EP1017253B1 - Blind source separation for hearing aids - Google Patents
Blind source separation for hearing aids Download PDFInfo
- Publication number
- EP1017253B1 EP1017253B1 EP99310611A EP99310611A EP1017253B1 EP 1017253 B1 EP1017253 B1 EP 1017253B1 EP 99310611 A EP99310611 A EP 99310611A EP 99310611 A EP99310611 A EP 99310611A EP 1017253 B1 EP1017253 B1 EP 1017253B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- input signals
- unmixing
- signals
- microphones
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000000926 separation method Methods 0.000 title claims description 14
- 238000012545 processing Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 13
- 238000007781 pre-processing Methods 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 7
- 230000003044 adaptive effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 3
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 238000012805 post-processing Methods 0.000 claims description 2
- 230000003111 delayed effect Effects 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 230000006978 adaptation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012880 independent component analysis Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 208000032041 Hearing impaired Diseases 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/40—Arrangements for obtaining a desired directivity characteristic
- H04R25/405—Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/40—Arrangements for obtaining a desired directivity characteristic
- H04R25/407—Circuits for combining signals of a plurality of transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2225/00—Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
- H04R2225/43—Signal processing in hearing aids to enhance the speech intelligibility
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/50—Customised settings for obtaining desired overall acoustical characteristics
- H04R25/505—Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
- H04R25/507—Customised settings for obtaining desired overall acoustical characteristics using digital signal processing implemented by neural network or fuzzy logic
Definitions
- the present invention generally relates to electronic filtering for enhancing a desired signal component of a mixed signal, and more specifically to a method and apparatus for real-time unmixing (separation or deconvolving) of a desired signal from a mixture of independent signals, particularly useful, for example, in a hearing aid.
- noise When one is listening to someone or something, "noise" or undesired signals that interfere with the voice or desired signal, are ubiquitous. People with hearing impairment are especially vulnerable to noise. Background conversations, interference from digital devices (mobile telephones), car, or other specific environment noises, can make it very difficult for a hearing impaired person to understand a desired speech signal.
- a reduction in the noise level of a signal, coupled with an automatic focus on a desired signal component, can significantly improve the performance of an electronic voice processor, such as one used in an advanced hearing aid.
- WO 97/11533 discloses a directional acoustic signal processor and EP 0 883 325 discloses a method and processor for processing sounds, suitable for use in association with a hearing aid, which maximizes the signal to noise ratio of a signal from a source in an on-beam direction.
- hearing aids using digital signal processing have been introduced. They contain one or more microphones, analog to digital converters, digital signal processors, and speakers. Usually the digital signal processors divide the incoming signals into several frequency regions using filter banks. Within each of those regions, signal gain and dynamic compression parameters can be individually adjusted in accordance with the requirement for a particular user of the hearing aid, in an attempt to improve intelligibility. Additionally, digital signal processing algorithms for feedback reduction and noise reduction are available, however they have major limitations. For example, some of the disadvantages of the currently available algorithms for noise reduction are the limited improvement they obtain when speech and background noise are in the same frequency region, due to their inability to distinguish between speech and background noise.
- BSS Blind Source Separation
- An electronic filtering device for performing real-time unmixing of a signal desired to be recovered by a user of the device, where the desired signal emanates from one of a plurality of independent signal sources.
- Two microphones positioned along a common axis develop first and second electrical input signals in response to reception by the microphones of acoustic signals from the plurality of independent signal sources.
- the spatial position of the common axis of the microphones is controllable in real time by the user to align the common axis so it points in the direction of the source of the desired signal, thereby imparting an inherent directionality to the input signals.
- An adaptive unmixing signal processor responsive to the input signals develops output signals wherein the desired signal is separated from the mixture signal.
- a preprocessor is provided to enhance the inherent directionality of the input signals by establishing a relative time delay therebetween. Furthermore, the preprocessor may subject the enhanced input signals to a decorrelation processing before their application to the unmixing signal processor.
- a selected output of the unmixing signal processor can be applied as an input to a speaker for reproduction, or can be further processed for signal enhancement by an additional processor before reproduction.
- FIG. 1 illustrates in block diagram form an application of the invention for use in hearing aids.
- a hearing aid 10 includes two microphones 12 and 14 for developing two input signals 1 and 2, respectively.
- the microphones are mounted in the hearing aid such that a common axis of their positioning always extends substantially in the direction in which the wearer of the hearing aid looks when being attentive to a signal source such as a voice.
- This microphone positioning imparts an inherent directionality to input signals 1 and 2. Since each microphone develops electrical signals representative of the acoustic waves received thereby from sound sources within it's operating range, each input signal may comprise a mixture of unknown signals from an unknown number of signal sources.
- Input signals 1 and 2 are processed in three main stages.
- the input signals are preprocessed for enhancing the inherent directionality already imparted thereto by their positioning.
- the resulting signals are subjected to an unmixing processing (sometimes referred to as separation processing), which is designed to produce estimates of the original unknown signals picked-up by microphones 12 and 14.
- the outputs of the unmixing processing are preferably postprocessed to produce the desired signal 22, which can then be applied to a speaker 24 of the hearing aid 10 for reproduction and presentation to a user.
- preprocessing stage 16 begins with normalization of the raw input signals.
- Automatic Gain Control is used to normalize input signals 1 and 2 to a [-1,+1] range.
- preprocessing stage 16 in order to adapt a blind source separation (BSS) technique for use in a device as small as a hearing aid, and to have it operate in real-time, preprocessing stage 16 also provides at least the first, and preferably both of the following additional processing:
- the window D comprised 16,000 samples.
- the above described preprocessing facilitates the subsequent BSS processing to arrive at a solution in a shorter time than if the preprocessing was not provided, and furthermore, increases the probability that the BSS processing will arrive at a valid solution instead of a local minimum.
- Figure 3 illustrates the principles of the operation of a BSS algorithm upon which the unmixing or separation of the desired component from the input signals is based.
- the technique is called Blind Source Separation because it makes few assumptions about the type of signals present in the mixture.
- BSS processing is intended to recover the set of n unknown source signals from a set of their mixtures, assuming that the n source signals are independent. More specifically, as shown in Figure 3 , if s is a vector of n sources, and x is a vector of m observations of those sources (i.e., the raw input signals from the m microphones), the goal of a BSS processor is to discover the m by n mixing matrix A:
- the sources s (s 1 , s 2 ) and the environment-dependent mixing matrix A are unknown.
- FIG. 4 illustrates a block diagram of the main components of a BSS processor 400.
- BSS processor 400 comprises: an unmixing component 402 for recording and updating the state of the unmixing process defined by parameters W and v; a nonlinear component 404 for generating statistics used in the adaptation process; and an adaptation component 406 for computing changes in the values of the unmixing parameters, ⁇ W and ⁇ v.
- the BSS processor 400 continuously adapts two state variables: the 2 by 2 unmixing matrix W, and the 2 by 1 bias vector b .
- the nonlinear component 404 transforms the output of the system using an invertible mapping.
- the objective of component 404 is to avoid processing very large numeric values of the outputs, which may be infinities from a computational point of view. This objective is carried out by processing statistically equivalent quantities, obtained after running the outputs z through the invertible mapping.
- the adaptation component 406 determines changes in the unmixing parameters W and v: i.e., ⁇ W and ⁇ v.
- the objective is to maximize the mutual information that the outputs y contain about the inputs x , as well known to those skilled in this technology, and as described, for example by A.J. Bell and T.J. Sejnowski in their article entitled "An information-maximization approach to blind separation and blind deconvolution" published in Neural Computation, 7:1129-1159, 1995, and as also described in Bell's US patent 5,706,402 .
- a typical value for the learning rate ⁇ is 0.005.
- unmixer 18 is the postprocessing step 20, wherein a determination is made of which output estimate of unmixer 18 is more likely to represent voice rather than noise, as well as a normalization of the power of the outputs by scaling them to the level of the input powers.
- the output signal section can be based on multiple criteria using, for example, voice specific feature extraction and analysis, and/or dominant speaker detection, which can also be accomplished using feature extraction and analysis.
- the BSS processing is applied for use in hearing aids.
- the inputs to the system are given by two microphones which, with the present invention, can be situated very close to one another.
- the present invention addresses the following problems:
- teaching of the present invention can be extremely useful for interference cancellation, separation of one voice from a mixture of many voices ("cocktail party" problem), and for preprocessing sound mixtures for noise reduction in order to allow further processing of a desired sound signal. x . All such changes, modifications, variations and other uses and applications which do not depart from the teachings herein are deemed to be covered by this patent, which is limited only by the claims which follow as interpreted in light of the foregoing description.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Neurosurgery (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US22348598A | 1998-12-30 | 1998-12-30 | |
| US223485 | 1998-12-30 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1017253A2 EP1017253A2 (en) | 2000-07-05 |
| EP1017253A3 EP1017253A3 (en) | 2003-03-26 |
| EP1017253B1 true EP1017253B1 (en) | 2012-10-31 |
Family
ID=22836713
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP99310611A Revoked EP1017253B1 (en) | 1998-12-30 | 1999-12-24 | Blind source separation for hearing aids |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP1017253B1 (da) |
| CN (1) | CN1261759A (da) |
| DK (1) | DK1017253T3 (da) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3849215A1 (en) | 2020-01-10 | 2021-07-14 | Sonova AG | Dual wireless audio streams transmission allowing for spatial diversity or own voice pickup (ovpu) |
| US11083031B1 (en) | 2020-01-10 | 2021-08-03 | Sonova Ag | Bluetooth audio exchange with transmission diversity |
| US11134349B1 (en) | 2020-03-09 | 2021-09-28 | International Business Machines Corporation | Hearing assistance device with smart audio focus control |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DK1196009T3 (da) * | 2000-10-04 | 2016-11-28 | Widex As | Høreapparat med adaptiv matching af input-transducere |
| US6741714B2 (en) * | 2000-10-04 | 2004-05-25 | Widex A/S | Hearing aid with adaptive matching of input transducers |
| US7277554B2 (en) * | 2001-08-08 | 2007-10-02 | Gn Resound North America Corporation | Dynamic range compression using digital frequency warping |
| AU2003206666A1 (en) * | 2002-01-12 | 2003-07-24 | Oticon A/S | Wind noise insensitive hearing aid |
| US6711528B2 (en) * | 2002-04-22 | 2004-03-23 | Harris Corporation | Blind source separation utilizing a spatial fourth order cumulant matrix pencil |
| ATE373940T1 (de) * | 2002-12-20 | 2007-10-15 | Oticon As | Mikrofonsystem mit richtansprechverhalten |
| ATE324763T1 (de) | 2003-08-21 | 2006-05-15 | Bernafon Ag | Verfahren zur verarbeitung von audiosignalen |
| ATE402586T1 (de) | 2003-09-19 | 2008-08-15 | Widex As | Verfahren zur steuerung der richtcharakteristik eines hörgeräts und signalverarbeitungsvorrichtung für ein hörgerät mit steuerbarer richtcharakteristik |
| DE10351509B4 (de) | 2003-11-05 | 2015-01-08 | Siemens Audiologische Technik Gmbh | Hörgerät und Verfahren zur Adaption eines Hörgeräts unter Berücksichtigung der Kopfposition |
| DE102005032274B4 (de) † | 2005-07-11 | 2007-05-10 | Siemens Audiologische Technik Gmbh | Hörvorrichtung und entsprechendes Verfahren zur Eigenstimmendetektion |
| US8139787B2 (en) | 2005-09-09 | 2012-03-20 | Simon Haykin | Method and device for binaural signal enhancement |
| DK2077059T3 (da) | 2006-10-10 | 2017-11-27 | Sivantos Gmbh | Fremgangsmåde til drift af en hørehjælpeindretning samt en hørehjælpeindretning |
| DE102006047982A1 (de) | 2006-10-10 | 2008-04-24 | Siemens Audiologische Technik Gmbh | Verfahren zum Betreiben einer Hörfilfe, sowie Hörhilfe |
| EP1912472A1 (de) * | 2006-10-10 | 2008-04-16 | Siemens Audiologische Technik GmbH | Verfahren zum Betreiben einer Hörhilfe, sowie Hörhilfe |
| WO2008043758A1 (de) * | 2006-10-10 | 2008-04-17 | Siemens Audiologische Technik Gmbh | Verfahren zum betreiben einer hörhilfe, sowie hörhilfe |
| DE102006047983A1 (de) * | 2006-10-10 | 2008-04-24 | Siemens Audiologische Technik Gmbh | Verarbeitung eines Eingangssignals in einem Hörgerät |
| DE102006047986B4 (de) * | 2006-10-10 | 2012-06-14 | Siemens Audiologische Technik Gmbh | Verarbeitung eines Eingangssignals in einem Hörgerät |
| US8767975B2 (en) | 2007-06-21 | 2014-07-01 | Bose Corporation | Sound discrimination method and apparatus |
| US8611554B2 (en) * | 2008-04-22 | 2013-12-17 | Bose Corporation | Hearing assistance apparatus |
| CN102428716B (zh) * | 2009-06-17 | 2014-07-30 | 松下电器产业株式会社 | 助听器装置 |
| DE102009043775A1 (de) | 2009-09-30 | 2011-04-07 | Siemens Medical Instruments Pte. Ltd. | Verfahren zum Einstellen einer Hörvorrichtung anhand eines emotionalen Zustandes und entsprechende Hörvorrichtung |
| US9078077B2 (en) | 2010-10-21 | 2015-07-07 | Bose Corporation | Estimation of synthetic audio prototypes with frequency-based input signal decomposition |
| CN103517941A (zh) | 2011-05-06 | 2014-01-15 | 莱茵化学莱瑙有限公司 | 新颖的基于多羟基烷酸酯(pha)的持久水解稳定的生物基塑料、其生产方法及其用途 |
| DE102016225207A1 (de) * | 2016-12-15 | 2018-06-21 | Sivantos Pte. Ltd. | Verfahren zum Betrieb eines Hörgerätes |
| CN108597531B (zh) * | 2018-03-28 | 2021-05-28 | 南京大学 | 一种通过多声源活动检测来改进双通道盲信号分离的方法 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0883325A2 (en) * | 1997-06-02 | 1998-12-09 | The University Of Melbourne | Multi-strategy array processor |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6002776A (en) * | 1995-09-18 | 1999-12-14 | Interval Research Corporation | Directional acoustic signal processor and method therefor |
| US5757933A (en) * | 1996-12-11 | 1998-05-26 | Micro Ear Technology, Inc. | In-the-ear hearing aid with directional microphone system |
-
1999
- 1999-12-24 DK DK99310611T patent/DK1017253T3/da active
- 1999-12-24 EP EP99310611A patent/EP1017253B1/en not_active Revoked
- 1999-12-30 CN CN 99127435 patent/CN1261759A/zh active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0883325A2 (en) * | 1997-06-02 | 1998-12-09 | The University Of Melbourne | Multi-strategy array processor |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3849215A1 (en) | 2020-01-10 | 2021-07-14 | Sonova AG | Dual wireless audio streams transmission allowing for spatial diversity or own voice pickup (ovpu) |
| US11083031B1 (en) | 2020-01-10 | 2021-08-03 | Sonova Ag | Bluetooth audio exchange with transmission diversity |
| US11134350B2 (en) | 2020-01-10 | 2021-09-28 | Sonova Ag | Dual wireless audio streams transmission allowing for spatial diversity or own voice pickup (OVPU) |
| US11134349B1 (en) | 2020-03-09 | 2021-09-28 | International Business Machines Corporation | Hearing assistance device with smart audio focus control |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1261759A (zh) | 2000-08-02 |
| DK1017253T3 (da) | 2013-02-11 |
| EP1017253A3 (en) | 2003-03-26 |
| EP1017253A2 (en) | 2000-07-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1017253B1 (en) | Blind source separation for hearing aids | |
| US10535362B2 (en) | Speech enhancement for an electronic device | |
| US9456275B2 (en) | Cardioid beam with a desired null based acoustic devices, systems, and methods | |
| US7383178B2 (en) | System and method for speech processing using independent component analysis under stability constraints | |
| EP1509065B1 (en) | Method for processing audio-signals | |
| US20030061032A1 (en) | Selective sound enhancement | |
| EP2211563B1 (en) | Method and apparatus for blind source separation improving interference estimation in binaural Wiener filtering | |
| US20030185411A1 (en) | Single channel sound separation | |
| EP1018854A1 (en) | A method and a device for providing improved speech intelligibility | |
| Doclo et al. | Extension of the multi-channel Wiener filter with ITD cues for noise reduction in binaural hearing aids | |
| Hoang et al. | Multichannel speech enhancement with own voice-based interfering speech suppression for hearing assistive devices | |
| US8737652B2 (en) | Method for operating a hearing device and hearing device with selectively adjusted signal weighing values | |
| US20210029473A1 (en) | Assistive listening device and human-computer interface using short-time target cancellation for improved speech intelligibility | |
| D'Olne et al. | Model-based beamforming for wearable microphone arrays | |
| KR20060085392A (ko) | 어레이 마이크 시스템 | |
| Shanmugapriya et al. | Evaluation of sound classification using modified classifier and speech enhancement using ICA algorithm for hearing aid application | |
| Baumann et al. | Beamforming-based convolutive source separation | |
| Matsuoka et al. | Independent component analysis and its applications to sound signal separation | |
| Pan et al. | Combined spatial/beamforming and time/frequency processing for blind source separation | |
| Makino et al. | ICA-based blind source separation of sounds | |
| Abraham et al. | Current Strategies for Noise Reduction in Hearing Aids-A Review. | |
| De Vries et al. | Towards SNR-loss restoration in digital hearing aids | |
| Kawamoto et al. | Real world blind separation of convolved speech signals | |
| Canagarajah et al. | A single-input hearing aid based on the auditory perceptual features to improve speech intelligibility in noise | |
| SHIELDS et al. | Adaptive processing schemes inspired by binaural unmasking for enhancement of speech corrupted with noise and reverberation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| 17P | Request for examination filed |
Effective date: 20030822 |
|
| AKX | Designation fees paid |
Designated state(s): CH DE DK FR GB LI |
|
| 17Q | First examination report despatched |
Effective date: 20070309 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS CORPORATION |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE DK FR GB LI |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 69944461 Country of ref document: DE Effective date: 20121227 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
| RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH Owner name: SIEMENS CORPORATION |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS CORPORATION, ISELIN, US Free format text: FORMER OWNER: SIEMENS CORPORATE RESEARCH, INC., PRINCETON, N.J., US Effective date: 20121031 Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, DE Free format text: FORMER OWNER: SIEMENS CORPORATION, ISELIN, N.J., US Effective date: 20130121 Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, DE Free format text: FORMER OWNER: SIEMENS CORPORATE RESEARCH, INC., PRINCETON, N.J., US Effective date: 20121031 Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS CORPORATION, ISELIN, US Free format text: FORMER OWNER: SIEMENS CORPORATION, ISELIN, N.J., US Effective date: 20130121 Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS CORPORATION, US Free format text: FORMER OWNER: SIEMENS CORPORATION, ISELIN, US Effective date: 20130121 Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, DE Free format text: FORMER OWNER: SIEMENS CORPORATION, ISELIN, US Effective date: 20130121 Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS CORPORATION, US Free format text: FORMER OWNER: SIEMENS CORPORATE RESEARCH, INC., PRINCETON, US Effective date: 20121031 Ref country code: DE Ref legal event code: R081 Ref document number: 69944461 Country of ref document: DE Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, DE Free format text: FORMER OWNER: SIEMENS CORPORATE RESEARCH, INC., PRINCETON, US Effective date: 20121031 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| 26 | Opposition filed |
Opponent name: OTICON A/S Effective date: 20130731 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: OTICON A/S / GN RESOUND A/S / WIDEX A/S Effective date: 20130731 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 69944461 Country of ref document: DE Effective date: 20130731 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20141208 Year of fee payment: 16 Ref country code: DK Payment date: 20141219 Year of fee payment: 16 |
|
| RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
| APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150220 Year of fee payment: 16 Ref country code: CH Payment date: 20150305 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20141217 Year of fee payment: 16 |
|
| RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIVANTOS GMBH Owner name: SIEMENS CORPORATION |
|
| APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 69944461 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 69944461 Country of ref document: DE |
|
| RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PLX |
|
| 27W | Patent revoked |
Effective date: 20151024 |
|
| GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20151024 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20121031 Ref country code: LI Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20121031 |
|
| RDAC | Information related to revocation of patent modified |
Free format text: ORIGINAL CODE: 0009299REVO |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
| R27W | Patent revoked (corrected) |
Effective date: 20151030 |