EP1005135A1 - Elektrische Maschine und Rotor zur Verwendung darin - Google Patents

Elektrische Maschine und Rotor zur Verwendung darin Download PDF

Info

Publication number
EP1005135A1
EP1005135A1 EP99308642A EP99308642A EP1005135A1 EP 1005135 A1 EP1005135 A1 EP 1005135A1 EP 99308642 A EP99308642 A EP 99308642A EP 99308642 A EP99308642 A EP 99308642A EP 1005135 A1 EP1005135 A1 EP 1005135A1
Authority
EP
European Patent Office
Prior art keywords
rotor
wedge member
electric machine
coil
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99308642A
Other languages
English (en)
French (fr)
Other versions
EP1005135B1 (de
Inventor
John Cooper
David Bonnieman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodrich Control Systems
Original Assignee
Lucas Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Industries Ltd filed Critical Lucas Industries Ltd
Publication of EP1005135A1 publication Critical patent/EP1005135A1/de
Application granted granted Critical
Publication of EP1005135B1 publication Critical patent/EP1005135B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors

Definitions

  • This invention relates to an electric machine, for example a generator suitable for use in aerospace applications, and to a rotor suitable for use in such an application.
  • a rotor for use in an electric machine, the rotor comprising a rotor body provided with a plurality of slots, each slot housing electrical conductors of two independent coils, the conductors being secured in position by an outer wedge member, an inner wedge member being located between the outer wedge member and the conductors, the rotor including pole tips defining load bearing lips located adjacent the radially outer edges of each slot, wherein a part of each coil projects beyond the respective lips in a direction perpendicular to the axis of the coil.
  • the inner and outer wedge members are conveniently of modified shape.
  • the face of the outer wedge presented to the inner wedge is recessed in its region(s) of contact with the inner wedge.
  • the invention further relates to an electric machine, for example an electrical generator, including such a rotor.
  • Figure 1 illustrates part of a conventional rotor arrangement for use in an electrical generator.
  • the rotor arrangement of Figure 1 comprises a laminated rotor body 10 formed with four equi-angularly spaced slots 11 such that the rotor 10 defines four equi-angularly spaced, radially outwardly extending limbs (poles) around which coils 12, 13 are wound.
  • the radially outer region of each pole defines a pole tip, each slot 11 being arranged to house electrical conductors forming parts of two of the coils 12, 13 of the rotor winding of the generator.
  • the coils 12, 13 are held in place in the slots 11 by means of outer wedge members 14, and inner wedge members 15.
  • Each slot 11 is shaped so as to be of symmetrical form, the sides of the slot 11 being of stepped form, each side of the slot 11 defining an inner step 11 a which serves to locate the radially outermost part of each coil 12, 13, and an outer step or lip 16 which serves to locate the associated outer wedge member 14.
  • each coil 12, 13 engages the step 11 a , the remaining 50% of the thickness of each coil 12, 13 engaging a respective end part of the outer wedge member 14. It will further be appreciated that all of the end part of the outer wedge member 14 which is in engagement with one of the coils 12, 13 is fully supported by the adjacent lip 16.
  • the rotor In use, if the generator of which the rotor forms part is used in an aerospace application, then the rotor will be rotated at high speed, for example at speeds up to 24000rpm. It will be appreciated that at such high speeds, a large magnitude centrifugal force is applied by each coil 12, 13 to the adjacent steps 11 a and through the outer wedge members 14 to the lips 16.
  • the rotor 10 and the outer wedge members 14 are designed to be able to withstand the application of these forces.
  • the arrangement of Figure 1 suffers from the disadvantage that magnetic flux saturation of parts of the rotor material occurs.
  • the coils 12, 13 are shifted to positions in which parts of each coil 12, 13 extend beyond the associated lips 16 in a direction perpendicular to the axis of that coil 12, 13. Such an arrangement is illustrated in Figure 2.
  • each outer wedge member 14 is shaped to include recesses 14 a , a central part 14 b of the outer wedge member 14 being of substantially equal thickness to that of the conventional arrangement illustrated in Figure 1.
  • the recesses 14 a are shaped to receive end regions 15 a of the adjacent inner wedge member 15, the end regions 15 a being of reduced length compared to the arrangement illustrated in Figure 1.
  • the outer and inner wedge members 14, 15 are conveniently constructed from titanium and beryllium copper, respectively. This choice of materials is advantageous in that these materials are of sufficient strength to withstand the application of the centrifugal forces thereto by the coils 12, 13, in use. Although each outer wedge member 14 is shaped to include recesses 14 a , the provision of the recesses 14 a does not significantly weaken the outer wedge member 14, analysis having shown that it is the thickness of the central region 14 b which is of importance in preventing bending of the outer wedge member 14.
  • the invention may be used in providing a generator of reduced dimensions which is capable of producing the same power output as a conventional generator of greater dimensions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
EP99308642A 1998-11-03 1999-11-01 Elektrische Maschine und Rotor zur Verwendung darin Expired - Lifetime EP1005135B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9823924.7A GB9823924D0 (en) 1998-11-03 1998-11-03 Electric machine and rotor for use therein
GB9823924 1998-11-03

Publications (2)

Publication Number Publication Date
EP1005135A1 true EP1005135A1 (de) 2000-05-31
EP1005135B1 EP1005135B1 (de) 2007-09-26

Family

ID=10841674

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99308642A Expired - Lifetime EP1005135B1 (de) 1998-11-03 1999-11-01 Elektrische Maschine und Rotor zur Verwendung darin

Country Status (5)

Country Link
US (1) US6225723B1 (de)
EP (1) EP1005135B1 (de)
DE (1) DE69937184D1 (de)
ES (1) ES2294832T3 (de)
GB (1) GB9823924D0 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085804A1 (en) * 2002-04-01 2003-10-16 Honeywell International Inc. System and method for providing coil retention in the rotor windings of a high speed generator
EP1494335A1 (de) * 2003-06-24 2005-01-05 Goodrich Control Systems Ltd Rotoranordnung für dynamoelektrische Maschine
US9634526B2 (en) 2012-01-26 2017-04-25 Continental Automotive Gmbh Rotor for a rotating electric machine and rotating electric machine
US9685833B2 (en) 2012-01-26 2017-06-20 Continental Automotive Gmbh Rotor for a rotating electric machine and electric motor
US9735642B2 (en) 2012-01-26 2017-08-15 Continental Automotive Gmbh Rotor for a rotating electric machine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611076B2 (en) * 2000-12-20 2003-08-26 Solar Turbines Inc. Tooth tip for a high speed generator
US7015617B2 (en) * 2003-07-29 2006-03-21 Honeywell International, Inc. High speed generator with rotor coil support assemblies secured to interlamination disks
CN101098090B (zh) * 2006-06-30 2015-08-12 德昌电机股份有限公司 叠片
GB0702997D0 (en) * 2007-02-16 2007-03-28 Rolls Royce Plc A cooling arrangement of an electrical machine
US7990015B2 (en) * 2007-04-06 2011-08-02 Vestas Wind Systems A/S Pole tip attachment for a magnetic structure
US8339011B2 (en) * 2009-12-07 2012-12-25 Hamilton Sundstrand Corporation Rotor assembly wire support
KR101637676B1 (ko) 2014-09-05 2016-07-07 현대자동차주식회사 개선된 웨지를 가지는 회전 전기기기의 전기자
US10063116B2 (en) * 2014-10-07 2018-08-28 Hamilton Sundstrand Corporation Lamination clamping structure
US9812917B2 (en) 2014-10-07 2017-11-07 Hamilton Sundstrand Corporation End turn support and cooling fixture
EP3232540B1 (de) * 2014-12-10 2019-10-09 Daikin Industries, Ltd. Stator, motor und verdichter
KR101745127B1 (ko) 2015-08-26 2017-06-08 현대자동차주식회사 회전 전기기기의 전기자
CN107465284B (zh) * 2016-06-06 2020-11-06 德昌电机(深圳)有限公司 转子及具有该转子的电机、电动工具
US20170358968A1 (en) * 2016-06-13 2017-12-14 Alstom Renewable Technologies Supporting device and method for supporting winding coils in a wind turbine generator
KR101836297B1 (ko) * 2016-10-17 2018-03-08 현대자동차 주식회사 구동모터
US10855131B2 (en) * 2019-03-22 2020-12-01 Hamilton Sundstrand Corporation Potting and insulation system for a concentrated coil soil stator
DE102020119679A1 (de) * 2020-07-27 2022-01-27 Audi Aktiengesellschaft Elektrische Maschine und Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2465349A1 (fr) * 1979-09-14 1981-03-20 Alsthom Atlantique Rotor a poles saillants pour machine dynamo-electrique
JPS5869444A (ja) * 1981-10-20 1983-04-25 Mitsubishi Electric Corp 突極形回転子
EP0079584A1 (de) * 1981-11-17 1983-05-25 Alsthom Läufer mit ausgeprägten Polen für dynamo-elektrische Maschinen mit demontierbaren Spulen ohne Demontage der Pole
JPS59213244A (ja) * 1983-05-18 1984-12-03 Hitachi Ltd 突極形回転子
US4748354A (en) * 1985-02-15 1988-05-31 Hitachi, Ltd. Rotor for salient-pole machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514929B2 (ja) * 1996-12-04 2004-04-05 株式会社三協精機製作所 モータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2465349A1 (fr) * 1979-09-14 1981-03-20 Alsthom Atlantique Rotor a poles saillants pour machine dynamo-electrique
JPS5869444A (ja) * 1981-10-20 1983-04-25 Mitsubishi Electric Corp 突極形回転子
EP0079584A1 (de) * 1981-11-17 1983-05-25 Alsthom Läufer mit ausgeprägten Polen für dynamo-elektrische Maschinen mit demontierbaren Spulen ohne Demontage der Pole
JPS59213244A (ja) * 1983-05-18 1984-12-03 Hitachi Ltd 突極形回転子
US4748354A (en) * 1985-02-15 1988-05-31 Hitachi, Ltd. Rotor for salient-pole machine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 162 (E - 187) 15 July 1983 (1983-07-15) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 081 (E - 307) 10 April 1985 (1985-04-10) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085804A1 (en) * 2002-04-01 2003-10-16 Honeywell International Inc. System and method for providing coil retention in the rotor windings of a high speed generator
US7015616B2 (en) 2002-04-01 2006-03-21 Honeywell International, Inc. System and method for providing coil retention in the rotor windings of a high speed generator
EP1494335A1 (de) * 2003-06-24 2005-01-05 Goodrich Control Systems Ltd Rotoranordnung für dynamoelektrische Maschine
US6933648B2 (en) 2003-06-24 2005-08-23 Goodrich Control Systems Limited Rotor assembly for dynamo electric machines
US9634526B2 (en) 2012-01-26 2017-04-25 Continental Automotive Gmbh Rotor for a rotating electric machine and rotating electric machine
US9685833B2 (en) 2012-01-26 2017-06-20 Continental Automotive Gmbh Rotor for a rotating electric machine and electric motor
US9735642B2 (en) 2012-01-26 2017-08-15 Continental Automotive Gmbh Rotor for a rotating electric machine

Also Published As

Publication number Publication date
GB9823924D0 (en) 1998-12-30
EP1005135B1 (de) 2007-09-26
ES2294832T3 (es) 2008-04-01
DE69937184D1 (de) 2007-11-08
US6225723B1 (en) 2001-05-01

Similar Documents

Publication Publication Date Title
EP1005135A1 (de) Elektrische Maschine und Rotor zur Verwendung darin
US4588914A (en) Permanent magnet rotor for high speed motors and generators
AU2011303910B2 (en) Rotor for modulated pole machine
US9287742B2 (en) Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
US6844656B1 (en) Electric multipole motor/generator with axial magnetic flux
CA2337042C (en) Stator with teeth formed from a soft magnetic powder material
US4427910A (en) Magnetic slot wedge with low average permeability and high mechanical strength
EP1865587B1 (de) Magnetkern bestehend aus magnetischem Metallpulver für elektrische Maschinen
US20110101818A1 (en) Segmented stator assembly
US8264120B2 (en) Permanent-magnet-less synchronous reluctance system
WO2009115247A1 (de) Trägheitsarmer direktantrieb grosser leistungsdichte
JPH09508520A (ja) 永久磁石ロータを含むモータ
JP2002507380A (ja) 軟質磁性体の歯を有する電気機械
CN104335467A (zh) 电机
US5512792A (en) Electric motor with high power and high rotational speed
US20070114870A1 (en) Induction motor capable of utilizing magnetic fluxes of end-turns of a stator to increase torque of a rotor
US9171692B2 (en) Drive for rotary anode with stator with yoke winding
US10559987B2 (en) Electromagnetic armature for rotating electrical machine and method for manufacturing same
EP1122858A3 (de) Wechselstromgenerator für Kraftfahrzeuge
CN115398774A (zh) 用于电动式轴向磁通机的定子以及电动式轴向磁通机
US10797546B2 (en) Interior permanent magnet electric machine with flux distributing voids
DE19753916A1 (de) Elektrische Maschine
DE4404585C2 (de) Stator mit Ringkernspulen für elektrische Maschinen
US11581762B2 (en) Claw pole motor with a ring coil and a meandering coil
US20110291521A1 (en) Stator for an induction motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001101

AKX Designation fees paid

Free format text: DE ES FR GB IT

17Q First examination report despatched

Effective date: 20010514

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LUCAS INDUSTRIES LIMITED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GOODRICH CONTROL SYSTEMS LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17Q First examination report despatched

Effective date: 20010514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69937184

Country of ref document: DE

Date of ref document: 20071108

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2294832

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GOODRICH CONTROL SYSTEMS

Effective date: 20130305

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Effective date: 20130617

Ref country code: FR

Ref legal event code: CD

Owner name: GOODRICH CONTROL SYSTEMS

Effective date: 20130617

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140522 AND 20140528

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SAFRAN POWER UK LTD.

Effective date: 20141021

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181024

Year of fee payment: 20

Ref country code: GB

Payment date: 20181024

Year of fee payment: 20

Ref country code: ES

Payment date: 20181203

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191102