipe has superconducting characteristics in normal operation of monofilament superconducting coil
US7919435B2 (en) 2008-09-30 2011-04-05 Ut-Battelle, Llc Superconductor films with improved flux pinning and reduced AC losses
US8221909B2 (en) * 2009-12-29 2012-07-17 Ut-Battelle, Llc Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same
US8486864B2 (en) * 2009-12-29 2013-07-16 Ut-Battelle, Llc Method for producing microstructured templates and their use in providing pinning enhancements in superconducting films deposited thereon
EP2586586A1 (en) * 2011-10-24 2013-05-01 GE Energy Power Conversion Technology Ltd Coil support members
DE102014206506A1 (en) 2014-04-04 2015-10-08 Siemens Aktiengesellschaft Electric coil device with at least two partial coils and method for the production
DE102018205588A1 (en) * 2018-04-12 2019-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a coiled body
EP3961661B1 (en) 2020-08-31 2022-09-28 Bruker Switzerland AG Reinforcement of a superconducting magnet coil
US20220359118A1 (en) * 2021-05-07 2022-11-10 Applied Materials, Inc. High current ribbon inductor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250881A (en) * 1987-04-07 1988-10-18 Semiconductor Energy Lab Co Ltd Manufacture of superconductor
US5011823A (en) * 1987-06-12 1991-04-30 At&T Bell Laboratories Fabrication of oxide superconductors by melt growth method
FR2628256A1 (en) * 1988-03-07 1989-09-08 Comp Generale Electricite CONDUCTOR LIKE A COIL, IN SUPERCONDUCTING MATERIAL
DE3830092A1 (en) 1988-09-03 1990-03-15 Hoechst Ag METHOD FOR THE PRODUCTION OF A HIGH-TEMPERATURE SUPERCONDUCTOR AND MOLDED BODY THEREOF
US5356868A (en) * 1989-07-03 1994-10-18 Gte Laboratories Incorporated Highly oriented superconductor oxide ceramic platelets and process for the production thereof
US5021398A (en) * 1989-10-26 1991-06-04 Amp Incorporated Method of forming patterned oxide superconducting films
US5221661A (en) * 1990-01-17 1993-06-22 Rockwell International Corporation Method of depositing a superconducting Bi2 Sr2 CaCu2 O8
US5112801A (en) * 1990-01-24 1992-05-12 The United States Of America As Represented By The United States Department Of Energy Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials
US5057488A (en) * 1990-02-12 1991-10-15 General Electric Company Synthesis of Bi-Pb-Ca-Sr-Cu-O superconductive material
DE4019368A1 (en) 1990-06-18 1991-12-19 Hoechst Ag METHOD FOR THE PRODUCTION OF TUBULAR SHAPED PARTS FROM HIGH-TEMPERATURE-SUPRALEITER-MATERIAL AND A PLANT FOR ITS IMPLEMENTATION
US5453494A (en) * 1990-07-06 1995-09-26 Advanced Technology Materials, Inc. Metal complex source reagents for MOCVD
JPH0812820B2 (en) * 1992-04-02 1996-02-07 新日本製鐵株式会社 Superconducting magnet
US5531015A (en) * 1994-01-28 1996-07-02 American Superconductor Corporation Method of making superconducting wind-and-react coils

Also Published As

Publication number Publication date
JP2001521295A (en) 2001-11-06
US6646528B2 (en) 2003-11-11
CA2305500A1 (en) 1999-05-06
JP4362009B2 (en) 2009-11-11
US20020173429A1 (en) 2002-11-21
WO1999022386A3 (en) 1999-08-05
EP1023738A2 (en) 2000-08-02
WO1999022386A2 (en) 1999-05-06
CA2305500C (en) 2008-01-22
DE59813951D1 (en) 2007-05-03

Similar Documents

Publication Publication Date Title
EP1023738B1 (en) Method for producing a coil from a high temperature superconductive material, and a high temperature superconductive coil with low alternating current loss
DE69032253T2 (en) Oxide superconductor
DE3855717T2 (en) Superconducting wire and process for its manufacture
DE69405678T2 (en) Superconducting cable conductor
DE2654924C2 (en) Superconducting composite cable and process for its manufacture
DE69422746T2 (en) High-temperature superconducting cable conductor made of oxidic superconductor
DE3851070T2 (en) Process for producing an oxide connecting superconductor thread.
DE3853089T2 (en) Superconducting wire and process for its manufacture.
DE1640527B1 (en) SUPRAL CONDUCTOR ASSEMBLY
DE3851180T2 (en) Process for the production of oxide ceramic superconducting threads.
DE1932086C3 (en) Waveguide made of superconductor material and a metal that is normally electrically conductive at the operating temperature of the superconductor material
DE3883558T2 (en) Electricity and light conducting composite wire.
DE69008945T2 (en) Device for the application of superconductivity.
DE112007003312B4 (en) Method for connecting oxide superconducting tubes with a superconducting joint
DE102014211316A1 (en) Electrical coil device with at least two partial coils and manufacturing method thereto
DE68904784T2 (en) LADDER FOR A COIL MADE OF SUPRAL-CONDUCTING MATERIAL.
DE112006003792B4 (en) Method for producing high-temperature superconducting volume flow conductors with improved properties and superconducting volume flow conductors produced therefrom
EP0004009A1 (en) Superconductor structure and method of producing same
DE69315715T2 (en) Method of connecting 123 superconductor segments to form a superconducting article
DE3588223T2 (en) Method of making a superconducting compound in a mold
DE60127339T2 (en) Multifilament oxide superconducting wire and manufacturing method therefor, and twisted oxide superconducting wire and manufacturing method thereof
DE102014206506A1 (en) Electric coil device with at least two partial coils and method for the production
DE19744984A1 (en) Low a.c. loss superconducting coil is produced from a hollow superconductor body
DE10249550A1 (en) Superconducting cable conductor with SEBCO coated conductor elements
DE102014217250A1 (en) Superconducting coil device with switchable conductor section and method for switching

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000515

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB IT LI LU NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NEXANS SUPERCONDUCTORS GMBH

17Q First examination report despatched

Effective date: 20040524

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59813951

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070702

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CRONIN INTELLECTUAL PROPERTY

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071227

BERE Be: lapsed

Owner name: NEXANS SUPERCONDUCTORS G.M.B.H.

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111024

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141021

Year of fee payment: 17

Ref country code: FR

Payment date: 20141022

Year of fee payment: 17

Ref country code: DE

Payment date: 20141022

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141030

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59813951

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102