EP1014637B1 - Récepteur à conversion directe pour signaux modulés en sauts de fréquence (FSK) - Google Patents

Récepteur à conversion directe pour signaux modulés en sauts de fréquence (FSK) Download PDF

Info

Publication number
EP1014637B1
EP1014637B1 EP98124582A EP98124582A EP1014637B1 EP 1014637 B1 EP1014637 B1 EP 1014637B1 EP 98124582 A EP98124582 A EP 98124582A EP 98124582 A EP98124582 A EP 98124582A EP 1014637 B1 EP1014637 B1 EP 1014637B1
Authority
EP
European Patent Office
Prior art keywords
signal
signals
receiver
frequency
receive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98124582A
Other languages
German (de)
English (en)
Other versions
EP1014637A1 (fr
Inventor
Arnaud Casagrande
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Priority to DE69834407T priority Critical patent/DE69834407T2/de
Priority to EP98124582A priority patent/EP1014637B1/fr
Priority to US09/466,892 priority patent/US6563887B1/en
Priority to JP36691099A priority patent/JP4267786B2/ja
Publication of EP1014637A1 publication Critical patent/EP1014637A1/fr
Application granted granted Critical
Publication of EP1014637B1 publication Critical patent/EP1014637B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • H04L27/152Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using controlled oscillators, e.g. PLL arrangements
    • H04L27/1525Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using controlled oscillators, e.g. PLL arrangements using quadrature demodulation

Definitions

  • the present invention relates to the technical field of receivers that can demodulate electrical signals and, more specifically, direct conversion receivers for frequency hopping modulated signals.
  • patent EP 0,405,676 describes a receiver 1 comprising connected in series an antenna 2, a direct conversion means 3, two limiting amplifiers 28 and 30, a demodulation means 5 and a bistable memory 6.
  • the antenna 2 receives a signal S modulated by frequency hopping and provides this signal.
  • a “frequency hopping modulation” called “FSK modulation” Frequency-Shift Keying
  • FSK modulation Frequency-Shift Keying
  • the references fp and ⁇ f1 respectively denoting a nominal carrier frequency and an offset frequency.
  • the frequencies fp and ⁇ f1 are respectively 400 MHz and 4.5 kHz.
  • the conversion means 3 comprises two mixers 12 and 14, a local oscillator 16, a 90 ° phase-shifter and two low-pass filters 20 and 22.
  • the oscillator 16 provides a frequency fL which is ideally equal to the carrier frequency fp.
  • the mixer 12 (respectively 14) comprises a first input terminal for receiving the signal S, a second input terminal for receiving the frequency fL, and an output terminal connected to the filter 20 (respectively 22).
  • the mixer 14 is connected to the oscillator 16, via the phase-shifter 18.
  • the filter 20 can receive the frequency supplied by the mixer 12 (respectively 14) and, in response, provide a signal I (respectively a signal Q).
  • the I and Q signals represent the real and imaginary parts of a complex signal having a negative frequency (in this case - ⁇ f1) or a positive frequency (in this case + ⁇ f1).
  • Figure 2 of this description depicts two timing diagrams 24 and 26 illustrating the I and Q signals, respectively.
  • the I and Q signals are analog signals having substantially sinusoidal and quadrature phase waveforms. The presence of a phase change of the signal Q is noted, as shown in the timing diagram 26.
  • the limiting amplifiers 28 and 30 may receive the I and Q signals and, in response, provide signals I1 and Q1, respectively. It is recalled that a limiter amplifier receives an input signal, and provides an output signal whose amplitude does not increase substantially beyond a given amplitude of the input signal.
  • FIG. 3A of the present description represents two timing diagrams 32 and 34 illustrating the signals I1 and Q1, respectively. As shown in FIG. 3A, the signals I1 and Q1 are digital signals having waveforms offset from one another and rectangular, the amplitudes of the signals I1 and Q1 being -1 or +1.
  • FIG. 3B shows a curve 80 illustrating the relation between the instantaneous values I1 (t) and Q1 (t) of the signals I1 and Q1 at a time t.
  • the curve 80 has a rectangular shape whose vertices are formed by four points A to D. It is noted that a temporal evolution of these signals results in a path along this curve, so that when the signal Vout is equal to 0 (respectively 1), the signals I1 and Q1 are successively represented by the points A, B, C, D, A ... (respectively A, D, C, B, A ...) , that is to say a course in the trigonometric direction (respectively in the opposite direction in the trigonometric sense).
  • the demodulation means 5 comprises connected in series a differentiator circuit 40 (respectively 42), a multiplier 36 (respectively 38) and a subtractor 39.
  • the multiplier 36 (respectively 38) comprises a first input terminal for receiving the signal Q1 (respectively 11), and a second input terminal for receiving the signal I1 (respectively Q1), via the differentiating circuit 40 ( respectively 42).
  • the multiplier 36 (respectively 38) is arranged to provide the signal X1 (respectively Y1).
  • FIG. 4 of the present description represents two timing diagrams 44 and 46 illustrating the signals X1 and Y1, respectively. As shown in FIG. 4, the signal X1 contains first pulses, and the signal Y1 contains second pulses shifted by compared to the first impulses.
  • the subtracter 39 comprises a first input terminal for receiving the signal X1 and a second input terminal for receiving the signal Y1.
  • the subtractor 39 is arranged to provide a signal X1-Y1 equal to the difference between the signals X1 and Y1.
  • FIG. 5 of the present description represents a timing diagram 48 illustrating the signal X1-Y1. As shown in FIG. 5, the signal X1-Y1 contains the pulses resulting from the difference between the signals X1 and Y1. It is noted that, before the phase change of the signal Q, the signal X1-Y1 contains negative pulses and that this phase change causes the supply of positive pulses.
  • the bistable memory 6 comprises an input terminal for receiving the signal X1-Y1, and an output terminal for providing in response a signal Vout.
  • FIG. 6 of the present description represents a timing diagram 50 illustrating the signal Vout. As shown in FIG. 6, the signal Vout is equal to a level “0" or a level “1". It is noted that, as soon as a positive pulse appears on the signal X1-Y1, the signal Vout switches from level “0" to level "1", and remains at this level, independently of the subsequent difference in frequencies between the signals X1 and Y1.
  • the signals I1 and Q1 are periodic with period T, the signal I1 being in advance on the signal Q1, so that the signal Vout is 0.
  • the signals I1 and Q1 are represented successively by the points A , B, C, D, A ...
  • the signal Q1 becomes equal to 1.
  • a new signal information is present in the signal Q, so that the timing of the signals I1 and Q1 is inverted beyond the instant t01 + T / 2 (that is, the signals I1 and Q1 are represented successively by the points B, A, D, C, B ).
  • the switching of the signal Vout takes place during the next switching of the signal I1 to the level "-1", that is to say at a time t3.
  • this delay is between T / 2 and T, which requires a high ⁇ f / D ratio, the reference ⁇ f designating the offset frequency (equal in this case to Df1) and the reference D designating the bit rate.
  • a disadvantage of receiver 1 is to have a high ⁇ f / D ratio: a bit is typically provided every four periods.
  • US Pat. No. 5,640,428 describes a receiver 90 comprising an antenna 2, a conversion means 3, a demodulation means 92 and a low-pass filter 94. It is noted that The objects of FIG. 7 similar to those described with reference to FIG. 1 have been designated by the same references.
  • the demodulation means 92 comprises four mixers 96 to 99, two holding circuits 100 and 101 and three delay circuits 102 to 104. It is noted that the receiver 90 demodulates an received signal S by the antenna 2, by an analog processing of this signal. However, this processing is performed by digital processing elements (clock signals, flip-flops), like the receiver 1 of FIG.
  • the demodulation means 5 and 92 contain multipliers which are components having a complex structure (in particular two input terminals), that is to say components that are difficult to manufacture. .
  • An object of the present invention is to provide an FSK modulated signal receiver overcoming the aforementioned drawbacks.
  • such a receiver performs instant demodulation based on analog signals.
  • Another object of the present invention is to provide an FSK modulated signal receiver performing the demodulation of received information with a minimum ⁇ f / D ratio (typically less than 1).
  • Another object of the present invention is to provide a modulated signal receiver FSK comprising a demodulation means without multipliers.
  • Another object of the present invention is to provide an FSK modulated signal receiver meeting the criteria of rationality, size and cost, which are traditional in the semiconductor industry.
  • An advantage of the complex filter of such a receiver is that it can be realized by semiconductor components that are simple to manufacture, without multi-input multipliers or mixers, like conventional receivers.
  • Another advantage of the filter of such a receiver is to filter half of the noise from the modulated signal, which significantly reduces the influence of noise on the output signal of the receiver.
  • FIG. 8 represents a receiver 110 according to the present invention comprising an antenna 2, a conversion means 3, a demodulation means 112 and a shaping means 114.
  • the demodulation means 112 comprises a complex filter 116, two normalization means 118 and 120 and an adder 122
  • the complex filter 116 is arranged to receive the analog signals I and Q provided by the conversion means 3, as already described in more detail in relation to FIG. 1.
  • the complex filter 116 is also arranged so that the values of the gain
  • FIG. 9 represents an embodiment of the complex filter 116 comprising two summators 124 and 126, six amplifiers 128, 130, 132, 134, 136 and 138, and two integrators 140 and 142. It is noted that the gains of the amplifiers 128 and 130 are worth fo, that those of the amplifiers 132 and 134 are -1 and that those of the amplifiers 136 and 138 are -fc / fo.
  • the adder 124, the integrator 140 and the amplifier 128 are connected in series, and arranged so that the adder 124 receives the analog signal I and the amplifier 128 provides the signal X3.
  • the adder 124 also receives the signal X3 via the amplifier 132.
  • the adder 126, the integrator 142 and the amplifier 130 are connected in series, and arranged so that the adder 126 receives the signal analog Q and the amplifier 130 provides the signal Y3.
  • the adder 126 also receives the signal Y3 via the amplifier 134.
  • the adder 124 also receives the signal Y3 via the amplifier 136, and the adder 126 also receives the signal X3 by the intermediate of the amplifier 138.
  • the conversion means 3 and the demodulation means 112 are preferably formed by forming components (which can be produced by a CMOS technology), so that the amplitudes of the signals X3 and Y3 are equal.
  • the receiver 110 may comprise two variable gain amplifiers (known per se) connected so that the conversion means 3 supplies the signal I (and the signal Q) by means of demodulation 112 via one of these amplifiers (respectively the other of these amplifiers).
  • FIG. 10 represents a curve 144 illustrating the gain
  • the filter 116 can be considered as a bandpass filter whose cutoff frequencies are fc-fo and fc + fo.
  • FIG. 11 illustrates the relationship between the instantaneous values X 3 (t) and Y 3 (t) of the signals X 3 and Y 3 at a time t.
  • the instantaneous values X3 (t) and Y3 (t) describe a first circle or circle 145 and a second circle or circle 146. It is noted that, in the case where the amplitudes maximum (respectively minimum) of the signals and Q is 1 (respectively -1), the radius of the circle 146 is + G2 and the radius of the circle 145 is + G1.
  • the normalizing means 118 is arranged to receive the analog signal X3 and, in response, to provide a signal representing a signal standard X3.
  • the conversion means 118 are produced by semiconductor components (which can be made in CMOS technology) so that this standard corresponds to the square function.
  • the reference X3 2 designates the signal representing this standard of the signal X3.
  • the normalizing means 120 is arranged to receive the analog signal Y3 and, in response, to provide a signal representing the same standard of the signal Y3.
  • the conversion means 118 is produced by semiconductor components so that this standard corresponds to the square function.
  • the reference Y3 2 designates the signal representing this standard of the signal Y3.
  • the adder 122 is arranged to receive the signals X3 2 and Y3 2 and, in response, to provide a signal X3 2 + Y3 2 representing the sum of the signals X3 2 and Y3 2 . It is noted that the signal X3 2 + Y3 2 is an analog signal.
  • the shaping means 114 is arranged to receive the analog signal X3 2 + Y3 2 and, in response, to provide a digital signal Vo equal to a level "0" (respectively one level “1"), when the signal X3 2 + Y3 2 is lower (respectively higher) than a predetermined threshold.
  • the shaping means 114 are preferably made by forming a threshold comparator, this threshold corresponding to the predetermined threshold and being chosen to be between the values + G1 2 and + G2 2 .
  • FIG. 12 represents six timing diagrams 151 to 156.
  • the conversion means 3 supplies the signals I and Q so that these signals have sinusoidal waveforms of period T (corresponding to the frequency + ⁇ f1) and in phase quadrature, the signal Q being in advance on the I signal.
  • T corresponding to the frequency + ⁇ f1
  • the maximum and minimum amplitudes of the signals and Q is 1.
  • the frequency f of the I and Q signals is + ⁇ f1
  • is + G2, as already described in connection with FIG. 10.
  • the values X3 (t) and Y3 (t) of the signals X3 and Y3 describe the circle 146, that is to say that the signals X3 and Y3 have sinusoidal waveforms at the frequency + ⁇ f1 and in phase quadrature, the signal Y3 being in advance on the signal X3.
  • the signals X3 and Y3 are proportional to the respective signals I and Q, but lagging a period T1 with respect thereto, and having minimum and maximum amplitudes equal to + G2 and -G2, respectively.
  • the normalization means 118 and 120 respectively supply the signals X3 2 and Y3 2 to the adder 122, and the latter supplies in response the signal X3 2 + Y3 2 equal, in this case, to + G2 2 .
  • the shaping means 114 provides in response the signal Vo equal to the level "0".
  • the complex filter 116 provides the signals X3 and Y3 so that the gain
  • the values X3 (t) and Y3 (t) of the signals X3 and Y3 describe the circle 145, that is to say that the signals X3 and Y3 have sinusoidal waveforms at the frequency - ⁇ f1 and in quadrature phase.
  • the signals X3 and Y3 are proportional to the I and Q signals, respectively, and have minimum and maximum amplitudes equal to + G1 and -G1.
  • the normalization means 118 and 120 respectively supply the signals X3 2 and Y3 2 to the adder 122, and the latter supplies in response the signal X3 2 + Y3 2 equal, in this case, to + G1 2 .
  • the shaping means 114 provides in response the signal Vo equal to level "1". It is noted that the transition between the levels "0" and "1" takes place by continuous variations of the signals X3 and Y3 at time t7, as shown in FIG. 11.
  • the antenna 2 receives a signal at the frequency fp + ⁇ f1.
  • the situation is similar to that described for the moment t0.
  • the shaping means 114 provides in response the signal Vo equal to the level "0".
  • the antenna 2 receives a signal at the frequency fp- ⁇ f1.
  • the situation is similar to that described for the moment t5.
  • the shaping means 114 provides in response the signal Vo equal to level "1".
  • the I and Q signals contain information (- ⁇ f1 or + ⁇ f1) coming from the antenna 2, this information is provided at the same time by means of demodulation 112, unlike the conventional receiver 1 in which information is provided by means of conversion 5 only to the next half-cycle (causing a delay equal to T / 2, the reference T designating the period of the signals I1 and Q1, as described with reference to FIGS. 1 to 6).
  • the delay T1 between the instant when the information is provided by the conversion means 3 and the moment when the information is contained in the signal Vo is essentially due to the response time of the complex filter 116, that is to say, the response time of the integrators 140 and 142 of this filter.
  • This is particularly advantageous since several pieces of information can thus be received by the antenna 2 and provided in the form of signal Vo during the same half-cycle (for example at times t6 and t7).
  • the receiver 110 can operate with a low ratio ⁇ f / D (in this example, less than 1), which allows the provision of at least four bits during a period of the Vo signal.
  • H3 (jf) an advantage of the transfer function H3 (jf) is that it makes it possible to demodulate the I and Q signals from an amplitude relation related to the gain
  • receiver 110 Another advantage of the receiver 110 is to be able to demodulate FSK modulated signals with N frequency hops designated ⁇ f 1 , ⁇ f 2 , ... ⁇ f N , without structural modification of this receiver (with the exception of the means of implementation). 114 formed in this case by a comparator N-1 thresholds).
  • FIG. 14 represents the relationship between the instantaneous values X3 (t) and Y3 (t) of the signals X3 and Y3 at a time t, in relation to FIG. 13.
  • the values X3 (t) and Y3 (t) can describe a third circle or circle 169 and a fourth circle or circle 170. It is noted that in the case where the maximum (respectively minimum) amplitudes of the I and Q signals are 1 (respectively -1), the radius of the circle 169 is G3 and the radius of the circle 170 is G4.
  • the normalization means of the receiver according to the present invention can be arranged to provide, as standard, the function "absolute value”, or the function "power 2m", the reference m being a whole number greater than or equal to to 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

  • La présente invention concerne le domaine technique des récepteurs pouvant démoduler des signaux électriques et, plus précisément, des récepteurs à conversion directe pour signaux modulés en sauts de fréquence.
  • En se référant à la figure 1 de la présente description, le brevet EP 0.405.676 décrit un récepteur 1 comprenant connectés en série une antenne 2, un moyen de conversion directe 3, deux amplificateurs limiteurs 28 et 30, un moyen de démodulation 5 et une mémoire bistable 6.
  • L'antenne 2 reçoit un signal S modulé par sauts de fréquence et fournit ce signal. Dans la présente description, on rappelle qu'une « modulation par sauts de fréquence » dite « modulation FSK » (acronyme provenant de l'anglais « Frequency-Shift Keying ») est une modulation permettant la fourniture d'un signal à une fréquence égale à une valeur fp+Δf1 pour transmettre l'un des deux états du signal, et à une autre valeur fp-Δf1 pour transmettre l'autre état, les références fp et Δf1 désignant respectivement une fréquence porteuse nominale et une fréquence de décalage. Pour un débit de données égal à 512 bits/s, les fréquences fp et Δf1 valent respectivement 400 MHz et 4.5 kHz.
  • Le moyen de conversion 3 comprend deux mélangeurs 12 et 14, un oscillateur local 16, un déphaseur de 90 ° et deux filtres passe-bas 20 et 22. L'oscillateur 16 fournit une fréquence fL qui est idéalement égale à la fréquence porteuse fp. Le mélangeur 12 (respectivement 14) comprend une première borne d'entrée pour recevoir le signal S, une deuxième borne d'entrée pour recevoir la fréquence fL, et une borne de sortie connecté au filtre 20 (respectivement 22). En outre, le mélangeur 14 est connecté à l'oscillateur 16, par l'intermédiaire du déphaseur 18. Il résulte de cet agencement que, si la fréquence du signal S vaut fp+Δf1, les fréquences fournies par les mélangeurs 12 et 14 valent respectivement +Δf1 et +Δf1-π/2 et que, si la fréquence du signal S vaut fp-Δf1, les fréquences fournies par les mélangeurs 12 et 14 valent respectivement -Δf1 et -Δf1-π/2. Le filtre 20 (respectivement 22) peut recevoir la fréquence fournie par le mélangeur 12 (respectivement 14) et, en réponse, fournir un signal I (respectivement un signal Q). On rappelle que les signaux I et Q représentent les parties réelle et imaginaire d'un signal complexe ayant une fréquence négative (dans ce cas - Δf1) ou une fréquence positive (dans ce cas +Δf1). La figure 2 de la présente description représente deux chronogrammes 24 et 26 illustrant les signaux I et Q, respectivement. Comme le représente la figure 2, les signaux I et Q sont des signaux analogiques ayant des formes d'ondes sensiblement sinusoïdales et en quadrature phase. On note la présence d'un changement de phase du signal Q, comme l'illustre le chronogramme 26.
  • En se référant à nouveau à la figure 1, les amplificateurs limiteurs 28 et 30 peuvent recevoir les signaux I et Q et, en réponse, fournir des signaux I1 et Q1, respectivement. On rappelle qu'un amplificateur limiteur reçoit un signal d'entrée, et fournit un signal de sortie dont l'amplitude n'augmente pratiquement plus au-delà d'une amplitude déterminée du signal d'entrée. La figure 3A de la présente description représente deux chronogrammes 32 et 34 illustrant les signaux I1 et Q1, respectivement. Comme le représente la figure 3A, les signaux I1 et Q1 sont des signaux numériques ayant des formes d'ondes décalées l'une de l'autre et rectangulaires, les amplitudes des signaux I1 et Q1 valant -1 ou +1.
  • La figure 3B représente une courbe 80 illustrant la relation entre les valeurs instantanées I1(t) et Q1(t) des signaux I1 et Q1 à un instant t. Comme le représente la figure 3B, la courbe 80 a une forme rectangulaire dont les sommets sont formés par quatre points A à D. On note qu'une évolution temporelle de ces signaux se traduit par un parcours le long de cette courbe, de sorte que, quand le signal Vout vaut 0 (respectivement 1), les signaux I1 et Q1 sont représentés successivement par les points A, B, C, D, A... (respectivement A, D, C, B, A...), c'est-à-dire un parcours selon le sens trigonométrique (respectivement selon le sens inverse au sens trigonométrique).
  • En se référant à nouveau à la figure 1, le moyen de démodulation 5 comprend connectés en série un circuit différentiateur 40 (respectivement 42), un multiplicateur 36 (respectivement 38) et un soustracteur 39.
  • Le multiplicateur 36 (respectivement 38) comprend une première borne d'entrée pour recevoir le signal Q1 (respectivement 11), et une deuxième borne d'entrée pour recevoir le signal I1 (respectivement Q1), par l'intermédiaire du circuit différentiateur 40 (respectivement 42). Le multiplicateur 36 (respectivement 38) est agencé pour fournir le signal X1 (respectivement Y1). La figure 4 de la présente description représente deux chronogrammes 44 et 46 illustrant les signaux X1 et Y1, respectivement. Comme le représente la figure 4, le signal X1 contient des premières impulsions, et le signal Y1 contient des deuxièmes impulsions décalées par rapport aux premières impulsions. Le soustracteur 39 comprend une première borne d'entrée pour recevoir le signal X1 et une deuxième borne d'entrée pour recevoir le signal Y1. Le soustracteur 39 est agencé pour fournir un signal X1-Y1 égal à la différence entre les signaux X1 et Y1. La figure 5 de la présente description représente un chronogramme 48 illustrant le signal X1-Y1. Comme le représente la figure 5, le signal X1-Y1 contient les impulsions résultant de la différence entre les signaux X1 et Y1. On note que, avant le changement de phase du signal Q, le signal X1-Y1 contient des impulsions négatives et que ce changement de phase provoque la fourniture d'impulsions positives.
  • La mémoire bistable 6 comprend une borne d'entrée pour recevoir le signal X1-Y1, et une borne de sortie pour fournir en réponse un signal Vout. La figure 6 de la présente description représente un chronogramme 50 illustrant le signal Vout. Comme le représente la figure 6, le signal Vout est égal à un niveau « 0 » ou à un niveau « 1 ». On note que, dès qu'une impulsion positive apparaît sur le signal X1-Y1 le signal Vout commute du niveau « 0 » au niveau « 1 », et demeure à ce niveau, indépendamment de la différence ultérieure de fréquences entre les signaux X1 et Y1.
  • On va maintenant décrire brièvement le fonctionnement du récepteur 1, à l'aide des figures 1 à 6 déjà citées.
  • Jusqu'à un instant t01, les signaux I1 et Q1 sont périodiques de période T, le signal I1 étant en avance sur le signal Q1, de sorte que le signal Vout vaut 0. Les signaux I1 et Q1 sont représentés successivement par les points A, B, C, D, A... Ainsi, à l'instant t01, le signal Q1 devient égal à 1. A un instant t1 ultérieur à l'instant t01 et antérieur à un instant t01+T/2, une nouvelle information est présente dans le signal Q, de sorte que la temporisation des signaux I1 et Q1 est inversée au-delà de l'instant t01+T/2 (c'est-à-dire les signaux I1 et Q1 sont représentés successivement par les points B, A, D, C, B...). On note que la commutation du signal Vout a lieu lors de la commutation suivante du signal I1 au niveau « -1 », c'est-à-dire à un instant t3. Autrement dit, il existe un retard entre l'instant où l'information est contenue dans le signal Q (c'est-à-dire l'instant t1) et l'instant où l'information est contenue dans le signal Vout (c'est-à-dire l'instant t3). On note que ce retard est compris entre T/2 et T, ce qui nécessite un rapport Δf/D élevé, la référence Δf désignant la fréquence de décalage (égale dans ce cas à Df1) et la référence D désignant le débit binaire. Ainsi un inconvénient du récepteur 1 est d'avoir un rapport Δf/D élevé : un bit est typiquement fourni toutes les quatre périodes.
  • Pour pallier un tel inconvénient, il existe dans l'état de la technique des récepteurs de signaux modulés FSK réalisant une démodulation directement à partir des signaux analogiques I et Q fournis par le moyen de conversion.
  • En se référant à la figure 7 de la présente description, le brevet US 5.640.428 décrit un récepteur 90 comprenant une antenne 2, un moyen de conversion 3, un moyen de démodulation 92 et un filtre passe-bas 94. On note que des objets de la figure 7 similaires à ceux décrits en relation avec la figure 1 ont été désignés par les mêmes références. Comme le représente la figure 7, le moyen de démodulation 92 comprend quatre mélangeurs 96 à 99, deux circuits de maintien 100 et 101 et trois circuits à retard 102 à 104. On note que le récepteur 90 réalise une démodulation d'un signal S reçu par l'antenne 2, par un traitement analogique de ce signal. Toutefois ce traitement est réalisé par des éléments de traitement numérique (signaux d'horloge, bascules), à l'instar du récepteur 1 de la figure 1.
  • En outre, un inconvénient des récepteurs 1 et 90 est que les moyens de démodulation 5 et 92 contiennent des multiplicateurs qui sont des composants ayant une structure complexe (notamment deux bornes d'entrée) c'est-à-dire des composants difficiles à fabriquer.
  • Un objet de la présente invention est de prévoir un récepteur de signaux modulés FSK palliant les inconvénients susmentionnés. Notamment un tel récepteur réalisant une démodulation instantanée sur la base de signaux analogiques.
  • Un autre objet de la présente invention est de prévoir un récepteur de signaux modulés FSK réalisant la démodulation d'informations reçues avec un rapport Δf/D minimum (typiquement inférieur à 1).
  • Un autre objet de la présente invention est de prévoir un récepteur de signaux modulés FSK comprenant un moyen de démodulation dépourvu de multiplicateurs.
  • Un autre objet de la présente invention est de prévoir un récepteur de signaux modulés FSK répondant aux critères de rationalité, d'encombrement et de coût, qui sont traditionnels dans l'industrie des semi-conducteurs.
  • Ces objets, ainsi que d'autres, sont atteints par le récepteur selon la revendication 1.
  • Un avantage du filtre complexe d'un tel récepteur est de pouvoir être réalisé par des composants semiconducteurs simples à fabriquer, sans former de multiplicateurs ou de mélangeurs à plusieurs entrées, à l'instar des récepteurs classiques.
  • Un autre avantage du filtre d'un tel récepteur est de filtrer la moitié du bruit provenant du signal modulé, ce qui diminue notablement l'influence du bruit sur le signal de sortie du récepteur.
  • Ces objets, caractéristiques et avantages, ainsi que d'autres, de la présente invention apparaîtront plus clairement à la lecture de la description détaillée d'un mode de réalisation préféré de l'invention, donné à titre d'exemple uniquement, en relation avec les figures jointes, parmi lesquelles :
    • la figure 1 déjà citée représente un premier récepteur classique;
    • les figures 2, 3A et 4 déjà citées représentent chacune deux chronogrammes illustrant des signaux électriques présents dans le récepteur de la figure 1;
    • la figure 3B déjà citée représente une courbe illustrant la relation entre les deux signaux électriques de la figure 3A;
    • les figures 5 et 6 déjà citées représentent chacune un chronogramme illustrant un signal électrique présent dans le récepteur de la figure 1;
    • la figure 7 déjà citée représente un deuxième récepteur classique;
    • la figure 8 représente un récepteur selon la présente invention;
    • la figure 9 représente un mode réalisation d'un filtre du récepteur de la figure 8;
    • la figure 10 représente une courbe illustrant le gain du filtre de la figure 9, en relation avec une modulation à deux sauts de fréquence;
    • la figure 11 représente une courbe illustrant la relation entre deux signaux électriques fournis par le filtre de la figure 9, en relation avec une modulation à deux sauts de fréquence;
    • la figure 12 représente dix chronogrammes illustrant des signaux électriques présents dans le récepteur de la figure 8;
    • la figure 13 représente une courbe illustrant le gain du filtre de la figure 9, en relation avec une modulation à quatre sauts de fréquences; et
    • la figure 14 représente une courbe illustrant la relation entre deux signaux électriques fournis par le filtre de la figure 9, en relation avec une modulation à quatre sauts de fréquences.
  • La figure 8 représente un récepteur 110 selon la présente invention comprenant une antenne 2, un moyen de conversion 3, un moyen de démodulation 112 et un moyen de mise en forme 114. Comme le représente la figure 8, le moyen de démodulation 112 comprend un filtre complexe 116, deux moyens de normalisation 118 et 120 et un sommateur 122
  • On note que des objets de la figure 8 similaires à ceux décrits en relation avec la figure 1 ont été désignés par les mêmes références. Toutefois les filtres 20 et 23 du moyen de conversion 3 tel que décrit en relation avec la figure 1 ne sont pas nécessaires à la réalisation du récepteur 110, la fonction de ces filtres étant assurée par le filtre complexe 116.
  • Le filtre complexe 116 est agencé pour recevoir les signaux analogiques I et Q fournis par le moyen de conversion 3, comme cela a déjà été décrit de façon plus détaillée en relation avec la figure 1. Le filtre complexe 116 est également agencé pour fournir deux signaux analogiques X3 et Y3 de sorte que les signaux I, Q, X3 et Y3 sont liées par la relation suivante : X 3 + j Y 3 = H 3 ( j f ) ( I + j Q )
    Figure imgb0001

    où la référence f désigne la fréquence et que la référence H3(jf) désigne la fonction de transfert associée au filtre complexe 116. Le filtre complexe 116 est également agencé de sorte que les valeurs du gain |H3(jf)| pour la fonction de transfert H3(jf) sont différentes pour les différentes fréquences de décalage. Dans le cas présent, ces fréquences de décalage étant -Δf1 et +Δf1, on a : |H3(-jΔf1)| ≠ |H3(+jΔf1)|.
  • La figure 9 représente un mode réalisation du filtre complexe 116 comprenant deux sommateurs 124 et 126, six amplificateurs 128, 130, 132, 134, 136 et 138, et deux intégrateurs 140 et 142. On note que les gains des amplificateurs 128 et 130 valent fo, que ceux des amplificateurs 132 et 134 valent -1 et que ceux des amplificateurs 136 et 138 valent -fc/fo.
  • Le sommateur 124, l'intégrateur 140 et l'amplificateur 128 sont connectés en série, et agencés de sorte que le sommateur 124 reçoit le signal analogique I et que l'amplificateur 128 fournit le signal X3. Le sommateur 124 reçoit également le signal X3 par l'intermédiaire de l'amplificateur 132. De même, le sommateur 126, l'intégrateur 142 et l'amplificateur 130 sont connectés en série, et agencés de sorte que le sommateur 126 reçoit le signal analogique Q et que l'amplificateur 130 fournit le signal Y3. Le sommateur 126 reçoit également le signal Y3 par l'intermédiaire de l'amplificateur 134. En outre, le sommateur 124 reçoit également le signal Y3 par l'intermédiaire de l'amplificateur 136, et le sommateur 126 reçoit également le signal X3 par l'intermédiaire de l'amplificateur 138.
  • On réalise de préférence le moyen de conversion 3 et le moyen de démodulation 112 en formant des composants (réalisables par une technologie de type CMOS), de sorte que les amplitudes des signaux X3 et Y3 sont égales. A titre de perfectionnement, le récepteur 110 peut comprendre deux amplificateurs à gain variable (connus en soi) connectés de sorte que le moyen de conversion 3 fournit au moyen de démodulation 112 le signal I (respectivement le signal Q), par l'intermédiaire de l'un de ces amplificateurs (respectivement de l'autre de ces amplificateurs).
  • La figure 10 représente une courbe 144 illustrant le gain |(jf)| relatif au filtre 161 tel que représenté en figure 9. On note en figure 10 que le gain |H3(jf)| est représenté selon une échelle logarithmique, et que la fréquence f est représentée selon une échelle linéaire. La courbe 144 est centrée sur la fréquence fc, de sorte que la fonction de transfert H3(jf) est asymétrique. L'homme du métier note que le filtre 116 peut être considéré comme un filtre passe-bande dont les fréquences de coupure valent fc-fo et fc+fo. On note qu'il résulte de l'asymétrie de cette fonction de transfert que le gain |H3(jf)| vaut +G1 quand la fréquence f vaut -Δf1, que le gain |H3(jf)| vaut +G2 quand la fréquence f vaut +Δf1, et que +G1 ≠ +G2. On note également que le bruit issu du signal modulé S, et correspondant aux fréquences positives est filtré, ce qui diminue notablement l'influence du bruit sur les signaux X3 et Y3 fournis par le filtre 113.
  • La figure 11 illustre la relation entre les valeurs instantanées X3(t) et Y3(t) des signaux X3 et Y3 à un instant t. Comme le représente la figure 11, au cours du temps t, les valeurs instantanées X3(t) et Y3(t) décrivent un premier cercle ou cercle 145 et un deuxième cercle ou cercle 146. On note que, dans le cas où les amplitudes maximales (respectivement minimales) des signaux et Q valent 1 (respectivement -1), le rayon du cercle 146 vaut +G2 et le rayon du cercle 145 vaut +G1. On notera qu'une évolution temporelle de ces signaux se traduit par un parcours le long de ces cercles, de sorte que, quand les signaux X3 et Y3 décrivent le cercle 146 (respectivement le cercle 145) selon le sens trigonométrique (respectivement selon le sens inverse au sens trigonométrique), le signal Vout vaut 0 (respectivement 1).
  • En se référant à nouveau à la figure 8, le moyen de normalisation 118 est agencé pour recevoir le signal analogique X3 et, en réponse, fournir un signal représentant une norme du signal X3. De préférence, on réalise le moyen de conversion 118 par des composants semiconducteurs (réalisables en technologie de type CMOS) de sorte que cette norme correspond à la fonction carrée. Ainsi, à titre illustratif uniquement, dans la suite de la description, la référence X32 désigne le signal représentant cette norme du signal X3.
  • De même, le moyen de normalisation 120 est agencé pour recevoir le signal analogique Y3 et, en réponse, fournir un signal représentant la même norme du signal Y3. De préférence, on réalise le moyen de conversion 118 par des composants semiconducteurs de sorte que cette norme correspond à la fonction carrée. Ainsi, à titre illustratif uniquement, dans la suite de la description, la référence Y32 désigne le signal représentant cette norme du signal Y3.
  • Le sommateur 122 est agencé pour recevoir les signaux X32 et Y32 et, en réponse, pour fournir un signal X32+Y32 représentant la somme des signaux X32 et Y32. On note que le signal X32+Y32 est un signal analogique.
  • En se référant à nouveau à la figure 8, le moyen de mise en forme 114 est agencé pour recevoir le signal analogique X32+Y32 et, en réponse, fournir un signal numérique Vo égale à un niveau « 0 » (respectivement un niveau « 1 »), quand le signal X32+Y32 est inférieur (respectivement supérieur) à un seuil prédéterminé. On réalise de préférence le moyen de mise en forme 114 en formant un comparateur à seuil, ce seuil correspondant au seuil prédéterminé et étant choisi pour être compris entre les valeurs +G12 et +G22.
  • On va maintenant décrire le fonctionnement du récepteur 110 à l'aide de la figure 12 qui représente six chronogrammes 151 à 156.
  • Considérons à un instant initial t0 que l'antenne 2 reçoit un signal à la fréquence fp+Δf1. Il en résulte que le moyen de conversion 3 fournit les signaux I et Q de sorte que ces signaux ont des formes d'onde sinusoïdales de période T (correspondant à la fréquence +Δf1) et en quadrature de phase, le signal Q étant en avance sur le signal I. A titre d'exemple, on suppose que les amplitudes maximales et minimales des signaux et Q vaut 1. Le filtre complexe 116 reçoit ces signaux I et Q et fournit en réponse les signaux X3 et Y3 de sorte que : X3+jY3 = H3(jf)*(I+jQ). Ainsi, étant donné que la fréquence f des signaux I et Q vaut +Δf1, le gain |H3(jf)| vaut +G2, comme cela a déjà été décrit en relation avec la figure 10. Il en résulte que, au-delà de l'instant t0, les valeurs X3(t) et Y3(t) des signaux X3 et Y3 décrivent le cercle 146, c'est-à-dire que les signaux X3 et Y3 ont des formes d'onde sinusoïdales à la fréquence +Δf1 et en quadrature de phase, le signal Y3 étant en avance sur le signal X3. On note que les signaux X3 et Y3 sont proportionnels aux signaux respectifs I et Q, mais en retard d'une période T1 par rapport à ces derniers, et qu'ils ont des amplitudes minimales et maximales égales à +G2 et -G2, respectivement. Ainsi, au-delà de l'instant t0, les moyens de normalisation 118 et 120 fournissent respectivement les signaux X32 et Y32 au sommateur 122, et ce dernier fournit en réponse le signal X32+Y32 égal, dans ce cas, à +G22. Et le moyen de mise en forme 114 fournit en réponse le signal Vo égal au niveau « 0 ».
  • Considérons à un instant t5 ultérieur à l'instant t0 que l'antenne 2 reçoit un signal à la fréquence fp-Δf1, ce qui provoque une modification de la forme d'onde du signal Q fourni par le moyen de conversion 3. En réponse, le filtre complexe 116 fournit les signaux X3 et Y3 de sorte que le gain |H3(jf)| vaut +G1, étant donné que la fréquence f des signaux I et Q vaut -Δf1. Il en résulte que, au-delà de l'instant t5, les valeurs X3(t) et Y3(t) des signaux X3 et Y3 décrivent le cercle 145, c'est-à-dire que les signaux X3 et Y3 ont des formes d'onde sinusoïdales à la fréquence -Δf1 et en quadrature de phase. On note que les signaux X3 et Y3 sont proportionnels aux signaux I et Q, respectivement, et ont des amplitudes minimales et maximales égales à +G1 et -G1. Ainsi, au-delà de l'instant t5, les moyens de normalisation 118 et 120 fournissent respectivement les signaux X32 et Y32 au sommateur 122, et ce dernier fournit en réponse le signal X32+Y32 égal, dans ce cas, à +G12. Et le moyen de mise en forme 114 fournit en réponse le signal Vo égal au niveau « 1 ». On note que la transition entre les niveaux « 0 » et « 1 » a lieu par des variations continues des signaux X3 et Y3 à l'instant t7, comme le représente la figure 11.
  • De même, à un instant t6 ultérieur à l'instant t5, l'antenne 2 reçoit un signal à la fréquence fp+Δf1. La situation est similaire à celle décrite pour l'instant t0. Il en résulte que, au-delà de l'instant t5, le moyen de mise en forme 114 fournit en réponse le signal Vo égal au niveau « 0 ».
  • De même, à un instant t7 ultérieur à l'instant t6, l'antenne 2 reçoit un signal à la fréquence fp-Δf1. La situation est similaire à celle décrite pour l'instant t5. Il en résulte que, au-delà de l'instant t7, le moyen de mise en forme 114 fournit en réponse le signal Vo égal au niveau « 1 ».
  • On note que, à l'instant où les signaux I et Q contiennent une information (-Δf1 ou +Δf1) provenant de l'antenne 2, cette information est fournie au même instant au moyen de démodulation 112, contrairement au récepteur classique 1 dans lequel l'information n'est fournie au moyen de conversion 5 qu'au demi-cycle suivant (occasionnant un retard égal à T/2, la référence T désignant la période des signaux I1 et Q1, comme cela a été décrit en relation avec les figures 1 à 6).
  • On note également que le retard T1 entre l'instant où l'information est fournie par le moyen de conversion 3 et l'instant où l'information est contenue dans le signal Vo est essentiellement dû au temps de réponse du filtre, complexe 116, c'est-à-dire au temps de réponse des intégrateurs 140 et 142 de ce filtre. Ceci est particulièrement avantageux, puisque que plusieurs informations peuvent ainsi être reçues par l'antenne 2 et fournies sous la forme de signal Vo, au cours d'un même demi-cycle (par exemple aux instants t6 et t7). Il en ressort que le récepteur 110 peut fonctionner avec un faible rapport Δf/D (dans cet exemple, inférieur à 1), ce qui permet la fourniture d'au moins quatre bits au cours d'une période du signal Vo. On note également qu'un avantage de la fonction de transfert H3(jf) est de permettre une démodulation des signaux I et Q, à partir d'une relation d'amplitude liée au gain |H3(jf)|, puisque : |H3(-j Δf1)| = +G1 ≠ +G2 = |H3(+j Δf1)|.
  • Un autre avantage du récepteur 110 est de pouvoir réaliser une démodulation de signaux modulés FSK avec N sauts de fréquence désignés Δf1, Δf2,... ΔfN, sans modification structurelle de ce récepteur (à l'exception du moyen de mise en forme 114 réalisé, dans ce cas, par un comparateur à N-1 seuils).
  • En effet, considérons le cas où N=4 et plus particulièrement le cas où Δf1 = Δf1, Δf2= +Δf1, Δf3= -Δf2, Δf4= +Δf2. En se référant à la figure 13 qui représente la courbe du gain |H3(jf)| (c'est-à-dire la courbe 144 de la figure 10), on note que le gain |H3(jf)| vaut G3 quand la fréquence f vaut -Δf2, et que le gain |H3(jf)| vaut G4 quand la fréquence f vaut +Δf2. La figure 14 représente la relation entre les valeurs instantanées X3(t) et Y3(t) des signaux X3 et Y3 à un instant t, en relation avec la figure 13 . Ainsi, outre les cercles 145 et 146 déjà décrits en relation avec la figure 11, les valeurs X3(t) et Y3(t) peuvent décrire un troisième cercle ou cercle 169 et un quatrième cercle ou cercle 170. On note que, dans le cas où les amplitudes maximales (respectivement minimales) des signaux I et Q valent 1 (respectivement -1), le rayon du cercle 169 vaut G3 et le rayon du cercle 170 vaut G4. On note qu'une évolution temporelle de ces signaux se traduit par un parcours le long de ces cercles, de sorte que, quand les signaux X3 et Y3 décrivent le cercle 145 et 169 selon le sens inverse au sens trigonométrique, le signal Vo vaut respectivement « 0 », « 1 », et que, quand les signaux X3 et Y3 décrivent le cercle 170 et 146 selon le sens trigonométrique, le signal Vo vaut respectivement « 3 », « 4 ».
  • Il va de soi pour l'homme de l'art que la description détaillée ci-dessus peut subir diverses modifications sans sortir du cadre de la présente invention. A titre d'exemple, les moyens de normalisation du récepteur selon la présente invention peuvent être agencés pour fournir en tant que norme la fonction « valeur absolue », ou la fonction « puissance 2m », la référence m étant un nombre entier supérieur ou égal à 2.

Claims (7)

  1. Récepteur (110) à conversion directe pour signaux modulés en sauts de fréquence, ce récepteur comprenant :
    - une antenne (2) pouvant recevoir un signal modulé (S) en sauts de fréquence;
    - un moyen de conversion (3) pouvant recevoir ledit signal modulé et fournir en réponse des premier et deuxième signaux (I, Q) analogiques et en quadrature de phase, ces signaux étant représentatifs des parties réelle et imaginaire d'un signal complexe ayant au moins une première fréquence négative (-Δf1) ou une deuxième fréquence positive (+Δf1);
    - un moyen de démodulation (112) pouvant recevoir lesdits premier et deuxième signaux et fournir en réponse un troisième signal (X32+Y32) représentatif de l'information contenue dans ledit signal modulé, ce récepteur étant caractérisé en ce que ledit moyen de démodulation comprend :
    - un filtre complexe (116) agencé pour recevoir lesdits premier et deuxième signaux, et fournir en réponse des quatrième et cinquième signaux (X3, Y3) analogiques de sorte que, quand la fréquence desdits premier et deuxième signaux est égale à ladite première fréquence, respectivement à ladite deuxième fréquence, le gain de la fonction de transfert (H3) est égal à une première valeur de gain (G1), respectivement à une deuxième valeur de gain (G2) différente de ladite première valeur de gain;
    - des premier et deuxième moyens de normalisation (118, 120) agencés pour recevoir respectivement lesdits quatrième et cinquième signaux, et fournir en réponse un sixième signal (X32) analogique, respectivement un septième signal (Y32) analogique, représentant une norme dudit quatrième signal, respectivement dudit cinquième signal; et
    - un premier sommateur (122) agencé pour recevoir lesdits sixième et septième signaux et fournir en réponse ledit troisième signal (X32+Y32) analogique représentant la somme desdits sixième et septième signaux.
  2. Récepteur (110) selon la revendication 1, caractérisé en ce que ledit filtre complexe (116) comprend :
    - un deuxième sommateur (124), un premier intégrateur (140) et un premier amplificateur (128) connectés en série, ledit deuxième sommateur pouvant recevoir ledit premier signal (I) et ledit premier amplificateur pouvant fournir ledit quatrième signal (X3);
    - un troisième sommateur (126), un deuxième intégrateur (142) et un deuxième amplificateur (130) connectés en série, ledit troisième sommateur pouvant recevoir ledit deuxième signal (Q) et ledit deuxième amplificateur pouvant fournir ledit cinquième signal (Y3); et
    - des troisième, quatrième, cinquième et sixième amplificateurs (132, 136, 134, 138), ledit deuxième sommateur recevant également ledit quatrième signal (X3) par l'intermédiaire dudit troisième amplificateur (132), ainsi que ledit cinquième signal (Y3) par l'intermédiaire dudit quatrième amplificateur (136), et ledit troisième sommateur recevant également ledit cinquième signal (Y3) par l'intermédiaire dudit cinquième amplificateur (134), ainsi que ledit quatrième signal (X3) par l'intermédiaire dudit sixième amplificateur (138).
  3. Récepteur (110) selon la revendication 2, caractérisé en ce qu'il comprend outre des premier et deuxième amplificateurs à gain variable connecté de sorte que ledit moyen de conversion (3) fournit audit moyen de démodulation (112) lesdits premier et deuxième signaux (I, Q), par l'intermédiaire desdits premier et deuxième amplificateurs à gain variable, respectivement.
  4. Récepteur (110) selon la revendication 1, caractérisé en ce que lesdits premier et deuxième moyens de normalisation (118, 120) sont agencés de sorte que ladite norme correspond à une fonction « puissance 2m », la référence m désignant un nombre entier non nul.
  5. Récepteur (110) selon la revendication 1, caractérisé en ce que lesdits premier et deuxième moyens de normalisation (118, 120) sont agencés de sorte que ladite norme correspond à la fonction « valeur absolue ».
  6. Récepteur (110) selon la revendication 1, caractérisé en ce qu'il comprend en outre un moyen de mis en forme (114) agencé pour recevoir ledit septième signal (X32+Y32) et fournir en réponse un huitième signal (Vo) numérique, de sorte que ce dernier est égal à un niveau bas (« 0 »), respectivement à un niveau haut (« 1 »), quand ledit septième signal est inférieur, respectivement supérieur, à un seuil prédéterminé compris entre les normes desdites première et deuxième valeurs de gain.
  7. Récepteur (110) selon la revendication 6, caractérisé en ce que le moyen de mis en forme (114) est formé par un comparateur à N-1 seuils, la référence N désignant un nombre entier supérieur ou égal à 2, correspondant au nombre de sauts de fréquence.
EP98124582A 1998-12-23 1998-12-23 Récepteur à conversion directe pour signaux modulés en sauts de fréquence (FSK) Expired - Lifetime EP1014637B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69834407T DE69834407T2 (de) 1998-12-23 1998-12-23 Direktmischempfänger für FSK-modulierte Signale
EP98124582A EP1014637B1 (fr) 1998-12-23 1998-12-23 Récepteur à conversion directe pour signaux modulés en sauts de fréquence (FSK)
US09/466,892 US6563887B1 (en) 1998-12-23 1999-12-20 Direct conversion receiver for frequency-shift keying modulated signals
JP36691099A JP4267786B2 (ja) 1998-12-23 1999-12-24 周波数偏移変調信号用の直接変換受信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98124582A EP1014637B1 (fr) 1998-12-23 1998-12-23 Récepteur à conversion directe pour signaux modulés en sauts de fréquence (FSK)

Publications (2)

Publication Number Publication Date
EP1014637A1 EP1014637A1 (fr) 2000-06-28
EP1014637B1 true EP1014637B1 (fr) 2006-05-03

Family

ID=8233236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98124582A Expired - Lifetime EP1014637B1 (fr) 1998-12-23 1998-12-23 Récepteur à conversion directe pour signaux modulés en sauts de fréquence (FSK)

Country Status (4)

Country Link
US (1) US6563887B1 (fr)
EP (1) EP1014637B1 (fr)
JP (1) JP4267786B2 (fr)
DE (1) DE69834407T2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063563B2 (ja) * 2002-03-25 2008-03-19 株式会社日立国際電気 直接検波回路
US7146148B2 (en) * 2002-10-01 2006-12-05 Hitachi Kokusai Electric Inc. Low intermediate frequency type receiver

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437068A (en) * 1981-02-19 1984-03-13 Thomson-Csf FSK Demodulator for frequency-modulation modem
GB2149244B (en) * 1983-10-29 1987-01-21 Standard Telephones Cables Ltd Digital demodulator arrangement for quadrature signals
GB8719849D0 (en) * 1987-08-21 1987-09-30 British Telecomm Fsk discriminator
GB2233535A (en) * 1989-06-30 1991-01-09 Philips Electronic Associated Radio receiver
US5249203A (en) * 1991-02-25 1993-09-28 Rockwell International Corporation Phase and gain error control system for use in an i/q direct conversion receiver
CN1087120C (zh) * 1994-11-10 2002-07-03 松下电器产业株式会社 直接变频接收机
US5828705A (en) * 1996-02-01 1998-10-27 Kroeger; Brian W. Carrier tracking technique and apparatus having automatic flywheel/tracking/reacquisition control and extended signal to noise ratio
US5937341A (en) * 1996-09-13 1999-08-10 University Of Washington Simplified high frequency tuner and tuning method
EP0948128B1 (fr) * 1998-04-03 2004-12-01 Motorola Semiconducteurs S.A. Annulation de décalage DC dans un récepteur à quadrature
US6304751B1 (en) * 1998-12-29 2001-10-16 Cirrus Logic, Inc. Circuits, systems and methods for digital correction of phase and magnitude errors in image reject mixers

Also Published As

Publication number Publication date
DE69834407D1 (de) 2006-06-08
EP1014637A1 (fr) 2000-06-28
JP2000196685A (ja) 2000-07-14
JP4267786B2 (ja) 2009-05-27
US6563887B1 (en) 2003-05-13
DE69834407T2 (de) 2007-04-19

Similar Documents

Publication Publication Date Title
EP0530107B1 (fr) Démodulation PSK avec correction en bande de base d'erreurs de phase ou de fréquence
EP0451232B1 (fr) Procede et circuit d'acquisition de code pour recepteur de signal a spectre etale
FR2494059A1 (fr) Procede et dispositif de demodulation de porteuse a acquisition rapide
EP0125979B1 (fr) Démodulateur de signaux, à enveloppe constante et phase continue, modulés angulairement par un train de symboles binaires
EP0245937A2 (fr) Modulateur pour la génération de signaux PSK à amplitude constante
AU660878B2 (en) Differential detection demodulator
EP0459968B1 (fr) Démodulateur numérique pour signal modulé par déplacement de phase à plusieurs états
EP1014637B1 (fr) Récepteur à conversion directe pour signaux modulés en sauts de fréquence (FSK)
EP0209928B1 (fr) Démodulateur de signal numérique modulé en fréquence
EP0635946B1 (fr) Convertisseur analogique numérique à boucle de contre réaction modulée
EP3116182B1 (fr) Démodulateur en quadrature pour récepteur rfid à très haut débit
FR2669786A1 (fr) Dispositif doubleur de frequence.
EP0092474B1 (fr) Filtre de démodulation de signal modulé binairement en fréquence
EP1514352B1 (fr) Boucle a verrouillage de retard
EP0246135B1 (fr) Détécteur de phase et de fréquence, et son utilisation dans une boucle à verrouillage de phase
EP0649110A1 (fr) Dispositif à pureté spectrale pour l'échange d'informations à distance entre un objet portatif et une station
FR2812985A1 (fr) Circuit de demodulation d'un signal logique transmis par des voies analogiques
US6163209A (en) Demodulation of angle modulated carriers using a noncoherent reference
EP1089427A1 (fr) Procédé de comparaison des amplitudes de deux signaux électriques
FR2899417A1 (fr) Methode et dispositif de demodulation
FR2700228A1 (fr) Dispositif de calage de phase de chacun des paquets d'un signal numérique à modulation de phase, et récepteur correspondant.
EP0021943A1 (fr) Système de transmission hyperfréquence de données numériques
EP0035434B1 (fr) Dispositif émetteur et dispositif récepteur pour la transmission de signaux numériques
WO2001078226A1 (fr) Circuit et procede de generation de signaux en decalage de phase
FR2488467A1 (fr) Modulateur-demodulateur a modulation de phase differentielle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001228

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69834407

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ASULAB S.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060911

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ASULAB S.A.

Effective date: 20060906

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ASULAB S.A.

Free format text: ASULAB S.A.#FAUBOURG DU LAC 6#CH-2501 BIENNE (CH) -TRANSFER TO- ASULAB S.A.#RUE DES SORS 3#2074 MARIN (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091127

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131125

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151119

Year of fee payment: 18

Ref country code: DE

Payment date: 20151119

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151123

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69834407

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701