EP1022327B1 - Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel - Google Patents

Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel Download PDF

Info

Publication number
EP1022327B1
EP1022327B1 EP99870010A EP99870010A EP1022327B1 EP 1022327 B1 EP1022327 B1 EP 1022327B1 EP 99870010 A EP99870010 A EP 99870010A EP 99870010 A EP99870010 A EP 99870010A EP 1022327 B1 EP1022327 B1 EP 1022327B1
Authority
EP
European Patent Office
Prior art keywords
process according
alkyl
builder
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99870010A
Other languages
English (en)
French (fr)
Other versions
EP1022327A1 (de
Inventor
Valerio Del Duca (Nmn)
Andrea Esposito (Nmn)
Milena Leone (Nmn)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP99870010A priority Critical patent/EP1022327B1/de
Priority to ES99870010T priority patent/ES2262303T3/es
Priority to DE69930714T priority patent/DE69930714T2/de
Priority to AT99870010T priority patent/ATE322532T1/de
Priority to CO00002394A priority patent/CO5210979A1/es
Priority to PE2000000037A priority patent/PE20010022A1/es
Priority to US09/889,050 priority patent/US6528471B1/en
Priority to TR2001/02117T priority patent/TR200102117T2/xx
Priority to JP2000594893A priority patent/JP2002535446A/ja
Priority to CA002358864A priority patent/CA2358864A1/en
Priority to PCT/US2000/001385 priority patent/WO2000043484A1/en
Priority to BR0008180-9A priority patent/BR0008180A/pt
Priority to AU32112/00A priority patent/AU3211200A/en
Priority to ARP000100270A priority patent/AR016747A1/es
Publication of EP1022327A1 publication Critical patent/EP1022327A1/de
Application granted granted Critical
Publication of EP1022327B1 publication Critical patent/EP1022327B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3784(Co)polymerised monomers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions

Definitions

  • the present invention relates to a process of treating fabrics with liquid peroxygen bleach-containing compositions.
  • Said compositions are suitable for use as laundry additive in addition to a conventional detergent. More particularly, the compositions herein are suitable for use on various fabrics to provide stain removal and/or bleaching performance.
  • Bleach-containing compositions for bleaching fabrics are well known in the art.
  • Liquid peroxygen bleach-containing compositions have been extensively described in the art, especially in laundry applications as laundry detergents, laundry additives or laundry pretreaters.
  • peroxygen bleach-containing compositions as laundry additives to boost the removal of encrusted stains/soils and "problem" stains, such as grease, coffee, tea, grass, mud/day-containing soils, which are otherwise particularly difficult to remove by typical machine washing.
  • a laundry additive being a liquid composition comprising a peroxygen bleach, a builder and a co-builder as described herein.
  • compositions boost the stain removal performance of various types of stains including greasy stains and/or enzymatic stains when used as a laundry additive as compared to the stain removal performance delivered by the same compositions comprising a different or no builder system.
  • compositions as described herein also provide excellent bleaching performance.
  • compositions according to the present invention are able to perform in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted.
  • compositions of the present invention are suitable for bleaching any type of fabrics including natural fabrics (e.g., fabrics made of cotton, viscose, linen, silk and wool), synthetic fabrics such as those made of polymeric fibers of synthetic origin as well as those made of both natural and synthetic fibers.
  • natural fabrics e.g., fabrics made of cotton, viscose, linen, silk and wool
  • synthetic fabrics such as those made of polymeric fibers of synthetic origin as well as those made of both natural and synthetic fibers.
  • EP-A-0 686 691 and EP-A-0 844 302 disclose compositions comprising a peroxygen bleach and a citrate or citric acid suitable for use as laundry additives or fabric pretreaters. None of the cited documents discloses a process of bleaching fabrics with a composition comprising a peroxygen bleach, a builder and a modified polycarboxylate co-builder.
  • the present invention encompasses a process of treating fabrics which comprises the steps of forming an aqueous bath comprising water, a conventional laundry detergent dissolved or dispersed therein and a liquid composition comprising a peroxygen bleach, a builder and a modified polycarboxylate co-builder and subsequently contacting said fabrics with said aqueous bath, wherein said polycarboxylate co-builder is modified at least at one end with a phosphono group.
  • the present invention further encompasses the use of a builder and said modified polycarboxylate co-builder in a laundry additive comprising a peroxygen bleach to treat fabrics, whereby stain removal and/or bleaching benefits are provided.
  • the process of treating fabrics according to the present invention comprises the steps of forming an aqueous bath comprising water, a conventional laundry detergent dissolved or dispersed therein and a liquid composition comprising a peroxygen bleach, a builder and a modified polycarboxylate co-builder and subsequently contacting said fabrics with said aqueous bath.
  • the fabrics to be treated are contacted with a liquid composition, as defined herein.
  • a liquid composition as defined herein, is used in addition to a wash liquor formed by dissolution or dispersion of a conventional laundry detergent in water, i.e., the liquid composition is used as a so-called "laundry additive".
  • the dilution level of the liquid composition in an aqueous bath is typically up to 1:85, preferably up to 1:50 and more preferably 1:25 (composition:water).
  • the fabrics are then contacted with the aqueous bath comprising the liquid composition and the conventional laundry detergent. Preferably, the fabrics are finally rinsed.
  • the liquid composition is added to the aqueous bath in its neat form.
  • laundry detergent it is meant herein, a laundry detergent composition currently available on the market.
  • Said laundry detergent compositions may be formulated as powders or as liquids.
  • Suitable laundry detergent compositions are for example DASH futur®, DASH liquid® and products sold under the trade names ARIEL® or TIDE®.
  • the conventional laundry detergent as described herein comprises at least one surface active agent.
  • the contacting of the fabrics with the aqueous bath as described herein may be achieved by means of a washing machine or simply by hand.
  • treating it is meant herein, cleaning, as the composition according to the present invention provides excellent stain removal performance on a broad range of stains and soils and on various surfaces due mainly to the presence of a builder and a co-builder as defined herein, as well as bleaching, as the composition according to the present invention provides excellent bleach performance due mainly to the presence of the peroxygen bleach.
  • liquid compositions are added to the aqueous bath herein without undergoing any dilution, i.e., the liquid compositions herein are added as described herein.
  • compositions according to the present invention are liquid compositions as opposed to a solid or a gas.
  • liquid includes compositions in gel and paste form.
  • compositions of the present invention have a viscosity of 1 cps or greater, more preferably of from 10 to 5000 cps, and still more preferably of from 10 to 2500 cps at 20°C when measured with a CSL 2 100® Rheometer at 20°C with a 4 cm spindle (linear increment from 10 to 100 dyne/cm 2 in 2 minutes).
  • the liquid compositions according to the present invention preferably have a pH of up to 9, more preferably from 2 to 7, and most preferably from 2 to 6.
  • the compositions according to the present invention are formulated in the neutral to the acidic pH range, which contributes to the chemical stability of the compositions and to the stain removal performance of the compositions.
  • the pH of the compositions may be adjusted by an acidifying agent known to those skilled in the art or a mixture thereof. Examples of acidifying agents are inorganic acids such as sulphuric acid.
  • compositions according to the present invention comprise a peroxygen bleach or a mixture thereof. Indeed, the presence of a peroxygen bleach contributes to the excellent bleaching benefits of said compositions.
  • Suitable peroxygen bleaches to be used herein are selected from the group consisting of : hydrogen peroxide; water soluble sources of hydrogen peroxide; organic or inorganic peracids; hydroperoxides; diacyl peroxides; and mixtures thereof.
  • a hydrogen peroxide source refers to any compound that produces perhydroxyl ions on contact with water.
  • Suitable water-soluble sources of hydrogen peroxide for use herein include percarbonates, perborates, persilicates and mixtures thereof.
  • Suitable diacyl peroxides for use herein include aliphatic, aromatic and aliphatic-aromatic diacyl peroxides, and mixtures thereof.
  • Suitable aliphatic diacyl peroxides for use herein are dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide, or mixtures thereof.
  • a suitable aromatic diacyl peroxide for use herein is for example benzoyl peroxide.
  • a suitable aliphatic-aromatic diacyl peroxide for use herein is for example lauroyl benzoyl peroxide.
  • Such diacyl peroxides have the advantage of being particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • Suitable organic or inorganic peracids for use herein include : persulphates such as monopersulfate; peroxyacids such as diperoxydodecandioic acid (DPDA); magnesium perphthalic acid; perlauric acid; phthaloyl amidoperoxy caproic acid (PAP); perbenzoic and alkylperbenzoic acids; and mixtures thereof.
  • persulphates such as monopersulfate
  • peroxyacids such as diperoxydodecandioic acid (DPDA); magnesium perphthalic acid; perlauric acid; phthaloyl amidoperoxy caproic acid (PAP); perbenzoic and alkylperbenzoic acids; and mixtures thereof.
  • DPDA diperoxydodecandioic acid
  • PAP phthaloyl amidoperoxy caproic acid
  • perbenzoic and alkylperbenzoic acids and mixtures thereof.
  • Suitable hydroperoxides for use herein are tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpentyl-2-hydroperoxide, di-isopropylbenzene-monohydroperoxide, tert-amyl hydroperoxide and 2,5-dimethyl-hexane-2,5-dihydroperoxide and mixtures thereof.
  • Such hydroperoxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • Preferred peroxygen bleaches herein are selected from the group consisting of : hydrogen peroxide; water soluble sources of hydrogen peroxide; organic or inorganic peracids; hydroperoxides; and diacyl peroxides; and mixtures thereof. More preferred peroxygen bleaches herein are selected from the group consisting of hydrogen peroxide and diacyl peroxides and mixtures thereof. Even more preferred peroxygen bleaches herein are selected from the group consisting of hydrogen peroxide, aliphatic diacyl peroxides, aromatic diacyl peroxides and aliphatic-aromatic diacyl peroxides and mixtures thereof.
  • compositions herein may comprise from 0.01% to 20%, preferably from 0.3% to 15% and more preferably from 0.5% to 10% by weight of the total composition of said peroxygen bleach or a mixture thereof.
  • compositions herein comprise one or more builders.
  • Suitable builders are selected from the group consisting of : organic acids and salts thereof; polycarboxylates; and mixtures thereof.
  • said builders have a calcium chelating constant (pKCa) of at least 3.
  • pKCa calcium chelating constant
  • the value of a builder or a mixture thereof is measured using an 0.1M NH 4 Cl-NH 4 OH buffer (pH 10 at 25°C) and a 0.1% solution of said builder or mixture thereof with a standard calcium ion electrode.
  • builders are organic acids like citric acid, lactic acid, tartaric acid, oxalic acid, malic acid, monosuccinic acid, disuccinic acid, oxydisuccinic acid, carboxymethyl oxysuccinic acid, diglycolic acid, carboxymethyl tartronate, ditartronate and other organic acid or mixtures thereof.
  • Suitable salts of organic acids include alkaline, preferably sodium or potassium, alkaline earth metal, ammonium or alkanolamine salts.
  • Such organic acids and the salts thereof are commercially available from Jungbunzlaur, Haarman & Reimen, Sigma-Aldrich or Fluka.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt or "overbased". When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Useful polycarboxylates include homopolymers of acrylic acid and copolymers of acrylic acid and maleic acid.
  • polycarboxylate builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulfonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3.5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • polyacetic acids such as nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3.5-tricarboxylic acid, carboxymethyloxysuccinic acid, and
  • Suitable polycarboxylates are commercially available from Rohm & Haas under the trade name Norasol® or Acusol®.
  • Preferred builders herein are selected from the group consisting of : citric acid; tartaric acid; tartrate monosuccinate; tartrate disuccinate; lactic acid; oxalic acid; and malic acid; and mixtures thereof. Even more preferred builders herein are selected from the group consisting of : citric acid; tartaric acid; tartrate monosuccinate; tartrate disuccinate; and malic acid; and mixtures thereof. The most preferred builders herein are selected from the group consisting of : citric acid; tartaric acid; tartrate monosuccinate; and tartrate disuccinate; and mixtures thereof.
  • compositions herein may comprise up to 40%, preferably from 0.01% to 25%, more preferably from 0.1% to 15%, and most preferably from 0.5% to 10% by weight of the total composition of said builder.
  • compositions herein comprise a modified polycarboxylate co-builder.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • modified polycarboxylate it is meant herein that at least at one end of the polycarboxylate compound, i.e., the polycarboxylate chain, said compound is modified by a phosphono group.
  • Preferred modified polycarboxylate co-builders are polycarboxylates with phosphono end groups.
  • phosphono end group it is meant herein a phosphono functional group according to the formula : wherein each M is independently H or a cation, preferably both M are H.
  • Suitable polycarboxylates with phosphono end groups are copolymers of acrylic acid and maleic acid having a phosphono end group and homopolymers of acrylic acid having a phosphono end group.
  • a preferred modified polycarboxylate is a copolymer of acrylic acid and maleic acid with a phosphonic/phosphono end group according to the general formula : having an average molecular weight of from 1000 to 100000, preferably an average molecular weight of from 1000 to 20000, more preferably an average molecular weight of from 1000 to 10000, and most preferably an average molecular weight of from 1500 to 5000; wherein n is from 10 mol% to 90 mol%, preferably 80 mol% and m is from 10 mol% to 90 mol%, preferably 20 mol%.
  • an example of a suitable modified polycarboxylate is a copolymer of acrylic acid and maleic acid (80/20) with a phosphonic/phosphono end group according to the formula : wherein n is 80 mol% and m is 20 mol%; having an average molecular weight of 2000.
  • Such modified polycarboxylate are available from Rohm & Haas under the trade name Acusol 425®, Acusol 420® or Acusol 470®.
  • compositions herein may comprise up to 40%, preferably from 0.01% to 25%, more preferably from 0.1% to 15%, and most preferably from 0.5% to 5% by weight of the total composition of said modified polycarboxylate co-builder.
  • a significant co-operation has been observed between a builder and a modified polycarboxylate co-builder in a peroxygen bleach-containing composition when used as a laundry additive.
  • the co-operation results in improved stain removal performance on a variety of soils, from particulate to non-particulate soils from hydrophobic to hydrophilic soils on both hydrophilic and hydrophobic fabrics.
  • the present invention is based on the finding that compositions comprising a peroxygen bleach, a builder and a co-builder as described herein when used as a laundry additive, show an excellent stain removal performance on various types of stains including greasy stains (e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up) and enzymatic stains.
  • greasy stains e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up
  • the stain removal performance is improved, as compared to the stain removal performance delivered by the use of the same compositions as a laundry additive but without a builder system or comprising a different builder system.
  • the bleaching compositions as described herein also provide excellent bleaching performance.
  • the stain removal performance may be evaluated by the following test methods on various types of stains.
  • a suitable test method for evaluating the stain removal performance on a soiled fabric under through the wash conditions is the following:
  • a peroxygen bleach-containing composition according to the present invention is added neat into a standard washing machine in combination with a conventional laundry detergent (e.g., DASH futur® or DASH liquid®).
  • a stained fabric e.g., a fabric stained with a greasy stain or an enzymatic stain
  • After the treatment said fabric is compared to a similarly stained fabric treated as described above but with a peroxygen bleach-containing composition comprising no or another builder system as described herein.
  • a visual grading may be used to assign difference in panel units (psu) in a range from 0 to 4.
  • the bleaching performance may be evaluated as for the stain removal performance but the stains used are bleachable stains like coffee, tea and the like.
  • compositions herein may further comprise a variety of other optional ingredients such as chelating agents, surfactants, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, foam reducing systems, radical scavengers, catalysts, dye transfer agents, brighteners, perfumes, hydrotropes, solvents, pigments and dyes.
  • compositions of the present invention may further comprise a surfactant or a mixture thereof including nonionic surfactants, zwitterionic surfactants, anionic surfactants, cationic surfactants and/or amphoteric surfactants.
  • compositions according to the present invention comprise a nonionic surfactant or a zwitterionic betaine surfactant or a mixture thereof.
  • compositions according to the present invention comprise a sulphonated anionic surfactant. More preferably said composition further comprises a second surfactant selected from the group consisting of nonionic surfactants, amphoteric surfactants, zwitterionic surfactants and mixtures thereof.
  • compositions according to the present invention may comprise from 0.01% to 30%, preferably from 0.1% to 25 % and more preferably from 0.5% to 20% by weight of the total composition of a surfactant.
  • Suitable nonionic surfactants include alkoxylated nonionic surfactants.
  • Preferred alkoxylated nonionic surfactants herein are ethoxylated nonionic surfactants according to the formula RO-(C 2 H 4 O) n H, wherein R is a C 6 to C 22 alkyl chain or a C 6 to C 28 alkyl benzene chain, and wherein n is from 0 to 20, preferably from 1 to 15 and, more preferably from 2 to 15 and most preferably from 2 to 12.
  • the preferred R chains for use herein are the C 8 to C 22 alkyl chains.
  • Propoxylated nonionic surfactants and ethoxy/propoxylated ones may also be used herein instead of the ethoxylated nonionic surfactants as defined herein above or together with said surfactants
  • Preferred ethoxylated nonionic surfactants are according to the formula above and have an HLB (hydrophilic-lipophilic balance) below 16, preferably below 15, and more preferably below 14. Those ethoxylated nonionic surfactants have been found to provide good grease cutting properties.
  • Dobanol® 91-2.5 or Lutensol® TO3, or Lutensol® AO3, or Tergitol® 25L3, or Dobanol® 23-3, or Dobanol® 23-2, or Dobanol® 45-7, Dobanol® 91-8, or Dobanol® 91-10, or Dobanol® 91-12, or mixtures thereof.
  • Dobanol® surfactants are commercially available from SHELL.
  • Lutensol® surfactants are commercially available from BASF and these Tergitol® surfactants are commercially available from UNION CARBIDE.
  • Suitable chemical processes for preparing the alkoxylated nonionic surfactants for use herein include condensation of corresponding alcohols with alkylene oxide, in the desired proportions. Such processes are well known to the man skilled in the art and have been extensively described in the art.
  • compositions herein may desirably comprise one of those ethoxylated nonionic surfactants or a mixture of those ethoxylated nonionic surfactants having different HLBs (hydrophilic-lipophilic balance).
  • the compositions herein comprise an ethoxylated nonionic surfactant according to the above formula and having an HLB up to 10 (i.e., a so called hydrophobic ethoxylated nonionic surfactant), preferably below 10, more preferably below 9, and an ethoxylated nonionic surfactant according to the above formula and having an HLB above 10 to 16 (i.e., a so called hydrophilic ethoxylated nonionic surfactant), preferably from 11 to 14.
  • compositions of the present invention typically comprise from 0.01% to 15% by weight of the total composition of said hydrophobic ethoxylated nonionic surfactant, preferably from 0.5% to 10% and from 0.01% to 15% by weight of said hydrophilic ethoxylated nonionic surfactant, preferably from 0.5% to 10%.
  • Such mixtures of ethoxylated nonionic surfactants with different HLBs may be desired as they allow optimum grease cleaning removal performance on a broader range of greasy soils having different hydrophobic/hydrophilic characters.
  • Suitable nonionic surfactants to be used herein include polyhydroxy fatty acid amide surfactants, or mixtures thereof, according to the formula: R 2 - C(O) - N(R 1 ) - Z, wherein R 1 is H, or C 1- C 4 alkyl, C 1- C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R 2 is C 5- C 31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is C 1- C 4 alkyl, more preferably C 1 or C 2 alkyl and most preferably methyl
  • R 2 is a straight chain C 7- C 19 alkyl or alkenyl, preferably a straight chain C 9- C 18 alkyl or alkenyl, more preferably a straight chain C 11- C 18 alkyl or alkenyl, and most preferably a straight chain C 11- C 14 alkyl or alkenyl, or mixtures thereof.
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n-1 -CH 2 OH, -CH 2 -(CHOH) 2- (CHOR')(CHOH)-CH 2 OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly CH 2 -(CHOH) 4 -CH 2 OH.
  • R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 - C(O) - N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide and the like.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl and the like.
  • Suitable polyhydroxy fatty acid amide surfactants to be used herein may be commercially available under the trade name HOE® from Hoechst.
  • polyhydroxy fatty acid amide surfactants are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • compositions containing polyhydroxy fatty acid amides are disclosed for example in GB patent specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., US patent 2,965,576, issued December 20, 1960 to E.R. Wilson, US patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, US patent 1,985,424, issued December 25, 1934 to Piggott and WO92/06070, each of which is incorporated herein by reference.
  • Suitable zwitterionic betaine surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's.
  • the typical anionic hydrophilic groups are carboxylates and sulphonates, although other groups like sulfates, phosphonates, and the like can be used.
  • a generic formula for the zwitterionic betaine surfactant to be used herein is : R 1 -N + (R 2 )(R 3 )R 4 X - wherein R 1 is a hydrophobic group; R 2 is hydrogen, C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group; R 3 is C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group which can also be joined to R 2 to form ring structures with the N, or a C 1 -C 6 sulphonate group; R 4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group, which is a carboxylate or sulphonate group.
  • R 1 are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred R 1 is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons.
  • the hydrophobic group R 1 can also be an amido radical of the formula R a -C(O)-NH-(C(R b ) 2 ) m , wherein R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, R b is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R b ) 2 ) moiety.
  • Preferred R 2 is hydrogen, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 3 is C 1 -C 4 sulphonate group, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 4 is (CH 2 ) n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
  • betaine/sulphobetaine Some common examples of betaine/sulphobetaine are described in U.S. Pat. Nos. 2,082,275, 2,702,279 and 2,255,082.
  • alkyldimethyl betaines examples include coconut-dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl-N, N-dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
  • coconut dimethyl betaine is commercially available from Seppic under the trade name of Amonyl 265®.
  • Lauryl betaine is commercially available from Albright & Wilson under the trade name Empigen BB/L®.
  • amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C 10 -C 14 fatty acylamidopropylene(hydropropylene)sulfobetaine.
  • C 10 -C 14 fatty acylamidopropylene(hydropropylene)sulfobetaine is commercially available from Sherex Company under the trade name "Varion CAS® sulfobetaine".
  • betaine Lauryl-immino-dipropionate commercially available from Rhone-Poulenc under the trade name Mirataine H 2 C-HA®.
  • Suitable anionic surfactants to be used in the compositions herein include water-soluble salts or acids of the formula ROSO 3 M wherein R preferably is a C 10 -C 24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C 10 -C 20 alkyl component, more preferably a C 12 -C 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • R
  • Suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A) m SO 3 M wherein R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between 0.5 and 6, more preferably between 0.5 and 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulfate (C 12- C 18 E(1.0)SM), C 12 -C 18 alkyl polyethoxylate (2.25) sulfate (C 12- C 18 E(2.25)SM), C 12 -C 18 alkyl polyethoxylate (3.0) sulfate (C 12- C 18 E(3.0)SM), and C 12 -C 18 alkyl polyethoxylate (4.0) sulfate (C 12- C 18 E(4.0)SM), wherein M is conveniently selected from sodium and potassium.
  • Suitable anionic surfactants for use herein are sulphonated anionic surfactants.
  • Suitable sulphonated anionic surfactants for use herein include alkyl sulphonates, alkyl aryl sulphonates, naphthalene sulphonates, alkyl alkoxylated sulphonates, C 6 -C 20 alkyl alkoxylated linear or branched diphenyl oxide disulphonates, or mixtures thereof.
  • Suitable alkyl sulphonates for use herein include water-soluble salts or acids of the formula RSO 3 M wherein R is a C 6 -C 20 linear or branched, saturated or unsaturated alkyl group, preferably a C 8 -C 18 alkyl group and more preferably a C 14 -C 17 alkyl group, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • R is a C 6 -C 20 linear
  • Suitable alkyl aryl sulphonates for use herein include water-soluble salts or acids of the formula RSO 3 M wherein R is an aryl, preferably a benzyl, substituted by a C 6 -C 20 linear or branched saturated or unsaturated alkyl group, preferably a C 8 -C 18 alkyl group and more preferably a C 10 -C 16 alkyl group, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium and the like) or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, trieth
  • Particularly suitable linear alkyl sulphonates include C 14 -C 17 paraffin sulphonate like Hostapur® SAS commercially available from Hoechst.
  • An example of commercially available alkyl aryl sulphonate is Lauryl aryl sulphonate from Su.Ma..
  • Particularly preferred alkyl aryl sulphonates are alkyl benzene sulphonates commercially available under trade name Nansa® available from Albright&Wilson.
  • linear alkyl sulphonate it is meant herein a non-substituted alkyl sulphonate wherein the alkyl chain comprises from 6 to 20 carbon atoms, preferably from 8 to 18 carbon atoms, and more preferably from 14 to 17 carbon atoms, and wherein this alkyl chain is sulphonated at one terminus.
  • Suitable alkoxylated sulphonate surfactants for use herein are according to the formula R(A) m SO 3 M wherein R is an unsubstituted C 6 -C 20 alkyl, hydroxyalkyl or alkyl aryl group, having a linear or branched C 6 -C 20 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy or butoxy unit, m is greater than zero, typically between 0.5 and 6, more preferably between 0.5 and 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C 6 -C 20 alkyl, hydroxyalkyl or alkyl aryl group, having
  • Alkyl ethoxylated sulphonates, alkyl butoxylated sulphonates as well as alkyl propoxylated sulphonates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulphonate (C 12 -C 18 E(1.0) SO 3 M), C 12 -C 18 alkyl polyethoxylate (2.25) sulphonate (C 12 -C 18 E(2.25) SO 3 M), C 12 -C 18 alkyl polyethoxylate (3.0) sulphonate (C 12 -C 18 E(3.0) SO 3 M), and C 12 -C 18 alkyl polyethoxylate (4.0) sulphonate (C 12 -C 18 E(4.0) SO 3 M), wherein M is conveniently selected from sodium and potassium.
  • Particularly suitable alkoxylated sulphonates include alkyl aryl polyether sulphonate like Triton X-200® commercially available from Union Carbide.
  • Suitable C 6 -C 20 alkyl alkoxylated linear or branched diphenyl oxide disulphonate surfactants for use herein are according to the following formula: wherein R is a C 6 -C 20 linear or branched, saturated or unsaturated alkyl group, preferably a C 12 -C 18 alkyl group and more preferably a C 14 -C 16 alkyl group, and X+ is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium and the like).
  • R is a C 6 -C 20 linear or branched, saturated or unsaturated alkyl group, preferably a C 12 -C 18 alkyl group and more preferably a C 14 -C 16 alkyl group
  • X+ is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium and the like).
  • Particularly suitable C 6 -C 20 alkyl alkoxylated linear or branched diphenyl oxide disulphonate surfactants to be used herein are the C 12 branched di phenyl oxide disulphonic acid and C 16 linear di phenyl oxide disulphonate sodium salt respectively commercially available by DOW under the trade name Dowfax 2A1® and Dowfax 8390®.
  • anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulphonates such as C 14-16 methyl ester sulphonates; acyl glycerol sulphonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23.
  • acyl sarcosinate or mixtures thereof, in its acid and/or salt form preferably long chain acyl sarcosinates having the following formula: wherein M is hydrogen or a cationic moiety and wherein R is an alkyl group of from 11 to 15 carbon atoms, preferably of from 11 to 13 carbon atoms.
  • M are hydrogen and alkali metal salts, especially sodium and potassium.
  • Said acyl sarcosinate surfactants are derived from natural fatty acids and the amino-acid sarcosine (N-methyl glycine). They are suitable to be used as aqueous solution of their salt or in their acidic form as powder. Being derivatives of natural fatty acids, said acyl sarcosinates are rapidly and completely biodegradable and have good skin compatibility.
  • suitable long chain acyl sarcosinates to be used herein include C 12 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 11 carbon atoms) and C 14 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 13 carbon atoms).
  • C 12 acyl sarcosinate is commercially available, for example, as Hamposyl L-30® supplied by Hampshire.
  • C 14 acyl sarcosinate is commercially available, for example, as Hamposyl M-30® supplied by Hampshire.
  • Suitable amphoteric surfactants to be used herein include amine oxides having the following formula R 1 R 2 R 3 NO wherein each of R 1 , R 2 and R 3 is independently a saturated substituted or unsubstituted, linear or branched hydrocarbon chains of from 1 to 30 carbon atoms.
  • Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R 1 R 2 R 3 NO wherein R 1 is an hydrocarbon chain comprising from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R 2 and R 3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains comprising from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups.
  • R1 may be a saturated substituted or unsubstituted linear or branched hydrocarbon chain.
  • Suitable amine oxides for use herein are for instance natural blend C 8 -C 10 amine oxides as well as C 12 -C 16 amine oxides commercially available from Hoechst.
  • compositions of the present invention may comprise a chelating agent as a preferred optional ingredient.
  • Suitable chelating agents may be any of those known to those skilled in the art, such as the ones selected from the group comprising phosphonate chelating agents, amino carboxylate chelating agents, other carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
  • a chelating agent may be desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces.
  • the presence of chelating agents may also contribute to reduce the tensile strength loss of fabrics and/or color damage, especially in a laundry through the wash application. Indeed, the chelating agents inactivate the metal ions present on the surface of the fabrics and/or in the cleaning compositions (neat or diluted) that otherwise would contribute to the radical decomposition of the peroxygen bleach.
  • Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1-hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
  • the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
  • Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1-hydroxy diphosphonate (HEDP). Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®.
  • Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
  • Ethylenediamine N,N'- disuccinic acids especially the (S,S) isomer, have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
  • Ethylenediamine N,N'- disuccinic acid is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
  • Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri-acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa-acetates, ethanol-diglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
  • R 1 , R 2 , R 3 , and R 4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO 2 , -C(O)R', and-SO 2 R"; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R" is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R 5 , R 6 , R 7 , and R 8 are independently selected from the group consisting of -H and alkyl.
  • Particularly preferred chelating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1-hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
  • compositions according to the present invention may comprise up to 5%, preferably from 0.01% to 1.5% by weight and more preferably from 0.01% to 0.5% by weight of the total composition of a chelating agent.
  • compositions according to the present invention may further comprise a solvent or a mixture thereof.
  • Preferred solvents herein include hydrophobic solvents, hydrophilic solvents and mixtures hereof.
  • hydrophilic index molecular weight of hydrophilic part of the solvent total molecular weight of the solvent ⁇ 100
  • hydrophilic part of a given solvent it is meant herein all the groups O, CO, OH, of a given solvent.
  • molecular weight of the hydrophilic part of a solvent it is meant herein the total molecular weight of all the hydrophilic parts of a given solvent.
  • hydrophilic solvents to be used herein have a hydrophilic index of more than 18, preferably more than 25, and more preferably more than 30, and the hydrophobic solvents to the used herein have a hydrophilic index of less than 18, preferably less than 17 and more preferably 16 or less.
  • Suitable hydrophobic solvents to be used herein include paraffins, terpenes or terpene derivatives, as well as alkoxylated aliphatic or aromatic alcohols, aliphatic or aromatic alcohols, glycols or alkoxylated glycols, and mixtures thereof, all these solvents have a hydrophilic index of less than 18.
  • Suitable terpenes are mono-and bicyclic monoterpenes, especially those of the hydrocarbon class, which include the terpinenes, terpinolenes, limonenes and pinenes and mixtures thereof. Highly preferred materials of this type are d-limonene, dipentene, alpha-pinene and/or beta-pinene.
  • pinene is commercially available form SCM Glidco (Jacksonville) under the name Alpha Pinene P&F®.
  • Terpene derivatives such as alcohols, aldehydes, esters, and ketones which have a hydrophilic index of less than 18 can also be used herein.
  • Such materials are commercially available as, for example, the ⁇ and ⁇ isomers of terpineol and linalool.
  • paraffins hydrophilic index of 0
  • paraffins hydrophilic index of 0
  • octane octane
  • Octane is commercially available for example from BASF.
  • Suitable hydrophobic alkoxylated aliphatic or aromatic alcohols to be used herein are according to the formula R-(A) n -OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein A is an alkoxy group preferably an butoxy, propoxy and/or ethoxy group, and n is an integer of from 1 to 5, preferably 1 to 2.
  • Suitable hydrophobic aliphatic or aromatic alcohols to be used herein are according to the formula R-OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms.
  • Suitable hydrophobic glycols to be used herein are according to the formula HO-CR 1 R 2 -OH wherein R 1 and R 2 are independently H or a C 2 -C 10 saturated or unsaturated aliphatic hydrocarbon chain and/or cyclic hydrocarbon chain.
  • Suitable hydrophobic alkoxylated glycols to be used herein are according to the formula R-(A) n -R 1 -OH wherein R is H, OH, a linear saturated or unsaturated alkyl of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein R 1 is H or a linear saturated or unsaturated alkyl of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, and A is an alkoxy group preferably an ethoxy, methoxy, and/or propoxy group and n is from 1 to 5, preferably 1 to 2.
  • hydrophobic solvents to be used herein include d-limonene, dipentene, alpha-pinene, beta-pinene, octane, benzyl alcohol, or mixtures thereof.
  • Suitable hydrophilic solvents to be used herein include alkoxylated aliphatic or aromatic alcohols, aliphatic or aromatic alcohols, glycols or alkoxylated glycols, and mixtures thereof, all these solvents having a hydrophilic index of more than 18.
  • Suitable hydrophilic alkoxylated aliphatic or aromatic alcohols to be used herein are according to the formula R-(A) n -OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein A is an alkoxy group preferably a butoxy, propoxy and/or ethoxy group, and n is an integer of from 1 to 5, preferably 1 to 2.
  • Suitable hydrophilic aliphatic or aromatic alcohols to be used herein are according to the formula R-OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms.
  • Suitable hydrophilic glycols to be used herein are according to the formula HO-CR 1 R 2 -OH wherein R 1 and R 2 are independently H or a C 2 -C 10 saturated or unsaturated aliphatic hydrocarbon chain and/or cyclic hydrocarbon chain.
  • Suitable hydrophilic alkoxylated glycols to be used herein are according to the formula R-(A) n -R 1 -OH wherein R is H, OH, a linear saturated or unsaturated alkyl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein R 1 is H or a linear saturated or unsaturated alkyl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, and A is an alkoxy group preferably an ethoxy, methoxy, and/or propoxy group and n is from 1 to 5, preferably 1 to 2.
  • compositions according to the present invention may comprise up to 30%, preferably from 0.01% to 15%, more preferably from 0.1% to 10%, and most preferably from 0.5% to 5% by weight of the total composition of a solvent.
  • compositions herein comprise a mixture of a hydrophobic solvent and a hydrophilic solvent the weight ratio of said hydrophobic solvent to said hydrophilic is from 1:20 to 1:1, more preferably from 1:14to1:2.
  • Solvents when present, contribute to the excellent stain removal performance of the compositions used in a process as described herein.
  • compositions according to the present invention may further comprise a foam reducing agent or a mixture thereof.
  • foam reducing agents known to those skilled in the art are suitable for use herein.
  • a foam reducing system comprising a fatty acid together with a capped alkoxylated nonionic surfactant as defined herein after and/or silicone is used.
  • compositions herein may comprise from 1 ⁇ 10 -4 % to 10%, preferably from 1 ⁇ 10 -3 % to 5% and more preferably from 1 ⁇ 10 -2 % to 5% by weight of the total composition of a fatty acid.
  • compositions herein may comprise from 1 ⁇ 10 -3 % to 20%, preferably from 1 ⁇ 10 -2 % to 10% and more preferably from 5 ⁇ 10 -2 % to 5% by weight of the total composition of a capped alkoxylated nonionic surfactant as defined herein.
  • compositions herein may comprise from 1 ⁇ 10 -5 % to 5%, preferably from 1 ⁇ 10 -5 % to 1% and more preferably from 1 ⁇ 10 -4 % to 0.5% by weight of the total composition of a silicone.
  • Suitable fatty acids for use herein are the alkali salts of a C 8 -C 24 fatty acid.
  • Such alkali salts include the metal fully saturated salts like sodium, potassium and/or lithium salts as well as the ammonium and/or alkylammonium salts of fatty acids, preferably the sodium salt.
  • Preferred fatty acids for use herein contain from 8 to 22, preferably from 8 to 20 and more preferably from 8 to 18 carbon atoms.
  • Suitable fatty acids may be selected from caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and mixtures of fatty acids suitably hardened, derived from natural sources such as plant or animal esters (e.g., palm oil, coconut oil, soybean oil, castor oil, tallow, ground oil, whale and fish oils and/or babassu oil.
  • plant or animal esters e.g., palm oil, coconut oil, soybean oil, castor oil, tallow, ground oil, whale and fish oils and/or babassu oil.
  • coconut Fatty Acid is commercially available from UNICHEMA under the name PRIFAC 5900®.
  • Suitable capped alkoxylated nonionic surfactants for use herein are according to the formula: R 1 (O-CH 2 -CH 2 ) n -(OR 2 ) m -O-R 3 wherein R 1 is a C 8 -C 24 linear or branched alkyl or alkenyl group, aryl group, alkaryl group, preferably R 1 is a C 8 -C 18 alkyl or alkenyl group, more preferably a C 10 -C 15 alkyl or alkenyl group, even more preferably a C 10 -C 15 alkyl group; wherein R 2 is a C 1- C 10 linear or branched alkyl group, preferably a C 2 -C 10 linear or branched alkyl group, preferably a C 3 group; wherein R 3 is a C 1 -C 10 alkyl or alkenyl group, preferably a C 1 -C 5 alkyl group, more preferably methyl; and wherein n and
  • surfactants are commercially available from BASF under the trade name Plurafac®, from HOECHST under the trade name Genapol® or from ICI under the trade name Symperonic®.
  • Preferred capped nonionic alkoxylated surfactants of the above formula are those commercially available under the tradename Genapol® L 2.5 NR from Hoechst, and Plurafac® from BASF.
  • Suitable silicones for use herein include any silicone and silica-silicone mixtures. Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the silicone is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier. Alternatively, the silicone can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • silicone has become a generic term which encompasses a variety of relatively high-molecular-weight polymers containing siloxane units and hydrocarbyl groups of various types.
  • silicone compounds have been extensively described in the art, see for instance US 4 076 648, US 4 021 365, US 4 749 740, US 4 983 316, EP 150 872, EP 217 501 and EP 499 364.
  • the silicone compounds disclosed therein are suitable in the context of the present invention.
  • the silicone compounds can be described as siloxanes having the general structure : wherein n is from 20 to 2000, and where each R independently can be an alkyl or an aryl radical.
  • Preferred polydiorganosiloxanes are polydimethylsiloxanes having trimethylsilyl end blocking units and having a viscosity at 25°C of from 5 x 10 -5 m 2 /s to 0.1 m 2 /s, i.e., a value of n in the range 40 to 1500. These are preferred because of their ready availability and their relatively low cost.
  • a preferred type of silicone compounds useful in the compositions herein comprises a mixture of an alkylated siloxane of the type herein above disclosed and solid silica.
  • the solid silica can be a fumed silica, a precipitated silica or a silica made by the gel formation technique.
  • the silica particles can be rendered hydrophobic by treating them with diakylsilyl groups and/or trialkylsilane groups either bonded directly onto the silica or by means of silicone resin.
  • a preferred silicone compound comprises a hydrophobic silanated, most preferably trimethylsilanated silica having a particle size in the range from 10 mm to 20 mm and a specific surface area above 50 m 2 /g.
  • Silicone compounds employed in the compositions according to the present invention suitably have an amount of silica in the range of 1 to 30% (more preferably 2.0 to 15%) by weight of the total weight of the silicone compounds resulting in silicone compounds having an average viscosity in the range of from 2 x 10 -4 m 2 /s to 1m 2 /s.
  • Preferred silicone compounds may have a viscosity in the range of from 5 x 10 -3 m 2 /s to 0.1 m 2 /s.
  • Particularly suitable are silicone compounds with a viscosity of 2 x 10 -2 m 2 /s or 4.5 x 10 -2 m 2 /s.
  • Suitable silicone compounds for use herein are commercially available from various companies including Rhone Poulenc, Fueller and Dow Corning.
  • Examples of silicone compounds for use herein are Silicone DB® 100 and Silicone Emulsion 2-3597® both commercially available from Dow Corning.
  • silicone compound is disclosed in Bartollota et al. U.S. Patent 3 933 672.
  • Other particularly useful silicone compounds are the self-emulsifying silicone compounds, described in German Patent Application DTOS 2 646 126 published April 28, 1977.
  • An example of such a compound is DC-544®, commercially available from Dow Corning, which is a siloxane-glycol copolymer.
  • compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as Aerosil®.
  • compositions of the present invention may comprise a radical scavenger or a mixture thereof.
  • Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof.
  • radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert-butyl hydroquinone, tert-butyl-hydroxy anysole, benzoic acid, toluic acid, catechol, t-butyl catechol, benzylamine, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl-gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene.
  • Such radical scavengers like N-propyl-gallate may be commercially available from Nipa Laboratories under the trade name Nipanox S1®.
  • Radical scavengers when used are typically present herein in amounts ranging from up to 10% and preferably from 0.001% to 0.5% by weight of the total composition.
  • radical scavengers may contribute to reduce tensile strength loss of fabrics and/or color damage when the compositions of the present invention are used in laundry through the wash application.
  • compositions according to the present invention may further comprise an antioxidant or mixtures thereof.
  • compositions herein may comprise up to 10%, preferably from 0.002% to 5%, more preferably from 0.005% to 2%, and most preferably from 0.01% to 1% by weight of the total composition of an antioxidant.
  • Suitable antioxidants to be used herein include organic acids like citric acid, ascorbic acid, tartaric acid, adipic acid and sorbic acid, or amines like lecithin, or aminoacids like glutamine, methionine and cysteine, or esters like ascorbil palmitate, ascorbil stearate and triethylcitrate, or mixtures thereof.
  • Preferred antioxidants for use herein are citric acid, ascorbic acid, ascorbil palmitate, lecithin or mixtures thereof.
  • the compositions of the present invention may comprise a bleach activator or mixtures thereof.
  • bleach activator it is meant herein a compound which reacts with hydrogen peroxide to form a peracid.
  • the peracid thus formed constitutes the activated bleach.
  • Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides, or anhydrides. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231 and a method for their formation into a prilled, form is described in European Published Patent Application EP-A-62 523.
  • Suitable examples of such compounds to be used herein are tetracetyl ethylene diamine (TAED), sodium 3,5,5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n-nonanoyloxybenzenesulphonate (NOBS).
  • TAED tetracetyl ethylene diamine
  • NOBS n-nonanoyloxybenzenesulphonate
  • N-acyl caprolactams selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanoyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam or mixtures thereof.
  • a particular family of bleach activators of interest was disclosed in EP 624 154, and particularly preferred in that family is acetyl triethyl citrate (ATC).
  • Acetyl triethyl citrate has the advantage that it is environmental-friendly as it eventually degrades into citric acid and alcohol. Furthermore, acetyl triethyl citrate has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally, it provides good building capacity to the composition.
  • compositions according to the present invention may comprise from 0.01 % to 20%, preferably from 1% to 10%, and more preferably from 3% to 7% by weight of the total composition of said bleach activator.
  • compositions were made by mixing the listed ingredients in the listed proportions (weight % unless otherwise specified).
  • Compositions I II III IV V VI Vll VIII Dobanol® 23-3 1.0 2.0 1.0 2.0 2.0 1.0 2.0 1.0 Dobanol® 45-7 3.0 1.5 3.0 1.5 - 3.0 1.5 3.0
  • Acusol 425® 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Water and minors ----------------------------------------------------------------------
  • compositions are employed in a process according to the present invention wherein fabrics, preferably stained fabrics, are treated according to said process by forming an aqueous bath comprising water, a conventional laundry detergent, preferably selected from the group consisting of DASH futur® and DASH liquid®, dissolved or dispersed therein and said liquid compositions. ' .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (17)

  1. Verfahren zum Behandeln von Stoffen, das das Bilden eines wässrigen Bades, umfassend Wasser, ein herkömmliches Wäschewaschmittel, das darin aufgelöst oder dispergiert ist und eine flüssige Zusammensetzung, umfassend ein Peroxidbleichmittel, einen Builder und einen Cobuilder aus modifiziertem Polycarboxylat und das anschließende Inkontaktbringen der Stoffen mit dem wässrigen Bad umfasst, worin der Cobuilder aus modifiziertem Polycarboxylat mindestens an einem Ende mit einer Phosphonogruppe modifiziert ist.
  2. Verfahren nach Anspruch 1, worin der Builder ausgewählt ist aus der Gruppe, bestehend aus: Citronensäure; Weinsäure; Tartratmonosuccinat; Tartratdisuccinat; Milchsäure; Oxalsäure; und Äpfelsäure; und Mischungen davon.
  3. Verfahren nach einem der vorstehenden Ansprüche, worin die Zusammensetzung bis zu 40 Gew.-% der. Gesamtzusammensetzung den Builder umfasst.
  4. Verfahren nach einem der vorstehenden Ansprüche, worin der Cobuilder aus modifiziertem Polycarboxylat ein Polycarboxylat mit einer Phosphonoendgruppe ist.
  5. Verfahren nach einem der vorstehenden Ansprüche, worin die Zusammensetzung bis zu 40 Gew.-% der Gesamtzusammensetzung Cobuilder aus modifiziertem Polycarboxylat umfasst.
  6. Verfahren nach einem der vorstehenden Ansprüche, worin das Peroxidbleichmittel ausgewählt ist aus der Gruppe, bestehend aus: Wasserstoffperoxid; wasserlöslichen Wasserstoffperoxidquellen; organischen oder anorganischen Persäuren; Hydroperoxiden; und Diacylperoxiden; und Mischungen davon.
  7. Verfahren nach einem der vorstehenden Ansprüche, worin das Peroxidbleichmittel ausgewählt ist aus der Gruppe, bestehend aus Wasserstoffperoxid, Diacylperoxiden und Mischungen davon.
  8. Verfahren nach einem der vorstehenden Ansprüche, worin die Zusammensetzung von 0,01 Gew.-% bis 20 Gew.-% der Gesamtzusammensetzung das Peroxidbleichmittel umfasst.
  9. Verfahren nach einem der vorstehenden Ansprüche, worin die Zusammensetzung einen pH-Wert von bis zu 9 aufweist.
  10. Verfahren nach einem der vorstehenden Ansprüche, worin die Zusammensetzung ferner ein Säuerungsmittel oder eine Mischung davon umfasst.
  11. Verfahren nach einem der vorstehenden Ansprüche, worin die Zusammensetzung ferner ein Tensid oder eine Mischung davon umfasst.
  12. Verfahren nach Anspruch-11, worin das Tensid ein nichtionisches Tensid oder ein zwitterionisches Betaintensid oder eine Mischung davon ist.
  13. Verfahren nach Anspruch 11, worin das Tensid ein sulfoniertes anionisches Tensid ist.
  14. Verfahren nach Anspruch 13, worin die Zusammensetzung ferner ein zweites Tensid, ausgewählt aus der Gruppe, bestehend aus nichtionischen Tensiden, amphoteren Tensiden, zwitterionischen Tensiden und Mischungen davon umfasst.
  15. Verfahren nach einem der vorstehenden Ansprüche, worin das herkömmliche Wäschewaschmittel mindestens ein oberflächenaktives Mittel umfasst.
  16. Verfahren nach einem der vorstehenden Ansprüche, worin die Zusammensetzung ferner ein Lösungsmittel oder eine Mischung davon umfasst.
  17. Verwendung eines Builders und eines Cobuilders aus modifiziertem Polycarboxylat in einem Wäschewaschmittelzusatz, der ein Peroxidbleichmittel umfasst, zum Behandeln von Stoffen, wobei Fleckenentferaungs- und/oder Bleichvorteile bereitgestellt werden, worin der Cobuilder aus modifiziertem Polycarboxylat mindestens an einem Ende mit einer Phosphonogruppe modifiziert ist.
EP99870010A 1999-01-22 1999-01-22 Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel Expired - Lifetime EP1022327B1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP99870010A EP1022327B1 (de) 1999-01-22 1999-01-22 Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel
ES99870010T ES2262303T3 (es) 1999-01-22 1999-01-22 Procedimiento para tratar tejidos con un aditivo de lavado de ropa.
DE69930714T DE69930714T2 (de) 1999-01-22 1999-01-22 Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel
AT99870010T ATE322532T1 (de) 1999-01-22 1999-01-22 Verfahren zur behandlung von textilien mit einem wäschezusatzmittel
CO00002394A CO5210979A1 (es) 1999-01-22 2000-01-18 Proceso de tratar telas con un aditivo de lavar ropa
PE2000000037A PE20010022A1 (es) 1999-01-22 2000-01-19 Proceso de tratar telas con un aditivo de lavar ropa
TR2001/02117T TR200102117T2 (tr) 1999-01-22 2000-01-20 Çamaşırların bir çamaşır katkısı ile işlemden geçirilmesi için bir yöntem.
JP2000594893A JP2002535446A (ja) 1999-01-22 2000-01-20 洗濯洗剤添加剤による布地の処理方法
US09/889,050 US6528471B1 (en) 1999-01-22 2000-01-20 Process of treating fabrics with a laundry additive
CA002358864A CA2358864A1 (en) 1999-01-22 2000-01-20 Process of treating fabrics with a laundry additive
PCT/US2000/001385 WO2000043484A1 (en) 1999-01-22 2000-01-20 Process of treating fabrics with a laundry additive
BR0008180-9A BR0008180A (pt) 1999-01-22 2000-01-20 Processo de tratamento de tecidos com um aditivo para lavagem de roupas
AU32112/00A AU3211200A (en) 1999-01-22 2000-01-20 Process of treating fabrics with a laundry additive
ARP000100270A AR016747A1 (es) 1999-01-22 2000-01-21 Proceso para tratar telas con un aditivo de lavar ropa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP99870010A EP1022327B1 (de) 1999-01-22 1999-01-22 Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel

Publications (2)

Publication Number Publication Date
EP1022327A1 EP1022327A1 (de) 2000-07-26
EP1022327B1 true EP1022327B1 (de) 2006-04-05

Family

ID=8243792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99870010A Expired - Lifetime EP1022327B1 (de) 1999-01-22 1999-01-22 Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel

Country Status (13)

Country Link
EP (1) EP1022327B1 (de)
JP (1) JP2002535446A (de)
AR (1) AR016747A1 (de)
AT (1) ATE322532T1 (de)
AU (1) AU3211200A (de)
BR (1) BR0008180A (de)
CA (1) CA2358864A1 (de)
CO (1) CO5210979A1 (de)
DE (1) DE69930714T2 (de)
ES (1) ES2262303T3 (de)
PE (1) PE20010022A1 (de)
TR (1) TR200102117T2 (de)
WO (1) WO2000043484A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG173230A1 (en) * 2010-01-25 2011-08-29 Rohm & Haas Laundry detergent bar composition
JP2020180220A (ja) * 2019-04-25 2020-11-05 ライオン・スペシャリティ・ケミカルズ株式会社 原羽毛用洗浄剤及び原羽毛用洗浄液
FR3137107A1 (fr) 2022-06-28 2023-12-29 Capsum Composition de nettoyage solide comprenant au moins une cavité

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2258301B2 (de) * 1972-11-29 1980-07-17 Henkel Kgaa, 4000 Duesseldorf Wasch- und Waschhüfsmittel für Textilien
US5066749A (en) * 1990-09-11 1991-11-19 National Starch And Chemical Investment Holding Corporation Hydrophobically-modified polycarboxylates and process for their preparation
ES2194092T3 (es) * 1996-11-22 2003-11-16 Procter & Gamble Composiciones de lavado blanqueantes.
SE9604413D0 (sv) * 1996-11-29 1996-11-29 Eka Chemicals Ab Chemical composition

Also Published As

Publication number Publication date
WO2000043484A1 (en) 2000-07-27
DE69930714T2 (de) 2007-03-15
ES2262303T3 (es) 2006-11-16
DE69930714D1 (de) 2006-05-18
CA2358864A1 (en) 2000-07-27
TR200102117T2 (tr) 2001-12-21
JP2002535446A (ja) 2002-10-22
ATE322532T1 (de) 2006-04-15
EP1022327A1 (de) 2000-07-26
BR0008180A (pt) 2001-11-06
AR016747A1 (es) 2001-07-25
AU3211200A (en) 2000-08-07
PE20010022A1 (es) 2001-02-14
CO5210979A1 (es) 2002-10-30

Similar Documents

Publication Publication Date Title
US6482786B1 (en) Liquid bleaching compositions comprising hydrogen peroxide, betaine, and ethoxylated nonionic surfactant
EP0908511B1 (de) Flüssige Mehrzweckreinigungszusammensetzungen mit wirksamer Schaumkontrolle
US20030154556A1 (en) Bleaching composition comprising a dye maintenance agent
US6528471B1 (en) Process of treating fabrics with a laundry additive
EP1001011B1 (de) Bleichmittelzusammensetzung enthaltende Alkoxyliertenbenzoesäure
US6475970B1 (en) Bleaching composition comprising an alkoxylated benzoic acid
US6448214B1 (en) Liquid aqueous bleaching compositions
EP0908512A2 (de) Flüssige, wässrige Bleichmittelzusammensetzungen
US6495501B1 (en) Laundry bleaching compositions
EP1022327B1 (de) Verfahren zur Behandlung von Textilien mit einem Wäschezusatzmittel
US6620774B1 (en) Bleaching composition comprising substantially linear nonionic surfactants
EP1291410B1 (de) Bleichmittel enthaltend ein Farbstofferhaltungsmittel
EP1024188B1 (de) Bleichmittelzusammensetzung enthaltend im wesentlichen lineare nichtionische Tenside
US6586382B1 (en) Process of bleaching fabrics
WO2000023554A1 (en) Process of bleaching fabrics
EP0916721B1 (de) Bleichmittelzusammensetzungen für Wäsche
EP1001008A1 (de) Flüssige wässerige Bleichmittelzusammensetzungen mit einem sulfonierten anionischen Tensid
EP0908510A1 (de) Bleichmittelzusammensetzung mit verbesserter Sicherheit für Gewebe und Farben
EP1427802A1 (de) Hergestellter artikel
MXPA01007414A (es) Procedimiento para tratar telas con un aditivo de lavanderia
MXPA01007531A (en) Bleaching composition comprising substantially linear nonionic surfactants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001220

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20030403

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69930714

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060401201

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060905

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2262303

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071212

Year of fee payment: 10

Ref country code: ES

Payment date: 20080123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080118

Year of fee payment: 10

Ref country code: DE

Payment date: 20080131

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080107

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20080116

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090122