EP1008146A1 - Micro gas rheostat - Google Patents

Micro gas rheostat

Info

Publication number
EP1008146A1
EP1008146A1 EP97929874A EP97929874A EP1008146A1 EP 1008146 A1 EP1008146 A1 EP 1008146A1 EP 97929874 A EP97929874 A EP 97929874A EP 97929874 A EP97929874 A EP 97929874A EP 1008146 A1 EP1008146 A1 EP 1008146A1
Authority
EP
European Patent Office
Prior art keywords
gas
rheostat
flow
body
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97929874A
Other languages
German (de)
French (fr)
Other versions
EP1008146A4 (en
Inventor
Stephen D. Bruneau
Robert H. Reinicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marotta Controls Inc
Original Assignee
MAROTTA SCIENTIFIC CONTROLS
Marotta Scientific Controls Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US65996596A priority Critical
Priority to US659965 priority
Application filed by MAROTTA SCIENTIFIC CONTROLS, Marotta Scientific Controls Inc filed Critical MAROTTA SCIENTIFIC CONTROLS
Priority to PCT/US1997/009962 priority patent/WO1997047013A1/en
Publication of EP1008146A4 publication Critical patent/EP1008146A4/en
Publication of EP1008146A1 publication Critical patent/EP1008146A1/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/26Guiding or controlling apparatus, e.g. for attitude control using jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/80Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control
    • F02K9/805Rocket- engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control servo-mechanisms or control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/401Liquid propellant rocket engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/80Size or power range of the machines
    • F05D2250/82Micromachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/80Size or power range of the machines
    • F05D2250/84Nanomachines

Abstract

A device and method for controlling small flows of gas for satellite orientation thrusters comprises a photoetched silicon body (10) etched to provide one or more particular flow paths, and optionally filters, wherein the flow path is defined by the silicon body (10) and a sealing glass layer (11) bonded thereto. Flow is controlled through the flow path(s) by heating the body (10) to decrease the gas flow.

Description

MICRO GAS RHEOSTAT

Background of the Invention

1. Field of the Invention.

The invention relates to a variable control device for use in regulating or throttling of relatively low flows of fluid, the device being a solid state device capable of electronically regulating relatively low flows throughout a moderate flow regime. The disclosures of a second application, entitled "Microvalve and Microthruster for Satellites and Methods of Making and Using the Same" and of related subject matter, Serial No. 08/659,965, and also filed June 7, 1996, and the provisional application serial number 60/000,106 on which it is based, filed June 9, 1995, are both incorporated herein by reference.

2. The State of the Art.

More specifically, it is known to use pressurized gas, such as Xenon, in small increments of flow to a thruster, using a so-called "thermothrottle" (a device of Russian origin) for each of a plurality of thrusters, wherein an elongate tube establishes a path for the requisite gas flow, and an electrical heater winding developed around and along the length of the tube is the means of controlling gas temperature and viscosity, and therefore flow rate, between inlet and outlet ends of the tube. But this is a cumbersome and expensive technique, involving problems of production reproducibility, and the dynamic range of flow control has its limitations. See, e.g.. K.N. Kozubsky et al.. "Plan and Status of the Development and Qualification Program for the Stationary Plasma Thruster" , AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conf. and Exhibit, June 28-30, 1993, Monterey, California (AIAA-93-1787) (the disclosure of which is incorporated herein by reference) .

It is known from U.S Patents 4,604,090 and 4,715,852 to provide a miniature device for automated metering of insulin to certain diabetic patients. The device is surgically implanted in the body and establishes an elongate capillary path for controlled small flows of insulin within the body. The device is a consolidated prismatic assembly of laminations, of microchip proportions, wherein a flat silicon chip has a photo¬ etched surface characterized by an elongate single capillary groove, which may have a length of 10 to 15 inches, helically developed on a square of approximately h inch flat surface, between inlet and outlet ends, with a glass plate bonded to the grooved surface to complete the integrity of a single flow passage in the groove. The ambient environmental temperature is, of course, body heat, and there is no need for or suggestion of heat as a flow-control parameter. Furthermore, the fluid is a liquid and in the environment of these patents the device and/or the patient is intolerable of the presence of a gas in the liquid.

Summary and Objects of the Invention

It is a principal object of the invention to achieve a precision construction, on a scale of microchip proportions, for electrical control of gas temperature and/or viscosity, and preferably thus gas flow, for such small flows as will enable years of orientation-thruster use of the character indicated. In preferred embodiments, the device provides a turndown of about 3:1 and has an average mass-flow rate of about 5 g/sec of gas, preferably Xenon; for example, a mass throughput ranging controllably from about 2 to about 6 mg/second.

According to a first aspect, the invention provides what may be termed as a micro gas rheostat for electrical- heater control of gas flow, comprising a consolidated body of flat laminations, wherein a first lamination has a grooved surface establishing a single elongate path between inlet and outlet ends of the path. A second lamination has a flat surface bonded to the grooved surface of the first lamination, thereby closing the groove along its length to complete the exclusivity of communicating gas flow between the inlet and outlet ends. The first lamination has a second flat surface in spaced parallel relation to the first surface, and an electrical- resistance heater element is bonded to, deposited on, or otherwise in heat-transfer relation with the second surface of the first lamination. Alternatively, the electrical-resistance heater element is formed along a wall surface of the groove.

Elongate length of the groove is the product of a helical development between a central port and an outer port at the respective ends of the groove, and the inlet and outlet ends of the passage may be reversibly associated with the respective central and outer ports. Preferably, the helical development is a progression of square-leg sections, on a body of square or rectangular planform.

Preferably also, the inlet and/or outlet ports or both of them are associated with a so-called comb-filter array of groove formations in the grooved surface of the first lamination, the comb-filter grooves being of individual section area smaller than the section area of the flow-passage groove, but of collective section area exceeding the section area of the flow-passage groove, so that heater control of flow may be essentially limited to the helically developed flow passage.

As with the implanted insulin-metering device, the first, lamination is suitably a silicon chip, which is preferably of so-called single-crystal silicon, so that in utilizing photo-etching techniques to form the grooves, the grooves will be of V-section, in that etching will track the crystal-face orientation and will terminate at a depth at which the sides of the V intersect; thus, etched- groove width determines groove depth, and the narrower grooves for filter-comb formations will necessarily be of lesser depth (and section) than the wider grooves of the flow-controlled helical passage. The fabrication of micromechanical devices relies upon techniques which the present invention employs; and these techniques have existed and been improved upon for more than the last decade. See, e.g. , James B. Angell et al. , "Silicon Micromechanical Devices", Sci. Am.. April 1983, p. 42-56; and Kurt E. Petersen, "Silicon as a Mechanical Material", Proc. IEEE, vol. 70, no. 5, 400-457 (May 1982) (the disclosures of which are both incorporated herein by reference) . In addition to silicon, the invention can employ any single-crystal material that can be processed as silicon can be processed in accordance with this invention, and which has sufficient mechanical and structural integrity to function in the environment in which the invention is desired to be used. Such materials can include, for example, gallium arsenide, various silicate, borosilicate, aluminoεilicate, and related glasses, and various nitrides, such as boron nitride and silicon nitride.

The second flat lamination is suitably of borosilicate glass having substantially the same thermal coefficient of expansion as that of the single-crystal silicon of the first flat lamination. This relation of expansion coefficients makes possible the consolidation of these laminations in an "anodic bonding" process as described in the literature; for example, George Wallis, "Field Assisted Glass Sealing", Electrocomponent Science and Technology, vol. 2, no. 1, pp. 45-53 (1975) and "Field Assisted Glass-Metal Sealing", infra, (the disclosures of which are incorporated herein by reference) . Suitably, inlet and outlet port connections to the respective ends of the grooved passage, via one or more comb-filter arrays, are made via the thickness of either one of the bonded laminations; alternatively, the comb- filter formations and inlet/outlet connection thereto may be external to the device and may be external to the bonded laminations but nevertheless communicating with one or both of the respective ends of the helical groove path. Silicon wafers are commercially available for today's micro-electronic purposes and are well-adapted to the kind of photoetching procedures outlined above in the Angell and Petersen articles (incorporated hereinabove by reference) . Thus, a standard wafer of 3-inch diameter and 0.015-inch thickness can serve for the simultaneous photo- etched reproduction of an array of 37 duplicate silicon- lamination area elements (0.375 x 0.375 inches square) . Known techniques, such as diamond saws and laser beams, are available for cutting individual etched elements away from each other, it being preferred that the glass lamination shall have been bonded to the etched array prior to severing into individual but identical assemblies. And it is observed that for certain applications there is merit in retaining an integrally assembled plurality of the elements as a compact, unsevered, multiple-element array.

In another aspect of the invention, the rheostat is a multilayer body that is structurally isolated from the housing but attached thereto by having been bonded to a metal foil disposed securely within the housing. The securement of the chip to a foil layer acts to isolate the body from mechanical and/or thermal stresses induced in the housing, from being transferred to the chip; such stresses can degrade the functioning of the chip and may - be great enough to crack, distort, or break the chip. Etched onto a surface of the body are a series of connected flow channels, preferably including a series of filters, and also preferably having a serpentine or extended configuration along the surface in order to allow heating of the body to reduce the mass flow through the channels. The body is heated by passing a current directly therethrough, such that the body itself becomes a resistance heater.

In another aspect, this invention provides a solid- state device for throttling mass flow in a moderate flow range, such as a turndown ratio of about 3:1.

Brief Description of the Drawings

The invention will be described in detail for preferred and other embodiments, in conjunction with the accompanying drawings, in which:

Fig. 1 is an enlarged view in vertical section for a complete micro-gas rheostat device of the invention;

Fig. IA is a bottom-end view of the device of Fig. 1; Fig. 2 is a top-end view of the device of Fig. 1; Fig. 3 is a greatly enlarged plan view of a groove surface of a lamination in the device of Fig. 1; Fig. 4 is a side view of the device of Fig. 1, to the scale of Fig. 3, and partly broken-away and in section at a mid-section plane;

Fig. 5 is a schematic representation of a heater element, forming part of the device of Fig. 1 and to the scale of Fig. 3;

Fig. 6 is a greatly enlarged fragmentary section illustrative of one of the grooves in Fig. 3;

Fig. 7 is another fragmentary section illustrative of other grooves in Fig. 3 and to the scale of Fig. 6; Fig. 8 is a greatly enlarged fragmentary detail, in plan view of a corner of the grooved plan of Fig. 3;

Fig. 9 is a view of a conventional circular silicon wafer-, suitable for multiple photo-etched reproduction of the grooved plan of Fig. 3; Fig. 10 is a graphical display of mass-flow rate turn-down ratio as a function of Xenon-gas temperature, for several illustrative starting or reference temperature situations commencing at unity turn-down ratio for each of these situations and covering the range to 600 F;

Fig. 11 is an idealized cross-sectional view of a rheostat device according to the invention, and Fig. 12 is a top view thereof; and Fig. 13 is a cross-section thereof taken along line 13-13 in Fig. 12; Fig. 14 is an idealized top view of the flow-control layer of the microrheostat, and Fig. 15 is a cross-section along line 15-15 of Fig. 14;

Fig. 16 is a graph of viscosity versus temperature, and Fig. 17 is a graph of the product of viscosity and temperature, versus temperature, for Xenon, and within the operating temperature range of the present invention;

Fig. 18 is a simplified view in longitudinal section for another embodiment of the invention;

Fig. 19 is a section taken at 19-19 in Fig. 18; Fig. 20 is a view similar to Fig. 18, to show a modification;

Fig. 21 is an enlarged view in longitudinal section for a further embodiment of the invention; and

Fig. 22 is a schematic section, taken generally at 22-22 of Fig. 21;

Fig. 23 is a simplified plan view of another embodiment; and

Fig. 24 is a section taken at 24-24 of Fig. 23.

Detailed Description

In Fig. 1, the basic laminated structure of one embodiment of a micro-gas rheostat of the invention is seen to comprise a bonded body of first and second laminations 10, 11, respectively, of elemental square, rectangular, octogonal, or other preferably regular polygonal planform, depicted as square in Fig. 3. The consolidated body 10, 11 is cushioned and sealed by an elastomeric seal member 12 in its containment within a cupped housing member 13 having a reduced tubular end 14 for downstream discharge of a controlled gas flow through the micro-gas rheostat. An electrically insulated pin connector formation 15 alongside the discharge end 14 enables detachable electrical connection to a source of electrical energy. A radially flanged upper housing- closure member 16 has a reduced tubular end 17 for connection to a pressurized source of gas flow to be controlled by body 10, 11, pursuant to electrical input at 15 and within housing 13, 16, which is shown to be permanently sealed at a circumferential weld 18.

A conical element, with plural spaced apertures 19, distributes inlet gas to a circumferential first manifold 20, and plural spaced apertures 19' in seal member 12 distribute inlet gas into a second manifold 20' which is in full circumferential communication with circumferentially continuous exposure to the open (inlet) ends of the plural groove passages of inlet-filter structure 28, a so-called comb filter.

Directing attention now to Figs. 3 to 8, the consolidated body is seen to comprise a first flat lamination 10, which is preferably of single-crystal silicon and which is shown in Fig. 3 with its grooved surface facing up, to reveal the four walls 25 of the comb filter 28. As seen in Figs. 7 and 8, the comb filter consists of plural spaced parallel relatively narrow grooves 26 in each of the four walls 25; these grooves are closed by the glass lamination 11, so that each of the grooves 26 makes its gas-flow contribution in parallel with all other grooves 26, from the manifold 20' of Fig. 1, and into a further manifolding groove formation 27 within the peripheral walls 25. At 28', the manifolding groove 27 has access to the inlet end of a helical groove formation, consisting of plural turns of interconnected leg segments of progressively diminishing length, with termination at an inner end 29 for downstream discharge at a central outlet 30 which is seen in Fig. 1 to be served by the outlet tube 14 of the housing member 13. For the sake of clarity in Fig. 3, it will be understood that individual groove widths are not drawn for the entire helical length of the single flow passage that they define; rather, a single line 31, with progressively shrinking helical courses a, b, c, d, e, f, g, serves to indicate the full helical path, and in Fig. 6, the V-cut width, depth and spacing of representative adjacent helical courses b, c, d are shown to the same scale, for comparison in Fig. 7 with the narrower comb-filter grooves 26, having the lesser width and lesser depth. Finally, in Fig. 5, an illustrative heater layout of electrical-resistance material 32 is shown in application to the flat other surface of the silicon lamination 10. This heater layout effectively covers the entire lower surface of lamination 10, with lead wires 32, 32' to the external pin connector means 15 of Figs. 1 and IA. The metal layer is preferably gold or aluminum that has been sputtered or electroplated onto the surface in the serpentine pattern shown, which is a pattern typical for resistance heating. It should be appreciated that there are two pins, providing positive and negative connections to the power source for the heater.

Fig. 9 illustrates the typical layout for multiple- element reproduction of plural micro-gas rheostats on and from the same single circular wafer 35, which may be of conventional 3-inch diameter and 0.015-inch thickness. In Fig. 9, the double-line definition of 37 complete duplicate square configurations will be understood to suggest allowance for diamond saw or other cutting of - individual square elements (e.g., 0.375 inch by 0.375 inch) from the entire wafer. The glass lamination is shown to be a 3.0 x 3.0 inch square panel which will be understood to have been bonded to all grooved surfaces throughout the wafer 35, prior to severance into single elements or multiple-element arrays.

In use, gas flow from inlet to outlet of the described rheostat device is illustrated in Fig. 10 to follow the relationship in the laminar-flow regime of: = K(P,J - P2 2 )/(T U), where: is the mass flow rate of the gas in lb^/sec; K is a constant; P1 and P2 are the respective absolute inlet and outlet pressures of the rheostat device in psia; T is absolute temperature ( R) ; and U is the absolute viscosity of the gas (lb ft degree sec) .

Electrical energy to the heater pin connector may be continuous at various selected voltage levels, but it is presently preferred that electrical energy be supplied on a pulse-width modulation basis, so that a dwell period exists between successive input pulses. The dwell period may be repeatedly used for monitoring (via suitable microchip pressure and temperature transducers) the instantaneous pressure levels P1 and P2, as well as gas temperature, thereby to establish current mass flow of the rheostat-controlled gas flow. For example, during the dwell time, the resistance of the heater or of the silicon can be measured with a local sensor, and since resistance is proportional to temperature, knowledge of the temperature of the chip implies the possible mass-flow rate at the time of that temperature; resistance- temperature devices (RTDs) are commercially available for a variety of applications. Alternatively, it will be understood that mass-flow rate can be determined, using one or more temperature sensors responsive to average body temperature, together with measured inlet pressure and outlet pressure, as in conjunction with a predetermined calibration table. In Fig. 10, the flow-rate turn-down ratio is set forth, commencing a unity turn-down ratio, for each of several starting or reference temperatures, namely, curve A starting at 32 F, curve B starting at 68 F, curve C starting at 120 F, and curve D starting at 160 F.

Of the displayed samples in Fig. 10, a dynamic flow- rate range of more than 4:1 is seen to be controllable over the 32 to 600 F range of curve A, and this range decreases for the successively greater starting temperatures for curves B, C, and D, so that for a 160 F starting temperature, curve D shows only a 2.75:1 range of flow-rate controllability.

Another embodiment of the invention is shown in Figs. 11-14, to which reference is now made, the first (Fig. 11) of which shows an idealized side view of a rheostat device housing 40 having an inlet-housing member 42 and an outlet-housing 44 providing fluid communication between an inlet tube 46 and a discharge tube 48 associated with respective housing members. Integral with the discharge or outlet-housing member is an electrical connection 50, the placement of which is a matter more of design choice, as its function is to provide electrical connection to the multilayer body 52 (as described before) . The electrical connection is supported in an electrical connection formation 54 integral with the discharge housing. As seen in Fig. 12, the multilayer body (52) shown in phantom is supported in the rheostat device housing (40) which is preferably formed with a housing flange 41 of generally circular shape to facilitate placement of the device in tubing and other circular frames and flowpaths. As described above, the electrical connection requires two inputs, shown as 50A and SOB, which are secured in the housing and electrically insulated therefrom by an insulating composition 56. The insulating composition is preferably a borosilicate glass composition that has been fused in place at high temperature effective to maintain the resulting glass in compression; such processing is commercially available from Northeast Electronics Corp. , Milford, CT.

Line 13-13 of Fig. 12 provides the cross-sectional view of Fig. 13, in which the inlet housing (42) provides an inlet housing manifold 58 from the inlet tube (46) and formed by the attachment of the housings at a weld 59, to the discharge housing (44) supporting discharge tube 48. Disposed between the inlet and the discharge is a multilayer body 52 for controlling the flow of fluid, preferably gas, and most preferably a noble gas, especially Xenon, from the inlet to the discharge. In this embodiment, the multilayer body comprises a sealing glass layer 60, an intermediate flow-control layer 62, and a supporting glass layer 64, and is secured within the housing. In the previously described embodiment, the seal connecting the body with the housing was an elastomeric material, which unfortunately inherently limits operating temperatures for the rheostat approximately to about 400 F maximum. Further, outgassing of elastomeric materials is very difficult for an environment such as the present, in which a high purity gas is metered under high tolerance and high flow-mass rate.

The glass layers (60, 64) are preferably of a composition having a coefficient of thermal expansion (COTE) approximating that of the intermediate flow-control layer, preferably silicon, in an operating-temperature regime of from about 0 (zero) to about 600 F. Various glass compositions having a suitable COTE are known, a preferred composition being grade-7740 glass available from Dow Corning (Ithaca, NY) . The glass can be bonded to the silicon intermediate layer by various known techniques, a preferred method being anodic bonding (e.g. , Wallis, supra) . Generally, anodic bonding entails providing a hot surface (typically 400-550 C) upon which the silicon layer is placed, and on top of which the glass layer is placed. A voltage of about 1 kV is applied across the two layers (silicon at the cathode, glass the anode) , and the layers are pressed together under hermetic conditions to produce a silicon-glass laminate. As described previously with reference to Fig. 9, the silicon is made using microelectronic photoetching techniques, and is fabricated into a wafer form having multiple units thereon. The anodic bonding is preferably conducted prior to the wafer being cut into individual components. Thus, by this preferred process, when the chips are cut, they are already in a multilayer configuration.

The housings are preferably made of a low-carbon stainless steel, such as 304L grade. Unfortunately, glass having a good COTE match to silicon cannot be well-bonded to stainless steels. Thus, to facilitate bonding to the preferred stainless steel housing used in the preferred embodiments of the invention, the multilayer body can be bound first to a KOVAR metal composition (generally containing iron, nickel, and cobalt). The multilayer chip (52) has a supporting glass layer (64) by which the chip is secured to the housing at a back plate 66, also made of stainless steel (e.g. , 304L) . Between the stainless steel back plate and the supporting glass layer is a KOVAR foil layer 68, to which the glass can be bonded, and which can be supported by the stainless steel back plate 66. Other suitable materials for the foil include titanium, stainless steel, aluminum, and the like; for example, a titanium foil is useful if the housing is made of titanium, thus enabling the foil to be welded to the housing. The foil thickness is preferably from about 1.5 mil to about 3 mils, with even thicker foils being preferred for durability, noting that bonding becomes more difficult as the foil thickness increases. In a preferred embodiment, the foil layer is spike welded (e.g. , laser or electron beam) to the back plate, which in turn is secured to the housing by a circular sealing ring 70 secured at weld 72 to the housing. The support glass layer is secured to the foil layer by known methods, (e.g. , G. Wallis and D.I. Pomerantz, "Field Assisted Glass-Metal Sealing", Applied Physics, vol. 40, no. 10, 3946-3949 (Sept. 1969) ; the disclosure of which is incorporated herein by reference) .

The resulting structure provides a structurally isolated but bonded chip. In such a configuration, the chip is isolated from mechanical and thermal stresses induced upon the housing by the foil. For example, if the housing is subjected to a changed ambient temperature (i.e. , heated or cooled) , the housing will change dimensions (expand or contract) ; if the chip is bonded directly to the housing, then mismatch between the coefficients of thermal expansion (COTE) between the chip and the housing may be too great and result in the chip breaking. On the other hand, if the isolation and cushioning means of the first-described embodiment (e.g. , an elastomeric or polymeric gasket) is used to secure the chip, then outgassing of the organic material during start-up or at higher operating temperatures can cause significant problems in regulating the flow; outgassing can occur when volatiles are released from the organic/polymeric material as it is heated or as the local pressure is lowered. Most preferably, then, it is desired to eliminate the presence of all non-metallic, especially non-inorganic, components. Thus, the present invention provides a solid state flow control device isolated from stress of the housing in which it is protected. As such, it is also preferable to keep the back plate (66) as thin as possible to minimize thermal conduction from the housing to the chip. In fact, another advantage of the sealing the chip to a foil support layer is that the seal formed between the chip and the foil is preferably a hermetic seal, thereby preventing bypass leakage, and requiring the gas flow to go through the chip mass-flow control device. Figs. 14 and 15 respectively depict the top view and a cross-section of a modified intermediate flow-control layer (62) , wherein the sealing glass layer (60) is bonded to the significantly photoetched surface of the flow- control layer. Etching is preferably done by techniques well-known in the semiconductor fabrication industry, and such etching typically occurs along one or more of the [111] planes of the silicon; single-crystal silicon is typically provided commercially as a wafer having a polished [100] surface. Although the various grooves and such in the drawings may not show the same angle, with such an etching process all will have walls that are typically the complement of 35.26 from the horizontal because of the etching technique (e.g. , using an anisotropic etchant such as KOH on the [100] plane).

"V"-shaped grooves are formed by allowing the etchant to penetrate fully, so that the co-etching walls meet at the bottom of the "V" , whereas channels with a flat bottom surface denote areas where the etchant was stopped prematurely, before the etching walls would otherwise meet at the bottom of the channel. The sealing glass layer has inlet ports 74 which lead to the inlet manifolds 80 etched in the chip. The gas then passes through a series of comb filters 82, into the trough 84, and then into the capillary tube 86 for exit through the exit port 88. The respective areas of the manifolds, troughs, capillaries, and filters are about 94.55, 78.79, 10.72, and 2.04 x 10"6 in2. There are a multiplicity of comb filters so that a number of the filters can become plugged without significantly diminishing the combined cross-sectional area for the filters to near that of the other flow channels; thus, a plugged filter element will not significantly limit flow.

■The edges of the flow-control layer have a flat electrode surface 90 upon which an electrically conducting metal layer 92 (e.g. , gold) is deposited (such as by sputtering) and connected to the electrical pins (50) by wire leads 94, preferably by ultrasonic ball bonding (a technique well-known in the microprocessor fabrication industry) . When a current (i) is passed across the intermediate flow-control layer, the layer heats up generally according to i2R; power being proportional to i R, and the resistance (R) of the silicon being about 3 fi at ambient temperature and about 10 fi at high temperature (about 600 F) , the electrical energy requirement is about 30 watts at about 16 volts applied voltage. According to the above-discussed equation, the mass-flow rate (m) decreases as the temperature of the device increases. Thus, the present invention controls the mass flow from an inherent maximum (based on the differential pressure) to a minimum based on the temperature which the intermediate control layer imparts to the gas. The gas flow leaves from the exit (88) through a port 96 in the glass support layer (64) and an aligned port 98 in the back plate (91) and out through the discharge tube (48) . To maximize the heating effect, the inner surface of the inlet-housing manifold (58) is preferably polished to reflect heating radiation (e.g., radiation emanating from the silicon flow-control layer) back onto the flow-control layer, and the outer surfaces of the glass layers can be plated to further reflect radiation back onto the chip surface. Such reflective materials include aluminum, silver, and gold, and mixtures and alloys thereof. Energy conservation measures are important in the environment of a satellite having a limited on-board electrical supply. Another important consideration is thermal management, as the present devices (as well as the thermothrottle of the prior art) generate heat and thus affect the local environment in which the devices are operated.

The multilayer body is preferably attached to the housing, via the foil (68) and back plate, along only a portion of the support-glass side. As shown in more detail in Fig. 15, a central portion of the support glass layer (64) is etched in a circular shape to provide a circular land or boss 100, and it is this boss that is sealed to the foil layer (68) . The reduced contact between the glass and the foil, because of joining only at the boss, inhibits conductive heat loss from the multilayer body to the housing. The boss provides a span to which the chip can be securely and hermetically bonded, providing mechanical isolation of the chip from the housing and assuring that the fluid flow is conducted through the chip and does not leak around the chip's supporting structure.

Control of the gas flow can be facilitated by knowing the relationship of viscosity and temperature. Accordingly, simulations were done to determine these relationships. Viscosity was calculated as a function of temperature using the equation U = -1.3654543 x 10"° + 3.4895775 x 10'8 T 6.7386464 x 10"12 T2 ; these results are shown in Fig. 16, a graph of viscosity (U) versus temperature (T) in degrees Rankine, and in Fig. 17, a graph of the product of U T versus T.

Typical design parameters are shown in Table 1 below:

Table 1

25 μm C1 capi I lary width 0.98 mil

12.5 μm FI fitter width 0.49 mil

500 Fn nLimber of filter openings

10 μm F2 ft Iter spacing 0.39 mil

500 μm F3 filter length 19.69 mil

250 μm F4 filter collector (manifold) width 9.84 mil

60 μm C2 cap Ilary spacing 3.15 mil

750 μm C3 capillary edge distance 29.53 mil

346,950 μm capillary length 13.66 in.

The present device has a number of applications in environments where it is desirable to control the flow of a gas, and possibly of some liquids. Such environments include apparatus such as gas chromatographs and other analytical and medical instrumentation and control systems.

As alluded to above with regard to said application Serial No. 08/659,965 directed to microvalves and microthrusterε, the present device is particularly useful for controlling the flow of thruster gas to a microthruster. Because the thrust force is a function of the amount of mass ejected and its velocity, the velocity being a function of the pressure drop and the presence of a nozzle, the thrust force and duraction can also be controlled, at least in part, using the micro-gas rheostat of the present invention. For example, the present device can throttle down the gas flow to the microthruster when smaller thruster bursts are required.

This invention can be an element of a closed-loop control -system. For example, the thrust and the power to the thruster can be measured, and they can be effectively varied by throttling the gas mass supply flow down or up to alter the thrust and the power used by the thruster. Alternatively, the invention can be a closed-loop control system in and of itself, wherein the resistance of the heater or the chip is measured and, knowing or measuring the pressure drop across the rheostat, the mass-flow rate can be determined. As such, a temperature set point can be used indirectly as a mass-flow set point, and the output of a comparitor (comparing the actual temperature and the set point, or the inversion of the output signal) can be used to control the current sent to the heater or chip. For example, as the temperature equivalent to a desired mass-flow rate (determinable from a look-up table, and thus programmable onto a memory chip) falls below the set point, and the flow increases, the comparator output can be fed to the heater circuit, causing a temperature increase and thereby reducing the flow. Further, these control systems can be in the form of an integrated circuit also located within the housing or even etched onto a portion of the solid state rheostat itself.

The embodiment of Figs. 18 and 19 is illustrative of a mechanical arrangement wherein a flow-control chip 100, which may be one of several varieties already described, is ruggedly and entirely supported by an annular insert 101 of glass (suitably a borosilicate glass) that is bonded with the central bore of an element 102 of an upper housing 103. The bore of insert 101 is bonded to the outlet tube 104, such that at the interior end of bonded elements 101, 102, 104, the end of insert 101 projects as an annulus downwardly away from elements 102, 104, thus enabling a polishing operation on this projecting end, the polishing operation being to assure a high quality flat annular end surface of element 101 to be assembled, -preferably by an anodic bond, to the similarly flat upper surface of the silicon layer 105 of chip 100. The position and orientation of chip 100, and particularly the lower surface of its glass support layer 106, may thus be precisely controlled for a predetermined offset δ of chip 100 from a lower plane of reference to housing element 102, prior to assembling a shouldered ring 107 to element 102, to complete the upper housing 103. The ring 107 is suitably of stainless steel, inertia-welded to the Kovar of upper housing element 102.

Preference is indicated for the upper housing element 102 and for tube 104 to be of Kovar and for the glass insert 101 to be of Dow Corning 7740 glass, whereby such differences of thermal coefficients of expansion as exist at Kovar/glass interfaces will always favor at least a degree of distributed compressional loading, such as to preclude glass-to-Kovar bonding. It is a further feature of the embodiment of Figs. 18 and 19 that the lower housing 108 is a precision subasse bly for mounting the electrical heater means 109 in uniform closely spaced offset from the lower surface of the support-glass layer 106 of chip 100. To this end, lower housing 108 is cup-shaped and suitably of stainless steel, providing a skirt 110 which is later nested to the shoulder of ring 107. The bottom of the cup-shape of lower housing 108 features diametrically opposite parallel bores for annular glass inserts 111 which mount the respective feed-throughs 112-112' for rugged support and precise positioning of heater means 109. The feed- throughs 112-112' are suitably of Kovar or stainless steel, and the glass of inserts 111, and their bonded relation to Kovar or stainless steel, may be as described for the insert 101. The lower housing 108 is illustratively completed by a central inlet port and tube formation 113, and lower-housing to upper-housing assembly is shown permanently completed by a peripherally continuous weld 114 of the nested relation. The total reliance upon glass and/or silicon for direct and sole support of chip 100 will be seen as advantageous by reason of having avoided reliance upon any heat-sinking metal for direct support of or contact with chip 100, thus economizing on use of electrical energy for heater-element supply. An even greater advantage of this nature will be seen in the modification of Fig. 20, which is in all respects the same as described for Fig. 18, except that in Fig. 20, the longitudinal offset δ between chip 100 and the potentially heat-sinking mass of upper- housing element 102' is effectively greatly enlarged by relying on a frusto-conical formation 115 of that part of element 102' which provides bonded support of glass insert 101 near its plane of anodic bonding to chip 100.

The directional arrows, designating inlet supply-gas flow at 113 and outlet controlled-gas flow at 104, will be understood to apply for a chip configuration at 100 wherein etched comb-filter grooves (not shown) perform their filtering action upstream from the etched area of flow-control grooves (also not shown in Fig. 18), e.g., akin to the Fig. 3 configuration wherein comb-filter action surrounds the inner region of flow control, with outlet flow that is central of the chip and with discharging controlled flow to and through the outlet tube 104. On the other hand, it will be further understood that, for an opposite direction of flow, wherein tube 104 is the inlet and tube 113 is the outlet, it is desirable that comb-filter etching be provided upstream from the flow-control grooves, i.e., between the central inlet opening and the point of gas-flow supply to the region of flow-control groove system, and with the flow-control groove system discharging via tube 113.

The embodiment of Figs. 21 and 22 is illustrative of a variation of the embodiment of Figs. 18-20, wherein a single cup-shaped housing member 120 has a skirt portion - characterized by a counterbore into which a preasse bly of an operative flow-control chip 122, with electrical connections 123, 123 ' , is integrated into a single housing closure component 124 which is externally configured for precise and stabilized seating engagement within the bore and counterbore features of housing member 120. A large central bore in closure component 124 has bonded cylindrical interface with an annular glass (dielectric) insert 125 (corresponding to the configuration and function of insert 101 in Figs. 18-20; similarly, a central outflow tube 126 has bonded cylindrical interface with the bore of insert 125, and the polished lower projecting annular end face of insert 125 has an anodized bond to the upper flow-control layer of chip 122, thereby providing essentially the sole means of chip support with respect to the housing.

In departure from the structure of Figs. 18, 19, the electrical feed-through elements 123, 123' of Figs. 21 and 22 are integrated into the single subassembly carried by and within the cylindrical outer surface of housing- closure member 124, these electrical elements 123, 123' being mounted by annular glass (dielectric) inserts 126, to diametrically opposite bores in closure member 124, in the manner described at ill in connection with Figs. 18, 19.

The gas-rheostat chip 122 is shown to be square, with side-to-side spacing that is evident from the sectioned area of the chip, as seen in Fig. 21, the diagonal extent of the chip being suggested in Fig. 21 by phantom extensions 127, as will be seen in Fig. 22 to apply on the diagonal alignment 2l'-21' of Fig. 22, which illustratively shows the radially undulating course of two-like heater elements A, B having opposite semicircular courses, in parallel, between diametrically opposite metal terminals or contacts 130, 131 on the upper surface of chip 122 and at diagonally opposed corners of the square - (on alignment 21-21), for the sake of clarity in Fig. 22, only terminal 130 has been shown connected to corresponding first ends of heater elements A, B, and it will be understood that similar connections are made for the other ends of heater elements A, B, to the other terminal 131. The lower end of each of the feed-through elements 123, 123' is shown carrying a compliantly cantilevered arcuate contact-wiping arm 132, 132', in resiliently loaded contact with the metal terminals 130, 131 on the upper flat surface of chip 122.

Further in connection with Figs. 21 and 22, a sealed flow-control groove 133 of expanding-helix nature is shown, by phantom suggestion, to be in register with the heater elements A, B, and thus with the peripherally continuous outer annular region of chip 122.

Directional arrows in inlet tube 121 of the housing- closure assembly to member 124, and in outlet tube 134 of the cupped housing element 120, illustrate the single direction of inlet flow and of rheostat-controlled outlet flow from the housing. The inlet flow has direct and exclusive access to a central port 135 of chip 122 which has manifolded radially outward gas entry into a four-leg comb-filter region 136, it being noted that the four legs of the comb filter are largely lapped by the cross-hatched annular region of bonded support of chip 122 by the annular member 125 of dielectric material (glass) . In turn, the collective flow after comb-filtration is accommodated in a surrounding mainfold formation 137, having inlet-flow access at 138 to the expaneding-helix path 133 of rheostat flow-control, ending with a single outlet port 139 of the chip, with discharge access into the internal open volume 140 of the housing and, therefore, with downstream discharge via housing port 134. The embodiment of Figs. 23 and 24 illustrates that the gas rheostat 122', as at 122 of Figs. 21 and 22, may be built with a hexagonal planform, which may be preferable for certain housing and electric-terminal purposes (other than those of Figs. 21 and 22) .

Corresponding parts of the flow accommodation in Figs. 23 an d 24 are therefore shown with the same reference-number identifications, as described for Figs. 21 and 22, but with primed notation. Thus, inlet flow via central opening 135' is shown as having manifolded access, in the radially outward direction, to the four legs of comb- filter means 136'; and the comb filters discharge via manifolding means 137' and passage 138' to the inlet end of the expanding helix course of the flow-control passage 133'. The other end of the flow-control passage will be understood to open at 139' into the interior volume of the closed housing (not shown in Figs. 23 anmd 24) , for exit flow from the involved housing. In the drawing of Fig. 23, dashed lines 145 along opposite sides of the hexagonal planform of the chip 122', will be understood to suggest another technique of chip mounting to suitable ledge or shoulder means which constitutes a supporting feature of the internal profile of one of the housing elements.

The foregoing description is meant to be illustrative of the invention and not limiting. Various changes, modifications, and additions may become apparent to the skilled artisan upon a perusal of this specification, and such are meant to be within the scope and spirit of the invention as defined by the claims.

Claims

What is claimed is:
1. A gas rheostat, comprising:
A. a multilayer rheostat body comprising a flow control layer having provided in one surface thereof a gas flow channel essentially parallel to the surface, said channel defined by said flow control layer and a sealing layer bonded to said surface, said rheostat body having a flow inlet to said channel and a flow discharge outlet from said channel; B. a housing having separated fluid paths for conducting gas to the flow inlet of the rheostat and for conducting gas from the rheostat discharge, and the housing having means for securably supporting the rheostat body within the housing; and C. a controllable heater for heating the rheostat body.
2. The gas rheostat of claim 1, wherein said flow- control layer of the rheostat body comprises a single crystal material selected from the group consisting of silicon, gallium arsenide, silicon nitride, boron nitride, and silicon carbide.
3. The gas rheostat of claim 1, wherein the flow control layer comprises a photoetchable material.
4. The gas rheostat of claim 1, wherein the gas flow path in the surface of the flow control layer is defined by an inlet manifold, a feeder trough, filters, and capillaries.
5. The gas rheostat of claim 4, wherein the filters are disposed between the inlet manifold and the feeder trough.
6. The gas rheostat of claim 1, wherein the channels are formed by photoetching.
7. The gas rheostat of claim 4, wherein the rheostat body further comprises a supporting glass layer bonded thereto.
8. The gas rheostat of claim 1, further comprising a housing in which said rheostat body resides.
9. The gas rheostat of claim 8, further comprising a layer of metal foil secured within the housing and to which the rheostat body is bonded.
10. The gas rheostat of claim 8, wherein the housing defines an inlet housing manifold having a polished surface.
11. The gas rheostat of claim 1, wherein said heater comprises an electric-heater element having two metallized terminal portions of a surface of said flow-control layer, said heater element being disposed and effective to cause heating of substantially the entire flow-control layer when a voltage is applied across the two metallized portions.
12. In a satellite having means for correcting its orientation by controlled gas expulsion from thrusters, wherein the improvement comprises metering a gas flow to a thruster using the gas rheostat defined by claim 1.
13. A method for controlling the flow of a gas, comprising:
A. providing a multilayer flow control body comprising a flow control layer having i. gas flow channels defined by channels in said flow control layer and sealed by a sealing layer, ii. an inlet to said flow channels, and iii. a discharge outlet from said flow channels;
B. providing across said body a pressure differential of the gas for which flow is desired to be controlled; and C. heating said flow-control layer to decrease the flow of gas through said gas flow channels, whereby the product of absolute viscosity of the gas times absolute temperature is operative to reduce gas flow.
14. The method of claim 13, wherein said heating step is operative over the extent of one of the faces of said flow-control layer.
15. A device for throttling a gas flow, comprising: A. a housing providing a flow inlet and a flow outlet and an interior space; B. a solid-state rheostat disposed in the interior space and comprising a micromachined gas-flow path providing fluid communication between the inlet and outlet; and C. means for heating the gas flow path in the solid-state rheostat.
16. The device of claim 15, wherein the solid-state rheostat further comprises micromachined filters between said communication with the inlet and the micromachined gas-flow path.
17. The device of claim 15, wherein the solid state rheostat is a multilayer body comprising a micromachined layer and a sealing layer bonded thereto.
18. A support structure for a micromachinable body, comprising: a housing having an interior portion defined by the housing; a foil substrate supported within the housing and spanning a portion of the interior portion; and a micromachinable body bonded to the foil .
19. The support structure of claim 18, further comprising a backing plate supported within and spanning a portion of the interior portion and disposed parallel to said foil substrate.
20. A solid state gas mass flow throttling device, comprising: a planform body having micromachined in a surface thereof a gas flow channel; a sealing layer bonded to said surface effective to cover the channel opening; and means for heating the gas flow channel.
21. The device of claim 20, further comprising a support layer bonded to an opposite surface of said planform body from said sealing layer effective to form a multilayer sandwich with the planform layer in the middle thereof.
22. The device of claim 21, wherein the sealing layer and the support layer are coated with a metal effective to reflect thermal radiation emanating from the middle planform layer back on to itself.
23. The device of claim 20, wherein the means for - heating includes metal strips bonded to said planform on opposite sides thereof.
24. The gas rheostat of claim 1, wherein said sealing layer is of glass.
25. The gas rheostat of claim 1, wherein said channel defines a single path between the flow inlet and the flow discharge outlet.
26. The gas rheostat of claim 1, wherein said channel is one of a plurality of channels communicating in parallel between the flow inlet and the flow-discharge outlet.
27. A gas rheostat, comprising:
A. first and second separate housing elements adapted when fitted together to define a closed internal volume about a common central axis, one of said housing elements having port means for external gas-inlet tube connection on said axis, and the other of said housing elements having port means for external gas-outlet tube connection on said axis;
B. a multilayer rheostat body supported by and within said housing, said rheostat body comprising a flow- control layer having two spaced flat surfaces defining the thickness of said flow-control layer, with a gas-flow channel provided in one of said surfaces, and a sealing layer having a flat surface bonded to said one surface, one end of said channel having a single central port of gas-flow accommodation via the center of said rheostat body to one of said means for tube connection on said axis, and the other end of said channel having gas-flow accommodation via said internal volume to the other of said means for tube connection on said axis; and C. a controllable heater supported by and within
-said housing for heating said rheostat body.
28. A gas rheostat according to claim 27, in which said rheostat body is totally carried by one of said housing elements, and said heater is totally carried by the other of said housing elements.
29. A gas rheostat according to claim 27, in which said rheostat body and said heater are both carried by one of said housing elements.
30. A gas rheostat according to claim 27, in which filter means is carried by said one housing element in interposed relation between (a) said means for external gas-inlet tube connection and (b) one end of said channel, the other end of said channel being connected to said means for external gas-outlet tube connection.
31. A gas rheostat according to claim 30, in which said filter means is symmetrically arrayed about said axis.
32. A gas rheostat according to claim 30, in which said filter means is a square configuration of four like comb-filter legs in symmetrical array about said axis.
33. A gas rheostat, comprising:
A. first and second separate housing elements of metal and adapted when fitted together to define a closed internal volume about a common central axis, one of said housing elements being a closure-member having port means for gas connection on said axis, and the other of said housing elements being a cup having a gas-connection port and an internal shoulder adapted to receive a volume- closing fit by said closure member;
B. a multilayer rheostat body having two spaced flat surfaces defining the thickness of said flow-control layer, with a gas-flow channel provided in one of said surfaces, and with a sealing layer having a flat surface bonded to said one surface, one end of said channel having a single central port of gas-flow accommodation via the center of said rheostat body to the port means of said closure member, and the other end of said channel having gas-flow accommodation via said internal volume to the other of said gas-connection ports;
C. said closure member having a cylindrically annular body of dielectric material having a bore defining the port of said one housing element and bonded to a central bore which extends between an upper externally exposed surface of said closure member and a lower internally exposed surface of said closure member, said annular body having a lower annular end which projects axially beyond the lower internally exposed surface of said closure member, the lower projecting annular end of said cylindrical body being bonded to and providing sole support of said rheostat body, with the bore of said annular body in communication with the single central port of gas-flow accommodation via the center of said rheostat body; and
D. a controllable heater supported by and within said housing for heating said rheostat body.
34. A gas rheostat according to claim 33, in which said heater is a component element of said rheostat body.
35. A gas rheostat according to claim 33, in which said rheostat body is peripherally continuous in an annular region that is radially outward of said cylindrical body, said channel being substantially defined within said annular region.
36. A gas rheostat according to claim 34, in which said heater element is a component element of said rheostat body and substantially defined within said annular region.
37. A gas rheostat according to claim 33, in which filter means is a component of said rheostat body, said filter means being interposed between (a) said one end of said channel and (b) said single central port.
38. A gas rheostat according to claim 34, in which spaced electrically conductive feed-through elements with flexible internal connection to said heater are individually supported within separate bodies of dielectric material bonded to and within two spaced further bores of said one housing element.
39. A gas rheostat according to claim 35, in which said channel is an expanding helical development within said annular region.
40. A micro-chip assembly, comprising:
A. first and second separate housing elements of metal and adapted when fitted together to define a closed internal volume about a common central axis, one of said elements having a bore centered on said axis, and a cylindrical member of dielectric material having bonded fit to said bore such that said cylindrical member presents an inner axial end which projects into said internal volume to establish a projecting flat inner-end surface normal to said axis and at axial offset from the metal of said one housing member;
B. a solid-state microchip element including an electrical-circuit component and having a flat surface - bonded to said flat inner-end surface and mechanically supported by said cylindrical member of dielectric material ; and C. electrical lead-through elements having insulated passage through one of said housing elements, and with flexible conductor connection to the electrical- circuit component of said solid-state element.
41. The microchip assembly of claim 40, in which said microchip element is an electrically controllable microgas rheostat.
EP97929874A 1996-06-07 1997-06-06 Micro gas rheostat Withdrawn EP1008146A4 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US65996596A true 1996-06-07 1996-06-07
US659965 1996-06-07
PCT/US1997/009962 WO1997047013A1 (en) 1996-06-07 1997-06-06 Micro gas rheostat

Publications (2)

Publication Number Publication Date
EP1008146A4 EP1008146A4 (en) 2000-06-14
EP1008146A1 true EP1008146A1 (en) 2000-06-14

Family

ID=24647557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97929874A Withdrawn EP1008146A4 (en) 1996-06-07 1997-06-06 Micro gas rheostat

Country Status (4)

Country Link
EP (1) EP1008146A4 (en)
JP (1) JP2000512780A (en)
CA (1) CA2257341A1 (en)
WO (1) WO1997047013A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847952C2 (en) * 1998-09-01 2000-10-05 Inst Physikalische Hochtech Ev Fluid flow switch
US6334301B1 (en) 1999-02-25 2002-01-01 Vacco Industries, Inc. Assembly of etched sheets forming a fluidic module
US6382254B1 (en) * 2000-12-12 2002-05-07 Eastman Kodak Company Microfluidic valve and method for controlling the flow of a liquid
DE20115733U1 (en) 2001-09-25 2001-12-20 Festo Ag & Co valve means

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1241867A (en) * 1968-12-31 1971-08-04 James Ephraim Lovelock An improved method and apparatus for controlling the flow of gases
JPS62108156A (en) * 1985-11-07 1987-05-19 Sord Comput Corp Silicon wafer capillary column
US4715852A (en) * 1986-07-21 1987-12-29 Eaton Corporation Implanted medication infusion device
US5267584A (en) * 1990-10-16 1993-12-07 Smith Richard D Method of fluid flow control using a porous media
WO1995009988A1 (en) * 1993-10-04 1995-04-13 Research International, Inc. Micromachined filters and flow regulators

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1069597A (en) 1912-12-07 1913-08-05 Wyatt Boyd Molding-machine.
US3279177A (en) * 1963-06-10 1966-10-18 Giannini Scient Corp Apparatus and method for propelling vehicles in space
US4474889A (en) * 1982-04-26 1984-10-02 Microsensor Technology Inc. Miniature gas chromatograph apparatus
US4604090A (en) 1983-11-22 1986-08-05 Consolidated Controls Corporation Compact implantable medication infusion device
US4656828A (en) * 1984-09-28 1987-04-14 Rca Corporation Augmentation heater temperature control system
DE3824160C2 (en) * 1988-07-16 1990-10-04 Erno Raumfahrttechnik Gmbh, 2800 Bremen, De
US4935040A (en) * 1989-03-29 1990-06-19 The Perkin-Elmer Corporation Miniature devices useful for gas chromatography
US5176358A (en) * 1991-08-08 1993-01-05 Honeywell Inc. Microstructure gas valve control
US5544276A (en) * 1993-11-30 1996-08-06 Microsensors Technology, Inc. Miniature gas chromatograph with heated gas inlet fitting, heated tubing, and heated microvalve assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1241867A (en) * 1968-12-31 1971-08-04 James Ephraim Lovelock An improved method and apparatus for controlling the flow of gases
JPS62108156A (en) * 1985-11-07 1987-05-19 Sord Comput Corp Silicon wafer capillary column
US4715852A (en) * 1986-07-21 1987-12-29 Eaton Corporation Implanted medication infusion device
US5267584A (en) * 1990-10-16 1993-12-07 Smith Richard D Method of fluid flow control using a porous media
WO1995009988A1 (en) * 1993-10-04 1995-04-13 Research International, Inc. Micromachined filters and flow regulators

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGELL, J.B., TERRY, S.C., BARTH, P.W.: "Silicon Micromechanical Devices" SCIENTIFIC AMERICAN,April 1983, pages 36-47, XP002101377 US *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 319 (P-627), 17 October 1987 & JP 62 108156 A (SORD COMPUT), 19 May 1987 *
PETERSEN K E: "SILICON AS A MECHANICAL MATERIAL" PROCEEDINGS OF THE IEEE, vol. 70, no. 5, 1 May 1982, pages 420-457, XP000565139 *
See also references of WO9747013A1 *

Also Published As

Publication number Publication date
EP1008146A4 (en) 2000-06-14
JP2000512780A (en) 2000-09-26
CA2257341A1 (en) 1997-12-11
WO1997047013A1 (en) 1997-12-11

Similar Documents

Publication Publication Date Title
US5759014A (en) Micropump
JP2824975B2 (en) Valve and micro-pump incorporating the valve
KR101211576B1 (en) Compressing and cold-welding the sealing method and apparatus
US6032689A (en) Integrated flow controller module
US5327041A (en) Biaxial transducer
US6004450A (en) Process for forming a porous silicon member in a crystalline silicon member
EP0672239B1 (en) Pedestal mount capacitive pressure sensor
Lin MEMS post-packaging by localized heating and bonding
EP1212532B1 (en) Dual diaphragm pump
EP0336437B1 (en) Pressure sensing transducer employing piezoresistive elements on sapphire
US4454440A (en) Surface acoustic wave (SAW) pressure sensor structure
US6260818B1 (en) Thin film fluid control systems and method of fabricating the same
Fahrenberg et al. A microvalve system fabricated by thermoplastic molding
US7042075B2 (en) Electronic device sealed under vacuum containing a getter and method of operation
US4869282A (en) Micromachined valve with polyimide film diaphragm
US6672325B2 (en) Small scale actuators and methods for their formation and use
US20080121017A1 (en) Gas chromatography system architecture incorporating integrated thermal management
JP2708395B2 (en) Semiconductor device and manufacturing method thereof
JP5570811B2 (en) Heat-type solid state pressure sensor
JP3793089B2 (en) Pressure transmitter with improved isolation system
EP0773436A2 (en) Suspended microstructures
CN1539035B (en) Trace thermal efficiency operation means
AU717626B2 (en) Micro-machined device for fluids and method of manufacture
US5284179A (en) Valve and semiconductor fabricating equipment using the same
Selvaganapathy et al. Electrothermally actuated inline microfluidic valve

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 19981229

A4 Despatch of supplementary search report

Effective date: 19990528

AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report

Effective date: 20020924

RAP1 Transfer of rights of an ep published application

Owner name: MAROTTA CONTROLS, INC.

18D Deemed to be withdrawn

Effective date: 20050104