EP1012220A1 - Compositions detergentes alcalines comportant une cellulase specifique - Google Patents

Compositions detergentes alcalines comportant une cellulase specifique

Info

Publication number
EP1012220A1
EP1012220A1 EP97933404A EP97933404A EP1012220A1 EP 1012220 A1 EP1012220 A1 EP 1012220A1 EP 97933404 A EP97933404 A EP 97933404A EP 97933404 A EP97933404 A EP 97933404A EP 1012220 A1 EP1012220 A1 EP 1012220A1
Authority
EP
European Patent Office
Prior art keywords
laundry detergent
cellulase
alkyl
containing laundry
granular bleach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97933404A
Other languages
German (de)
English (en)
Inventor
Jean-Luc Philippe Bettiol
Christiaan Arthur Jacques Kamiel Thoen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1012220A1 publication Critical patent/EP1012220A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase

Definitions

  • the present invention relates to granular bleach-containing laundry detergent compositions comprising a specific cellulase and having a 1 % solution pH between 7.5 and 10.
  • Detergent compositions include nowadays a complex combination of active ingredients which fulfill certain specific needs : a surfactant system, enzymes providing cleaning and fabric care benefits, bleaching agents, a builder system, suds suppressors, soil-suspending agents, soil-release agents, optical brighteners, softening agents, dispersants, dye transfer inhibition compounds, abrasives, bactericides, perfumes, and their overall performance has indeed improved over the years.
  • current detergent formulations generally include detergent enzymes and more specifically cellulases.
  • cellulase is one in which cellulosic fibres or substrates are hydrolysed by the cellulase and depending on the particular function of the cellulase, which can be endo- or exo- cellulase and the respective hemicellulases.
  • the cellulose structures are depolymerized or cleaved into smaller and thereby more soluble or dispersible fractions.
  • This activity in particular on fabrics provides a cleaning, rejuvenation, softening and generally improved handfeel characteristics to the fabric structure.
  • EP-A-0 269 168 discloses optimized detergent compositions containing cellulase, which are formulated at a mild alkaline pH range and provide combined fabric cleaning, fabric softening, and fabric care performance.
  • W095/02675 which describes a detergent composition comprising two cellulase components : a first cellulase component having a retaining-type activity and being capable of particulate soil removal and a second cellulase component having multiple domains comprising at least one non-catalytical domain attached to a catalytic domain and being capable of colour clarification wherein at least one of the cellulase components is a single component.
  • Said enzymatic detergent composition is capable of providing both sufficient colour clarification and particulate soil removal which, after a limited number of washing cycles, neither damage nor partly degrade the cellulose-containing fabric.
  • Suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in WO94721801 , Genencor, published September 29, 1994.
  • optimised pH enhances the specific cellulase performance while not drastically reducing the bleach cleaning and whiteness performance benefits.
  • the slight reduction in cleaning performance due to a slight reduction in the perhydrolysis rate is compensated with an increased enzymatic performance and a reduced darkening of the bleach sensitive stains at lower pH.
  • the present invention relates to granular bleach-containing laundry detergent compositions comprising a specific cellulase and having a 1% solution pH between 7.5 and 10, thereby providing superior cleaning and whiteness performance benefit.
  • An essential element of the present invention is a specific cellulase generally comprised into the laundry detergent compositions of the present invention at a level of from 0.0001 % to 2%, more preferably of from 0.0005% to 0.05%, most preferably of from 0.001% to 0.01 % pure enzyme by weight of total composition.
  • the specific cellulases suitable for the present invention are obtained from a fungal strain, preferably from the following organisms : Humicola isolens or Trichoderma longibrachiatum, reseei or viride.
  • the specific cellulases are further characterised by having an optimum pH ranging from 4 to 10 and having no Cellulose Binding Domains (CBD).
  • CBD intends to indicate an amino acid sequence capable of effective binding of the cellulase to a cellulosic substrate.
  • cellulase components which may be usable in the present invention are :
  • An endoglucanase component which is immunoreactive with an antibody raised against a highly purified " 50kD endoglucanase derived from Humicola insolens, DSM 1800, or which is a homologue or derivative of the " 50kD endoglucanase exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No.
  • WO91/17244 or an endoglucanase component which is immunoreactive with an antibody raised against a highly purified " 50kD (apparent molecular weight, the amino acid composition corresponds to 45kD with 2n glycosylation sites) endoglucanase derived from Fusarium oxysporum, DSM 2672, or which is a homologue or derivative of the " 50kD endoglucanase exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No. WO91/17244. More preferred is the cellulase derived from Humicola insolens, DSM 1800, having an approximate molecular weight of about 50 kDa, an iso-electric point of about 5.5 and containing 415 amino acids.
  • the endoglucanase may be derived or isolated and purified from microorganisms which are known to be capable of producing cellulolytic enzymes, e.g. species of Humicola, Bacillus, Trichederma, Fusarium, Myceliophtora, Phanerochaete, Schizophyllum, Penicillium, Aspergillus and Geotricum.
  • the derived components may be either homologous or heterologous components.
  • the components are homologous.
  • a heterologous component which is immunoreactive with an antibody raised against a highly purified cellulase component possessing the desired property or properties and which heterologous component is derived from a specific microorganism is also preferred.
  • another suitable endoglucanase component has the amino acid sequence disclosed therein in the appended SEQ ID NO:2 or in WO91/17244, Fig. 14A-E, or a variant of said endoglucanase having an amino acid sequence being at least 60%, preferably at least 70%, more preferably 75%, more preferably at least 80%, more preferably 85%, especially at least 90% homologous with said sequence.
  • Said endoglucanase may as well be an endoglucanase component which is immunoreactive with an antibody raised against a highly purified ⁇ 50kD (apparent molecular weight, the amino acid composition corresponds to 45kD with 2n glycosylation sites) endoglucanase derived from Fusarium oxysporum, DSM 2672 or which is a homologue or derivative of the ⁇ 50kD endoglucananse exhibiting cellulase activity.
  • a preferred endoglucanase component has the amino acid sequence disclosed WO95/02675 in the appended SEQ ID NO:3 or in WO91/17244, Fig. 13, or a variant of said endoglucanase having an amino acid sequence being at least 60%, preferably at least 70%, more preferably 75%, more preferably at least 80%, more preferably 85%, especially at least 90% homologous with said sequence.
  • Said endoglucanase component is producible by Aspergillus oryzae after transformation with a plasmid containing the DNA sequence corresponding to the amino acid sequence of the SEQ ID NO:3 described in WO95/02675 and using a Taka promotor and AMG terminator.
  • This endoglucanase may be purified to homogeneity using cationic chromatography and has a pl>9.
  • the calculated pi is based on the amino acid composition using the PHKa values from Adv. Protein Chem. 17, p. 69-165 (1962) C. Tanford. the molar extinction coefficient is calculated to be 58180.
  • cellulases are the EGIII from Trichoderma longibrachiatum described in WO94/21801 , Genencor, published September 29, 1994. More preferred cellulase for the laundry detergent compositions of the present invention is a cellulase derived from Trichoderma spp, having an approximate molecular weight between 22 and 27 kDa, an iso-electric point between 7.2 and 8.0 and a pH optimum between 5.5 and 6.0.
  • the term "homologue” is intended to indicate a polypeptide encoded by DNA which hybridises to the same probe as the DNA coding for the endoglucanase enzyme with this amino acid sequence under certain specified conditions (such as presoaking in 5xSSC and prehybridizing for 1 h at about 40°C in a solution of 20% formamide, ⁇ xDenhardt's solution, 50mM sodium phosphate, pH 6.8, and 50 ⁇ g of denatured sonicated calf thymus DNA, followed by hybridisation in the same solution supplemented with 100 ⁇ M ATP for 18 h at about 40°C).
  • certain specified conditions such as presoaking in 5xSSC and prehybridizing for 1 h at about 40°C in a solution of 20% formamide, ⁇ xDenhardt's solution, 50mM sodium phosphate, pH 6.8, and 50 ⁇ g of denatured sonicated calf thymus DNA, followed by hybridisation in the same solution supplemented with
  • the term is intended to include derivatives of the aforementioned sequence obtained by addition of one or more amino acid residues to either or both the C- and N-terminal of the native sequence, substitution of one or more amino acid residues at one ore more sites in the native sequence, deletion of one or more amino acid residues at either or both ends of the native amino acid sequence or at one or more sites within the native sequence, or insertion of one or more amino acid residues at one or more sites in the native sequence.
  • the above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used.
  • the variants may be designed such that the compatibility of the enzyme to commonly encountered ingredients of such compositions is increased.
  • the variant may be designed such that the optimal pH, bleach or chelant stability, catalytic activity and the like, of the enzyme variant is tailored to suit the particular cleaning application.
  • the isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g. an increase in isoelectric point may help to improve compatibility with anionic surfactants.
  • the stability of the enzymes may be further enhanced by the creation of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability.
  • the bleaching agents comprised in the bleach containing laundry detergent of the present invention are e.g., hydrogen peroxide, PB1 , PB4 and percarbonate with a particle size of 400-800 microns.
  • These bleaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach activators. When present oxygen bleaching compounds will typically be present at levels of from about 1% to about 25%.
  • the bleaching agent component for use herein can be any of the bleaching agents useful for cleaning compositions including oxygen bleaches as well as others known in the art.
  • the bleaching agent suitable for the present invention can be an activated or non-activated bleaching agent.
  • oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylamino-4- oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781 , U.S. Patent Application 740,446, European Patent Application 0,133,354 and U.S. Patent 4,412,934.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551.
  • bleaching agents that can be used encompasses the halogen bleaching agents.
  • hypohalite bleaching agents include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.
  • the hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetraacetylethylenediamine (TAED), nonanoyloxybenzene-sulfonate (NOBS, described in US 4,412,934), 3,5,- trimethylhexanoloxybenzenesulfonate (ISONOBS, described in EP 120,591) or pentaacetylglucose (PAG)or Phenolsulfonate ester of N-nonanoyl-6- aminocaproic acid (NACA-OBS, described in WO94/28106), which are perhydrolyzed to form a peracid as the active bleaching species, leading to improved bleaching effect.
  • bleach activators such as tetraacetylethylenediamine (TAED), nonanoyloxybenzene-sulfonate (NOBS, described in US 4,412,934), 3,5,- trimethylhexanoloxybenzenesulfonate
  • acyiated citrate esters such as disclosed in Co-pending European Patent Application No. 91870207.7 and unsymethcal acyclic imide bleach activator of the following formula as disclosed in the Procter & Gamble co-pending patent applications US serial No. 60/022,786 (filed July 30, 1996) and No. 60/028,122 (filed October 15, 1996) :
  • R-j is a C7-C13 linear or branched chain saturated or unsaturated alkyl group
  • R2 is a Ci-C ⁇ linear or branched chain saturated or unsaturated alkyl group
  • R3 is a C1-C4 linear or branched chain saturated or unsaturated alkyl group.
  • bleaching agents including peroxyacids and bleaching systems comprising bleach activators and peroxygen bleaching compounds for use in detergent compositions according to the invention are described in our co- pending applications USSN 08/136,626, PCT/US95/07823, WO95/27772, WO95/27773, WO95/27774 and WO95/27775.
  • the hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process.
  • an enzymatic system i.e. an enzyme and a substrate therefore
  • Such enzymatic systems are disclosed in EP Patent Application 91202655.6 filed October 9, 1991.
  • Metal-containing catalysts for use in bleach compositions include cobalt- containing catalysts such as Pentaamine acetate cobalt(lll) salts and manganese-containing catalysts such as those described in EPA 549 271 ; EPA 549 272; EPA 458 397; US 5,246,621 ; EPA 458 398; US 5,194,416 and US 5,114,611.
  • Bleaching composition comprising a peroxy compound, a manganese-containing bleach catalyst and a chelating agent is described in the patent application No 94870206.3.
  • Transition metal complexes of macropolycyclic rigid ligands are preferred metal-containing catalysts for the purpose of the present invention and are described in the Procter & Gamble co- pending patent applications filed on March 07, 1997 under the US serial No. 60/040,629; No. 60/039,915; No. 60/040,222; No. 60/040,156; No. 60/040,115; No. 60/038, 714 and No. 60/039,920.
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached.
  • Preferred zinc phthalocyanine and a photoactivated bleaching process are described in U.S. Patent 4,033,718.
  • detergent compositions will contain about 0.025% to about 1.25%, by weight, of sulfonated zinc phthalocyanine.
  • the granular bleach-containing laundry detergent compositions of the present invention have a 1% solution pH between 7.5 and 10.
  • the 1% solution pH is measured as follow : 10g of product are added to 200 ml of hot deionised water and dissolved by magnetic agitation. The solution id diluted up to 11 and the pH is measured in 50ml aliquot.
  • the 1 % solution pH range can be obtained through a buffer system ensuring that the pH of the composition is buffered to a 1% solution pH value ranging from 7.5 to 10.
  • Solid granular bleach-containing laundry detergent compositions herein will preferably contain an amount of pH buffering component of from 1% to 40% by weight, more preferably from 1.5% to 35% by weight and most preferably in an amount of from 2% to 30% by weight of total composition.
  • pH buffering components comprise builders in the form of alkali salts and acids, as described herein below.
  • Suitable pH buffering components for use herein are selected from the group consisting of alkali metal salts of carbonates, bicarbonate, citric, citrate, polycarbonates, sesquicarbonates, silicates, polysilicates, borates, metaborates, phosphate, stannates, aluminates and mixtures thereof.
  • Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, silicates and mixtures of any of the foregoing.
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1 ,261 ,829, 1 ,1 ,2,2-ethane tetracarboxylates, 1 ,1 ,3,3-propane tetracarboxylates and 1 ,1 ,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1 ,398,421 and 1 ,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1 ,439,000.
  • Preferred for the purpose of the present invention are the parent acids of the monomeric or oligomeric polycarboxylate agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid, and/or carbonate builders such as the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973.
  • their salts e.g. citric acid or citrate/citric acid
  • carbonate builders such as the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973.
  • Suitable acids to reduce the pH of bleach containing laundry detergents are the following :
  • Preferred acids are citric, succinic, oxalic, muconic, aspartic, luroic, glutaric, malic, diglycolic, malonic and maleic acids.
  • Suitable acids for the present invention are diethylene triamine pentamethyl phophonic acid (DETPMP), (EDDS), 1 ,1-hydroxyethane diphosphonic acid (HEDP), methyl ester sulphonic acid (HMES), linear alkyl benzene sulfonic acid (HLAS) and copolymer of acrylic and maleic acid (MA/AA).
  • DETPMP diethylene triamine pentamethyl phophonic acid
  • EDDS 1 ,1-hydroxyethane diphosphonic acid
  • HMES methyl ester sulphonic acid
  • HLAS linear alkyl benzene sulfonic acid
  • MA/AA copolymer of acrylic and maleic acid
  • the granular bleach-containing laundry detergent compositions of the invention may also contain additional detergent components.
  • additional detergent components The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it is to be used.
  • the granular bleach-containing laundry detergent compositions according to the invention can be paste, gels, bars, tablets, spray, foam, powder or granular forms. Granular compositions can also be in "compact" form.
  • compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pre- treatment of stained fabrics, rinse added fabric softener compositions.
  • compositions of the invention preferably contain both a surfactant and a builder compound and additionally one or more detergent components preferably selected from organic polymeric compounds, bleaching agents, additional enzymes, suds suppressors, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
  • Laundry compositions can also contain softening agents, as additional detergent components.
  • Such alkaline granular bleach-containing laundry detergent compositions can provide fabric cleaning, stain removal, whiteness maintenance, softening, colour appearance and dye transfer inhibition when formulated as laundry detergent compositions.
  • compositions of the invention can also be used as detergent additive products. Such additive products are intended to supplement or boost the performance of conventional detergent compositions. If needed the density of the laundry detergent compositions herein ranges from 400 to 1200 g/litre, preferably 600 to 950 g/litre of composition measured at 20°C.
  • compositions herein are best reflected by density and, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; in conventional detergent compositions, the filler salts are present in substantial amounts, typically 17-35% by weight of the total composition.
  • the filler salt is present in amounts not exceeding 15% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5% by weight of the composition.
  • the inorganic filler salts are selected from the alkali and alkaline-earth-metal salts of sulphates and chlorides.
  • a preferred filler salt is sodium sulphate.
  • the granular bleach-containing laundry detergent compositions according to the present invention generally comprise a surfactant system wherein the surfactant can be selected from nonionic and/or anionic and/or cationic and/or ampholytic and/or zwitterionic and/or semi-polar surfactants.
  • the surfactant is typically present at a level of from 0.1% to 60% by weight. More preferred levels of incorporation are 1% to 35% by weight, most preferably from 1 % to 30% by weight of granular bleach-containing laundry detergent compositions in accord with the invention.
  • the surfactant is preferably formulated to be compatible with enzyme components present in the composition.
  • the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.
  • Preferred surfactant systems to be used according to the present invention comprise as a surfactant one or more of the nonionic and/or anionic surfactants described herein.
  • Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred.
  • These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straight-chain or branched-chain configuration with the alkylene oxide.
  • the ethylene oxide is present in an amount equal to from about 2 to about 25 moles, more preferably from about 3 to about 15 moles, of ethylene oxide per mole of alkyl phenol.
  • nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X- 45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates).
  • the condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use as the nonionic surfactant of the nonionic surfactant systems of the present invention.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms.
  • About 2 to about 7 moles of ethylene oxide and most preferably from 2 to 5 moles of ethylene oxide per mole of alcohol are present in said condensation products.
  • nonionic surfactants of this type include TergitolTM 15-S-9 (the condensation product of C ⁇ ⁇ -C-i5 linear alcohol with 9 moles ethylene oxide), TergitofTM 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodofTM 45.9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), Neodol ⁇ 23-3 (the condensation product of C-
  • nonionic surfactant of the surfactant systems of the present invention are the alkylpolysaccharides disclosed in U.S. Patent 4,565,647, Llenado, issued January 21 , 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
  • Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside).
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
  • the preferred alkylpolyglycosides have the formula
  • R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7.
  • the glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1 -position).
  • the additional glycosyl units can then be attached between their 1 -position and the preceding glycosyl units 2-, 3-, 4- and/or 6- position, preferably predominately the 2-position.
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant systems of the present invention.
  • the hydrophobic portion of these compounds will preferably have a molecular weight of from about 1500 to about 1800 and will exhibit water insolubility.
  • polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide.
  • examples of compounds of this type include certain of the commercially-available PlurafacTM LF404 and Pluronic ⁇ M surfactants, marketed by BASF.
  • nonionic surfactant of the nonionic surfactant system of the present invention are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11 ,000.
  • this type of nonionic surfactant include certain of the commercially available TetronicT compounds, marketed by BASF.
  • Preferred for use as the nonionic surfactant of the surfactant systems of the present invention are polyethylene oxide condensates of alkyl phenols, condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide, alkylpolysaccharides, and mixtures thereof. Most preferred are C8-C14 alkyl phenol ethoxylates having from 3 to 15 ethoxy groups and Cs-Cis alcohol ethoxylates (preferably C-io av 9 ) having from 2 to 10 ethoxy groups, and mixtures thereof.
  • Highly preferred nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula. R 2 - C - N - Z,
  • R1 is H, or Rl is C-
  • R2 is C5.31 hydrocarbyl
  • Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R1 is methyl
  • R2 is a straight C11-.15 alkyl or C ⁇
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • Suitable anionic surfactants to be used are linear alkyl benzene sulfonate, alkyl ester sulfonate surfactants including linear esters of C8-C20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329.
  • Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
  • alkyl ester sulfonate surfactant especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula :
  • R 3 is a C8-C20 hydrocarbyl, preferably an alkyl, or combination thereof
  • R 4 is a C-
  • M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
  • Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanolamine, and triethanolamine.
  • R 3 is C10-C16 a ' k y'- an ⁇ ⁇ R4 is methyl, ethyl or isopropyl.
  • the methyl ester sulfonates wherein R 3 is C-10-C-16 alkyl.
  • alkyl sulfate surfactants which are water soluble salts or acids of the formula ROSO3M wherein R preferably is a C-10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C20 alkyl component, more preferably a C-12- 18 al M or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium (e.g.
  • R preferably is a C-10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C20 alkyl component, more preferably a C-12- 18 al M or hydroxyalkyl
  • M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium (e.g.
  • alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like.
  • alkyl chains of C12-C15 are preferred for lower wash temperatures (e.g. below about 50°C) and C16-I8 alkyl chains are preferred for higher wash temperatures (e.g. above about 50°C).
  • anionic surfactants useful for detersive purposes can also be included in the granular bleach-containing laundry detergent compositions of the present invention.
  • anionic surfactants useful for detersive purposes can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C8-C22 primary of secondary alkanesulfonates, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12- 18 monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C6-C-12 diesters), acyl sarcosinates, sulfates of alkylpolysaccharides such as the sulfates
  • the laundry detergent compositions of the present invention typically comprise from about 1 % to about 40%, preferably from about 3% to about 20% by weight of such anionic surfactants.
  • alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A) m SO3M wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C-irj- C24 alkyl component, preferably a C12-C20 alkyl or hydroxyalkyl, more preferably C-12-C18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C-irj- C24 alkyl component, preferably
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl, trimethyl-ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperdinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C-12-C18 alkyl polyethoxylate (1.0) sulfate (C-
  • the granular bleach-containing laundry detergent compositions of the present invention may also contain cationic, ampholytic, zwitterionic, and semi-polar surfactants, as well as the nonionic and/or anionic surfactants other than those already described herein.
  • Cationic detersive surfactants suitable for use in the granular bleach- containing laundry detergent compositions of the present invention are those having one long-chain hydrocarbyl group.
  • cationic surfactants include the ammonium surfactants such as alkyltrimethylammonium halogenides, and those surfactants having the formula :
  • R 2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain
  • each R 3 is selected from the group consisting of -CH2CH2-, -CH2CH(CH 3 )-, -CH 2 CH(CH2OH)-, -CH 2 CH 2 CH 2 -, and mixtures thereof
  • each R 4 is selected from the group consisting of C1-C4 alkyl, C1-C4 hydroxyalkyl, benzyl ring structures formed by joining the two R 4 groups, - CH2CHOH-CHOHCOR 6 CHOHCH2OH wherein R 6 is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y is not 0
  • R ⁇ is the same as R 4 or is an alkyl chain wherein the total number of carbon atoms of R 2 plus R5 is not more than about 18
  • each y is from 0 to about 10 and the sum of
  • Quaternary ammonium surfactant suitable for the present invention has the formula (I):
  • R1 is a short chainlength alkyl (C6-C10) or alkylamidoalkyi of the formula (II) :
  • y is 2-4, preferably 3.
  • R2 is H or a C1-C3 alkyl
  • x is 0-4, preferably 0-2, most preferably 0,
  • R3, R4 and R5 are either the same or different and can be either a short chain alkyl (C1-C3) or alkoxylated alkyl of the formula III, whereby X- is a counterion, preferably a halide, e.g. chloride or methylsulfate.
  • R6 is C-1-C4 and z is 1 or 2.
  • Preferred quat ammonium surfactants are those as defined in formula I whereby
  • Highly preferred cationic surfactants are the water-soluble quaternary ammonium compounds useful in the present composition having the formula :
  • R-j is CQ-C ⁇ Q alkyl
  • each of R2, R3 and R4 is independently C1-C4 alkyl, C1-C4 hydroxy alkyl, benzyl, and -(C2H4o) ⁇ H where x has a value from 2 to 5, and X is an anion.
  • R2, R3 or R4 should be benzyl.
  • is C12-C 15 particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is derived synthetically by olefin build up or OXO alcohols synthesis.
  • R2R3 and R4 are methyl and hydroxyethyl groups and the anion X may be selected from halide, methosulphate, acetate and phosphate ions.
  • suitable quaternary ammonium compounds of formulae (i) for use herein are : coconut trimethyl ammonium chloride or bromide; coconut methyl dihydroxyethyl ammonium chloride or bromide; decyl triethyl ammonium chloride; decyl dimethyl hydroxyethyl ammonium chloride or bromide;
  • CH2-CH2-O-C-C12-14 alkyl and R2R3R4 are methyl).
  • O di-alkyl imidazolines [compounds of formula (i)].
  • Typical cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives or thei corresponding amine precursor, the most commonly used having been di-long alkyl chain ammonium chloride or methyl sulfate.
  • Preferred cationic softeners among these include the following:
  • DTDMAC ditallow dimethylammonium chloride
  • DSOEDMAC di(stearoyloxyethyl) dimethylammonium chloride
  • Biodegradable quaternary ammonium compounds have been presented as alternatives to the traditionally used di-long alkyl chain ammonium chlorides and methyl sulfates. Such quaternary ammonium compounds contain long chain alk(en)yl groups interrupted by functional groups such as carboxy groups. Said materials and fabric softening compositions containing them are disclosed in numerous publications such as EP-A-0,040,562, and EP-A-0,239,910.
  • the quaternary ammonium compounds and amine precursors herein have the formula (I) or (II), below :
  • Q is selected from -O-C(O)-, -C(O)-O-, -O-C(O)-O-, -NR 4 -C(O)-, -C(O)-
  • R1 is (CH 2 ) n -Q-T 2 or T 3 ;
  • R 2 is (CH 2 ) m -Q-T 4 or ⁇ 5 or R 3 ;
  • R 3 is C1-C4 alkyl or C1-C4 hydroxyalkyl or H;
  • R 4 is H or C-1-C4 alkyl or C1-C4 hydroxyalkyl
  • Ti , T 2 , T 3 , T 4 , T 5 are independently C «
  • X- is a softener-compatible anion.
  • Non-limiting examples of softener-compatible anions include chloride or methyl sulfate.
  • the alkyl, or alkenyl, chain T ⁇ , T 2 , T 3 , T 4 , T ⁇ must contain at least 11 carbon atoms, preferably at least 16 carbon atoms.
  • the chain may be straight or branched.
  • Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material.
  • the compounds wherein T ⁇ , T 2 , T 3 , T 4 , T ⁇ represents the mixture of long chain materials typical for tallow are particularly preferred.
  • quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include :
  • N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride 2) N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium methyl sulfate;
  • the granular bleach-containing laundry detergent compositions of the present invention typically comprise from 0.2% to about 25%, preferably from about 1% to about 8% by weight of such cationic surfactants.
  • Ampholytic surfactants are also suitable for use in the granular bleach- containing laundry detergent compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched-chain.
  • One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group, e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18- 35, for examples of ampholytic surfactants.
  • the granular bleach-containing laundry detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1 % to about 10% by weight of such ampholytic surfactants.
  • Zwitterionic surfactants are also suitable for use in granular bleach-containing laundry detergent compositions. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, line 38 through column 22, line 48, for examples of zwitterionic surfactants.
  • the granular bleach-containing laundry detergent compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such zwitterionic surfactants.
  • Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
  • Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula
  • R 3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms
  • R 4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof
  • x is from 0 to about 3
  • each R ⁇ is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
  • the R ⁇ groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
  • These amine oxide surfactants in particular include C10- 18 alkyl dimethyl amine oxides and C8-C-12 alkoxy ethyl dihydroxy ethyl amine oxides.
  • the cleaning compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such semi-polar nonionic surfactants.
  • the granular bleach-containing laundry detergent composition of the present invention may further comprise a co-surfactant selected from the group of primary or tertiary amines.
  • Suitable primary amines for use herein include amines according to the formula R1 NH2 wherein R-
  • X is -O-,-C(O)NH- or -NH-
  • R4 is a C6-C12 alkyl chain n is between 1 to 5, preferably 3.
  • alkyl chains may be straight or branched and may be interrupted with up to 12, preferably less than 5 ethylene oxide moieties.
  • Preferred amines according to the formula herein above are n-alkyl amines.
  • Suitable amines for use herein may be selected from 1-hexylamine, 1- octylamine, 1-decyiamine and laurylamine.
  • Other preferred primary amines include C8-C10 oxypropylamine, octyloxypropylamine, 2-ethylhexyl- oxypropylamine, lauryl amido propylamine and amido propylamine.
  • Suitable tertiary amines for use herein include tertiary amines having the formula R1 R2R3N wherein R1 and R2 are C-
  • R3 is either a C6-C12, preferably C ⁇ -C-io alkyl chain, or R3 is R4X(CH2) n - whereby X is -O-, -C(O)NH- or -NH- R4 is a 04-012, n is between 1 to 5, preferably 2-3.
  • R5 is H or C1-C2 alkyl and x is between 1 to 6 .
  • R3 and R4 may be linear or branched ; R3 alkyl chains may be interrupted with up to 12, preferably less than 5, ethylene oxide moieties.
  • Preferred tertiary amines are R1 R2R3N where R1 is a C6-C12 alkyl chain, R2 and R3 are C1-C3 alkyl or
  • is C ⁇ -C- ⁇ alkyl
  • n is 2-4, preferably n is 3
  • R2 and R3 is C1-C4
  • Most preferred amines of the present invention include 1-octylamine, 1- hexylamine, 1-decylamine, 1-dodecylamine,C8-10oxypropylamine, N coco 1- 3diaminopropane, coconutalkyldimethylamine, lauryldimethylamine, lauryl bis(hydroxyethyl)amine, coco bis(hydroxyehtyl)amine, lauryl amine 2 moles propoxylated, octyl amine 2 moles propoxylated, lauryl amidopropyldimethylamine, C8-10 amidopropyldimethylamine and C10 amidopropyldimethylamine.
  • the most preferred amines for use in the compositions herein are 1-hexylamine, 1-octylamine, 1-decylamine, 1-dodecylamine. Especially desirable are n- dodecyldimethylamine and bishydroxyethylcoconutalkylamine and oleylamine 7 times ethoxylated, lauryl amido propylamine and cocoamido propylamine.
  • the granular bleach-containing laundry detergent compositions can in addition to said specific cellulase further comprise one or more enzymes which provide cleaning performance, fabric care and/or sanitisation benefits.
  • Said enzymes include enzymes selected from another cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, amylases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase or mixtures thereof.
  • a preferred combination is a granular bleach-containing laundry detergent composition having cocktail of conventional applicable enzymes like protease, amylase, lipase, cutinase and/or other cellulase in conjunction with one or more plant cell wall degrading enzymes.
  • the laundry detergent compositions of the present invention will preferably further comprise a " 43kD endoglucanase derived from Humicola insolens, DSM 1800.
  • the other cellulases usable in the present invention include both bacterial or fungal cellulases. Preferably, they will have a pH optimum of between 5 and 12 and an activity above 50 CEVU (Cellulose Viscosity Unit).
  • CEVU Cellulose Viscosity Unit
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, J61078384 and WO96/02653 which discloses fungal cellulase produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum.
  • EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS-2.247.832 and WO95/26398.
  • cellulases examples include cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800.
  • Suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids; and a ⁇ 43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No. WO 91/17243.
  • suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in WO94/21801 , Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits.
  • cellulases examples include cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17244 and WO91/21801. Other suitable cellulases for fabric care and/or cleaning properties are described in WO96/34092, WO96/17994 and WO95/24471.
  • Said other cellulases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of pure enzyme by weight of the detergent composition.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc and with a phenolic substrate as bleach enhancing molecule. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, WO89/09813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991 and EP No. 96870013.8, filed February 20, 1996. Also suitable is the laccase enzyme.
  • Enhancers are generally comprised at a level of from 0.1% to 5% by weight of total composition.
  • Preferred enhancers are substitued phenthiazine and phenoxasine 10-Phenothiazinepropionicacid (PPT), 10-ethylphenothiazine-4- carboxylic acid (EPC), 10-phenoxazinepropionic acid (POP) and 10- methylphenoxazine (described in WO 94/12621) and substitued syringates (C3- C5 substitued alkyl syringates) and phenols.
  • Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
  • Said peroxidases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of pure enzyme by weight of the detergent composition.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1 ,372,034.
  • Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescent IAM 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P".
  • lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • lipases such as M1 Lipase ⁇ anQl LipomaxR (Gist-Brocades) and Lipolase ⁇ and Lipolase Ultra ⁇ (Novo) which have found to be very effective when used in combination with the compositions of the present invention.
  • cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-
  • the lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001 % to 2% of pure enzyme by weight of the detergent composition.
  • Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtilisin BPN and BPN').
  • One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1 ,243,784 to Novo.
  • Other suitable proteases include ALCALASE®, DURAZYM® and SAVINASE® from Novo and MAXATASE®, MAXACAL®, PROPERASE® and MAXAPEM® (protein engineered Maxacal) from Gist-Brocades.
  • Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A” herein.
  • Protease C is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274.
  • Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.
  • a preferred protease referred to as "Protease D” is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101 , +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in WO95/10591 and in the patent application of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzy
  • proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in WO91/02792 and their variants described in WO 95/23221. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP 516 200 by Unilever.
  • the proteolytic enzymes are incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.001% to 0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight of the composition.
  • Amylases can be included for removal of carbohydrate-based stains.
  • WO94/02597 Novo Nordisk A/S published February 03, 1994, describes cleaning compositions which incorporate mutant amylases. See also WO95/10603, Novo Nordisk A/S, published April 20, 1995.
  • Other amylases known for use in cleaning compositions include both ⁇ - and ⁇ -amylases.
  • ⁇ - Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341 ; and British Patent specification no. 1 ,296,839 (Novo).
  • amylases are stability-enhanced amylases described in WO94/18314, published August 18, 1994 and WO96/05295, Genencor, published February 22, 1996 and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Also suitable are amylases described in EP 277 216, WO95/26397 and WO96/23873 (all by Novo Nordisk).
  • ⁇ -amylases examples are Purafect Ox Am® from Genencor and Termamyl®, Ban® .Fungamyl® and Duramyl®, all available from Novo Nordisk A/S Denmark.
  • WO95/26397 describes other suitable amylases : ⁇ - amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ -amylase activity assay. Suitable are variants of the above enzymes, described in WO96/23873 (Novo Nordisk). Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in WO95/35382.
  • amylolytic enzymes are incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition.
  • the above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophiiic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used.
  • the variants may be designed such that the compatibility of the enzyme to commonly encountered ingredients of such compositions is increased.
  • the variant may be designed such that the optimal pH, bleach or chelant stability, catalytic activity and the like, of the enzyme variant is tailored to suit the particular cleaning application.
  • the isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g. an increase in isoelectric point may help to improve compatibility with anionic surfactants.
  • the stability of the enzymes may be further enhanced by the creation of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability. Special attention must be paid to the cellulases as most of the cellulases have separate binding domains (CBD). Properties of such enzymes can be altered by modifications in these domains.
  • Said enzymes are normally incorporated in the detergent composition at levels from 0.0001% to 2% of pure enzyme by weight of the detergent composition.
  • the enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc., containing one enzyme ) or as mixtures of two or more enzymes ( e.g., cogranulates ).
  • enzyme oxidation scavengers which are described in Co-pending European Patent application 92870018.6 filed on January 31 , 1992.
  • enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
  • a range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101 ,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques.
  • Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971 , Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
  • Fabric softening agents can also be incorporated into bleach-containing laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1 400 898 and in USP 5,019,292. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A1 514 276 and EP-BO 011 340 and their combination with mono C12-C14 quaternary ammonium salts are disclosed in EP-B-0 026 527 and EP-B-0 026 528 and di-long-chain amides as disclosed in EP-B-0 242 919. Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A- 0 299 575 and 0 313 146.
  • Levels of smectite clay are normally in the range from 2% to 20%, more preferably from 5% to 15% by weight, with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight.
  • These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as molten liquid on to other solid components of the composition.
  • compositions according to the present invention may further comprise a builder system.
  • a builder system Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates, alkyl- or alkenyl- succinic acid and fatty acids, materials such as ethylenediamine tetraacetate, diethylene triamine pentamethyleneacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid.
  • Phosphate builders can also be used herein.
  • Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosiiicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B, HS or MAP.
  • SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na 2 Si 2 O 5 ).
  • Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831 ,368, 821 ,369 and 821 ,370.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
  • Polycarboxylates containing three carboxy groups include, in particular, water- soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1 ,379,241 , lactoxysuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1 ,1 ,3-propane tricarboxylates described in British Patent No. 1 ,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1 ,261 ,829, 1 ,1 ,2,2-ethane tetracarboxylates, 1 ,1 ,3,3-propane tetracarboxylates and 1 ,1 ,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1 ,398,421 and 1 ,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane- cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5- tetrahydro-furan - cis, cis, cis-tetracarboxylates, 2,5-tetrahydro-furan -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1 ,2,3,4,5,6-hexane - hexacar-boxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic poly-carboxylates include mellitic acid, py
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosiiicate builder such as zeolite A or of a layered silicate (SKS-6), and a water-soluble carboxylate chelating agent such as citric acid.
  • a water-insoluble aluminosiiicate builder such as zeolite A or of a layered silicate (SKS-6)
  • a water-soluble carboxylate chelating agent such as citric acid.
  • Suitable builder systems include a mixture of a water-insoluble aluminosiiicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.
  • Preferred builder systems for use in liquid detergent compositions of the present invention are soaps and polycarboxylates.
  • Suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of this type are disclosed in GB-A-1 , 596,756.
  • Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • Detergency builder salts are normally included in amounts of from 5% to 80% by weight of the composition preferably from 10% to 70% and most usually from 30% to 60% by weight.
  • the granular bleach-containing laundry detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include ethy lened iam i netetracetates, N-hyd roxyethy lethy lened iam i netriacetates , nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21 , 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy-3,5-disulfobenzene.
  • a preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
  • EDDS ethylenediamine disuccinate
  • the compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates and the like.
  • MGDA water-soluble methyl glycine diacetic acid
  • these chelating agents will generally comprise from about 0.1% to about 15% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
  • a suds suppressor exemplified by silicones, and silica-silicone mixtures.
  • Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier.
  • the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • a preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3 933 672.
  • Other particularly useful suds suppressors are the self- emulsifying silicone suds suppressors, described in German Patent Application DTOS 2 646 126 published April 28, 1977.
  • An example of such a compound is DC-544, commercially available from Dow Corning, which is a siloxane-glycol copolymer.
  • Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alcanols. Suitable 2-alkyl- alkanols are 2-butyl-octanol which are commercially available under the trade name Isofol 12 R.
  • compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as AerosilR.
  • the suds suppressors described above are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.
  • compositions used in granular bleach-containing laundry detergent compositions may be employed, such as soil-suspending agents, soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and/or encapsulated or non-encapsulated perfumes.
  • encapsulating materials are water soluble capsules which consist of a matrix of polysaccharide and polyhydroxy compounds such as described in GB 1 ,464,616.
  • Suitable water soluble encapsulating materials comprise dextrins derived from ungelatinized starch acid-esters of substituted dicarboxylic acids such as described in US 3,455,838. These acid-ester dextrins are, preferably, prepared from such starches as waxy maize, waxy sorghum, sago, tapioca and potato. Suitable examples of said encapsulating materials include N-Lok manufactured by National Starch. The N-Lok encapsulating material consists of a modified maize starch and glucose. The starch is modified by adding monofunctional substituted groups such as octenyl succinic acid anhydride.
  • Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts.
  • Polymers of this type include the polyacrylates and maleic anhydride- acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1 % to 6% by weight of the composition.
  • Preferred optical brighteners are anionic in character, examples of which are disodium 4,4'-bis-(2-diethanolamino-4-anilino -s- triazin-6-ylamino)stilbene- 2:2' disulphonate, disodium 4, - 4'-bis-(2-morpholino-4-anilino-s-triazin-6-ylamino- stilbene-2:2' - disulphonate, disodium 4,4' - bis-(2,4-dianilino-s-triazin-6- ylamino)stilbene-2:2' - disulphonate, monosodium 4',4" -bis-(2,4-dianilino-s-tri- azin-6 ylamino)stilbene-2-sulphonate, disodium 4,4' -bis-(2-anilino-4-(N-methyl-N- 2-hydroxyethylamino)-s-triazin-6-ylamino)stilbene-2,2
  • polyethylene glycols particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.
  • Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and 4711730 and European Published Patent Application No. 0 272 033. A particular preferred polymer in accordance with EP-A-0 272 033 has the formula
  • polyesters as random copolymers of dimethyl terephthalate, dimethyl sulfoisophthalate, ethylene glycol and 1-2 propane diol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or propane-diol.
  • the target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be end-capped by sulphobenzoate groups.
  • some copolymers will be less than fully capped, and therefore their end groups may consist of monoester of ethylene glycol and/or propane 1-2 diol, thereof consist “secondarily” of such species.
  • the selected polyesters herein contain about 46% by weight of dimethyl terephthalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight ethylene glycol about 13% by weight of dimethyl sulfobenzoic acid and about 15% by weight of sulfoisophthalic acid, and have a molecular weight of about 3.000.
  • the polyesters and their method of preparation are described in detail in EPA 311 342.
  • chlorine scavenger such as perborate, ammonium sulfate, sodium sulphite or polyethyleneimine at a level above 0.1% by weight of total composition, in the formulas will provide improved through the wash stability of the detergent enzymes.
  • Compositions comprising chlorine scavenger are described in the European patent application 92870018.6 filed January 31 , 1992.
  • Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq., incorporated herein by reference. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units.
  • the side-chains are of the formula -(CH2CH2 ⁇ ) m (CH2)nCH3 wherein m is 2-3 and n is 6-12.
  • the side-chains are ester-linked to the polyacrylate "backbone” to provide a "comb" polymer type structure.
  • the molecular weight can vary, but is typically in the range of about 2000 to about 50,000.
  • Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein. Dispersants
  • the granular bleach-containing laundry detergent composition of the present invention can also contain dispersants :
  • Suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of this type are disclosed in GB-A- 1 ,596, 756.
  • Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 1 ,000 to 100,000.
  • copolymer of acrylate and methylacrylate such as the 480N having a molecular weight of 4000, at a level from 0.5-20% by weight of composition can be added in the granular bleach-containing laundry detergent compositions of the present invention.
  • compositions of the invention may contain a lime soap peptiser compound, which has preferably a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6.
  • LSDP lime soap dispersing power
  • the lime soap peptiser compound is preferably present at a level from 0% to 20% by weight.
  • LSDP lime soap dispersant power
  • This lime soap dispersion test method is widely used by practitioners in this art field being referred to, for example, in the following review articles; W.N. Linfield, Surfactant science Series, Volume 7, page 3; W.N. Linfield, Tenside surf, det, volume 27, pages 159-163, (1990); and M.K. Nagarajan, W.F. Master, Cosmetics and Toiletries, volume 104, pages 71-73, (1989).
  • Surfactants having good lime soap peptiser capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
  • Exemplary surfactants having a LSDP of no more than 8 for use in accord with the present invention include C-
  • Polymeric lime soap peptisers suitable for use herein are described in the article by M.K. Nagarajan, W.F. Masler, to be found in Cosmetics and Toiletries, volume 104, pages 71-73, (1989).
  • Hydrophobic bleaches such as 4-[N-octanoyl-6-aminohexanoyl]benzene sulfonate, 4-[N-nonanoyl-6-aminohexanoyl]benzene sulfonate, 4-[N-decanoyl-6- aminohexanoyljbenzene sulfonate and mixtures thereof; and nonanoyloxy benzene sulfonate together with hydrophilic / hydrophobic bleach formulations can also be used as lime soap peptisers compounds.
  • the granular bleach-containing laundry detergent compositions of the present invention can also include compounds for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
  • the granular bleach-containing laundry detergent compositions according to the present invention also comprise from 0.001% to 10 %, preferably from 0.01% to 2%, more preferably from 0.05% to 1% by weight of polymeric dye transfer inhibiting agents.
  • Said polymeric dye transfer inhibiting agents are normally incorporated into granular bleach-containing laundry detergent compositions in order to inhibit the transfer of dyes from coloured fabrics onto fabrics washed therewith. These polymers have the ability to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.
  • polymeric dye transfer inhibiting agents are polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
  • polyamine N-oxide polymers suitable for use contain units having the following structure formula : P
  • R wherein P is a polymerisable unit, whereto the R-N-O group can be attached to or wherein the R-N-O group forms part of the polymerisable unit or a combination of both.
  • II II II A is NC, CO, C, -O-.-S-, -N- ; x is O or 1 ;
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • the N-O group can be represented by the following general structures :
  • R1 , R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
  • the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
  • Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
  • polyamine N-oxides comprises the group of polyamine N- oxides wherein the nitrogen of the N-O group forms part of the R-group.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
  • Another class of said polyamine N-oxides comprises the group of polyamine N- oxides wherein the nitrogen of the N-O group is attached to the R-group.
  • polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
  • polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is attached to said R groups.
  • polyamine oxides wherein R groups can be aromatic such as phenyl examples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • the amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1 :1000000.
  • the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation.
  • the ratio of amine to amine N-oxide is from 2:3 to 1 :1000000. More preferably from 1 :4 to 1 :1000000, most preferably from 1 :7 to 1 :1000000.
  • the polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not.
  • the amine oxide unit of the polyamine N-oxides has a PKa ⁇ 10, preferably PKa ⁇ 7, more preferred PKa ⁇ 6.
  • the polyamine oxides can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000; preferably from 1 ,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
  • N-vinylimidazole N-vinylpyrrolidone polymers used in the present invention have an average molecular weight range from 5,000-1 ,000,000, preferably from 5,000-200,000.
  • Highly preferred polymers for use in detergent compositions according to the present invention comprise a polymer selected from N-vinylimidazole N- vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000.
  • the average molecular weight range was determined by light scattering as described in Barth H.G. and Mays J.W. Chemical Analysis Vol 113, "Modern Methods of Polymer Characterization".
  • Highly preferred N-vinylimidazole N-vinylpyrrolidone copolymers have an average molecular weight range from 5,000 to 50,000; more preferably from 8,000 to 30,000; most preferably from 10,000 to 20,000.
  • N-vinylimidazole N-vinylpyrrolidone copolymers characterized by having said average molecular weight range provide excellent dye transfer inhibiting properties while not adversely affecting the cleaning performance of detergent compositions formulated therewith.
  • the N-vinylimidazole N-vinylpyrrolidone copolymer of the present invention has a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .
  • the detergent compositions of the present invention may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
  • PVP polyvinylpyrrolidone
  • Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000).
  • polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12; polyvinylpyrrolidones known to persons skilled in the detergent field (see for example EP-A-262,897 and EP-A- 256,696).
  • the detergent compositions of the present invention may also utilize polyvinyloxazolidone as a polymeric dye transfer inhibiting agent.
  • Said polyvinyloxazolidones have an average molecular weight of from about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
  • Polyvinylimidazole :
  • the detergent compositions of the present invention may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
  • Said polyvinylimidazoles have an average of about 2,500 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
  • Cross-linked polymers are polymers whose backbone are interconnected to a certain degree; these links can be of chemical or physical nature, possibly with active groups n the backbone or on branches; cross-linked polymers have been described in the Journal of Polymer Science, volume 22, pages 1035-1039.
  • the cross-linked polymers are made in such a way that they form a three-dimensional rigid structure, which can entrap dyes in the pores formed by the three-dimensional structure.
  • the cross- linked polymers entrap the dyes by swelling.
  • compositions of the invention may be used in essentially any washing or cleaning methods, including soaking methods, pretreatment methods and methods with rinsing steps for which a separate rinse aid composition may be added.
  • the process described herein comprises contacting fabrics with a laundering solution in the usual manner and exemplified hereunder.
  • the process of the invention is conveniently carried out in the course of the cleaning process.
  • the method of cleaning is preferably carried out at 5°C to 95°C, especially between 10°C and 60°C.
  • the enzymes levels are expressed by pure enzyme by weight of the total composition and unless otherwise specified, the detergent ingredients are expressed by weight of the total compositions.
  • the abbreviated component identifications therein have the following meanings:
  • 2(A1 ⁇ 2Si ⁇ 2)i2- 27H2O having a primary particle size in the range from 0.1 to 10 micrometers (Weight expressed on an anhydrous basis).
  • Anhydrous citric acid / Bicarbonate Anhydrous sodium hydrogen carbonate with a particle size distribution between 400 and 1200 micrometres.
  • TSPP Tetrasodium pyrophosphate
  • MA/AA 1 Random copolymer of 6:4 acrylate/maleate, average molecular weight about 10,000.
  • TAED Tetraacetylethylenediamine.
  • NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt.
  • NACA-OBS (6-nonamidocaproyl) oxybenzene sulfonate.
  • DTPA Diethylene triamine pentaacetic acid.
  • Protease Proteolytic enzyme sold under the tradename Savinase, Alcalase, Durazym by Novo Nordisk A S, Maxacal, Maxapem sold by Gist-Brocades and proteases described in patents WO91/06637 and/or WO95/10591 and/or EP 251 446.
  • Amylase Amylolytic enzyme sold under the tradename Purafact Ox Am R described in WO 94/18314, WO96/05295 sold by Genencor; Termamyl®, Fungamyl® and Duramyl®, all available from Novo Nordisk A/S and those described in WO95/26397.
  • Lipase Lipolytic enzyme sold under the tradename Lipolase, Lipolase Ultra by Novo Nordisk A/S and Lipomax by Gist- Brocades.
  • PVNO Polyvinylpyridine-N-Oxide with an average molecular weight of 50,000.
  • PVPVI Copolymer of vinylimidazole and vinylpyrrolidone with an average molecular weight of 20,000.
  • Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2- yl) stilbene-2:2'-disulfonate.
  • SRP 1 Anionically end capped poly esters.
  • HMWPEO High molecular weight polyethylene oxide.
  • PEGx Polyethylene glycol, of a molecular weight of x .
  • Brightener 1 0.2 0.2 0.2 0.2 0.2
  • Brightener 1 0.05 - - 0.05
  • Brightener 2 0.3 0.2 0.3 - 0.1 0.3
  • Brightener 1 0.2 0.2 0.2 0.2 0.2
  • Photoactivated bleach 30 ppm 20 ppm 20 ppm 10 ppm

Abstract

L'invention porte sur des compositions granulaires de détergents comportant un agent de blanchiment et une cellulase fongique d'un pH optimal de 4 à 10 sans domaine de fixation de la cellulose, d'un pH en solution à 1 % compris entre 7,5 et 10, et bénéficiant de ce fait de performances supérieures en ce qui concerne le lavage et la blancheur.
EP97933404A 1997-07-11 1997-07-11 Compositions detergentes alcalines comportant une cellulase specifique Withdrawn EP1012220A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/012117 WO1999002637A1 (fr) 1997-07-11 1997-07-11 Compositions detergentes alcalines comportant une cellulase specifique

Publications (1)

Publication Number Publication Date
EP1012220A1 true EP1012220A1 (fr) 2000-06-28

Family

ID=22261248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97933404A Withdrawn EP1012220A1 (fr) 1997-07-11 1997-07-11 Compositions detergentes alcalines comportant une cellulase specifique

Country Status (6)

Country Link
EP (1) EP1012220A1 (fr)
JP (1) JP2001509537A (fr)
AR (1) AR016321A1 (fr)
AU (1) AU3659797A (fr)
CA (1) CA2296559A1 (fr)
WO (1) WO1999002637A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565613B1 (en) 1999-04-29 2003-05-20 Genencor International, Inc. Cellulase detergent matrix
TW554258B (en) * 2000-11-30 2003-09-21 Tosoh Corp Resist stripper
JP2004211080A (ja) * 2002-12-19 2004-07-29 Kao Corp 漂白洗浄剤組成物
GB0324245D0 (en) * 2003-10-16 2003-11-19 Reckitt Benckiser Nv Coated bleach particle
DE102008015110A1 (de) * 2008-03-19 2009-09-24 Henkel Ag & Co. Kgaa Sprühgetrocknete Wasch- oder Reinigungsmittelprodukte

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8421800D0 (en) * 1984-08-29 1984-10-03 Unilever Plc Detergent compositions
GB8627914D0 (en) * 1986-11-21 1986-12-31 Procter & Gamble Softening detergent compositions
US5290474A (en) * 1990-10-05 1994-03-01 Genencor International, Inc. Detergent composition for treating cotton-containing fabrics containing a surfactant and a cellulase composition containing endolucanase III from trichoderma ssp
WO1995002675A1 (fr) * 1993-07-12 1995-01-26 Novo Nordisk A/S Composition detersive comprenant deux cellulases
WO1997020026A1 (fr) * 1995-11-27 1997-06-05 Unilever N.V. Compositions detergentes enzymatiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9902637A1 *

Also Published As

Publication number Publication date
CA2296559A1 (fr) 1999-01-21
AR016321A1 (es) 2001-07-04
JP2001509537A (ja) 2001-07-24
AU3659797A (en) 1999-02-08
WO1999002637A1 (fr) 1999-01-21

Similar Documents

Publication Publication Date Title
EP0896998A1 (fr) Compositions détergentes pour le linge contenant une enzyme dégradant la gomme de polysaccharide
US6113655A (en) Detergent compositions comprising a pectinesterase enzyme
US20020037824A1 (en) Detergent compositions comprising a maltogenic alpha-amylase enzyme and a detergent ingredient
EP0964909A1 (fr) Produits de nettoyage contenant une enzyme alcaline de decomposition du xylane et une enzyme de degradation de constituants parietaux non vegetaux
WO2000042145A1 (fr) Compositions detergentes comprenant un systeme d'enzymes degradant la pectine
EP0925346A1 (fr) Compositions detergentes contenant une enzyme degradant la pectine alcaline
EP0993501A1 (fr) Compositions detergentes enzymatiques
WO1998039402A1 (fr) Produits de nettoyage contenant une enzyme alcaline de decomposition du xylane et un agent de blanchiment
EP0964910A1 (fr) Compositions detersives contenant une enzyme alcaline de decomposition du xylane et des polymeres inhibiteurs de transfert pigmentaire
WO1999003962A1 (fr) Compositions detergentes comportant une phospholipase
EP1009792A1 (fr) Compositions nettoyantes contenant une phosphatase
WO1999002636A1 (fr) Composition detergente comprenant une cellulase specifique et un chelateur sans phosphate
CA2414158A1 (fr) Compositions detergentes renfermant une enzyme alpha-amylase maltogene
WO1999032594A1 (fr) Compositions de nettoyage contenant une neopullulanase
WO1998006809A1 (fr) Compositions detergentes contenant une polygalacturonase alcaline
EP1012220A1 (fr) Compositions detergentes alcalines comportant une cellulase specifique
US6187740B1 (en) Alkaline detergent compositions comprising a specific cellulase
EP1012219A1 (fr) Compositions detergentes comprenant une cellulase specifique et un tensio-actif d'alkylpolyglucoside
WO2000042147A1 (fr) Compositions detergentes comprenant une lyase de pectate et un tensioactif non ionique semi-polaire
WO1998006805A1 (fr) Compositions detergentes contenant une pectolyase
EP0912688A1 (fr) Compositions detergentes comportant des amylases ameliorees, de la cellulase et un tensioactif cationique
WO2000042153A1 (fr) Compositions detergentes renfermant une pectate lyase et un tensioactif cationique
WO1999002635A1 (fr) Compositions detergentes comportant une cellulase specifique et un zeolite specifique
CA2295579A1 (fr) Composition detergente comportant une cellulase specifique, et un activateur hydrophobe de blanchiment
MXPA00000450A (en) Detergent compositions comprising a specific cellulase and a hydrophobic bleach activator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20010608

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011019