EP1022078B1 - Process and apparatus for preparing metal powder by gas atomisation - Google Patents

Process and apparatus for preparing metal powder by gas atomisation Download PDF

Info

Publication number
EP1022078B1
EP1022078B1 EP20000890013 EP00890013A EP1022078B1 EP 1022078 B1 EP1022078 B1 EP 1022078B1 EP 20000890013 EP20000890013 EP 20000890013 EP 00890013 A EP00890013 A EP 00890013A EP 1022078 B1 EP1022078 B1 EP 1022078B1
Authority
EP
European Patent Office
Prior art keywords
melt
gas
flow
gas jet
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000890013
Other languages
German (de)
French (fr)
Other versions
EP1022078A3 (en
EP1022078A2 (en
Inventor
Claes Tornberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Publication of EP1022078A2 publication Critical patent/EP1022078A2/en
Publication of EP1022078A3 publication Critical patent/EP1022078A3/en
Application granted granted Critical
Publication of EP1022078B1 publication Critical patent/EP1022078B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Definitions

  • the invention relates to a method for producing metal powder from similar melts, one from a nozzle body of a metallurgical Vessel emerging melt stream in a atomization chamber Gas jets split into droplets and these into essentially spherical Powder grains are allowed to solidify.
  • the invention further comprises an apparatus for producing metal powder similar melts consisting essentially of a spray chamber, into which from a metallurgical vessel by means of a melt nozzle body a molten metal stream can be introduced or entered, one in this chamber Disintegration unit arranged on the entry side, with gas nozzles for Actuation of the melt stream by gas jets to break it up Droplets, a solidification space provided on the discharge side for cooling the Droplets and formation of powder grains, as well as subordinate Powder processing facilities.
  • a spray chamber into which from a metallurgical vessel by means of a melt nozzle body a molten metal stream can be introduced or entered, one in this chamber Disintegration unit arranged on the entry side, with gas nozzles for Actuation of the melt stream by gas jets to break it up Droplets, a solidification space provided on the discharge side for cooling the Droplets and formation of powder grains, as well as subordinate Powder processing facilities.
  • Gas atomized metal powders are used in materials and surface technology Due to the increasing quality requirements for the products in increasing Dimensions used.
  • the type of use determines an advantageous one Powder grain size and a similar grain size distribution, that is the respective one Proportion of powder grains with a certain diameter in one Diameter range.
  • a use of a so-called Mono-grain powder is technically inexpensive and economical.
  • Powder advantageously have a high bulk density and thus a corresponding Have grain size distribution.
  • Gas-atomized metal powder is essentially produced in such a way that a liquid metal stream with gas, preferably inert gas or inert gas, which has a high flow velocity or kinetic energy, is applied.
  • gas preferably inert gas or inert gas, which has a high flow velocity or kinetic energy
  • the application of gas causes the metal flow to split into fine droplets, which subsequently solidify into grains.
  • the temperature, viscosity and surface tension of the liquid Metal is in particular the acceleration of the melt by the gas jet or are the forces involved (powder production and spray forming, Advances in Powder Metallurgy & Particulate Materials- 1992, Volume 1, Metal Powder Industries Federation, Princeton, N.J., Page 137-150, Particle size prediction in an atomization system; Claes Tomberg) for the size and the Size distribution of the powder grains formed is decisive.
  • Gas atomization processes for metal melts are known, in which the Liquid metal immediately after it emerges from the nozzle body of the metallurgical vessel with one or more gas jets from directly on Outlet arranged nozzles is divided. Because the gas is on the one hand at the outlet has a high speed, on the other hand the high temperature effect because it expands rapidly and loses its effect towards the center of the beam an extremely wide metal powder fraction with coarse and fine fractions.
  • a device for metal powder production is known from SE-AS-421758 become, in which the melt flow in the Atomization chamber two gas jets are used. There is a Actuation of the free-flowing melt stream by a first one Gas jet with an angle of approx. 20 °, which leads to a breakup and Deflecting the stream leads, after which this is vertical from a second gas jet is broken into metal droplets with high intensity. With this procedure is Although metal droplets adhered to the gas nozzle parts, the large distance of the second nozzle from the point of division of the melt, however, causes a broad grain size distribution with small amounts of fine powder.
  • a method of applying a vertical metal flow through a horizontal gas jet has been proposed in accordance with US 4,282,903, wherein a advantageously small nozzle spacing is used.
  • An auxiliary gas jet is thereby attached to the nozzle body by metal droplets in the nozzle area, directed obliquely to the cutting site.
  • the compact melt stream is almost exclusively divided by means of the horizontally directed main gas jet, so that the spreading on fine-grained powder is low.
  • the invention seeks to remedy this and aims to Manufacturing process for metal powder from melts to specify with which high fines content and avoidance of unfavorable coarse particles desired broad particle size distribution of the powder is economically achievable. Furthermore, it is an object of the invention to provide a device with which conveniently metal powder in a fraction or with a grain size distribution Can be produced with which this, for example a high bulk density showing, possibly by hot isostatic pressing (HIPen) particularly high quality products can be processed.
  • HIPen hot isostatic pressing
  • This goal can be achieved in a generic method in that the emerging essentially vertically from the melt nozzle body Melt flow through at least three successive gas jets different directions are at least partially applied,
  • the task is solved in that the disintegration unit at least three gas nozzle body has, the gas jets in an effective sequence in each case on the introduced Melt flow and on the by the upstream gas jet into one Directed and shaped melt flow with an angle between 5 ° and 170 ° can be aligned.
  • the particle size is approximately equal to the value the square root of a constant broken by the acceleration.
  • the from Melt nozzle body emerging melt stream by means of at least one deflected and spread the first gas jet in its flow direction or is thinned and / or cut, followed by at least one, the same Directional component, obliquely incident second gas jet spread and / or split flat melt stream prepared in its form and a suction barrier for the nozzle (s) of at least one downstream third Gas jet builds up, which third gas jet obliquely to partially directed to the processed flat melt stream as a high-speed gas jet is formed and a Feinaufieilu or atomization of the liquid jet to Droplets accomplished which metal droplets subsequently solidified become.
  • the compact melt flow can have a largely flat shape on the impact side
  • Metal flow can be created, the flow velocity and the Angle of flow of the gas jet from the thickness and from the stability or from the Length of the free-flowing melt stream and the desired thinning or Depend on spread.
  • the inflow side one for one is often created Ultimate division of the flat current with unfavorable surface shape loose metal particles. According to the invention, this is an unfavorable one Surface shape side of the flat current by means of a downstream second, obliquely incident gas jet and thus the stream set up for effective splitting into metal droplets.
  • This gas jet can also be built up with a suction barrier, which is another advantage no liquid particles can get to the last effective lavate nozzle body, so that the operational safety of the device is not impaired in this regard. It it is also important that the high speed beam is directed obliquely onto the Flat melt flow is directed because this has a large force effect in With regard to a fine division into metal droplets. The bigger the slope to the flat current, up to the partial counter-direction of the gas jet enough, is formed, the higher the acceleration of the metal and ultimately be the fine grain portion of the metal powder.
  • melt flow with a diameter of 2.0 mm to 15.0 mm by at least a first gas jet in its flow direction by one Angle ⁇ between 5 ° and 85 ° m, preferably between 15 ° and 30 °, deflected and is spread substantially in a sector shape to form a melt flat stream.
  • Angle ⁇ between 5 ° and 85 ° m, preferably between 15 ° and 30 °
  • a particularly efficient one Flat current formation of the liquid metal is deflected at an angle between 15 ° and 30 ° reached, with deflections greater than 45 ° a disadvantageous disassembly of the Can cause electricity through the gas jet.
  • the sector-shaped Melt flat flow after reaching one caused by the first gas jet Width of at least 5 times, preferably at least 10 times, the free-falling Melt flow width or thickness by at least a third gas jet the is designed as a high-speed gas jet, with an angle ⁇ between 25 ° and 150 °, preferably between 60 ° and 90 °, deflected and into one Stream of droplets is atomized or broken up. If the melt flow is less than Spread 5 times the original melt flow thickness is its compactness large and the amount of fine powder that can be produced is comparatively low.
  • a spread of greater than 10 times the melt flow diameter produces particularly good Prerequisites for a breakdown into droplets with a high fine fraction, especially if the high-speed gas jet causing this also deflects the melt flow at an angle between 60 ° and 90 °.
  • larger Deflection angles up to 150 ° increase the fine grain fraction and cause a tendency to Monokom Struktur.
  • the first gas nozzle body is in an advantageous embodiment of the invention arranged such that the first gas jet formed by it is the same Having directional component, with the angle ⁇ 'between 5 ° and 85 °, preferably with an angle ⁇ between 15 ° and 30 ° on the melt stream is directed and that the length of the free-falling melt stream is equal to that Length: Distance of the gas nozzle from the point of impact of the gas jet on the Melt flow, increased or decreased by a value that at most is 10 times the diameter of the melt flow.
  • the second nozzle body is arranged in this way is that the second gas jet in the sequence of action on the by the upstream first gas jet spread and thinned flat melt stream with the same Flow direction component with an angle ⁇ between 5 ° and 85 °, is preferably directed at an angle ⁇ between 15 ° and 30 ° and that the Impact point of this second gas jet in the area of or before the deflection, Impact or atomization point of the downstream third gas jet lies.
  • the Angle between the second gas jet and the flat melt stream and its The point of impact on the melt stream is of double importance.
  • the third nozzle body is arranged such that a high-speed gas jet third or in the sequence of action last gas jet with an angle ⁇ 'between 25 ° and 150 °, preferably greater than 60 ° directed to the melt flow and that the distance between the gas nozzle (s) and the deflecting, appearance or atomization point is less than 20 times the value of Gas nozzle diameter, the facility is highly efficient excellent powder quality achieved because of a breakdown of the metal into droplets a high force effect or acceleration can be used. The increases Force effect or acceleration with increasing angle, with which overall finer powder fractions can be created.
  • At least one Gas jet as a flat jet or multiple jet through the arrangement of several positioned next to each other and / or in particular one above the other Nozzle is formed the available gas jet width can be applied to the Melt flow can be increased.
  • a first gas jet 1 is formed by a first gas nozzle A, which acts at a distance L A on the melt stream S in the region 11 with the same directional component but with an angle ⁇ '.
  • a second gas jet 2 is created, which Metal melt flow FS after a spreading section of the same in one Impact point 21 with the same directional component, but with an angle ⁇ applied.
  • a gas nozzle C which is preferably designed as a Laval nozzle, creates a gas jet 3, which acts on the flat melt stream FS at a distance L C from the nozzle C in a deflection, impact or atomization point 31 at an angle 'and subsequently divides it into causes a metal particle flow P.
  • the application of the flat melt flow FS by the gas jet 3 can take place obliquely to partially in the opposite direction.
  • FIG. 2a and 2b schematically show a melt stream S, each in a view from two directions offset by 90 ° (elevation and cross-section).
  • a melt stream S is introduced essentially vertically from a melt nozzle body D into a disintegration unit of a spray chamber.
  • the melt stream S with a diameter S 1 is acted upon by a gas jet 1 after a free-fall section at a point of impact 11 and, as can be seen from FIG. 2 b, is thereby deflected and thinned with an angle ⁇ and, as shown in FIG. 2 a, spread to a flat current FS.
  • the flat melt flow FS is acted upon by a high-performance gas jet 3 in a deflection point, impingement or atomization point 31, which jet causes a metal particle flow P to be formed.
  • a gas jet 2 which strikes the flat stream FS at a point 21, it also being possible to change the flow direction of the metal stream.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Metallpulver aus dergleichen Schmelzen, wobei ein aus einem Düsenkörper eines metallurgischen Gefäßes austretender Schmelzenstrom in einer Verdüsungskammer durch Gasstrahlen in Tröpfchen zerteilt und diese zu im wesentlichen kugelförmigen Pulverkörnern erstarren gelassen werden.The invention relates to a method for producing metal powder from similar melts, one from a nozzle body of a metallurgical Vessel emerging melt stream in a atomization chamber Gas jets split into droplets and these into essentially spherical Powder grains are allowed to solidify.

Weiters umfaßt die Erfindung eine Vorrichtung zur Herstellung von Metallpulver aus dergleichen Schmelzen bestehend im wesentlichen aus einer Verdüsungskammer, in welche aus einem metallurgischen Gefäß mittels eines Schmelzendüsenkörpers ein Metallschmelzenstrom einleitbar bzw. eintragbar ist, einer in dieser Kammer eintragseitig angeordneten Desintegrationseinheit, mit Gasdüsen zur Beaufschlagung des Schmelzenstromes durch Gasstrahlen zu dessen Zerteilung zu Tröpfchen, einem austragseitig vorgesehenen Erstarrungsraum zur Kühlung der Tröpfchen und Ausbildung von Pulverkörnern, sowie nachgeordnete Pulververarbeitungseinrichtungen.The invention further comprises an apparatus for producing metal powder similar melts consisting essentially of a spray chamber, into which from a metallurgical vessel by means of a melt nozzle body a molten metal stream can be introduced or entered, one in this chamber Disintegration unit arranged on the entry side, with gas nozzles for Actuation of the melt stream by gas jets to break it up Droplets, a solidification space provided on the discharge side for cooling the Droplets and formation of powder grains, as well as subordinate Powder processing facilities.

Gasverdüste Metallpulver werden in der Werkstoff- und Oberflächentechnik auf Grund der steigenden Güteanforderungen an die Erzeugnisse in zunehmendem Maße verwendet. Die Art der Verwendung bestimmt dabei eine vorteilhafte Pulverkorngröße und eine dergleichen Korngrößenverteilung, das ist der jeweilige Anteil an Pulverkömem mit einem bestimmten Durchmesser in einem Durchmesserbereich. Für ein Flammspritzen zur Oberflächenbeschichtung von Gegenständen ist beispielsweise eine Verwendung eines sogenannten Monokorn-Pulvers verfahrenstechnisch günstig und wirtschaftlich. Bei einer Herstellung heißisostatisch aus Metallpulver gepreßten Teilen hingegen soll dieses Pulver vorteilhaft eine hohe Schüttdichte besitzen und somit eine entsprechende Korngrößenverteilung aufweisen.Gas atomized metal powders are used in materials and surface technology Due to the increasing quality requirements for the products in increasing Dimensions used. The type of use determines an advantageous one Powder grain size and a similar grain size distribution, that is the respective one Proportion of powder grains with a certain diameter in one Diameter range. For flame spraying for surface coating of Objects is, for example, a use of a so-called Mono-grain powder is technically inexpensive and economical. At a Manufacture of hot isostatically pressed parts from metal powder, however, is intended Powder advantageously have a high bulk density and thus a corresponding Have grain size distribution.

Eine Herstellung von gasverdüstem Metallpulver erfolgt im wesentlichen derart, daß ein flüssiger Metallstrom mit Gas, vorzugsweise Inertgas oder Edelgas, welches eine hohe Strömungsgeschwindigkeit bzw. Bewegungsenergie aufweist, beaufschlagt wird. Die Gasbeaufschlagung bewirkt ein Zerteilen des Metallstromes in feine Tröpfchen, welche in der Folge sphäroidisch zu Körnern erstarren. Neben der Temperatur, der Viskosität und der Oberflächenspannung des flüssigen Metalles ist insbesondere die Beschleunigung der Schmelze durch den Gasstrahl bzw. sind die dabei wirkenden Kräfte ( Powder Production and Spray Forming, Advances in Powder Metallurgy & Particulate Materials- 1992, Volume 1, Metal Powder Industries Federation, Princeton, N.J., Page 137 - 150, Particle size prediction in an atomization system; Claes Tomberg) für die Größe und die Größenverteilung der gebildeten Pulverkörner maßgebend.Gas-atomized metal powder is essentially produced in such a way that a liquid metal stream with gas, preferably inert gas or inert gas, which has a high flow velocity or kinetic energy, is applied. The application of gas causes the metal flow to split into fine droplets, which subsequently solidify into grains. Next the temperature, viscosity and surface tension of the liquid Metal is in particular the acceleration of the melt by the gas jet or are the forces involved (powder production and spray forming, Advances in Powder Metallurgy & Particulate Materials- 1992, Volume 1, Metal Powder Industries Federation, Princeton, N.J., Page 137-150, Particle size prediction in an atomization system; Claes Tomberg) for the size and the Size distribution of the powder grains formed is decisive.

Wird ein frei fallender Metallstrom in einer Verdüsungskammer mit mindestens einem Gasstrahl beaufschlagt, was ein betriebssicheres Verfahren darstellen kann, so ist die erreichbare Pulverkorngröße betreffend den Hauptteil der Fraktion nach unten begrenzt, weil im Bereich zwischen der Gasdüse und dem Metallstrom ein hoher Anteil der Gasstrahlenergie abgebaut wird. Durch Aussieben der Grobanteile kann zwar zur Steigerung der Güte des Erzeugnisses die gewünschte Korngröße des Metallpulvers eingestellt werden, jedoch ist damit ein geringes Ausbringen bzw. eine niedrige Wirtschaftlichkeit bei der Herstellung verbunden.If there is a free falling metal stream in a atomization chamber with at least impinged on a gas jet, which can represent an operationally reliable method, so is the achievable powder grain size regarding the main part of the fraction limited below because in the area between the gas nozzle and the metal flow high proportion of the gas jet energy is broken down. By screening out the coarse parts can increase the quality of the product, the desired grain size of the metal powder can be adjusted, however, this means a low output or a low cost of manufacture associated.

Um die Güte der aus oder mit Metallpulver hergestellten Erzeugnisse und insbesondere die Wirtschaftlichkeit zu verbessern, war es seit langem Ziel, ein Verfahren zu finden, welches es ermöglicht, ein sphäroidisches metallisches Pulver mit großem Feinkomanteil und mit hohem Ausbringen zu erstellen.To the quality of the products made of or with metal powder and In particular, improving profitability has long been a goal Process to find a spheroidal metallic powder to be created with a large proportion of fine coma and with a high yield.

Erfolgt eine Zerteilung des vergleichsweise dicken Schmelzenstromes nicht unmittelbar, sondern wird dieser vorerst ausgeflacht, so ist die Wirkung des das Flüssigmetall beaufschlagenden Gasstrahles intensiviert und es werden feinere Tröpfchen gebildet, die vor der Erstarrung auf Grund der Oberflächenspannung eine kugelige Form annehmen. Die Durchmesserverkleinerung der Pulverpartikel ist, wie vorher dargelegt, wesentlich davon abhängig, wie hoch die Schmelze beschleunigt wird.If the comparatively thick melt stream is not divided immediately, but if this is flattened out for the time being, the effect of the Gas jet acting on liquid metal intensifies and it becomes finer Droplets formed before the solidification due to the surface tension take spherical shape. The diameter reduction of the powder particles is how previously stated, largely dependent on how high the melt accelerates becomes.

Es sind Gasverdüsungsverfahren für Metellschmeizen bekannt, bei welchen das Flüssigmetall unmittelbar nach dessen Austritt aus dem Düsenkörper des metallurgischen Gefäßes mit einem oder mehreren Gasstrahlen aus direkt am Austritt angeordneten Düsen zerteilt wird. Weil dabei das Gas einerseits am Austritt eine hohe Geschwindigkeit besitzt, andererseits der hohen Temperatureinwirkung wegen sich rasch ausdehnt und in Richtung der Strahlmitte an Wirkung verliert, wird eine äußerst breite Metallpulverfraktion mit Grob- und Feinanteilen gebildet.Gas atomization processes for metal melts are known, in which the Liquid metal immediately after it emerges from the nozzle body of the metallurgical vessel with one or more gas jets from directly on Outlet arranged nozzles is divided. Because the gas is on the one hand at the outlet has a high speed, on the other hand the high temperature effect because it expands rapidly and loses its effect towards the center of the beam an extremely wide metal powder fraction with coarse and fine fractions.

Um obigen Nachteil zu vermeiden, wurde gemäß US 2 968 062 vorgeschlagen, eine Einrichtung mit einer sich nach außen erweiternden Schmelzendüse zu verwenden und konzentrisch um diese Düse den Gaszuführungskanal kegelförmig auszubilden. Der Gasstrahl bewirkt dabei zentrisch einen Unterdruck, der die Schmelze zum Rand der sich erweiternden Austrittsöffnung fließen läßt, wo dieser dünne Schmelzenfilm vom Gasstrahl erfaßt und wirksam zerteilt und beschleunigt wird. Mit derartigen Vorrichtungen können zwar sehr feinkörnige Pulver hergestellt werden, nachteilig ist jedoch deren Störanfälligkeit und die geringe verarbeitbare Schmelzengröße.In order to avoid the above disadvantage, according to US Pat. No. 2,968,062, a Use device with a melt nozzle that widens outwards and to form the gas supply channel in a conical shape around this nozzle. The gas jet creates a negative pressure in the center, which leads to the melt Edge of the expanding outlet can flow where this thin Melt film is captured by the gas jet and effectively divided and accelerated. With Such devices can indeed be used to produce very fine-grained powders, disadvantageous, however, is their susceptibility to malfunction and the low processability Melting size.

Zur Verbesserung der Funktionssicherheit der Verdüsungseinrichtung erfolgte gemäß US 4 272 563 der Vorschlag, den Schmelzenstrom aus dem Schmelzendüsenkörper freifallend austreten zu lassen und nach einer Fallstrecke mit Gasstrahlen zu beaufschlagen. Trotz des Einsatzes von Düsen, die Gasstrahlen mit Überschallgeschwindigkeit bilden, konnte damit keine für die Ausformung von Pulverkömem mit geringem Durchmesser ausreichende Beschleunigung der Schmelze erreicht werden.To improve the functional reliability of the atomization device was carried out according to US 4,272,563 the proposal to remove the melt stream from the Let melt nozzle body emerge freely and after a fall to be charged with gas jets. Despite the use of nozzles, the gas jets with supersonic speed, could not be used for the formation of Powder grain with a small diameter sufficient acceleration of the Melt can be achieved.

Es wurde schon versucht, geringe Düsenabstände anzuwenden, um die Beschleunigungswirkung des auf den freifallenden Metallstrom gerichteten Gasstrahlen zu erhöhen. Im Bereich der Düse werden jedoch durch den Sog des austretenden Gasstrahles bzw. auf Grund der Ejektorwirkung Gaswirbelströme induziert, die bei geringem Düsenabstand vom Zerteilungsort des Metallstromes Tröpfchen mitführen bzw. rückführen können, welche sich letztlich am Düsenkörper anlegen und destabilisierend auf das Verfahren wirken. Aus diesen Gründen ist ein Mindest-Düsenabstand vorzusehen, wodurch jedoch die Wirksamkeit des Gasstrahles im Hinblick auf eine Schmelzenzerteilung zu kleinen Tröpfchen überproportional verringert wird. Beispielsweise reduziert sich bei einem Gasstrom, der mit Überschallgeschwindigkeit aus einer Lavaldüse austritt, in einem Abstand von 30mal den Düsendurchmesser, dessen Kraftwirkung auf ca. die Hälfte.Attempts have been made to use small nozzle spacings to achieve the Accelerating effect of the directed on the falling metal stream Increase gas jets. In the area of the nozzle, however, the suction of escaping gas jet or gas eddy currents due to the ejector effect induced with a small nozzle distance from the point of division of the metal stream Can carry or return droplets, which are ultimately on the nozzle body put on and have a destabilizing effect on the procedure. For these reasons, is a Minimum nozzle distance to be provided, which, however, the effectiveness of the Gas jets with a view to melting particles into small droplets is disproportionately reduced. For example, with a gas flow, which emerges from a Laval nozzle at supersonic speed at a distance 30 times the nozzle diameter, the force effect on about half.

Aus der SE-AS- 421758 ist eine Vorrichtung zur Metallpulverherstellung bekannt geworden, in welcher zur Zerteilung des Schmelzenstromes in der Verdüsungskammer zwei Gasstrahlen zur Anwendung kommen. Dabei erfolgt eine Beaufschlagung des freifallen eingebrachten Schmelzenstromes durch einen ersten Gasstrahl mit einem Winkel von ca. 20°, welcher zu einem Aufbrechen und Ablenken des Stromes führt, wonach dieser vertikal von einem zweiten Gasstrahl mit hoher Intensität zu Metalltröpfchen zerteilt wird. Bei dieser Vorgangsweise ist zwar ein Anhaften von Metalltröpfchen an den Gasdüsenteilen vermieden, der große Abstand der zweiten Düse vom Zerteilungsort der Schmelze bewirkt jedoch eine breite Korngrößenverteilung mit geringen Anteilen an feinem Pulver.A device for metal powder production is known from SE-AS-421758 become, in which the melt flow in the Atomization chamber two gas jets are used. There is a Actuation of the free-flowing melt stream by a first one Gas jet with an angle of approx. 20 °, which leads to a breakup and Deflecting the stream leads, after which this is vertical from a second gas jet is broken into metal droplets with high intensity. With this procedure is Although metal droplets adhered to the gas nozzle parts, the large distance of the second nozzle from the point of division of the melt, however, causes a broad grain size distribution with small amounts of fine powder.

Ein Verfahren zur Beaufschlagung eines vertikalen Metallstromes durch einen horizontalen Gasstrahl wurde gemäß US- 4 282 903 vorgeschlagen, wobei ein vorteilhaft geringer Düsenabstand Anwendung findet. Zur Verhinderung des Anhaftens von Metalltröpfchen an dem Düsenkörper wird dabei ein Hilfsgasstrahl im Düsenbereich ,schräg auf den Zerteilungsort gerichtet, ausgebildet. Die Zerteilung des kompakten Schmelzenstromes erfolgt dabei fast ausschließlich mittels des horizontal gerichteten Hauptgasstrahles, so daß das Ausbringen an feinkörnigem Pulver gering ist.A method of applying a vertical metal flow through a horizontal gas jet has been proposed in accordance with US 4,282,903, wherein a advantageously small nozzle spacing is used. To prevent the An auxiliary gas jet is thereby attached to the nozzle body by metal droplets in the nozzle area, directed obliquely to the cutting site. The The compact melt stream is almost exclusively divided by means of the horizontally directed main gas jet, so that the spreading on fine-grained powder is low.

Ein weiteres Verfahren zur Herstellung von Metallpulver durch Beaufschlagung eines Schmelzenstromes mit horizontalen Gasstrahlen ist in der WO 89/05197 offenbart. Diesem Verfahren entsprechend werden zwei flache, mit der Schmalseite im wesentlichen senkrecht ausgerichtete Gasstrahlen im spitzen Winkel zueinander ausgerichtet und der Schmelzenstrom im Bereich des Aufeinandertreffens der Strahlen derart eingeleitet, daß vorerst der Oberflächenbereich und in der Folge die weiteren Teilbereiche des Metallstromes von den Gasstrahlen beaufschlagt werden. Durch den vergrößerten Zerteilungsbereich bzw. durch die Längserstreckung, in der die Zerteilung des Flüssigmetalles erfolgt, ist die spezifische Krafteinwirkung auf das Flüssigmetall groß, die Energie der Gasstrahlen jedoch durch die Schallgeschwindigkeitsgrenze beschränkt. Ein derartig hergestelltes Metallpulver besitzt einen engen Korndurchmesserbereich, die feinen und groben Partikel sind nur in geringer Menge vertreten, so daß dieses in Richtung Monokom ausgebildete Pulver für einige Anwendungen, der geringen Schüttdichte wegen, Nachteile aufweist.Another process for producing metal powder by exposure of a melt stream with horizontal gas jets is in WO 89/05197 disclosed. According to this procedure, two flat, with the narrow side essentially vertically oriented gas jets at an acute angle to each other aligned and the melt flow in the area of the meeting of the Beams initiated in such a way that initially the surface area and subsequently the other partial areas of the metal stream are acted upon by the gas jets become. Due to the enlarged division area or through the The longitudinal extent in which the liquid metal is divided is the specific force on the liquid metal large, the energy of the gas jets however limited by the speed of sound limit. Such a thing Metal powder produced has a narrow range of grain diameters, the fine and coarse particles are only present in small quantities, so that this is in the direction Monocom-formed powder for some applications, the low bulk density because of, has disadvantages.

Alle wirtschaftlichen Verfahren zur Herstellung von Metallpulver aus Schmelzen und die dafür verwendbaren Einrichtungen haben die Nachteile gemeinsam, daß der Feinpulveranteil zu gering und/oder die Korngrößenverteilung ungünstig für eine ökonomische Weiterverarbeitung zu hochwertigen Erzeugnissen ist bzw. sind.All economic processes for the production of metal powder from melts and the devices that can be used for this have the disadvantages in common that the Fine powder proportion too low and / or the grain size distribution unfavorable for one Economic further processing into high-quality products is or are.

Hier will die Erfindung Abhilfe schaffen und setzt sich zum Ziel, ein Herstellverfahren für Metallpulver aus Schmelzen anzugeben, mit welchem bei hohem Feinanteil und Vermeidungen ungünstiger Grobpartikel eine in Grenzen gewünschte breite Korngrößenverteilung des Pulvers wirtschaftlich erreichbar ist. Weiters ist es Aufgabe der Erfindung, eine Vorrichtung zu schaffen, mit welcher in günstiger Weise Metallpulver in einer Fraktion bzw. mit einer Korngrößenverteilung herstellbar ist, mit welcher dieses, beispielsweise eine hohe Schüttdichte aufweisend, gegebenenfalls durch heißisostatisches Pressen ( HIPen), zu besonders hochwertigen Erzeugnissen weiterverarbeitet werden kann.Here, the invention seeks to remedy this and aims to Manufacturing process for metal powder from melts to specify with which high fines content and avoidance of unfavorable coarse particles desired broad particle size distribution of the powder is economically achievable. Furthermore, it is an object of the invention to provide a device with which conveniently metal powder in a fraction or with a grain size distribution Can be produced with which this, for example a high bulk density showing, possibly by hot isostatic pressing (HIPen) particularly high quality products can be processed.

Dieses Ziel ist bei einem gattungsgemäßen Verfahren dadurch erreichbar, daß der aus dem Schmelzendüsenkörper im wesentlichen vertikal austretende Schmelzenstrom durch mindestens drei aufeinander folgende Gasstrahlen mit jeweils verschiedenen Richtungen zumindest teilweise beaufschlagt wird,This goal can be achieved in a generic method in that the emerging essentially vertically from the melt nozzle body Melt flow through at least three successive gas jets different directions are at least partially applied,

Bei einer Vorrichtung der eingangs genannten Art wird die gestellte Aufgabe dadurch gelöst, daß die Desintegrationseinheit mindestens drei Gasdüsenkörper aufweist, deren Gasstrahlen in einer Wirkfolge jeweils auf den eingebrachten Schmelzenstrom und auf den durch den jeweils vorgeordneten Gasstrahl in eine Richtung eingestellten und geformten Schmelzenstrom mit einem Winkel zwischen 5° und 170 ° ausrichtbar sind.In a device of the type mentioned, the task is solved in that the disintegration unit at least three gas nozzle body has, the gas jets in an effective sequence in each case on the introduced Melt flow and on the by the upstream gas jet into one Directed and shaped melt flow with an angle between 5 ° and 170 ° can be aligned.

Die mit der Erfindung erzielten Vorteile sind im wesentlichen darin zu sehen, daß das Flüssigmetall bei seiner Zerteilung in Tröpfchen eine hohe Beschleunigung erfährt, weil einerseits dessen Masse bezogen auf die Fläche, die letztlich durch den Gasstrahl beaufschlagt wird, gering ist und andererseits die Beaufschlagung durch einen, einen geringen Düsenabstand aufweisenden, also eine hohe Kraftwirkung ausübenden Gasstrahl erfolgt. Dabei ist jedoch erfindungswesentlich, daß der Schmelzenstrom vor der hochenergetischen Zerteilung in kleine Tröpfchen durch mindestens zwei vorgeordnete, jeweils richtungsungleiche Gasstrahlen aufbereitet wird, wobei in einem ersten Schritt eine Erhöhung der Angriffsfläche und einem zweiten Schritt eine Konditionierung der bewegten Schmelze erfolgen. Sind synergetisch die Masse der Schmelze bezogen auf die Angriffsfläche klein und die Kraft des Gasstrahles groß, so ist die Beschleunigung hoch und es werden Partikel mit einem kleinen Durchmesser gebildet. Wissenschaftlich ausgedrückt besteht folgender Zusammenhang: Die Partikelgröße ist annähernd gleich dem Wert aus der Quadratwurzel einer Konstanten gebrochen durch die Beschleunigung.The advantages achieved with the invention can be seen essentially in the fact that the liquid metal when it is broken down into droplets undergoes high acceleration experiences because, on the one hand, its mass related to the area that ultimately passes through the gas jet is applied, is low and on the other hand the exposure by having a small nozzle spacing, i.e. a high one Gas jet exerting force. However, it is essential to the invention that that the melt stream before the high-energy division into small droplets by at least two upstream gas jets, each with different directions is processed, in a first step an increase in the attack surface and in a second step, the moving melt is conditioned. are synergistically the mass of the melt based on the attack surface is small and The force of the gas jet is high, so the acceleration is high and it becomes particles formed with a small diameter. Scientifically speaking, there is the following relationship: The particle size is approximately equal to the value the square root of a constant broken by the acceleration.

In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß der aus dem Schmelzendüsenkörper austretende Schmelzenstrom mittels mindestens eines ersten Gasstrahles in seiner Strömungsrichtung umgelenkt und gebreitet bzw. gedünnt und/oder zerteilt wird, worauf mindestens ein, eine gleiche Richtungskomponente aufweisender, schräg auftreffender zweiter Gasstrahl den gebreiteten und/oder geteilten Flach-Schmelzenstrom in seiner Form aufbereitet sowie eine Sogbarriere für die Düse(n) mindestens eines nachgeordneten dritten Gasstrahles aufbaut, welcher dritte Gasstrahl schräg bis teilweise gegengerichtet zum aufbereiteten Flach-Schmelzenstrom als Hochgeschwindigkeitsgasstrahl ausgebildet wird und eine Feinaufieilu bzw. Zerstäubung des Flüssigstrahles zu Tröpfchen bewerkstelligt, welche metalltröpfchen nachfolgend erstarren gelassen werden. Bei einem durch den ersten Gasstrahl bewirkten Umlenken und Breiten des kompakten Schmelzenstromes kann auftreffseitig eine weitgehend flache Form des Metallstromes erstellt werden, wobei die Anströmgeschwindigkeit und der Anströmwinkel des Gasstrahles von der Dicke und von der Stabilität bzw. von der Länge des freifallenden Schmelzenstromes sowie der gewünschten Dünnung bzw. Breitung abhängen. Der Anströmseite gegenüberliegend entsteht oft eine für eine letztliche Zerteilung des Flachstromes ungünstige Oberflächenform mit losgerissenen Metallpartikeln. Erfindungsgemäß wird diese, eine ungünstige Oberflächenform aufweisende Seite des Flachstromes mittels eines nachgeordneten zweiten, schräg auftreffenden Gasstrahles beaufschlagt und damit der Strom für eine wirkungsvolle Zerteilung zu Metalltröpfchen eingerichtet. Mit diesem Gasstrahl ist auch eine Sogbarriere aufbaubar, wodurch als weiterer Vorteil keine flüssigen Partikel zum letztwirksamen lavatdüsenkörper gelangen können, so daß diesbezüglich die Betriebssicherheit der Vorrichtung nicht beeinträchtigt ist. Es ist weiters wichtig, daß der Hochgeschwindigkeitsstrahl schräg auf den Flachschmelzenstrom gerichtet wird, weil sich dadurch eine große Kraftwirkung im Hinblick auf eine feine Zerteilung zu Metalltröpfchen ergibt. Je größer die Schräge zum Flachstrom, die bis zum teilweisen Gegengerichtetsein des Gasstrahles reichen kann, ausgebildet ist, desto höher wird die Beschleunigung des Metalles und letztlich der Feinkornanteil des Metallpulvers sein.In an advantageous embodiment of the invention it is provided that the from Melt nozzle body emerging melt stream by means of at least one deflected and spread the first gas jet in its flow direction or is thinned and / or cut, followed by at least one, the same Directional component, obliquely incident second gas jet spread and / or split flat melt stream prepared in its form and a suction barrier for the nozzle (s) of at least one downstream third Gas jet builds up, which third gas jet obliquely to partially directed to the processed flat melt stream as a high-speed gas jet is formed and a Feinaufieilu or atomization of the liquid jet to Droplets accomplished which metal droplets subsequently solidified become. When the first gas jet deflects and widens the compact melt flow can have a largely flat shape on the impact side Metal flow can be created, the flow velocity and the Angle of flow of the gas jet from the thickness and from the stability or from the Length of the free-flowing melt stream and the desired thinning or Depend on spread. Opposite the inflow side, one for one is often created Ultimate division of the flat current with unfavorable surface shape loose metal particles. According to the invention, this is an unfavorable one Surface shape side of the flat current by means of a downstream second, obliquely incident gas jet and thus the stream set up for effective splitting into metal droplets. With This gas jet can also be built up with a suction barrier, which is another advantage no liquid particles can get to the last effective lavate nozzle body, so that the operational safety of the device is not impaired in this regard. It it is also important that the high speed beam is directed obliquely onto the Flat melt flow is directed because this has a large force effect in With regard to a fine division into metal droplets. The bigger the slope to the flat current, up to the partial counter-direction of the gas jet enough, is formed, the higher the acceleration of the metal and ultimately be the fine grain portion of the metal powder.

Sowohl für einen hohen Feinkornanteil im Pulver als auch zur Vermeidung der Bildung von Großpartikeln, die ausgeschieden werden müssen, ist von besonderem Vorteil, wenn der Schmelzenstrom mit einem Durchmesser von 2,0 mm bis 15,0 mm mittels mindestens eines ersten Gasstrahles in seiner Strömungsrichtung um einen Winkel α zwischen 5° und 85°m vorzugsweise zwischen 15 ° und 30°, umgelenkt und im wesentlichen sektorförmig zu einem Schmelzen-Flachstrom gebreitet wird. Eine Umlenkung des Schmelzenstromes um weniger als 5° ist ungünstig, weil diese sprunghaft eine Vergrößerung der Bildungslänge des Flachstromes erfordert, die jedoch durch den Temperaturverlust begrenzt ist. Eine besonders effiziente Flachstrombildung des Flüssigmetalles, wobei diese vorteilhaft sektorförmig erfolgt, wird bei einer Umlenkung desselben mit einem Winkel zwischen 15° und 30 ° erreicht, wobei größere Umlenkungen als 45° eine nachteilige Zerlegung des Stromes durch den Gasstrahl bewirken können.Both for a high proportion of fine grain in the powder and to avoid the The formation of large particles that have to be separated out is special Advantage if the melt flow with a diameter of 2.0 mm to 15.0 mm by at least a first gas jet in its flow direction by one Angle α between 5 ° and 85 ° m, preferably between 15 ° and 30 °, deflected and is spread substantially in a sector shape to form a melt flat stream. A deflection of the melt flow by less than 5 ° is unfavorable because of this abruptly an increase in the formation length of the flat current requires that but is limited by the temperature loss. A particularly efficient one Flat current formation of the liquid metal, this advantageously taking place in the form of a sector, is deflected at an angle between 15 ° and 30 ° reached, with deflections greater than 45 ° a disadvantageous disassembly of the Can cause electricity through the gas jet.

Im Hinblick auf einen hohen Feinkornanteil Metallpulvers, aber auch einer günstigen Korngrößenverteilung wegen, ist es von großem Vorteil, wenn der sektorförmige Schmelzen-Flachstrom nach Erreichen einer durch den ersten Gasstrahl bewirkten Breite von mindestens 5mal, vorzugsweise mindestens 10mal, die freifallende Schmelzenstrombreite bzw.- dicke durch mindestens einen dritten Gasstrahl, der als Hochgeschwindigkeitsgasstrahl ausgebildet ist, mit einem Winkel γ zwischen 25° und 150 °, vorzugsweise zwischen 60° und 90°, umgelenkt und in einen Tröpfchenstrom zerstäubt oder zerteilt wird. Ist der Schmelzenstrom geringer als 5mal die ursprüngliche Schmelzenstromdicke gebreitet, so ist dessen Kompaktheit groß und der erstellbare Feinpulveranteil vergleichsweise gering. Eine Breitung von größer als 10mal den Schmelzenstromdurchmesser erbringt besonders gute Voraussetzungen für eine Zerteilung in Tröpfchen mit hohem Feinanteil, insbesondere wenn der diese bewirkende Hochgeschwindigkeitsgasstrahl mit einem Winkel zwischen 60° und 90° den Schmelzenflachstrom umlenkt. Größere Umlenkwinkel bis 150° erhöhen den Feinkornanteil und bewirken eine Tendenz zur Monokombildung.With regard to a high proportion of fine grain metal powder, but also a cheap one Because of grain size distribution, it is of great advantage if the sector-shaped Melt flat flow after reaching one caused by the first gas jet Width of at least 5 times, preferably at least 10 times, the free-falling Melt flow width or thickness by at least a third gas jet, the is designed as a high-speed gas jet, with an angle γ between 25 ° and 150 °, preferably between 60 ° and 90 °, deflected and into one Stream of droplets is atomized or broken up. If the melt flow is less than Spread 5 times the original melt flow thickness is its compactness large and the amount of fine powder that can be produced is comparatively low. A spread of greater than 10 times the melt flow diameter produces particularly good Prerequisites for a breakdown into droplets with a high fine fraction, especially if the high-speed gas jet causing this also deflects the melt flow at an angle between 60 ° and 90 °. larger Deflection angles up to 150 ° increase the fine grain fraction and cause a tendency to Monokombildung.

Zur Aufbereitung des Metallstromes, aber insbesondere auch zur Ausbildung einer wirksamen Sogbarriere ist es günstig, wenn der Schmelzen-Flachstrom von oder im Bereich der Umlenkung oder Zerstäubung durch den dritten Hochgeschwindigkeitsstrahl durch einen, eine gleiche Richtungskomponente aufweisenden zweiten Gasstrahl, jedoch mit einem Winkel δ zwischen 5° und 85°, vorzugsweise zwischen 15° und 30°, zu diesem Schmelzenstrom beaufschlagt und aufbereitet wird, wodurch Schmelzentröpfchen führende Sogwirbel des Hochgeschwindigkeitsgasstrahles verhindert werden. Durch geringere Strahlwinkel δ als 5° sind Sogwirbel des Hochgeschwindigkeitsgasstrahles nicht vollkommen verhinderbar, wodurch die Gefahr einer Metallablagerung am Düsenkörper und eine Instabilität des Verfahrens gegeben sind. Größere Beaufschlagungswinkel des zweiten Gasstrahles als 85° können den Metallstrom vor dessen Zerstäubung nachteilig deformieren und die Relativgeschwindigkeit zwischen Metallstrom und dem dritten Gasstrahl und somit die Beschleunigung des Metalles nachteilig verringern.For processing the metal stream, but in particular also for the formation of a effective suction barrier, it is favorable if the melt flow from or in Area of deflection or atomization by the third High-speed beam through one, the same directional component having a second gas jet, but with an angle δ between 5 ° and 85 °, preferably between 15 ° and 30 °, to this melt flow and is processed, whereby melt droplets leading suction vortex of the High-speed gas jet can be prevented. With a smaller beam angle δ than 5 °, suction vortices of the high-speed gas jet are not perfect preventable, which creates the risk of metal deposits on the nozzle body and The process is unstable. Larger exposure angle of the second gas jet than 85 ° can the metal stream before its atomization disadvantageously deform and the relative speed between metal current and the third gas jet and thus the acceleration of the metal disadvantageous reduce.

Die mit der gattungsgemäßen Vorrichtung erzielbaren Vorteile der Erfindung sind im wesentlichen darin zu sehen, daß durch eine Anordnung von mindestens drei Gasdüsenkörpem in einer Desintegrationseinheit der Schmelzenstrom in drei Bereichen durch Gasstrahlen jeweils beaufschlagbar und dadurch ausformbar sowie bearbeitbar ist, wobei der Winkel der Gasstrahlen auf den Schmelzenstrom günstigerweise jeweils zwischen 5° bis 170°liegt.The achievable with the generic device advantages of the invention are in essentially to be seen in the fact that by an arrangement of at least three Gas nozzle body in one disintegration unit, the melt flow in three Areas can be acted upon by gas jets and can thus be shaped as well as editable, the angle of the gas jets on the melt stream conveniently between 5 ° to 170 °.

In einer vorteilhaften Ausfühmngsform der Erfindung ist der erste Gasdüsenkörper derart angeordnet, daß der durch diesen gebildete erste Gasstrahl , eine gleiche Richtungskomponente aufweisend, mit dem Winkel α' zwischen 5° und 85°, vorzugsweise mit einem Winkel α zwischen 15° und 30° auf den Schmelzenstrom gerichtet ist und daß die Länge des freifallenden Schmelzenstromes gleich dem Längenmaß: Abstand der Gasdüse vom Auftreffpunk des Gasstrahles auf den Schmelzenstrom, vermehrt oder vermindert um einen Wert, der höchstens das10-fache des Durchmessers des Schmelzenstromes beträgt, ist. Dabei ist der Winkel der Ausrichtung des Gasstrahles auf den Schmelzenstrom für eine Dünnung und sektorförmige Breitung desselben wichtig, wobei die Länge des freifallenden Schmelzenstromes für dessen Stabilität bei der Umlenkung und der Umformung in einen Flachstrom sowie die dabei erreichbare Form von großer Bedeutung sind.The first gas nozzle body is in an advantageous embodiment of the invention arranged such that the first gas jet formed by it is the same Having directional component, with the angle α 'between 5 ° and 85 °, preferably with an angle α between 15 ° and 30 ° on the melt stream is directed and that the length of the free-falling melt stream is equal to that Length: Distance of the gas nozzle from the point of impact of the gas jet on the Melt flow, increased or decreased by a value that at most is 10 times the diameter of the melt flow. Here is the Angle of the alignment of the gas jet with the melt stream for a thinning and sector-shaped spreading of the same important, the length of the free-falling Melt stream for its stability in the deflection and the transformation in a flat current and the shape that can be achieved are of great importance.

Um besonders bevorzugte Zerstäubungsbedingungen für das Flüssigmetall erstellen zu können, ist es wichtig, wenn der zweite Düsenkörper derart angeordnet ist, daß der in der Wirkfolge zweite Gasstrahl auf den durch den vorgeordneten ersten Gasstrahl gebreiteten und gedünnten Flachschmelzenstrom mit einer gleiche Strömungsrichtungskomponente mit einem Winkel δ zwischen 5° und 85°, vorzugsweise mit einem Winkel δ zwischen 15° und 30° gerichtet ist und daß der Auftreffpunkt dieses zweiten Gasstrahles im Bereich des oder vor dem Umlenk-, Auftreff oder Zerstäubungspunkt des nachgeordneten dritten Gasstrahles liegt. Der Winkel zwischen zweitem Gasstrahl und Flachschmelzenstrom sowie dessen Auftreffpunkt auf dem Schmelzenstrom sind von zweifacher Bedeutung. Einerseits ist dabei die Kondition des unmittelbar nachfolgend der Zerteilung unterworfenen Flachstromes günstig einstellbar, andererseits hat eine Unterbindung einer Ausbildung von Sogwirbeln durch Ejektorwirkung der Hochgeschwindigkeitsdüse wirkungsvoll zu erfolgen. Die erfindungsgemäße Wahl der Winkelbereiche, insbesondere im bevorzugten Ausmaß, erfüllt diese Anforderungen.To particularly preferred atomization conditions for the liquid metal To be able to create, it is important if the second nozzle body is arranged in this way is that the second gas jet in the sequence of action on the by the upstream first gas jet spread and thinned flat melt stream with the same Flow direction component with an angle δ between 5 ° and 85 °, is preferably directed at an angle δ between 15 ° and 30 ° and that the Impact point of this second gas jet in the area of or before the deflection, Impact or atomization point of the downstream third gas jet lies. The Angle between the second gas jet and the flat melt stream and its The point of impact on the melt stream is of double importance. On the one hand is the condition of the one immediately subjected to the division Conveniently adjustable flat current, on the other hand has a suppression of one Formation of suction vortices due to the ejector action of the high-speed nozzle to be done effectively. The choice of the angular ranges according to the invention, particularly to the preferred extent, meets these requirements.

Wenn gemäß einer besonders günstigen Ausgestaltungform der dritte Düsenkörper derart angeordnet ist, daß ein als Hochgeschwindigkeitsgasstrahl ausgebildeter dritter bzw. in der Wirkfolge letzter Gasstrahl mit einem Winkel γ' zwischen 25° und 150°, vorzugsweise von größer als 60° auf den Flachschmelzenstrom gerichtet ist und daß der Abstand zwischen der(den) Gasdüse(n) und dem Umlenk-, Auftrett oder Zerstäubungspunkt geringer ist als der 20-fache Wert des Gasdüsendurchmessers, wird eine hohe Leistungsfähigkeit der Einrichtung mit vorzüglicher Pulvergüte erreicht, weil für eine Zerteilung des Metalles in Tröpfchen eine hohe Kraftwirkung bzw. Beschleunigung einsetzbar ist. Dabei steigt die Kraftwirkung bzw. Beschleunigung mit größer werdendem Winkel, womit insgesamt feinere Pulverfraktionen erstellbar sind.If, according to a particularly favorable embodiment, the third nozzle body is arranged such that a high-speed gas jet third or in the sequence of action last gas jet with an angle γ 'between 25 ° and 150 °, preferably greater than 60 ° directed to the melt flow and that the distance between the gas nozzle (s) and the deflecting, appearance or atomization point is less than 20 times the value of Gas nozzle diameter, the facility is highly efficient excellent powder quality achieved because of a breakdown of the metal into droplets a high force effect or acceleration can be used. The increases Force effect or acceleration with increasing angle, with which overall finer powder fractions can be created.

Es hat sich als vorteilhaft herausgestellt, wenn zumindest der dritte bzw. in der Wirkfolge der letzte Düsenkörper zur Erstellung mindestens eines Überschall-Gasstrahles ausgebildet ist.It has proven to be advantageous if at least the third or in the Sequence of action of the last nozzle body to create at least one supersonic gas jet is trained.

In der Weiterbildung der Erfindung können günstige Zerteilungsbedingungen für den Flachschmelzenstrom geschaffen werden, wenn dem letzten zur Ausbildung eines Hochgeschwindigkeitsgasstrahles nutzbaren Gasdüsenkörper mehr als zwei Gasdüsenkörper zur Erstellung von auf den Schmelzenstrom einrichtbaren Gasstrahlen vorgeordnet sind.In the development of the invention, favorable conditions of division for the flat melt stream are created when the last one for training of a high-speed gas jet usable gas nozzle body more than two Gas nozzle body for creating those that can be set up on the melt stream Gas jets are arranged.

Vorteilhaft gute Einstellmöglichkeiten für eine gewünschte Metallpulverfraktion sind gegeben, wenn die Gasstrahlen jeweils in deren Richtung und deren Intensität einstellbar sind.Advantageously good setting options for a desired metal powder fraction are given when the gas jets each in their direction and their intensity are adjustable.

Wenn, gemäß einer weiteren Variante als günstig vorgesehen, zumindest ein Gasstrahl als Flachstrahl oder Vielfachstrahl durch die Anordnung von mehreren nebeneinander und/oder insbesondere zwischenliegend übereinander positionierte Düsen ausgebildet ist, kann die verfügbare Gasstrahlbreite zur Beaufschlagung des Schmelzenstromes vergrößert sein.If, according to a further variant, is provided as cheap, at least one Gas jet as a flat jet or multiple jet through the arrangement of several positioned next to each other and / or in particular one above the other Nozzle is formed, the available gas jet width can be applied to the Melt flow can be increased.

Letztlich kann es auch von Vorteil sein, wenn die durch die Gasstrahlen bestimmte Ebene von der Vertikalen abweichend ist.Ultimately, it can also be advantageous if the one determined by the gas jets Plane is different from the vertical.

Im folgenden wird die Erfindung anhand von lediglich einen Ausführungsweg darstellenden Zeichnungen näher erläutert.
Es zeigen

  • Fig. 1 eine Desintegrationseinheit schematisch
  • Fig. 2a einen Verlauf eines Schmelzenstromes bei einer Beaufschlagung desselben durch Gasstrahlen schematisch in Ansicht
  • Fig. 2b einen Verlauf des Schmelzenstromes von Fig. 2a in einer um 90° gedrehten Ansicht.
  • The invention is explained in more detail below with the aid of drawings which illustrate only one embodiment.
    Show it
  • Fig. 1 shows a disintegration unit schematically
  • Fig. 2a schematically shows a course of a melt flow when it is acted upon by gas jets
  • Fig. 2b shows a course of the melt flow of Fig. 2a in a view rotated by 90 °.
  • In Fig. 1 ist schematisch eine Desintegrationseinheit mit drei Düsen im Eintragbereich einer Verdüsungskammer schematisch dargestellt. Aus einem metallurgischen Gefäß G erfolgt mittels eines Schmelzendüsenkörpers D ein Eintrag von Metall unter Formung eines Schmelzenstromes S, der über eine Wegstrecke LS im wesentlichen senkrecht freifallend ausgebildet ist. Durch eine erste Gasdüse A wird ein erster Gastrahl 1 gebildet, der in einem Abstand LA den Schmelzenstrom S im Bereich 11 mit einer gleichen Richtungskomponente, jedoch mit einem Winkel α' beaufschlagt. Durch diese Beaufschlagung mit einem ersten Gasstrahl 1 erfolgen im Bereich des Auftreffpunktes 11 beginnend eine Umlenkung bzw. eine Fließrichtungsänderung des kompakten Schmelzenstromes S und dessen Dünnung und Breitung unter Ausformung eines Flachschmelzenstromes FS.1 shows schematically a disintegration unit with three nozzles in the entry area of a spray chamber. Metal is introduced from a metallurgical vessel G by means of a melt nozzle body D to form a melt stream S, which is designed to fall essentially vertically over a distance L S. A first gas jet 1 is formed by a first gas nozzle A, which acts at a distance L A on the melt stream S in the region 11 with the same directional component but with an angle α '. As a result of this application of a first gas jet 1, a deflection or a change in the direction of flow of the compact melt stream S and its thinning and spreading take place in the region of the impingement point 11, with the formation of a flat melt stream FS.

    Mittels einer Düse B wird ein zweiter Gasstrahl 2 erstellt, welcher den Metallschmelzenstrom FS nach einer Breitungsstrecke desselben in einem Auftreffpunkt 21 mit einer gleichen Richtungskomponente, jedoch mit einem Winkel δ beaufschlagt.By means of a nozzle B, a second gas jet 2 is created, which Metal melt flow FS after a spreading section of the same in one Impact point 21 with the same directional component, but with an angle δ applied.

    Eine Gasdüse C, die vorzugsweise als Lavaldüse ausgebildet ist, erstellt einen Gasstrahl 3, welcher den Flachschmelzenstrom FS in einem Abstand LC zur Düse C in einem Umlenk,- Auftreff- oder Zerstäubungspunkt 31 unter einem Winkel ' beaufschlagt und in der Folge dessen Zerteilung in einen Metallpartikelstrom P bewirkt. Die Beaufschlagung des Flachschmelzenstromes FS durch den Gasstrahl 3 kann schräg bis teilweise gegengerichtet erfolgen.A gas nozzle C, which is preferably designed as a Laval nozzle, creates a gas jet 3, which acts on the flat melt stream FS at a distance L C from the nozzle C in a deflection, impact or atomization point 31 at an angle 'and subsequently divides it into causes a metal particle flow P. The application of the flat melt flow FS by the gas jet 3 can take place obliquely to partially in the opposite direction.

    Es können auch mehr als drei unterschiedlich ausgerichtete Gasstrahlen und/oder mehrere Gasstrahlen in einer jeweils vorgesehenen Richtung erfindungsgemäß vorgesehen sein.There can also be more than three differently oriented gas jets and / or several gas jets in a direction provided according to the invention be provided.

    Fig. 2a und 2b zeigen einen Schmelzenstrom S jeweils in Ansicht aus zwei um 90° versetzten Richtungen ( Aufriß und Kreuzriß) schematisch. Aus einem Schmelzendüsenkörper D erfolgt im wesentlichen vertikal ein Eintrag eines Schmelzenstromes S in eine Desintegrationseinheit einer Verdüsungskammer. Der Schmelzenstrom S mit einem Durchmesser S1 wird nach einer Freifallstrecke in einem Auftreffpunkt 11 von einem Gasstrahl 1 beaufschlagt und dadurch, wie aus Fig. 2b zu ersehen ist, mit einem Winkel α umgelenkt und gedünnt sowie, wie in Fig. 2a dargestellt ist, zu einem Flachstrom FS gebreitet. Nach einem Erlangen einer Breite S2 erfolgt eine Beaufschlagung des Flachschmelzenstromes FS durch einen Hochleistungsgasstrahl 3 in einem Umlenk,- Auftreff- oder Zerstäubungspunkt 31, welcher Strahl eine Ausbildung eines Metallpartikelstromes P bewirkt. Im Bereich des Zerstäubungspunktes 31 oder vorgeordnet wird der Flachschmelzenstrom FS mit einem Gasstrahl 2, der in einem Punkt 21 am Flachstrom FS auftrifft, beaufschlagt und geformt, wobei auch eine Strömungsrichtungsänderung des Metallstromes bewirkt werden kann.2a and 2b schematically show a melt stream S, each in a view from two directions offset by 90 ° (elevation and cross-section). A melt stream S is introduced essentially vertically from a melt nozzle body D into a disintegration unit of a spray chamber. The melt stream S with a diameter S 1 is acted upon by a gas jet 1 after a free-fall section at a point of impact 11 and, as can be seen from FIG. 2 b, is thereby deflected and thinned with an angle α and, as shown in FIG. 2 a, spread to a flat current FS. After a width S 2 has been reached , the flat melt flow FS is acted upon by a high-performance gas jet 3 in a deflection point, impingement or atomization point 31, which jet causes a metal particle flow P to be formed. In the area of the atomization point 31 or upstream, the flat melt stream FS is acted upon and shaped by a gas jet 2 which strikes the flat stream FS at a point 21, it also being possible to change the flow direction of the metal stream.

    Erfindungsgemäß kann es auch möglich sein, daß durch mindestens drei Gasstrahlen, die eine richtungsgleiche Komponente aufweisen, ein Schmelzenstrom in einer Folge beaufschlagt und zu einem Metallpartikelstrom zerteilt wird.According to the invention, it may also be possible for at least three Gas jets that have a component of the same direction, a melt stream is acted upon in a sequence and divided into a metal particle stream.

    Claims (14)

    1. A method of producing metallic powder from such melts, wherein a flow of melt issuing from a nozzle member of a metallurgical tank (G) is separated into droplets in an atomization chamber by gas jets and the said droplets are allowed to solidify to form substantially spherical grains of powder, characterized in that the flow (S) of melt issuing substantially vertically out of the nozzle member (D) for the melt is acted upon at least in part by at least three gas jets (1, 2, 3) following in succession and in different directions in each case.
    2. A method according to Claim 1, characterized in that the flow (S) of melt issuing out of the nozzle member (D) for the melt is deflected in its flow direction and is widened or thinned and/or separated by means of at least one first gas jet (1), after which at least one second gas jet (2) having an equal direction component and striking in an oblique manner treats the widened and/or separated flat flow (FS) of melt in its shape and builds up a suction barrier for the nozzle or nozzles (C) of at least one third gas jet (3) which is situated downstream and which, directed in a manner oblique to partially contrary to the flat flow (FS) of melt treated, is produced as a high-speed gas jet and results in a fine distribution or atomization of the liquid jet to form droplets (P), which metallic droplets are subsequently allowed to solidify.
    3. A method according to Claim 1 or 2, characterized in that the flow of melt (S) with a diameter (S1) of 2·0 mm to 15·0 mm is deflected at an angle (α) of between 5° and 85°, preferably between 15° and 30°, in its flow direction by means of at least one first gas jet (1) and is widened substantially in sector shapes to form a flat flow (FS) of melt.
    4. A method according to one of Claims 2 or 3, characterized in that after the sector-shaped flat flow (FS) of melt reaches a width (S2) - caused by the first gas jet (1) - of at least 5 times, preferably at least 10 times, the free-falling width or thickness (S1) of the flow of melt, it is deflected at an angle (γ) of between 25° and 150°, preferably between 60° and 90°, by at least one third gas jet (3) which is formed as a high-speed gas jet, and it is atomized or is separated into a flow of droplets (P).
    5. A method according to one of Claims 2 to 4, characterized in that upstream of or in the region (31) of the deflexion or atomization by the third high-speed gas jet (3) the flat flow (FS) of melt is acted upon and treated by a gas jet (2), having an equal direction component, but at an angle (δ) of between 5° and 85°, preferably between 15° and 30°, to the latter, as a result of which eddying swirls of the high-speed gas jet (3) conveying melt droplets are prevented.
    6. A device for producing metallic powder from metallic melts, essentially comprising an atomization chamber, into which a flow (S) of metallic melt can be introduced or charged from a metallurgical tank (G) by means of a nozzle member (D) for the melt, a disintegration unit arranged on the charging side of the said chamber and with gas nozzles for acting upon the flow (S) of melt by gas jets in order to separate the said flow to form droplets, a solidification chamber provided on the discharge side for cooling the droplets and forming grains of powder, as well as powder-treatment devices arranged downstream, characterized in that the disintegration unit comprises at least three gas nozzle members (A, B, C), the gas jets (1, 2, 3) of which are in each case orientated in an operational sequence at an angle of between 5° and 170° towards the flow of melt (S) introduced and towards the flow (FS) of melt set in one direction and shaped by the gas jet situated upstream in each case.
    7. A device according to Claim 6, characterized in that the first gas nozzle member (A) is arranged in such a way that the first gas jet (1), having an equal direction component, is directed onto the flow of melt (S) at an angle (α') of between 5° and 85°, preferably at an angle (α') of between 15° and 30°, and the length (LS ) of the free-falling flow (S) of melt is increased or reduced by a value which amounts at most to 10 times the diameter (D1) of the flow of melt, in accordance with the longitudinal dimension: the distance (LA) of the gas member (A) from the point of impact (11) of the gas jet (1) on the flow of melt (S). LS = (LA ± 10 × D1)
    8. A device according to Claim 6 or 7, characterized in that the second nozzle member (B) is arranged in such a way that the second gas jet (2) in the operational sequence is directed at an angle (δ) of between 5° and 85°, preferably at an angle (δ) of between 15° and 30°, onto the flat flow (FS) of melt widened and thinned by the first gas jet (1) situated upstream, and the point of impact (21) of the said second gas jet (2) is situated in the region of or upstream of the point of deflexion, impact or atomization (31) of the third gas jet (3) situated downstream.
    9. A device according to one of Claims 6 to 8, characterized in that the third nozzle member (C) is arranged in such a way that a third gas jet (3) or a last gas jet (3) in the operational sequence formed as a high-speed gas jet is directed at an angle (γ') of between 25° and 150°, preferably of more than 60°, onto the flat flow (FS) of melt, and the distance (LC) between the gas nozzle or nozzles (C) and the point of deflexion, impact or atomization (31) is less than 20 times the value of the diameter of the gas nozzle or nozzles.
    10. A device according to one of Claims 6 to 8, characterized in that at least the third nozzle member (C) or the last nozzle member (C) in the operational sequence is designed in order to produce at least one supersonic gas jet (3).
    11. A device according to one of Claims 6 to 10, characterized in that, in order to produce gas jets which can be directed onto the flow (S, FS) of melt, more than two gas nozzle members are arranged in front of the last gas nozzle member (C) which can be used in order to form a high-speed gas jet (3).
    12. A device according to one of Claims 6 to 11, characterized in that the gas jets can be adjusted in their direction and their intensity in each case.
    13. A device according to one of Claims 6 to 12, characterized in that at least one gas jet is formed as a flat jet or as a multiple jet by the arrangement of a plurality of nozzles positioned adjacent and/or, in particular, in an interposed manner one above the other.
    14. A device according to one of Claims 6 to 13, characterized in that the plane defined by the gas jets diverges from the vertical.
    EP20000890013 1999-01-19 2000-01-18 Process and apparatus for preparing metal powder by gas atomisation Expired - Lifetime EP1022078B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    AT0007099A AT409235B (en) 1999-01-19 1999-01-19 METHOD AND DEVICE FOR PRODUCING METAL POWDER
    AT7099 1999-01-19

    Publications (3)

    Publication Number Publication Date
    EP1022078A2 EP1022078A2 (en) 2000-07-26
    EP1022078A3 EP1022078A3 (en) 2003-05-07
    EP1022078B1 true EP1022078B1 (en) 2004-10-27

    Family

    ID=3480743

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP20000890013 Expired - Lifetime EP1022078B1 (en) 1999-01-19 2000-01-18 Process and apparatus for preparing metal powder by gas atomisation

    Country Status (9)

    Country Link
    US (3) US6334884B1 (en)
    EP (1) EP1022078B1 (en)
    JP (1) JP4171955B2 (en)
    AT (2) AT409235B (en)
    DE (1) DE50008367D1 (en)
    DK (1) DK1022078T3 (en)
    ES (1) ES2231150T3 (en)
    SI (1) SI1022078T1 (en)
    UA (1) UA61959C2 (en)

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT409235B (en) * 1999-01-19 2002-06-25 Boehler Edelstahl METHOD AND DEVICE FOR PRODUCING METAL POWDER
    AT408990B (en) * 2000-08-16 2002-04-25 Holderbank Financ Glarus DEVICE FOR SPRAYING LIQUID MEDIA, IN PARTICULAR LIQUID MELT
    AT411580B (en) * 2001-04-11 2004-03-25 Boehler Edelstahl METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF OBJECTS
    AT411230B (en) * 2001-10-10 2003-11-25 Claes Dipl Ing Tornberg Producing surface-fissured, irregular metal powder comprises diverting stream of molten metal three times using stream of gas or liquid, breaking it into droplets and then solidifying them
    JP4328204B2 (en) * 2001-10-10 2009-09-09 トルンベルグ、クラエス Method for producing metal powder composed of irregular particles
    AT412328B (en) * 2002-04-03 2005-01-25 Claes Dipl Ing Tornberg Producing surface-fissured, irregular metal powder comprises diverting stream of molten metal three times using stream of gas or liquid, breaking it into droplets and then solidifying them
    DE10205897A1 (en) * 2002-02-13 2003-08-21 Mepura Metallpulver Process for the production of particulate material
    US7744808B2 (en) * 2007-12-10 2010-06-29 Ajax Tocco Magnethermic Corporation System and method for producing shot from molten material
    CH705750A1 (en) 2011-10-31 2013-05-15 Alstom Technology Ltd A process for the production of components or portions, which consist of a high-temperature superalloy.
    EP2700459B1 (en) 2012-08-21 2019-10-02 Ansaldo Energia IP UK Limited Method for manufacturing a three-dimensional article
    EP2737965A1 (en) * 2012-12-01 2014-06-04 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
    US9981315B2 (en) * 2013-09-24 2018-05-29 Iowa State University Research Foundation, Inc. Atomizer for improved ultra-fine powder production
    KR101536454B1 (en) 2013-12-20 2015-07-13 주식회사 포스코 Powder producing device and powder producing method
    CA3054191C (en) * 2015-07-17 2023-09-26 Ap&C Advanced Powders And Coatings Inc. Plasma atomization metal powder manufacturing processes and systems therefor
    KR102544904B1 (en) * 2015-10-29 2023-06-16 에이피앤드씨 어드밴스드 파우더스 앤드 코팅스 인크. Metal powder atomization manufacturing process
    KR102475050B1 (en) 2016-04-11 2022-12-06 에이피앤드씨 어드밴스드 파우더스 앤드 코팅스 인크. Reactive Metal Powder Air Thermal Treatment Processes
    WO2018035599A1 (en) * 2016-08-24 2018-03-01 5N Plus Inc. Low melting point metal or alloy powders atomization manufacturing processes
    US11185919B2 (en) 2018-01-12 2021-11-30 Hammond Group, Inc. Methods and systems for forming mixtures of lead oxide and lead metal particles
    EP3752304B1 (en) 2018-02-15 2023-10-18 5n Plus Inc. High melting point metal or alloy powders atomization manufacturing processes
    JP7335321B2 (en) 2018-04-04 2023-08-29 メタル パウダー ワークス, エルエルシー Systems and methods for powder manufacturing

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1227274A (en) * 1958-01-17 1960-08-19 Kohlswa Jernverks Ab Improvements to processes and devices for pulverizing or decomposing solid materials
    US2968062A (en) 1959-03-23 1961-01-17 Federal Mogul Bower Bearings Atomizing nozzle and pouring cup assembly for the manufacture of metal powders
    NL270569A (en) * 1960-10-24
    GB1272229A (en) * 1968-11-27 1972-04-26 British Iron Steel Research Improvements in and relating to the treatment of molten material
    US3752611A (en) * 1969-06-18 1973-08-14 Republic Steel Corp Apparatus for producing metal powder
    SE421758B (en) 1970-11-11 1982-02-01 Uddeholms Ab DEVICE according to Swedish Patent 6916675-9 FOR GRANULATION OF MELTED METAL
    US4272463A (en) 1974-12-18 1981-06-09 The International Nickel Co., Inc. Process for producing metal powder
    JPS5172906A (en) * 1974-12-23 1976-06-24 Hitachi Metals Ltd Tankabutsuo fukashitakosokudokoguko
    US4382903A (en) 1978-07-21 1983-05-10 Asea Aktiebolag Method for manufacturing a metal powder by granulation of a metal melt
    DE3369793D1 (en) * 1983-07-12 1987-03-19 Recuperation Metallurg C I R M Process for obtaining granules from steelwork slag
    DE3675955D1 (en) * 1985-02-18 1991-01-17 Nat Res Dev METHOD FOR DISTRIBUTING LIQUIDS TO SUBSTRATA.
    GB8527852D0 (en) * 1985-11-12 1985-12-18 Osprey Metals Ltd Atomization of metals
    US4905899A (en) * 1985-11-12 1990-03-06 Osprey Metals Limited Atomisation of metals
    SE461848B (en) 1987-12-09 1990-04-02 Hg Tech Ab PROCEDURE FOR ATOMIZATION OF SCIENCES AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
    AT395230B (en) * 1989-11-16 1992-10-27 Boehler Gmbh METHOD FOR PRODUCING PRE-MATERIAL FOR WORKPIECES WITH A HIGH PROPORTION OF METAL CONNECTIONS
    US5238482A (en) * 1991-05-22 1993-08-24 Crucible Materials Corporation Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same
    US5993509A (en) * 1996-11-19 1999-11-30 Nat Science Council Atomizing apparatus and process
    US6142382A (en) * 1997-06-18 2000-11-07 Iowa State University Research Foundation, Inc. Atomizing nozzle and method
    AT409235B (en) * 1999-01-19 2002-06-25 Boehler Edelstahl METHOD AND DEVICE FOR PRODUCING METAL POWDER
    AT411580B (en) * 2001-04-11 2004-03-25 Boehler Edelstahl METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF OBJECTS

    Also Published As

    Publication number Publication date
    UA61959C2 (en) 2003-12-15
    ES2231150T3 (en) 2005-05-16
    EP1022078A3 (en) 2003-05-07
    EP1022078A2 (en) 2000-07-26
    SI1022078T1 (en) 2005-06-30
    US7198657B2 (en) 2007-04-03
    DE50008367D1 (en) 2004-12-02
    JP2000212608A (en) 2000-08-02
    US20040031354A1 (en) 2004-02-19
    DK1022078T3 (en) 2005-03-14
    US6632394B2 (en) 2003-10-14
    US6334884B1 (en) 2002-01-01
    JP4171955B2 (en) 2008-10-29
    AT409235B (en) 2002-06-25
    ATA7099A (en) 2001-11-15
    ATE280649T1 (en) 2004-11-15
    US20010054784A1 (en) 2001-12-27

    Similar Documents

    Publication Publication Date Title
    EP1022078B1 (en) Process and apparatus for preparing metal powder by gas atomisation
    DE1958610C3 (en) Method and device for disintegrating or atomizing a free-falling stream of liquid
    DE2452684C2 (en) Method and device for uniformly distributing a stream of atomized particles on a substrate
    DE3901674A1 (en) DEVICE AND METHOD FOR SPRAYING LIQUID MATERIALS
    EP2347180A1 (en) Two-component nozzle, bundle nozzle and method for atomizing fluids
    DE69701877T2 (en) METHOD AND DEVICE FOR THERMAL SPRAYING
    DE3505659A1 (en) MELT SPRAYING WITH REDUCED GAS FLOW AND DEVICE FOR SPRAYING
    EP2879805B1 (en) Nozzle arrangement
    EP1047504A1 (en) Slit nozzle for spraying a continuous casting product with a cooling liquid
    DE102006009147A1 (en) Dual nozzle has mixing chamber, and ring is arranged by secondary air nozzles around mouth of main nozzle
    DE3116660A1 (en) "AIR SPRAYER SPRAY NOZZLE"
    WO2007080084A1 (en) Two-component nozzle
    DE10319481A1 (en) Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour
    EP1042093B1 (en) Method and device for producing fine powder by atomizing molten materials with gases
    DE69518670T2 (en) IMPROVEMENT TO LIQUID DELIVERY DEVICES
    DE3883256T2 (en) DEVICE AND METHOD FOR ATOMIZING LIQUIDS, IN PARTICULAR MELTED METALS.
    DE2555715A1 (en) METHOD AND DEVICE FOR POWDER PRODUCTION BY SPRAYING A MOLTEN MATERIAL
    WO2002004154A1 (en) Method and device for atomizing molten metals
    DE1458080B2 (en) Ring hole nozzle
    DE102019122000A1 (en) Method and device for dividing an electrically conductive liquid
    DE4105154A1 (en) METHOD FOR PRODUCING METAL PARTICLES FROM A METAL MELT BY SPRAYING
    EP0423370A1 (en) Method of treatment with plasma and plasmatron
    EP1560663B1 (en) Ultrasonic standing wave spraying arrangement
    DE3883788T2 (en) DEVICE AND METHOD FOR MICROATOMIZING LIQUIDS, ESPECIALLY MELTING.
    DE69504346T2 (en) METHOD FOR SPRAYING A DISPERSABLE LIQUID

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BOEHLER EDELSTAHL GMBH & CO KG

    17P Request for examination filed

    Effective date: 20030620

    17Q First examination report despatched

    Effective date: 20031125

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AXX Extension fees paid

    Extension state: SI

    Payment date: 20030620

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BOEHLER EDELSTAHL GMBH

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Extension state: SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041027

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041027

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50008367

    Country of ref document: DE

    Date of ref document: 20041202

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20041129

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050118

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050127

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2231150

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: BOHLER EDELSTAHL GMBH

    Effective date: 20050131

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20050728

    BERE Be: lapsed

    Owner name: *BOHLER EDELSTAHL G.M.B.H.

    Effective date: 20050131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050327

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: GACHNANG AG PATENTANWAELTE, CH

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20150129

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20150128

    Year of fee payment: 16

    Ref country code: DK

    Payment date: 20150121

    Year of fee payment: 16

    Ref country code: CH

    Payment date: 20150121

    Year of fee payment: 16

    Ref country code: ES

    Payment date: 20150128

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20150121

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150122

    Year of fee payment: 16

    Ref country code: GB

    Payment date: 20150121

    Year of fee payment: 16

    Ref country code: SE

    Payment date: 20150121

    Year of fee payment: 16

    Ref country code: AT

    Payment date: 20150122

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50008367

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20160131

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 280649

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20160118

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160118

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20160201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160930

    Ref country code: SI

    Ref legal event code: KO00

    Effective date: 20160906

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160131

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160802

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160118

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160201

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160119

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160201

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160118

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160131

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20170306

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160119