EP1008826A1 - Vaporisateur à film ruisselant et installations de distillation d'air correspondantes - Google Patents

Vaporisateur à film ruisselant et installations de distillation d'air correspondantes Download PDF

Info

Publication number
EP1008826A1
EP1008826A1 EP99403043A EP99403043A EP1008826A1 EP 1008826 A1 EP1008826 A1 EP 1008826A1 EP 99403043 A EP99403043 A EP 99403043A EP 99403043 A EP99403043 A EP 99403043A EP 1008826 A1 EP1008826 A1 EP 1008826A1
Authority
EP
European Patent Office
Prior art keywords
liquid
vaporizer
passages
passage
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99403043A
Other languages
German (de)
English (en)
Other versions
EP1008826B1 (fr
Inventor
Marc Wagner
Jean-Yves Thonnelier
Etienne Werlen
Jean-Renaud Brugerolle
Jean-Yves Lehman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1008826A1 publication Critical patent/EP1008826A1/fr
Application granted granted Critical
Publication of EP1008826B1 publication Critical patent/EP1008826B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the present invention relates to a vaporizer of the type comprising a heat exchanger body which has main passages placed in heat exchange relationship, means for forming a bath of the liquid to be sprayed so that it circulates in at least one of said first passages main, and means for introducing a refrigerant into the minus a second of said main passages so that it ensures the vaporization of the liquid.
  • the invention applies, for example, to a vaporizer-condenser for a double column air distillation installation.
  • oxygen-rich liquid from the low pressure column tank, is vaporized in the evaporator-condenser by condensation of a nitrogen-rich gas, taken off at the head of the medium pressure column.
  • an air separation device such as a double distillation column includes several types of heat exchanger heat.
  • a main heat exchanger is used to cool the supply air of the apparatus at distillation temperature by heat exchange with a or more fluids from the distillation apparatus. In some cases, these are pressurized liquids from the device that vaporize against the air at distill in the exchanger. These exchangers are normally made entirely of aluminum or copper or alloys of these metals (W095 / 28610).
  • the apparatus also comprises at least one vaporizer-condenser which is a heat exchanger placed inside or outside of the column.
  • vaporizers-condensers are usually made entirely in copper, stainless steel, nickel or aluminum and are made up of at least two circuits which are connected to the rest of the installation by means of pipes welded to the equipment.
  • Exchangers used in air separation devices include heat exchanger bodies which are often made in parallel aluminum plates with a similar outline brazed between they.
  • a oxygen-rich liquid vaporizes against a current rich in gas nitrogen (such as air or nitrogen with a purity greater than 80%).
  • EP-0795349 describes the case where such a vaporizer is combined with a thermosiphon vaporizer (bath vaporizer, i.e. a vaporizer completely immersed in the liquid where the recirculation of the liquid rich in oxygen is made thanks to the hydraulic thrust due to the difference in density between the bath and the liquid vaporizing in the passages).
  • bath vaporizer i.e. a vaporizer completely immersed in the liquid where the recirculation of the liquid rich in oxygen is made thanks to the hydraulic thrust due to the difference in density between the bath and the liquid vaporizing in the passages.
  • the liquid is distributed between many passages made up of waves vertical inserted between two sheets called separators and thus constituting thermal fins, and because of the pitch of these waves the bodies brazed plate heat exchangers have surfaces very large exchange.
  • liquid film when the whole surface is wet, the liquid film will be very thin and to avoid dry spraying at the bottom of the first passages main or in the event of a distribution fault, liquid is poured in excess in the heat exchanger body. This excess liquid forces in general to recycle liquid by means of a pump.
  • vaporizers of the aforementioned type called bath, recirculation of the liquid is also maintained to avoid dry vaporization in the top of the first main passengers.
  • US-A-5699671 further describes a vaporizer with an exchanger body vertically arranged tubular in which nitrogen gas condenses at contact of its tubes.
  • An object of the invention is to solve this problem by providing a vaporizer of the aforementioned type which limits the risk of clogging of the passage (s) dedicated to the liquid to be vaporized.
  • Another object of the invention is to minimize the recirculation of the liquid to be vaporized in vaporizers of the aforementioned type and ensure the safety of the optimal operation and performance.
  • the subject of the invention is a vaporizer of the aforementioned type, characterized in that the or each first main passage has, in current cross section to the direction of flow of the liquid to vaporize, at least one region of free flow continues sufficiently extended to allow the liquid to bypass a deposit of impurities, or, the main passages being delimited by vertical plates having a substantially similar outline, parallel and spaced apart others to form the main flat passages, at least a first main passage is either narrower than the second main passage and contains no exchange wave or auxiliary passage, either contains one or several closed auxiliary passage (s) which extend over most of the dimension of the heat exchanger body parallel to the direction of liquid to be vaporized, the walls of the passage (s) auxiliary (s) touching the plates defining the main passage.
  • all the first main passages contain at least minus a closed auxiliary passage.
  • the liquid sent into the auxiliary passage crosses the vaporizer without contacting the plates defining the first passages main.
  • the liquid should be avoided between the exterior of the auxiliary passage and the passages defined by the plates.
  • passages auxiliaries in a block of material (for example aluminum, nickel or copper). If the block has substantially the dimensions of a first pass main, the liquid will not be able to flow outside the passages auxiliaries which are cylindrical holes passing through the block.
  • the maximum width of an auxiliary passage is greater than 50% of the distance between two adjacent plates.
  • the inner surface of the auxiliary passage or each auxiliary passage includes only curved surfaces and possibly convexities.
  • the absence of cavities in the passages of the first set ("liquid" passages) never has been proposed in the prior art.
  • At least one, and preferably all, of the first main passages contain several auxiliary passages formed by a series of cylindrical tubes parallel to each other and each having a diameter at least equal to 50% of the separation between two adjacent plates.
  • At least one and preferably all of the first main passages contain several auxiliary passages consisting of tubes, each having an inner surface with at least three identical convexities and curved surfaces connecting the convexities.
  • the adjacent tubes may or may not be contiguous.
  • auxiliary passage there are means for directing liquid into the or each auxiliary passage and / or liquid distribution means constituted by predistribution openings, these openings leaving drop this liquid on a lining located above the means for direct liquid into one or each auxiliary passage.
  • the means for directing the liquid into the passages are inclined points whose ends are above inside the auxiliary passage (or passage).
  • the vaporizer can be a main exchanger which is used to cool the air purified at its distillation temperature, a sub-cooler or the vaporizer-condenser of a double column.
  • the invention also relates to an air distillation installation comprising at least one vaporizer as defined above.
  • FIG 1 illustrates a vaporizer-condenser 2 (see description of Figure 1 in EP-A-0130122).
  • the vaporizer-condenser 2 comprises a heat exchanger body formed by a sealed envelope 3 and a series of parallel vertical plates 4 made of aluminum, which define a multitude of main flat passages intended alternately for one of two fluid flows, for example, a gas flow containing 98% nitrogen at around 5 bar and a liquid flow containing 98% oxygen at around 1.5 bars.
  • pressures and purities can take other values.
  • first main passages The passages dedicated to the liquid to be vaporized are called first main passages and are marked with the letter L in the figures, while the passages dedicated to the gas to be condensed are called second passages main and are identified by the letter G in the figures.
  • the space above the plates 4 contains a bath 5 of the liquid to be vaporized from a line 6.
  • the liquid from this bath enters each first pass L through a series of perforations in a upper distribution bar 27. It then falls on a wave 26 which is a non-perforated aluminum sheet with horizontal generators (layout so-called hardway with respect to the flow of liquid oxygen) and offset partial vertical (partial vertical offset is not illustrated so as not to overload the figures) and which ensures the fine distribution of the liquid.
  • the liquid falls from the wave 26 on an upper drip 25 constituted by an aluminum strip folded with a series of triangular points 29 forming an angle of 135 ° with the plane of one of the plates 4 of the passage L considered.
  • each point 29 of the upper drip 15 is located above with a point of a lower drip 24, identical to the first but whose tips are oriented towards the other plate 4 of passage L considered.
  • the liquid to be vaporized then flows on the plates 4 of the first passage L considered in the form of a film streaming downwards.
  • the gas to be condensed enters the second passages G at by means of a pipe 9 welded in the middle of a head 8 (sometimes called “Box” or in English “headline”) semi-cylindrical.
  • the gas then flows downwards in the second passages G to cocurrent of the liquid in the first passages L, the condensation of the gas ensuring the vaporization of the liquid in the first passages L.
  • only the second passages G each contain a spacer wave 21 consisting of a sheet corrugated perforated aluminum with vertical generators (available in "Easy-way").
  • these spacer waves 21 fill also the function of thermal fins.
  • the first passages L have a thickness less than that of the second passages G.
  • the thickness of the first passages L is included between 2.5 mm and two thirds of the thickness of the second G passages.
  • the first passages L are each delimited by two plates 4 neighbors and by closing bars 30 situated between them on their side edges.
  • the first passages L are narrower than the second passages G and contain neither exchange waves nor passages auxiliaries.
  • the distance between the adjacent plates 4 of the first passages L varies between 2.5 mm and two-thirds of the separation between the plates 4 of the second passages G.
  • the first passages L have on all their length a rectangular cross section free of any obstacle and keep on going.
  • This section has a width substantially equal to the width of the plates 4 and therefore the width of the heat exchanger body, that is to say a width of about 1 meter.
  • first passages L having in cross section current, that is to say over most of their length, a region unobstructed and continuous flow that extends along a guide curve C of length greater than approximately 10 cm.
  • this guide curve C is a straight line parallel to plates 4, located between them, and about 1 m long.
  • the right C is shown in dotted lines in FIG. 5a.
  • the distance separating the two plates 4 associated with a first passage L is greater than that of the variant of Figures 1 to 5a.
  • Each sheet 29, 31 therefore comprises a series of semi-cylindrical sections joined at the ends to form a curved line.
  • Each sheet 29, 31 is carried by a plate 4.
  • the concavities of the sheets 29, 31 are directed towards each other.
  • the sheets 29 and 31 are offset transversely from each other so that the tips of each sheet are located opposite a hollow of the other sheet. So the two sheets 29 and 31 form a single auxiliary passage between them, in which all the fluid flowing in the first passage L considered.
  • the sheets 29 and 31 play the role of thermal fins and delimit thus between them the flow region of the liquid to be vaporized.
  • each first passage L extends, in its cross section, continuously and freely practically over the entire width of the heat exchanger body.
  • the mentioned guideline C above then extends between the sheets 29 and 31 following their contours.
  • the directing curve is then sinuous and has a length greater than 1 m.
  • the first passages L make it possible to limit the risks closure thanks to a sufficient transverse extent so that the liquid to be sprayed bypasses any deposits.
  • the auxiliary passages of the first passages L are formed by contiguous aluminum tubes 23.
  • the second passages G we find the generating waves 21 classic verticals.
  • the auxiliary passages of the first passages L are non-contiguous tubes having a cross section shape of clover leaves.
  • the auxiliary passage (s) includes only curved surfaces or convexities thus preventing the accumulation of impurities in the passages and making it possible to limit the liquid recirculation required in the vaporizer 2.
  • the invention is not limited to dripping film vaporizers but also applies to so-called bath vaporizers.
  • FIG. 6 illustrates another embodiment of the invention in which the sealed envelope 3 of the vaporizer-condenser 2 comprises a ferrule 40 of vertical axis, closed by a domed dome 41 and by a bottom domed 42.
  • a bundle of tubes 44 is disposed inside the ferrule 40, coaxial therewith, to form with the ferrule 40 an exchanger body heat.
  • the tubes 44 have an outside diameter of approximately 5 mm and a thickness of about 1 mm.
  • the tubes 44 are arranged in a bundle regular, which forms in cross section (figure 7) a mesh network about 8 mm square.
  • the tubes Preferably, the tubes have a diameter outside less than 7 mm and are spaced at least 2 mm.
  • the upper ends of the tubes 44 are fixed to a plate said tubular 45 upper into which they open. Plate 45 is disposed in the dome 41. Similarly, the lower ends of the tubes 44 open into a lower tube plate 46 disposed in the bottom 42, the tubes 44 being fixed to this plate 46.
  • the space delimited by the tubular plate 45 and the dome 41 is connected to the pipe 9 for supplying gas rich in nitrogen to form means of introduction into the tubes 44 of the gas to be condensed.
  • the space delimited by the tubular plate 46 and the bottom 42 is connected to the pipe 11 for evacuating the condensed gas and to the pipe 13 for evacuating uncondensable rare gases to form means of evacuating gas condensed out of the tubes 44.
  • the tubes 44 therefore internally define the second passages G.
  • the line 6 for supplying the oxygen-rich liquid opens into the ferrule 40 under the tubular plate 45.
  • the return pipe 7 is disposed between the tube plate 45 and the pipe 6.
  • a circular distribution plate 48 is disposed under the pipe 6 transversely to the axis A of the shell 40. This plate 48 is pierced with a network of circular orifices 49 6 mm in diameter each receiving coaxially a tube 44.
  • the bath of the liquid to be vaporized is formed above the plate 48 of distribution.
  • the liquid is distributed under this plate 48 through the spaces annulars 50 delimited around the tubes 44 by the orifices 49.
  • the liquid then flows in the form of a liquid trickling on the outer surface of the tubes 44, cocurrent with gas to be condensed.
  • the vaporized liquid is returned via the line 14 to the low pressure column tank while excess oxygen liquid present above the tube plate 46 is returned by the line 16 and via a pump 51 to line 6.
  • the tubes 44 therefore delimit externally, with the ferrule 40, a only first passage L dedicated to the circulation of the liquid to be vaporized.
  • This first passage L has, in its current section, a region appreciably diametral, the straight line C of which passes through the axis A of the ferrule 40, has a length of the order of the inside diameter of the ferrule 40.
  • This internal diameter may for example be equal to approximately 1 m.
  • This embodiment of the invention therefore also makes it possible to limit the risk of blockage of the first pass L.
  • the first passage L will include in section transverse a multitude of flow regions, free of any obstacle and continuous, which will undulate between the tubes 44.
  • the guiding curves C of these regions will then be sinuous and preferably have a length greater than about 10 cm and, more preferably, greater than about 1 m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Ce vaporiseur (2) présente des passages principaux (G, L) placés en relation d'échange thermique, des moyens pour former un bain du liquide à vaporiser pour qu'il circule dans au moins un premier (L) desdits passages principaux, et des moyens d'introduction d'un fluide frigorigène dans au moins un deuxième (G) desdits passages principaux pour qu'il assure la vaporisation du liquide. Le ou chaque premier passage principal possède, en section courante transversale à la direction de circulation du liquide à vaporiser, au moins une région d'écoulement libre continue suffisamment étendue pour permettre au liquide de contourner un dépôt d'impuretés, ou, les passages principaux étant délimités par des plaques verticales (4) ayant un contour substantiellement similaire, parallèles et espacées les unes des autres afin de former les passages principaux plats, au moins un premier passage principal (L) est soit plus étroit que le deuxième passage principal et ne contient ni d'onde d'échange ni de passage auxiliaire, soit contient un ou plusieurs passage(s) auxiliaire(s) fermé(s) (23, 50) qui s'étendent sur l'essentiel de la dimension du corps d'échangeur de chaleur parallèle à la direction d'écoulement du liquide à vaporiser, les parois du (des) passage(s) auxiliaire(s) touchant les plaques (4) définissant le passage principal. <IMAGE>

Description

La présente invention concerne un vaporiseur du type comprenant un corps d'échangeur de chaleur qui présente des passages principaux placés en relation d'échange thermique, des moyens pour former un bain du liquide à vaporiser pour qu'il circule dans au moins un premier desdits passages principaux, et des moyens d'introduction d'un fluide frigorigène dans au moins un deuxième desdits passages principaux pour qu'il assure la vaporisation du liquide.
L'invention s'applique, par exemple, à un vaporiseur-condenseur pour une installation de distillation d'air à double colonne.
Dans un tel vaporiseur-condenseur, du liquide riche en oxygène, provenant de la cuve de la colonne basse pression, est vaporisé dans le vaporiseur-condenseur par condensation d'un gaz riche en azote, prélevé en tête de la colonne moyenne pression.
De manière plus générale, un appareil de séparation d'air tel qu'une double colonne de distillation comprend plusieurs types d'échangeur de chaleur.
Un échangeur de chaleur principal sert à refroidir l'air d'alimentation de l'appareil à la température de distillation par échange de chaleur avec un ou plusieurs fluides provenant de l'appareil de distillation. Dans certains cas, ce sont des liquides pressurisés de l'appareil qui se vaporisent contre l'air à distiller dans l'échangeur. Ces échangeurs sont normalement faits entièrement en aluminium ou en cuivre ou en alliages de ces métaux (W095/28610).
Pour des raisons de sécurité, ces liquides se vaporisent parfois dans un échangeur dédié, ou vaporiseur, contre un seul fluide tel que l'air ou l'azote.
L'appareil comprend également au moins un vaporiseur-condenseur qui est un échangeur de chaleur placé à l'intérieur ou à l'extérieur de la colonne. Ces vaporiseurs-condenseurs sont habituellement réalisés entièrement en cuivre, acier inoxydable, nickel ou aluminium et sont constitués d'au moins deux circuits qui sont reliés au reste de l'installation au moyen de tuyauteries soudées sur l'équipement.
Les échangeurs utilisés dans les appareils de séparation d'air comprennent des corps d'échangeurs de chaleur qui sont souvent réalisés en plaques parallèles d'aluminium ayant un contour similaire brasées entre elles.
En général dans les échangeurs qui servent de vaporiseurs, un liquide riche en oxygène se vaporise à contre-courant d'un gaz riche en azote (tel que l'air ou l'azote avec une pureté supérieur à 80%).
Pour améliorer les performances de ces vaporiseurs, on peut utiliser des vaporiseurs dits à film tombant ou ruisselant, c'est-à-dire du type précité et dans lesquels le liquide riche en oxygène du bain est distribué en tête du vaporiseur sous forme d'un film très mince qui s'écoule verticalement dans les premiers passages principaux et dont une partie se vaporise par échange de chaleur avec les passages dédiés au gaz riche en azote de manière cocourante.
EP-0795349 décrit le cas où un tel vaporiseur est combiné avec un vaporiseur de type thermosiphon (vaporiseur dit bain, c'est-à-dire un vaporiseur complètement immergé dans le liquide où la recirculation du liquide riche en oxygène se fait grâce à la poussée hydraulique due à la différence de densité entre le bain et le liquide se vaporisant dans les passages).
Dans les corps d'échangeurs à plaques brasées utilisés dans les vaporiseurs du type précité à film ruisselant tels que celui de EP-A-0130122, le liquide est distribué entre de nombreux passages constitués d'ondes verticales insérées entre deux tôles dites séparatrices et constituant ainsi des ailettes thermiques, et du fait du pas de ces ondes les corps d'échangeurs de chaleur à plaques brasées présentent des surfaces d'échange très grandes.
Donc quand toute la surface est mouillée, le film liquide sera très fin et pour éviter une vaporisation à sec dans le bas des premiers passages principaux ou en cas de défaut de distribution, on fait couler du liquide en excès dans le corps d'échangeur de chaleur. Cet excès de liquide oblige en général à recycler du liquide au moyen d'une pompe.
Dans les vaporiseurs du type précité dits à bain, une recirculation du liquide est également entretenue pour éviter la vaporisation à sec dans le haut des premiers passagers principaux.
US-A-5699671 décrit par ailleurs un vaporiseur à corps d'échangeur tubulaire disposé verticalement dans lequel l'azote gazeux se condense au contact de ses tubes.
On a constaté, notamment dans les vaporiseurs-condenseurs à film ruisselant, que des polluants solides tels que par exemple, des hydrocarbures ou du protoxyde d'azote, peuvent s'accumuler dans les passages dédiés au fluide riche en oxygène, ce qui peut conduire au bouchage de ces derniers.
Un tel bouchage détériore alors le fonctionnement du vaporiseur-condenseur.
Un but de l'invention est de résoudre ce problème en fournissant un vaporiseur du type précité qui permette de limiter les risques de bouchage du ou des passage(s) dédié(s) au liquide à vaporiser.
Un autre but de l'invention est de minimiser la recirculation du liquide à vaporiser dans les vaporiseurs du type précité et assurer la sécurité du fonctionnement et les performances optimales.
A cet effet, l'invention a pour objet un vaporiseur du type précité, caractérisé en ce que le ou chaque premier passage principal possède, en section courante transversale à la direction de circulation du liquide à vaporiser, au moins une région d'écoulement libre continue suffisamment étendue pour permettre au liquide de contourner un dépôt d'impuretés, ou, les passages principaux étant délimités par des plaques verticales ayant un contour substantiellement similaire, parallèles et espacées les unes des autres afin de former les passages principaux plats, au moins un premier passage principal est soit plus étroit que le deuxième passage principal et ne contient ni d'onde d'échange ni de passage auxiliaire, soit contient un ou plusieurs passage(s) auxilaire(s) fermé(s) qui s'étendent sur l'essentiel de la dimension du corps d'échangeur de chaleur parallèle à la direction d'écoulement du liquide à vaporiser, les parois du (des) passage(s) auxiliaire(s) touchant les plaques définissant le passage principal.
De préférence, tous les premiers passages principaux contiennent au moins un passage auxiliaire fermé.
Ainsi le liquide envoyé dans le passage auxiliaire traverse le vaporiseur sans contacter les plaques définissant les premiers passages principaux. Il faut éviter dans la mesure du possible que le liquide circule entre l'extérieur du passage auxiliaire et les passages définis par les plaques.
Un moyen d'éviter ce problème consiste à former les passages auxiliaires dans un bloc de matériel (par exemple en aluminium, nickel ou cuivre). Si le bloc a substantiellement les dimensions d'un premier passage principal, le liquide ne pourra pas couler à l'extérieur des passages auxiliaires qui sont des trous cylindriques traversant le bloc.
Idéalement, la largeur maximale d'un passage auxiliaire est supérieure à 50% de la distance entre deux plaques adjacentes.
Afin d'éviter l'accumulation d'impuretés, la surface intérieure du passage auxiliaire ou de chaque passage auxiliaire ne comprend que des surfaces courbes et éventuellement des convexités. L'absence de cavités dans les passages du premier ensemble (passages « liquide ») n'a jamais été proposée dans l'art antérieur.
Selon une variante, au moins un, et préférablement tous, des premiers passages principaux contiennent plusieurs passages auxiliaires constitués par une série de tubes cylindriques parallèles les uns aux autres et ayant chacun un diamètre au moins égal à 50% de la séparation entre deux plaques adjacentes.
Selon une autre variante, au moins un et préférablement tous les premiers passages principaux contiennent plusieurs passages auxiliaires constitués par des tubes ayant chacun une surface intérieure avec au moins trois convexités identiques et des surfaces courbes reliant les convexités.
Les tubes adjacents peuvent être contigus ou pas.
Préférablement, il y a des moyens pour diriger du liquide dans le ou chaque passage auxiliaire et/ou des moyens de distribution de liquide constitués par des ouvertures de prédistribution, ces ouvertures laissant tomber ce liquide sur un garnissage situé au-dessus des moyens pour diriger du liquide dans un ou chaque passage auxiliaire.
Dans une variante, les moyens pour diriger le liquide dans les passages sont des pointes inclinées dont le bout se trouve en dessus de l'intérieur du passage (ou d'un passage) auxiliaire.
Le vaporiseur peut être un échangeur principal qui sert à refroidir de l'air épuré à sa température de distillation, un sous-refroidisseur ou le vaporiseur-condenseur d'une double colonne.
L'invention a également pour objet une installation de distillation d'air comprenant au moins un vaporiseur tel que défini ci-dessus.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
  • la figure 1 est un schéma partiel d'une installation de distillation d'air selon l'invention,
  • la figure 2 est une vue schématique éclatée du vaporiseur-condenseur de l'installation de la figure 1,
  • la figure 3 est une vue partielle, schématique et en coupe d'un passage du vaporiseur-condenseur de la figure 1 dédié à la circulation du liquide à vaporiser,
  • la figure 4 est une vue partielle, schématique et en coupe prise suivant la ligne IV-IV de la figure 3,
  • la figure 5a est une section partielle schématique illustrant la structure des passages du vaporiseur-condenseur de la figure 1 dédiés au liquide à vaporiser et au gaz à condenser,
  • les figures 5b à 5d sont des vues analogues à la figure 5a illustrant des variantes de l'invention,
  • la figure 6 est une vue schématique d'un vaporiseur-condenseur selon un autre mode de réalisation de l'invention, et
  • la figure 7 est une vue partielle, schématique et en coupe prise suivant la ligne VII-VII de la figure 6.
La figure 1 illustre un vaporiseur-condenseur 2 (voir description de figure 1 dans EP-A-0130122). Le vaporiseur-condenseur 2 comprend un corps d'échangeur de chaleur formé par une enveloppe étanche 3 et une série de plaques verticales parallèles 4 en aluminium, qui définissent une multitude de passages plats principaux destinés alternativement à un de deux débits de fluide, par exemple, un débit gazeux contenant 98% d'azote à environ 5 bars et un débit liquide contenant 98% d'oxygène à environ 1,5 bars. Evidemment les pressions et les puretés peuvent prendre d'autres valeurs.
Les passages dédiés au liquide à vaporiser sont appelés premiers passages principaux et sont repérés par la lettre L sur les figures, tandis que les passages dédiés au gaz à condenser sont appelés deuxièmes passages principaux et sont repérés par la lettre G sur les figures.
L'espace situé au-dessus des plaques 4 renferme un bain 5 du liquide à vaporiser provenant d'une conduite 6.
Comme illustré par les figures 1 à 4, le liquide de ce bain rentre dans chaque premier passage L à travers une série de perforations dans une barre de distribution supérieure 27. Il tombe ensuite sur une onde 26 qui est une tôle d'aluminium non-perforée à génératrices horizontales (disposition dite hardway par rapport à l'écoulement d'oxygène liquide) et à décalage vertical partiel (le décalage vertical partiel n'est pas illustré pour ne pas surcharger les figures) et qui assure la distribution fine du liquide.
Le liquide tombe de l'onde 26 sur un larmier supérieur 25 constitué par une bande d'aluminium pliée avec une série de pointes triangulaires 29 formant un angle de 135° avec le plan d'une des plaques 4 du passage L considéré.
Le bout de chaque pointe 29 du larmier supérieur 15 se trouve au-dessus d'une pointe d'un larmier inférieur 24, identique au premier mais dont les pointes sont orientées vers l'autre plaque 4 du passage L considéré.
Le liquide à vaporiser s'écoule alors sur les plaques 4 du premier passage L considéré sous forme d'un film ruisselant vers le bas.
Le gaz à condenser rentre dans les deuxièmes passages G au moyen d'une tuyauterie 9 soudée au milieu d'une tête 8 (parfois appelée « boíte » ou en anglais « headline ») semi-cylindrique.
Le gaz s'écoule alors vers le bas dans les deuxièmes passages G à cocourant du liquide dans les premiers passages L, la condensation du gaz assurant la vaporisation du liquide dans les premiers passages L.
Comme illustré par la figure 5a, seuls les deuxièmes passages G contiennent chacun une onde-entretoise 21 constituée d'une tôle d'aluminium perforée ondulée à génératrices verticales (disposition en « easy-way »).
De manière classique, ces ondes-entretoises 21 remplissent également la fonction d'ailettes thermiques.
Les premiers passages L ont une épaisseur inférieure à celle des deuxièmes passages G.
En particulier, l'épaisseur des premiers passages L est comprise entre 2,5 mm et les deux tiers de l'épaisseur des deuxièmes passages G.
Les premiers passages L sont délimités chacun par deux plaques 4 voisines et par des barres de fermeture 30 situées entre celles-ci sur leurs bords latéraux. Les plaques 4, entre lesquelles un premier passage L est situé, définissent donc entre elles un espace libre et continu pratiquement sur toute leur largeur, cette largeur étant mesurée selon une direction transversale à celle de l'écoulement du film ruisselant.
Les premiers passages L sont plus étroits que les deuxièmes passages G et ne contiennent ni d'ondes d'échange ni de passages auxiliaires. La distance entre les plaques adjacentes 4 des premiers passages L varie entre 2,5 mm et les deux-tiers de la séparation entre les plaques 4 des deuxièmes passages G.
Par conséquent, les premiers passages L possèdent sur toute leur longueur une section transversale rectangulaire libre de tout obstacle et continue. Cette section a une largeur sensiblement égale à la largeur des plaques 4 et donc à la largeur du corps d'échangeur de chaleur, c'est-à-dire une largeur d'environ 1 mètre.
Du fait de l'étendue transversale des passages L, les risques de bouchage de ceux-ci sont donc limités.
En effet, si un dépôt local de substances résultant de la vaporisation du liquide se produit sur les plaques 4 d'un premier passage L, le liquide à vaporiser peut contourner ce dépôt.
De plus, on constate que la structure des premiers passages L permet de limiter la recirculation de liquide nécessaire dans le vaporiseur 2.
De manière générale, les risques de bouchage peuvent être limités en utilisant des premiers passages L présentant en section transversale courante, c'est-à-dire sur l'essentiel de leur longueur, une région d'écoulement libre de tout obstacle et continue qui s'étend le long d'une courbe directrice C de longueur supérieure à environ 10 cm. Dans le cas des figures 1 à 5a, cette courbe directrice C est une droite parallèle aux plaques 4, situées entre celles-ci, et d'une longueur d'environ 1 m. La droite C est représentée en pointillés sur la figure 5a.
Selon la variante de la figure 5b, la distance séparant les deux plaques 4 associées à un premier passage L est supérieure à celle de la variante des figures 1 à 5a.
Deux tôles 29 et 31 identiques, en aluminium, et de section transversale en epicyloide, sont disposées entre les deux plaques 4 associées à chaque premier passage L et s'étendent sur toute leur longueur. Chaque tôle 29, 31 comprend donc une série de sections semi-cylindriques jointes aux bouts de façon à former une ligne courbée.
Chaque tôle 29, 31 est portée par une plaque 4. Les concavités des tôles 29, 31 sont dirigées l'une vers l'autre. Les tôles 29 et 31 sont décalées transversalement l'une de l'autre de sorte que les pointes de chaque tôle sont situées en regard d'un creux de l'autre tôle. Ainsi, les deux tôles 29 et 31 forment un seul passage auxiliaire entre elles, dans lequel s'écoule tout le fluide circulant dans le premier passage L considéré.
Les tôles 29 et 31 jouent le rôle d'ailettes thermiques et délimitent donc entre elles la région d'écoulement du liquide à vaporiser.
Le passage auxiliaire de chaque premier passage L s'étend, dans sa section transversale, continûment et librement pratiquement sur toute la largeur du corps d'échangeur thermique. La courbe directrice C mentionnée ci-dessus s'étend alors entre les tôles 29 et 31 en suivant leurs contours. La courbe directrice est alors sinueuse et possède une longueur supérieure à 1 m.
Ici encore, les premiers passages L permettent de limiter les risques de bouchage grâce à une étendue transversale suffisante pour que le liquide à vaporiser contourne d'éventuels dépôts.
Dans la variante de la figure 5c), les passages auxiliaires des premiers passages L sont formés par des tubes contigus 23 en aluminium. Dans les deuxièmes passages G on trouve les ondes 21 à génératrices verticales classiques.
Dans la variante de la figure 5d), les passages auxiliaires des premiers passages L sont des tubes non-contigus ayant une section en forme de feuilles de trèfle.
Dans chaque cas des figures 5b à 5d, le ou les passages auxiliaires ne comprend que des surfaces courbes ou des convexités empêchant ainsi l'accumulation d'impuretés dans les passages et permettant de limiter la recirculation de liquide nécessaire dans le vaporiseur 2.
L'invention n'est pas limitée aux vaporiseurs à film ruisselant mais s'applique également aux vaporiseurs dits à bain.
La figure 6 illustre un autre mode de réalisation de l'invention dans lequel l'enveloppe étanche 3 du vaporiseur-condenseur 2 comprend une virole 40 d'axe vertical, fermée par un dôme bombé 41 et par un fond bombé 42. Un faisceau de tubes 44 est disposé à l'intérieur de la virole 40, coaxialement à celle-ci, pour former avec la virole 40 un corps d'échangeur de chaleur.
Les tubes 44 ont un diamètre extérieur d'environ 5 mm et une épaisseur d'environ 1 mm. Les tubes 44 sont disposés en un faisceau régulier, qui forme en coupe transversale (figure 7) un réseau à maille carrée d'environ 8 mm de côté. De préférence, les tubes ont un diamètre extérieur inférieur à 7 mm et sont espacés d'au moins 2 mm.
Les extrémités supérieures des tubes 44 sont fixées à une plaque dite tubulaire 45 supérieure dans laquelle ils débouchent. La plaque 45 est disposée dans le dôme 41. De même, les extrémités inférieures des tubes 44 débouchent dans une plaque tubulaire 46 inférieure disposée dans le fond 42, les tubes 44 étant fixée à cette plaque 46.
L'espace délimité par la plaque tubulaire 45 et le dôme 41 est relié à la conduite 9 d'amenée de gaz riche en azote pour former des moyens d'introduction dans les tubes 44 du gaz à condenser.
L'espace délimité par la plaque tubulaire 46 et le fond 42 est relié à la conduite 11 d'évacuation du gaz condensé et au tuyau 13 d'évacuation des gaz rares incondensables pour former des moyens d'évacuation du gaz condensé hors des tubes 44.
Les tubes 44 définissent donc intérieurement les deuxièmes passages G.
La conduite 6 d'amenée du liquide riche en oxygène débouche dans la virole 40 sous la plaque tubulaire 45. La conduite 7 de renvoi est disposée entre la plaque tubulaire 45 et la conduite 6.
Une plaque circulaire 48 de distribution est disposée sous la conduite 6 transversalement à l'axe A de la virole 40. Cette plaque 48 est percée d'un réseau d'orifices circulaires 49 de 6 mm de diamètre recevant chacun de manière coaxiale un tube 44.
Le bain du liquide à vaporiser se forme au-dessus de la plaque 48 de distribution. Le liquide est distribué sous cette plaque 48 par les espaces annulaires 50 délimités autour des tubes 44 par les orifices 49.
Le liquide s'écoule alors sous forme d'un liquide ruisselant sur la surface extérieure des tubes 44, à cocourant du gaz à condenser.
Le liquide vaporisé est renvoyé par l'intermédiaire de la conduite 14 vers la cuve de la colonne basse pression tandis que l'excès d'oxygène liquide présent au-dessus de la plaque tubulaire 46 est renvoyé par la conduite 16 et par l'intermédiaire d'une pompe 51 vers la conduite 6.
Les tubes 44 délimitent donc extérieurement, avec la virole 40, un seul premier passage L dédié à la circulation du liquide à vaporiser.
Ce premier passage L possède, dans sa section courante, une région sensiblement diamétrale dont la ligne directrice C rectiligne, passant par l'axe A de la virole 40, a une longueur de l'ordre du diamètre intérieur de la virole 40. Ce diamètre intérieur peut être par exemple égal à environ 1 m. Ce mode de réalisation de l'invention permet donc également de limiter les risques de bouchage du premier passage L.
De manière plus générale, cet effet pourra être obtenu avec d'autres formes et dimensions du motif de base du faisceau de tubes 44 que celles des figures 6 et 7.
Dans certains cas, le premier passage L comprendra en section transversale une multitude de régions d'écoulement, libres de tout obstacle et continues, qui onduleront entre les tubes 44. Les courbes directrices C de ces régions seront alors sinueuses et auront une longueur de préférence supérieure à environ 10 cm et, de manière plus souhaitable, supérieure à environ 1 m.

Claims (33)

  1. Vaporiseur (2), du type comprenant un corps d'échangeur de chaleur qui présente des passages principaux (G, L) placés en relation d'échange thermique, des moyens pour former un bain (5) du liquide à vaporiser pour qu'il circule dans au moins un premier (L) desdits passages principaux, et des moyens (8, 9 ; 9) d'introduction d'un fluide frigorigène dans au moins un deuxième (G) desdits passages principaux pour qu'il assure la vaporisation du liquide, caractérisé en ce que le ou chaque premier passage principal possède, en section courante transversale à la direction de circulation du liquide à vaporiser, au moins une région d'écoulement libre continue suffisamment étendue pour permettre au liquide de contourner un dépôt d'impuretés, ou, les passages principaux étant délimités par des plaques verticales (4) ayant un contour substantiellement similaire, parallèles et espacées les unes des autres afin de former les passages principaux plats, au moins un premier passage principal (L) est soit plus étroit que le deuxième passage principal et ne contient ni d'onde d'échange ni de passage auxiliaire, soit contient un ou plusieurs passage(s) auxilaire(s) fermé(s) (23, 50) qui s'étendent sur l'essentiel de la dimension du corps d'échangeur de chaleur parallèle à la direction d'écoulement du liquide à vaporiser, les parois du (des) passage(s) auxiliaire(s) touchant les plaques (4) définissant le passage principal.
  2. Vaporiseur selon la revendication 1, caractérisé en ce que ladite région d'écoulement s'étend le long d'une courbe directrice (C) de longueur supérieure à environ 10 cm.
  3. Vaporiseur selon la revendication 2, caractérisé en ce que ladite courbe directrice (C) a une longueur supérieure ou égale à environ 30 cm.
  4. Vaporiseur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite région d'écoulement s'étend sensiblement sur toute une dimension du corps d'échangeur de chaleur transversale à la direction de circulation du liquide à vaporiser.
  5. Vaporiseur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le corps d'échangeur de chaleur est formé à partir d'un assemblage de plaques parallèles (4) entre lesquelles plusieurs premiers (L) et deuxièmes passages principaux (G) sont alternativement situés.
  6. Vaporiseur selon la revendication 5, caractérisé en ce que chaque premier passage principal (L) ne comprend pas d'onde-entretoise entre les deux plaques parallèles (4) entre lesquelles il est situé.
  7. Vaporiseur selon la revendication 6, caractérisé en ce que chaque premier passage principal (L) est délimité par les deux plaques parallèles (4) entre lesquelles il est situé, ces deux plaques définissant entre elles un espace sensiblement libre et continu sur l'essentiel de leur largeur transversale à la direction de circulation du liquide à vaporiser.
  8. Vaporiseur selon la revendication 5 ou 6, caractérisé en ce que chaque premier passage principal (L) contient au moins une onde (29, 31) formant ailette thermique.
  9. Vaporiseur selon la revendication 8, caractérisé en ce que chaque premier passage (L) contient deux ondes (29, 31) formant ailettes thermiques disposées en regard l'une de l'autre, et définissant entre elles un passage auxiliaire sensiblement libre et continu sur l'essentiel de leur largeur transversale à la direction de circulation du liquide à vaporiser.
  10. Vaporiseur selon la revendication 8 ou 9, caractérisé en ce que la ou chaque onde (29, 31) formant ailette thermique d'un premier passage (L) a une section transversale à la direction de circulation du liquide à vaporiser sensiblement en épicycloide.
  11. Vaporiseur selon les revendications 9 et 10 prises ensemble, caractérisé en ce que les ondes en epicycloide d'un même premier passage (L) sont décalées l'une de l'autre transversalement à la direction de circulation du liquide à vaporiser.
  12. Vaporiseur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le corps d'échangeur de chaleur est formé à partir d'une virole (40) et d'un faisceau de tubes (44) disposés à l'intérieur de la virole parallèlement à son axe (A), et en ce que les tubes délimitent intérieurement chacun un deuxième passage (G), et délimitent, extérieurement, avec la virole (40), le premier passage (L).
  13. Vaporiseur selon la revendication 12, caractérisé en ce que les tubes ont un diamètre extérieur inférieur à 7 mm et sont espacés d'au moins 2 mm.
  14. Vaporiseur selon l'une quelconque des revendications 1 à 13, caractérisé en ce que les moyens pour former un bain du liquide à vaporiser et les moyens d'introduction du fluide frigorigène sont disposés de sorte que le fluide frigorigène et le liquide à vaporiser s'écoulent à cocourant dans le corps d'échangeur de chaleur.
  15. Vaporiseur selon l'une quelconque des revendications 1 à 14, caractérisé en ce que le vaporiseur est un vaporiseur-condenseur, les moyens d'introduction de fluide frigorigène étant des moyens (8, 9 ; 9) d'introduction d'un gaz à condenser et le vaporiseur comprenant en outre des moyens (10, 11 ; 11) d'évacuation du gaz condensé.
  16. Vaporiseur selon la revendication 1, caractérisé en ce que le ou chaque passage auxiliaire (23, 50) empêche le liquide à vaporiser de rentrer en contact avec les plaques (4) du premier passage principal (L) correspondant.
  17. Vaporiseur selon la revendication 1 ou 16, dans lequel chaque premier passage principal (L) contient au moins un passage auxiliaire fermé (23, 50).
  18. Vaporiseur selon la revendication 1, 16 ou 17, dans lequel la largeur maximale d'un passage auxiliaire est supérieure à 50% de la distance entre deux plaques adjacentes (4).
  19. Vaporiseur selon l'une quelconque des revendications 1 et 16 à 18, dans lequel la surface intérieure du ou de chaque passage auxiliaire (23, 50) ne comprend que des surfaces courbes et éventuellement des convexités.
  20. Vaporiseur de chaleur selon l'une quelconque des revendications 1 et 16 à 19, dans lequel au moins un, et préférablement chaque premier passage principal (L) contient plusieurs passages auxiliaires constitués par une série de tubes cylindriques (23) parallèles les uns aux autres et ayant chacun un diamètre au moins égal à 50% de la séparation entre deux plaques adjacentes (4).
  21. Vaporiseur selon l'une quelconque des revendications 1 et 16 à 20, dans lequel au moins un, et préférablement chaque premier passage principal contient plusieurs passages auxiliaires constitués par des tubes (50) ayant chacun une surface intérieure avec au moins trois convexités identiques et des surfaces courbes reliant les convexités.
  22. Vaporiseur selon la revendication 20 ou 21, dans lequel les tubes adjacents (23, 50) sont contigus.
  23. Vaporiseur selon la revendication 20 ou 21, dans lequel les tubes adjacents (23, 50) ne sont pas contigus.
  24. Vaporiseur selon l'une quelconque des revendications 1 et 16 à 23, comprenant des moyens (24, 25) pour diriger le liquide du bain vers le ou chaque passage auxiliaire.
  25. Vaporiseur selon la revendication 24, comprenant des moyens de distribution du liquide du bain comprenant des ouvertures de prédistribution, ces ouvertures laissant tomber ce liquide sur un garnissage (26) situé au-dessus des moyens (24, 25) pour diriger du liquide dans un ou chaque passage auxiliaire.
  26. Vaporiseur selon la revendication 24 ou 25 dans lequel les moyens (24, 25) pour diriger le liquide dans les passages auxiliaires sont des pointes inclinées dont le bout se trouve en dessus de l'intérieur du passage (ou d'un passage) auxiliaire.
  27. Vaporiseur selon la revendication 1 ou 16 dans lequel les passages auxiliaires sont formés dans un bloc de matériel placé dans le premier passage principal (L) et ayant substantiellement les mêmes dimensions que celui-ci.
  28. Vaporiseur selon l'une quelconque des revendications 1 à 27, caractérisé en ce que les moyens pour former un bain du liquide à vaporiser sont des moyens pour former un bain (5) au-dessus des passages principaux (G, L), le vaporiseur comprenant en outre des moyens d'introduction du liquide du bain (5) dans le ou chaque premier passage principal pour qu'il s'y écoule sous forme d'un film ruisselant.
  29. Installation de distillation d'air comprenant au moins un vaporiseur (2) selon l'une quelconque des revendications 1 à 28.
  30. Installation selon la revendication 29 dans laquelle le vaporiseur (2) est un échangeur principal qui sert à refroidir de l'air épuré à sa température de distillation.
  31. Installation selon la revendication 29 ou 30 dans laquelle le vaporiseur (2) est un sous-refroidisseur.
  32. Installation selon l'une quelconque des revendications 29 à 31 comprenant une première colonne alimentée par de l'air et reliée thermiquement à une deuxième colonne au moyen du vaporiseur (2).
  33. Instalilation de distillation d'air selon la revendication 32, dans laquelle la première colonne est une colonne moyenne pression (1), la deuxième colonne est une colonne basse pression et le vaporiseur (2) est un vaporiseur-condenseur de mise en relation d'échange thermique de l'oxygène de cuve de la colonne basse pression et de l'azote de tête de la colonne moyenne pression.
EP99403043A 1998-12-07 1999-12-06 Vaporiseur à film ruisselant et installations de distillation d'air correspondantes Expired - Lifetime EP1008826B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9815421A FR2786858B1 (fr) 1998-12-07 1998-12-07 Echangeur de chaleur
FR9815421 1998-12-07

Publications (2)

Publication Number Publication Date
EP1008826A1 true EP1008826A1 (fr) 2000-06-14
EP1008826B1 EP1008826B1 (fr) 2004-04-21

Family

ID=9533663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99403043A Expired - Lifetime EP1008826B1 (fr) 1998-12-07 1999-12-06 Vaporiseur à film ruisselant et installations de distillation d'air correspondantes

Country Status (4)

Country Link
US (1) US6695043B1 (fr)
EP (1) EP1008826B1 (fr)
DE (1) DE69916562T2 (fr)
FR (1) FR2786858B1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067347A1 (fr) * 1998-10-05 2001-01-10 Nippon Sanso Corporation Evaporateur de condensation de type film liquide a circulation descendante
EP1262725A3 (fr) * 2001-05-22 2003-01-08 Praxair Technology, Inc. Sytème de condensation et vaporisation cryogénique
WO2011084512A1 (fr) 2009-12-15 2011-07-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'obtention de dioxyde de carbone à partir d'un mélange gazeux contenant du dioxyde de carbone
WO2011084508A2 (fr) 2009-12-15 2011-07-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'obtention de dioxyde de carbone d'un mélange de gaz contenant du dioxyde de carbone
WO2011084516A1 (fr) 2009-12-15 2011-07-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'obtention de dioxyde de carbone à partir d'un mélange gazeux contenant du dioxyde de carbone au moyen d'une membrane et d'une condensation
WO2011110782A1 (fr) * 2010-03-08 2011-09-15 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Echangeur de chaleur
CN102305561A (zh) * 2011-08-16 2012-01-04 李永堂 板管式换热器
WO2012048078A1 (fr) 2010-10-06 2012-04-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'élimination du dioxyde de carbone
US9452386B1 (en) 2015-03-04 2016-09-27 L'Air Liquide Socieété Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Hybrid membrane and adsorption-based system and process for recovering CO2 from flue gas and using combustion air for adsorbent regeneration
US9452385B1 (en) 2015-03-04 2016-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hybrid membrane and adsorption-based system and process for recovering CO2 from flue gas and using combustion air for adsorbent regeneration

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111187B (fi) * 2001-10-10 2003-06-13 Matti Nurmia Normaalipaineessa toimiva prosessi hapen tai hapella rikastetun ilman tuottamiseksi
FR2839153B1 (fr) 2002-04-25 2005-01-14 Air Liquide Procede et installation d'echantillonnage de liquides cryogeniques, et unite de separation d'air pourvue d'au moins une telle installation
JP2008516187A (ja) * 2004-10-13 2008-05-15 ヨーク・インターナショナル・コーポレーション 落下フィルム蒸発器
US7421856B2 (en) 2005-06-17 2008-09-09 Praxair Technology, Inc. Cryogenic air separation with once-through main condenser
US20070028649A1 (en) * 2005-08-04 2007-02-08 Chakravarthy Vijayaraghavan S Cryogenic air separation main condenser system with enhanced boiling and condensing surfaces
US20070180855A1 (en) * 2006-02-09 2007-08-09 Butts Properties, Ltd. Downflow knockback condenser
WO2008080085A2 (fr) * 2006-12-21 2008-07-03 Johnson Controls Technology Company Évaporateur à film de liquide tombant
CN101907375A (zh) 2008-01-11 2010-12-08 江森自控科技公司 热交换器
US8281590B2 (en) * 2008-08-19 2012-10-09 Canyon West Energy, Llc Steam-based electric power plant operated on renewable energy
US20110056664A1 (en) * 2009-09-08 2011-03-10 Johnson Controls Technology Company Vapor compression system
US10209013B2 (en) 2010-09-03 2019-02-19 Johnson Controls Technology Company Vapor compression system
US9683784B2 (en) 2012-01-27 2017-06-20 Carrier Corporation Evaporator and liquid distributor
DE102018005505A1 (de) * 2018-07-11 2020-01-16 Linde Aktiengesellschaft Wärmeübertrager mit Block als Fallfilmverdampfer und Verfahren zur indirekten Wärmeübertragung

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR81081E (fr) * 1962-02-01 1963-07-26 Marston Excelsior Ltd échangeur de chaleur
FR1559471A (fr) * 1967-03-31 1969-03-07
US3457990A (en) * 1967-07-26 1969-07-29 Union Carbide Corp Multiple passage heat exchanger utilizing nucleate boiling
EP0130122A1 (fr) * 1983-06-24 1985-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d'air comprenant un tel dispositif
FR2570172A1 (fr) * 1984-09-10 1986-03-14 Gaz De France Echangeur perfectionne a tubes multiples
US4641706A (en) * 1984-11-05 1987-02-10 Chicago Bridge & Iron Company Vertical shell and tube heat exchanger with spacer or clip to form uniform thickness falling films on exterior surfaces of tubes
US4747448A (en) * 1983-11-01 1988-05-31 The Boc Group, Plc Heat exchangers
EP0546947A1 (fr) * 1991-12-11 1993-06-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur indirect du type à plaques
EP0566435A1 (fr) * 1992-04-17 1993-10-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur
WO1994027106A1 (fr) * 1993-05-07 1994-11-24 Envirecon Services Limited Appareil d'evaluation de depot sur un conduit
FR2718835A1 (fr) * 1994-04-15 1995-10-20 Nordon Cryogenie Snc Echangeur de chaleur à plaques brasées.
EP0738862A1 (fr) * 1995-04-14 1996-10-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur à plaques brasées, et procédé correspondant de traitement d'un fluide diphasique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2257884B1 (fr) * 1974-01-16 1976-11-26 App Thermique
US4276927A (en) * 1979-06-04 1981-07-07 The Trane Company Plate type heat exchanger
DE3415807A1 (de) * 1984-04-27 1985-10-31 Linde Ag, 6200 Wiesbaden Waermetauscher
FR2649192A1 (fr) * 1989-06-30 1991-01-04 Inst Francais Du Petrole Procede et dispositif de transfert simultane de matiere et de chaleur
US5031693A (en) * 1990-10-31 1991-07-16 Sundstrand Corporation Jet impingement plate fin heat exchanger
US5505256A (en) * 1991-02-19 1996-04-09 Rolls-Royce Plc Heat exchangers and methods of manufacture thereof
US5122174A (en) * 1991-03-01 1992-06-16 Air Products And Chemicals, Inc. Boiling process and a heat exchanger for use in the process
GB9405161D0 (en) * 1994-03-16 1994-04-27 Boc Group Plc Method and apparatus for reboiling a liquified gas mixture
FR2718836B1 (fr) 1994-04-15 1996-05-24 Maurice Grenier Echangeur de chaleur perfectionné à plaques brasées.
US5667643A (en) * 1995-12-18 1997-09-16 The Boc Group, Inc. Heat exchanger and double distillation column
US5699671A (en) 1996-01-17 1997-12-23 Praxair Technology, Inc. Downflow shell and tube reboiler-condenser heat exchanger for cryogenic rectification
DE19605500C1 (de) 1996-02-14 1997-04-17 Linde Ag Vorrichtung und Verfahren zum Verdampfen einer Flüssigkeit
US5709264A (en) * 1996-03-18 1998-01-20 The Boc Group, Inc. Heat exchanger

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR81081E (fr) * 1962-02-01 1963-07-26 Marston Excelsior Ltd échangeur de chaleur
FR1559471A (fr) * 1967-03-31 1969-03-07
US3457990A (en) * 1967-07-26 1969-07-29 Union Carbide Corp Multiple passage heat exchanger utilizing nucleate boiling
EP0130122A1 (fr) * 1983-06-24 1985-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d'air comprenant un tel dispositif
US4747448A (en) * 1983-11-01 1988-05-31 The Boc Group, Plc Heat exchangers
FR2570172A1 (fr) * 1984-09-10 1986-03-14 Gaz De France Echangeur perfectionne a tubes multiples
US4641706A (en) * 1984-11-05 1987-02-10 Chicago Bridge & Iron Company Vertical shell and tube heat exchanger with spacer or clip to form uniform thickness falling films on exterior surfaces of tubes
EP0546947A1 (fr) * 1991-12-11 1993-06-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur indirect du type à plaques
EP0566435A1 (fr) * 1992-04-17 1993-10-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur
WO1994027106A1 (fr) * 1993-05-07 1994-11-24 Envirecon Services Limited Appareil d'evaluation de depot sur un conduit
FR2718835A1 (fr) * 1994-04-15 1995-10-20 Nordon Cryogenie Snc Echangeur de chaleur à plaques brasées.
EP0738862A1 (fr) * 1995-04-14 1996-10-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur de chaleur à plaques brasées, et procédé correspondant de traitement d'un fluide diphasique

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067347A1 (fr) * 1998-10-05 2001-01-10 Nippon Sanso Corporation Evaporateur de condensation de type film liquide a circulation descendante
EP1067347A4 (fr) * 1998-10-05 2002-08-14 Nippon Oxygen Co Ltd Evaporateur de condensation de type film liquide a circulation descendante
EP1262725A3 (fr) * 2001-05-22 2003-01-08 Praxair Technology, Inc. Sytème de condensation et vaporisation cryogénique
US8663364B2 (en) 2009-12-15 2014-03-04 L'Air Liquide, Société Anonyme pour l'Étude et l'Éxploitation des Procédés Georges Claude Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture
WO2011084508A2 (fr) 2009-12-15 2011-07-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'obtention de dioxyde de carbone d'un mélange de gaz contenant du dioxyde de carbone
WO2011084516A1 (fr) 2009-12-15 2011-07-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'obtention de dioxyde de carbone à partir d'un mélange gazeux contenant du dioxyde de carbone au moyen d'une membrane et d'une condensation
WO2011084512A1 (fr) 2009-12-15 2011-07-14 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'obtention de dioxyde de carbone à partir d'un mélange gazeux contenant du dioxyde de carbone
US8734569B2 (en) 2009-12-15 2014-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture
EP3395428A2 (fr) 2009-12-15 2018-10-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'obtention de dioxyde de carbone à partir d'un mélange gazeux contenant du dioxyde de carbone
WO2011110782A1 (fr) * 2010-03-08 2011-09-15 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Echangeur de chaleur
WO2012048078A1 (fr) 2010-10-06 2012-04-12 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé d'élimination du dioxyde de carbone
US8911535B2 (en) 2010-10-06 2014-12-16 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbon dioxide removal process
CN102305561A (zh) * 2011-08-16 2012-01-04 李永堂 板管式换热器
US9452386B1 (en) 2015-03-04 2016-09-27 L'Air Liquide Socieété Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Hybrid membrane and adsorption-based system and process for recovering CO2 from flue gas and using combustion air for adsorbent regeneration
US9452385B1 (en) 2015-03-04 2016-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Hybrid membrane and adsorption-based system and process for recovering CO2 from flue gas and using combustion air for adsorbent regeneration

Also Published As

Publication number Publication date
FR2786858B1 (fr) 2001-01-19
DE69916562T2 (de) 2005-05-12
FR2786858A1 (fr) 2000-06-09
EP1008826B1 (fr) 2004-04-21
DE69916562D1 (de) 2004-05-27
US6695043B1 (en) 2004-02-24

Similar Documents

Publication Publication Date Title
EP1008826B1 (fr) Vaporiseur à film ruisselant et installations de distillation d&#39;air correspondantes
EP0546947B1 (fr) Echangeur de chaleur indirect du type à plaques
EP0130122B2 (fr) Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d&#39;air comprenant un tel dispositif
WO2007042698A1 (fr) Procede de vaporisation et/ou de condensation dans un echangeur de chaleur
EP0566435B1 (fr) Echangeur de chaleur à ruissellement et installation de distillation d&#39;air comportant un tel échangeur
FR2865027A1 (fr) Ailette pour echangeur de chaleur et echangeur de chaleur muni de telles ailettes
WO2018002509A1 (fr) Echangeur de chaleur comprenant un dispositif de distribution d&#39;un melange liquide/gaz
EP3615877A1 (fr) Echangeur de chaleur à jonction d&#39;ondes améliorée, installation de séparation d&#39;air associée et procédé de fabrication d&#39;un tel échangeur
FR2812935A1 (fr) Echangeur thermique a blocs echangeurs multiples a ligne d&#39;alimentation en fluide a distribution uniforme, et vaporiseur-condenseur comportant un tel echangeur
EP0718582A1 (fr) Appareil à circulation de fluide
EP1088578A1 (fr) Vaporiseur-condenseur à thermosiphon et installation de distillation d&#39;air correspondante
FR2774755A1 (fr) Condenseur a plaques brasees perfectionne et son application aux doubles colonnes de distillation d&#39;air
EP0507649B1 (fr) Procédé de vaporisation d&#39;un liquide, échangeur de chaleur pour sa mise en oeuvre, et application à une installation de distillation d&#39;air à double colonne
EP0738862B1 (fr) Echangeur de chaleur à plaques brasées
WO2011110782A1 (fr) Echangeur de chaleur
EP1230522B1 (fr) Vaporiseur-condenseur et installation de distillation d&#39;air correspondante
WO2011110772A2 (fr) Echangeur de chaleur
FR2935473A1 (fr) Echangeur de chaleur.
WO2015121594A2 (fr) Appareil et procédé de séparation d&#39;air par distillation cryogénique
FR3127561A1 (fr) Echangeur comprenant au moins une structure d’échange thermique à surface striée
WO2002046669A1 (fr) Vaporisateur-condenseur et installation de distillation d&#39;air comportant un tel vaporisateur-condenseur
FR3132851A3 (fr) Appareil de distillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001114

AKX Designation fees paid

Free format text: DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69916562

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081110

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081120

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091206