EP1005005A2 - Ionisation smoke detector - Google Patents
Ionisation smoke detector Download PDFInfo
- Publication number
- EP1005005A2 EP1005005A2 EP99122883A EP99122883A EP1005005A2 EP 1005005 A2 EP1005005 A2 EP 1005005A2 EP 99122883 A EP99122883 A EP 99122883A EP 99122883 A EP99122883 A EP 99122883A EP 1005005 A2 EP1005005 A2 EP 1005005A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ionization
- chamber
- current
- electrode
- smoke detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
- G08B17/113—Constructional details
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/02—Monitoring continuously signalling or alarm systems
- G08B29/04—Monitoring of the detection circuits
- G08B29/043—Monitoring of the detection circuits of fire detection circuits
Definitions
- the invention relates to an ionization smoke detector without use radioactive preparations as a radiation source and a method of operation an ionization smoke detector.
- Ionization detectors are able to completely independent of their aerosols to detect optical properties. They are also conventional Ionization detectors - i.e. those that contain radioactive preparations for ionization use - able to detect even the presence of very small aerosols to capture.
- One of the main areas of application for ionization detectors is that Detecting smoke, i.e. its use in fire detection technology. About that In addition, such detectors can also be used for aerosol monitoring of Chambers and rooms are used.
- devices for optical aerosol measurement e.g. absorbance measurement, Scattered light method
- particle detection gains a particularly high level Reliability.
- Ionization detectors also have particularly good properties in relation insensitivity to environmental influences and they are technically very robust.
- An ionization smoke detector is known from EP 0 820 045 A2, which has two separate chambers, a reference and a measuring chamber, each with at least one electrode, which is connected to an ionizing device via an electrical energy source.
- the ions generated by the ionizing device pass partially through openings in the corona space into a measuring and a reference chamber.
- the ions are generated in the corona space by means of an ionizing electrode which is at high voltage and has the shape of a gold-plated needle.
- the ionization electrode generates an inhomogeneous, spatially coherent ion density, the ions of which reach the two counter electrodes arranged in the measuring and reference chamber via the openings mentioned in the corona space.
- the object of the invention is therefore to eliminate the known shortcomings and an ionization smoke detector and a method for its operation create which, using the principle of shock ionization, a homogeneous, time-independent ionization of the in the measurement and Reference chamber located gas volume allows.
- the essentially homogeneous charge distributions in the measuring and Reference chamber to be proportional to each other.
- the ionization electrode is designed as a central wire electrode with a very small diameter which is guided through both chambers. This wire electrode is then surrounded by a two-part, cylindrical electrode system (counter electrodes) that is insulated from one another. The respective counter electrodes are an essential part of the measuring and the reference chamber.
- the natural background ionizations which are produced by the terrestrial and extraterristrial radiation which is constantly present are considered as Germs ".
- Sufficiently high electrical field strengths accelerate the electrons in particular to such an extent that they can cause impact ionizations on the gas molecules or atoms.
- the ionization smoke detector according to the invention is constructed as a two-chamber system, that is to say with a reference chamber and a measuring chamber. Both chambers are connected via compensating openings in such a way that diffusion processes are essentially the same in both Can form gas atmospheres.
- the present invention ensures that a reference current is formed in both chambers at the same time, which only reflects the state of the gas atmosphere without the presence of aerosols in the measuring chamber.
- gases or gas mixtures such as B. air
- the number of ions per unit volume can be increased so far by shock ionization that an aerosol measurement analogous to ionization chambers that use radioactive emitters for ionization is possible.
- the impact ionization is predominantly carried out by electrons that have been accelerated by high electric fields. Natural ionization (radiation) is not a continuous and completely even process. Natural ionizations, which fluctuate greatly over time, take place in the individual volume units of a chamber system. The consequences of these temporally and spatially strongly fluctuating ionization processes with regard to the intended impact ionizations and thus the current flow can only be compensated for with regard to the temperature fluctuations and the fluctuations in the gas atmosphere by generating as uniform and extensive a field structure as possible in the entire chamber system. Therefore, the chamber system according to the invention consists of a reference and a measuring chamber, both of which have a common electrode with a strong surface curvature, e.g. B.
- a reference and a measuring chamber both of which have a common electrode with a strong surface curvature, e.g. B.
- the reference chamber and the measuring chamber are interconnected by equalization openings (diffusion openings) so that the gas atmospheres can be equalized between the two chambers and the gas conditions are the same. Due to the installation position and the special design of the diffusion openings, it can be achieved that aerosols of fire can practically only get into the measuring chamber, which is connected to the external environment through inlet openings.
- the current intensity of the ion current flowing between the ionization electrode and the counter electrode in the reference chamber depends only on the state of its gas atmosphere, that of the measuring chamber also on the presence of aerosols.
- the ionization electrode is divided in each case for the measuring and the reference chamber, or that the ionization electrodes are arranged separately for both chambers (for example two wires).
- the prerequisite for a uniform field structure in both chambers is the use of ionization electrodes that are the same in all parameters and their common high-voltage regulation.
- the ionization smoke detector contains, in addition to the chamber system, a complete signal evaluation and conversion unit as well as a unit for generating high voltage.
- the chamber currents are measured in the signal evaluation and forming unit, compared with one another and the deviations from the normal state obtained in this way are evaluated.
- the evaluation results are the parent units, z. B. fire control panels, provided for further processing.
- this unit takes over the regulation of the reference chamber current.
- the regulation of the reference chamber current ensures that it is always in the optimum range for the measuring task, fluctuations in the natural ionization rate are compensated for and unwanted flashovers are prevented.
- the central ionization electrode which is uniform for both chambers, gives both chambers the same potentials, so that the regulation of the reference current corresponds to a setpoint specification of the basic current in the measuring chamber, ie the current intensity that would occur without aerosols. Deviations from the normal state can then only be traced back to aerosols in the measuring chamber.
- the power supply for the ionization smoke detector according to the invention takes place either via a two-line system which simultaneously serves for the data exchange between the detectors and the central units, or independently, if it is a self-sufficient detector system.
- Active suction ionization smoke alarm systems which are connected to central units and, under certain circumstances, are coupled to one another, preferably receive their energy supply from the central units via power supply lines which are routed separately to the data supply lines.
- the intermediate electrodes 10, 14 can also be designed, for example, as a wire mesh or wire mesh.
- the entire system can also be covered by an outer, shielding electrode 13, which must be sufficiently perforated for the passage of gas molecules or can also consist of a wire mesh (Fig. 2).
- the voltages required for this which can be between a few hundred and a few thousand volts depending on the shape of the electrode and the chamber structure, are either inductive, e.g. B. generated by means of blocking oscillators, or by means of piezotransformers.
- the required consumer power is very low because the chamber currents are in the range from pA to nA.
- the voltages are supplied to the electrodes via a rectifier unit or a modulator circuit. The regulation of the level of the reference chamber current 24 and the evaluation and correction of its deviations from the normal state are described in principle in FIG. 3.
- a predetermined target value 19 of the reference chamber current in FIG. 3 is compared with the actual current of the reference chamber current 24.
- the difference between the two measured variables is fed to a controller 21, the output signal of which controls the high-voltage generator 16.
- the high voltage of the ionization electrode 4 is set in such a way that the actual current of the reference chamber current 24 adapts to the predetermined value.
- the same high voltage also acts on the measuring chamber 17, so that the adjusted actual current of the measuring chamber current 23 is also set there. Deviations from the set actual current in the measuring chamber 17 can then essentially only be attributed to the influence of smoke aerosols.
- the dynamics of the regulation can be further improved by, for example, subordinating the current regulation to a voltage regulation 25.
- a deviation of the reference chamber current 24 is fed to a controller 21.
- the output signal of this regulator 21 now forms the setpoint for a subordinate voltage control circuit 25.
- the image of the high voltage is now compared with this setpoint and the control deviation is fed to a voltage control amplifier 22, the output signal of which causes the high voltage generator 16 to generate a corresponding voltage.
- the images of the two chamber flows 23, 24 are compared again and the deviation from the normal state is analyzed.
- This principle of regulating the reference chamber current 24 can compensate for temporal fluctuations in the background ionization by changes in the impact ionization capacity.
- the arrangement according to the invention of the electrode passing through both chambers allows the ion-generating electric field of both chambers to be formed uniformly. As a result, the natural ionizations which fluctuate strongly in the individual volume units of the chamber systems are better compensated, which leads to a considerable improvement in the measurement accuracy of aerosol particles in the ambient atmosphere to be monitored.
- Another advantage of the invention is the regulation of the reference chamber flow 24 by means of a signal evaluation and conversion unit (15 and 20 in FIGS. 3 and 4).
- the reference chamber current 24 is always in the optimum range for the measurement task in order to prevent fluctuations in natural ionization or unwanted flashovers.
- an additional intermediate electrode 10, 14 the running speed of the charge carriers can be reduced and an even better attachment of the aerosols can be achieved, which in turn contributes to increasing the sensitivity and measuring accuracy of the ionization smoke detector.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Fire-Detection Mechanisms (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
Die Erfindung betrifft einen Ionisationsrauchmelder ohne Verwendung radioaktiver Präparate als Strahlungsquelle und ein Verfahren zum Betrieb eines Ionisationsrauchmelders.The invention relates to an ionization smoke detector without use radioactive preparations as a radiation source and a method of operation an ionization smoke detector.
Ionisationsmelder sind in der Lage, Aerosole völlig unabhängig von ihren optischen Eigenschaften zu detektieren. Darüber hinaus sind konventionelle Ionisationsmelder - also solche, die radioaktive Präparate zur Ionisierung nutzen - in der Lage, das Vorhandensein auch sehr kleiner Aerosole zu erfassen. Eines der Hauptanwendungagebiete der Ionisationsmelder ist das Detektieren von Rauch, also ihr Einsatz in der Brandmeldetechnik. Darüber hinaus können solche Detektoren auch zur Aerosolüberwachung von Kammern und Räumen eingesetzt werden. Insbesondere in der Kombination mit Geräten zur optischen Aerosolmessung (z. B. Extinktionsmessung, Streulichtverfahren) gewinnt die Partikeldetektion eine besonders hohe Aussagesicherheit. Dies kann in der speziellen Brandmeldetechnik genutzt werden, um Täuschungen zu eliminieren und darüber hinaus Aussagen über die Gefährdungssituation zu treffen, z. B. in welcher Entwicklungsphase sich ein Brand gerade befindet, aber auch zur Detektion des Vorhandenseins von Aerosolen, beispielsweise in verfahrenstechnischen Prozessen. Ionisationsmelder besitzen ferner besonders gute Eigenschaften in bezug auf Störunempfindlichkeit gegenüber Umwelteinflüssen und sie sind technisch sehr robust aufbaubar.Ionization detectors are able to completely independent of their aerosols to detect optical properties. They are also conventional Ionization detectors - i.e. those that contain radioactive preparations for ionization use - able to detect even the presence of very small aerosols to capture. One of the main areas of application for ionization detectors is that Detecting smoke, i.e. its use in fire detection technology. About that In addition, such detectors can also be used for aerosol monitoring of Chambers and rooms are used. Especially in combination with devices for optical aerosol measurement (e.g. absorbance measurement, Scattered light method), particle detection gains a particularly high level Reliability. This can be used in the special fire alarm technology to eliminate delusions and also make statements about to meet the hazardous situation, e.g. B. in which development phase there is a fire, but also to detect the presence of Aerosols, for example in process engineering processes. Ionization detectors also have particularly good properties in relation insensitivity to environmental influences and they are technically very robust.
Durch die unterschiedliche Ausprägung vieler Merkmale des Rauchs, die von
der gerade existierenden spezifischen Situation abhängen und die durch
unterschiedliche Meßverfahren deutlich gemacht werden können, hat Rauch
die gleiche Wirkung, als wären mehrere unterschiedliche charakteristische
Brandkenngrößen im konventionellen Sinne vorhanden. So läßt bereits die
Kombination von Ionisations- mit Streulichtkammern hervorragende
Aussagemöglichkeiten über Brandentwicklungen zu.
Die vielfältigen Verwendungsmöglichkeiten und die Zuverlässigkeit von
Ionisationsrauchmeldern zur Branderkennung sichern ihnen auch in Zukunft
einen breiten Anwendungsbereich.
Einige Probleme ergeben sich allerdings durch die Verwendung von
radioaktiven Präparaten als Strahlungsquelle zur Erzeugung von Ionen bei
herkömmlichen Ionisationsrauchmeldern.
Neben den allgemeinen Vorbehalten der Öffentlichkeit gegen den
technischen Einsatz von Radioaktivität ergeben sich auch Probleme bei der
Entsorgung von radioaktiven Stoffen.
Obwohl diese Präparate bei modernen Ionisationsrauchmeldern eine sehr
geringe Strahlungsintesität aufweisen, erscheint es geboten, zukünftig auf
den Einsatz radioaktiven Materials als Ionisierungsquelle gänzlich zu
verzichten.
Im Vordergrund der weiteren Entwicklung steht dabei die Konstruktion von
Kammersystemen, die ohne Verwendung radioaktiver Präparate
funktionstüchtig sind und die notwendigen Ladungsträger zur Anlagerung
der Aerosle nach anderen Prinzipien erzeugen.
Dabei haben sich ionisierend wirkende Einrichtungen, welche nach dem
Prinzip der Koronaentladung arbeiten, als besonders geeignet und vorteilhaft
erwiesen.Due to the different characteristics of many characteristics of smoke, which depend on the specific situation currently existing and which can be made clear by different measuring methods, smoke has the same effect as if there were several different characteristic fire parameters in the conventional sense. The combination of ionization and scattered light chambers already provides excellent information about fire developments.
The wide range of possible uses and the reliability of ionization smoke detectors for fire detection will ensure a wide range of applications in the future.
However, some problems arise from the use of radioactive preparations as a radiation source for generating ions in conventional ionization smoke detectors.
In addition to the general public's reservations about the technical use of radioactivity, there are also problems with the disposal of radioactive substances.
Although these preparations have a very low radiation intensity in modern ionization smoke detectors, it appears advisable to do without radioactive material as an ionization source in the future.
The focus of further development is the construction of chamber systems that are functional without the use of radioactive preparations and that generate the necessary charge carriers for the attachment of the aerosols according to other principles.
Devices with an ionizing effect, which operate on the principle of corona discharge, have proven to be particularly suitable and advantageous.
So ist aus der EP 0 820 045 A2 ein Ionisationsrauchmelder bekannt, welcher
zwei voneinander getrennte Kammern, eine Referenz- und eine Meßkammer
aufweist, mit jeweils mindestens einer Elektrode, die über eine elektrische
Energiequelle mit einer ionisierend wirkenden Einrichtung verbunden ist. Die
von der ionisierend wirkenden Einrichtung erzeugten Ionen gelangen anteilig
über Öffnungen des Koronaraumes in eine Meß- und eine
Referenzkammer. Dabei erfolgt die Ionenerzeugung im Koronaraum mittels
einer auf Hochspannung liegenden Ionisierungselektrode, welche die Form
einer vergoldeten Nadel aufweist.
Die Ionisierungselektrode erzeugt eine inhomogene, räumlich
zusammenhängende Ionendichte, deren Ionen über die genannten
Öffnungen des Koronaraums die beiden in der Meß- und Referenzkammer
angeordneten Gegenelektroden erreichen.An ionization smoke detector is known from EP 0 820 045 A2, which has two separate chambers, a reference and a measuring chamber, each with at least one electrode, which is connected to an ionizing device via an electrical energy source. The ions generated by the ionizing device pass partially through openings in the corona space into a measuring and a reference chamber. The ions are generated in the corona space by means of an ionizing electrode which is at high voltage and has the shape of a gold-plated needle.
The ionization electrode generates an inhomogeneous, spatially coherent ion density, the ions of which reach the two counter electrodes arranged in the measuring and reference chamber via the openings mentioned in the corona space.
Eine solche, durch hohe Feldstärken und Stoßionisation an einer
Elektrodenspitze erzeugte Ionenwolke ist aber im Prinzip sehr inhomogen,
da die Zone hoher Feldstärke räumlich sehr begrenzt ist (Nadelspitze).
Eine starke Begrenzung von Zonen hoher Feldstärke bedeutet aber, daß alle
statistischen Schwankungen der Ionisierungseffekte, die durch die volumen- und
zeitabhängigen Schwankungen der natürlichen Strahlung um einen
statistischen Mittelwert hervorgerufen werden, keinen genügenden Ausgleich
finden, wodurch mit störenden Inhomogenitäten der Ionenverteilung in den
beiden Kammern zu rechnen ist, was wiederum negative Auswirkungen auf
die Meßgenauigkeit des Ionisationsrauchmelders erwarten läßt.However, such an ion cloud, generated by high field strengths and impact ionization at an electrode tip, is in principle very inhomogeneous, since the zone of high field strength is very spatially limited (needle tip).
A strong delimitation of zones of high field strength means, however, that all statistical fluctuations of the ionization effects, which are caused by the volume and time-dependent fluctuations in natural radiation around a statistical mean, are not adequately compensated, with disturbing inhomogeneities in the ion distribution in the two chambers is to be expected, which in turn has negative effects on the accuracy of the ionization smoke detector.
Aufgabe der Erfindung ist es daher, die bekannten Mängel zu beseitigen und einen Ionisationsrauchmelder sowie ein Verfahren zu seinem Betrieb zu schaffen, welcher unter Anwendung des Prinzips der Stoßionisation, eine homogene, zeitunabhängige Ionisierung des in der Meß- und Referenzkammer befindlichen Gasvolumens ermöglicht. Dabei müssen die im wesentlichen homogenen Ladungsverteilungen in der Meß- und der Referenzkammer zueinander von proportionaler Größe sein.The object of the invention is therefore to eliminate the known shortcomings and an ionization smoke detector and a method for its operation create which, using the principle of shock ionization, a homogeneous, time-independent ionization of the in the measurement and Reference chamber located gas volume allows. The essentially homogeneous charge distributions in the measuring and Reference chamber to be proportional to each other.
Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmalen des 1. Anspruchs gelöst. In den Unteransprüchen sind besonders bevorzugte Ausgestaltungen der Erfindung angegeben.This object is achieved with the characterizing features of the 1st claim solved. In the subclaims are special preferred embodiments of the invention specified.
Erfindungsgemäß erhält man dann homogene und proportional zueinander
gleichartige Verhältnisse bezüglich der Ionisierungsvorgänge in der
Referenz- und in der Meßkammer, wenn beide Kammern eine gemeinsame
symmetrische Ionisierungselektrode aufweisen. Diese Anordnung erlaubt die
Herstellung gleichartiger homogener Feldverhältnisse.
In einer besonders bevorzugten Ausführungsform der Erfindung ist die
Ionisierungselektrode als eine, durch beide Kammern geführte zentrale
Drahtelektrode mit einem sehr kleinen Durchmesser ausgebildet. Diese
Drahtelektrode ist dann von einem zweiteiligen, gegeneinander isoliertem
zylinderförmigen Elektrodensystem (Gegenelektroden) umgeben. Dabei sind
die jeweiligen Gegenelektroden wesentlicher Bestandteil der Meß- und der
Referenzkammer.
Bei dem hier bevorzugten Prinzip der ausschließlichen Stoßionisierung
werden die natürlichen Hintergrundionisierungen, die durch die ständig
vorhandenen terristrischen und extraterristrischen Strahlungen erzeugt
werden, als Keime" genutzt. Durch ausreichend hohe elektrische
Feldstärken werden insbesondere die Elektronen soweit beschleunigt, daß
sie an den Gasmolekülen bzw. -atomen Stoßionisierungen hervorrufen
können.
Zur Kompensation der Abhängigkeiten der Bildung von Ladungsträgern im
Gasraum von Druck, Temperatur und Feuchte ist der erfindungsgemäße
Ionisationsrauchmelder als Zwei-Kammersystem aufgebaut, d. h. mit einer
Refenzkammer und einer Meßkammer Beide Kammern sind über
Ausgleichsöffnungen so verbunden, daß sich in beiden im wesentlichen
durch Diffusionsvorgänge gleiche Gasatmosphären ausbilden können.
Ferner wird durch die vorliegende Erfindung gewährleistet, daß in beiden
Kammern zur gleichen Zeit ein Referenzstrom ausgeprägt wird, der ohne
das Vorhandensein von Aerosolen in der Meßkammer ausschließlich den
Zustand der Gasatmosphäre widerspiegelt.
Ausgehend von der natürlichen Ionisierung von Gasen bzw. Gasgemischen,
wie z. B. Luft, kann die Anzahl der Ionen je Volumeneinheit durch
Stoßionisierungen so weit erhöht werden, daß eine Aerosolmessung analog
zu Ionisationskammern, die radioaktive Strahler zur Ionisierung nutzen,
möglich ist. According to the invention, homogeneous and proportionally similar relationships with respect to the ionization processes in the reference and in the measurement chamber are obtained if both chambers have a common symmetrical ionization electrode. This arrangement allows the production of homogeneous field conditions of the same type.
In a particularly preferred embodiment of the invention, the ionization electrode is designed as a central wire electrode with a very small diameter which is guided through both chambers. This wire electrode is then surrounded by a two-part, cylindrical electrode system (counter electrodes) that is insulated from one another. The respective counter electrodes are an essential part of the measuring and the reference chamber.
In the principle of exclusive impact ionization preferred here, the natural background ionizations which are produced by the terrestrial and extraterristrial radiation which is constantly present are considered as Germs ". Sufficiently high electrical field strengths accelerate the electrons in particular to such an extent that they can cause impact ionizations on the gas molecules or atoms.
To compensate for the dependencies of the formation of charge carriers in the gas space on pressure, temperature and humidity, the ionization smoke detector according to the invention is constructed as a two-chamber system, that is to say with a reference chamber and a measuring chamber. Both chambers are connected via compensating openings in such a way that diffusion processes are essentially the same in both Can form gas atmospheres.
Furthermore, the present invention ensures that a reference current is formed in both chambers at the same time, which only reflects the state of the gas atmosphere without the presence of aerosols in the measuring chamber.
Based on the natural ionization of gases or gas mixtures, such as B. air, the number of ions per unit volume can be increased so far by shock ionization that an aerosol measurement analogous to ionization chambers that use radioactive emitters for ionization is possible.
Die Stoßionisierung erfolgt dabei vorwiegend durch Elektronen, die durch
hohe elektrische Felder beschleunigt wurden.
Die natürliche Ionisierung (Strahlung) ist kein stetig und vollständig
gleichmäßig ablaufender Prozeß. In den einzelnen Volumeneinheiten eines
Kammersystems finden zeitlich stark schwankende natürliche Ionisierungen
statt. Die Folgen dieser zeitlich und räumlich stark schwankenden
Ionisierungsvorgänge bezüglich der beabsichtigten Stoßionisierungen und
damit des Stromflusses können bezüglich der Temperaturschwankungen
und der Schwankungen der Gasatmosphäre nur dadurch ausgeglichen
werden, daß ein möglichst gleichmäßiger, weitläufiger Feldaufbau im
gesamten Kammersystem erzeugt wird. Daher besteht das
erfindungsgemäße Kammersystem aus einer Referenz- und einer
Meßkammer, welche beide eine gemeinsame Elektrode mit starker
Oberflächenkrümmung, z. B. den erwähnten Draht mit sehr kleinem
Durchmesser enthalten. Die Isolierung der Gegenelektroden voneinander
ermöglicht die Messung jedes Kammerstroms einzeln. Referenzkammer und
Meßkammer sind untereinander durch Ausgleichsöffnungen
(Diffusionsöffnungen) miteinander verbunden, so daß ein Ausgleich der
Gasatmosphären zwischen beiden Kammern erfolgen kann und gleiche
Gasverhältnisse vorliegen. Durch die Einbaulage und die besondere
konstruktive Ausbildungen der Diffusionsöffnungen kann erreicht werden,
daß Aerosole einer Brandentwicklung praktisch nur in die Meßkammer
gelangen können, welche durch Einlaßöffnungen mit der äußeren
Umgebung verbunden ist.
Die Stromstärke des zwischen der Ionisierungselektrode und der
Gegenelektrode fließenden Ionenstroms in der Referenzkammer hängt nur
vom Zustand ihrer Gasatmosphäre ab, die der Meßkammer dagegen auch
vom Vorhandensein von Aerosolen. Ein Vergleich beider Stromstärken läßt
eine Beurteilung der Aerosolkonzentration in der Meßkammer und damit
auch in der äußeren Umgebung des Kammersystems zu.
Es ist aber auch denkbar, daß die Ionisierungselektrode jeweils für die Meß- und
die Referenzkammer geteilt ist, oder daß die Ionisierungselektroden für
beide Kammern separat angeordnet sind (beispielsweise zwei Drähte).
Voraussetzung für einen in beiden Kammern gleichmäßigen Feldaufbau ist
in diesem Fall die Verwendung von in allen Parametern gleichen
Ionisierungselektroden und deren gemeinsame Hochspannungsregelung.
In einer weiteren Ausführungsform enthält der Ionisationsrauchmelder neben
dem Kammersystem eine komplette Signalauswerte- und Umformeinheit
sowie eine Einheit zur Hochspannungserzeugung. In der Signalauswerte- und
Umformeinheit werden die Kammerströme gemessen, miteinander
verglichen und die dadurch erhaltenen Abweichungen vom Normalzustand
ausgewertet.
Die Auswertungsergebnisse werden den übergeordneten Einheiten, z. B.
Feuermeldezentralen, zur weiteren Verarbeitung zur Verfügung gestellt.
In einer bevorzugten Ausführungsform der Erfindung übernimmt diese
Einheit die Regelung des Referenzkammerstromes. Durch die Regelung des
Referenzkammerstromes wird bewirkt, daß er sich immer in dem für die
Meßaufgabe optimalen Bereich befindet, Schwankungen der natürlichen
Ionisierungsrate ausgeglichen und ungewollte Überschläge verhindert
werden. Durch die für beide Kammern einheitliche zentrale
Ionisierungselektrode, erhalten beide Kammern die gleichen Potentiale, so
daß die Regelung des Referenzstromes einer Sollwertvorgabe des
Grundstromes in der Meßkammer entspricht, d. h. der Stromstärke, die sich
ohne Aerosole einstellen würde.
Abweichungen vom Normalzustand sind dann nur auf Aerosole
zurückzuführen, die sich in der Meßkammer befinden.The impact ionization is predominantly carried out by electrons that have been accelerated by high electric fields.
Natural ionization (radiation) is not a continuous and completely even process. Natural ionizations, which fluctuate greatly over time, take place in the individual volume units of a chamber system. The consequences of these temporally and spatially strongly fluctuating ionization processes with regard to the intended impact ionizations and thus the current flow can only be compensated for with regard to the temperature fluctuations and the fluctuations in the gas atmosphere by generating as uniform and extensive a field structure as possible in the entire chamber system. Therefore, the chamber system according to the invention consists of a reference and a measuring chamber, both of which have a common electrode with a strong surface curvature, e.g. B. contain the mentioned wire with a very small diameter. The isolation of the counter electrodes from each other enables the measurement of each chamber current individually. The reference chamber and the measuring chamber are interconnected by equalization openings (diffusion openings) so that the gas atmospheres can be equalized between the two chambers and the gas conditions are the same. Due to the installation position and the special design of the diffusion openings, it can be achieved that aerosols of fire can practically only get into the measuring chamber, which is connected to the external environment through inlet openings.
The current intensity of the ion current flowing between the ionization electrode and the counter electrode in the reference chamber depends only on the state of its gas atmosphere, that of the measuring chamber also on the presence of aerosols. A comparison of both currents allows an assessment of the aerosol concentration in the measuring chamber and thus also in the external environment of the chamber system.
However, it is also conceivable that the ionization electrode is divided in each case for the measuring and the reference chamber, or that the ionization electrodes are arranged separately for both chambers (for example two wires).
In this case, the prerequisite for a uniform field structure in both chambers is the use of ionization electrodes that are the same in all parameters and their common high-voltage regulation.
In a further embodiment, the ionization smoke detector contains, in addition to the chamber system, a complete signal evaluation and conversion unit as well as a unit for generating high voltage. The chamber currents are measured in the signal evaluation and forming unit, compared with one another and the deviations from the normal state obtained in this way are evaluated.
The evaluation results are the parent units, z. B. fire control panels, provided for further processing.
In a preferred embodiment of the invention, this unit takes over the regulation of the reference chamber current. The regulation of the reference chamber current ensures that it is always in the optimum range for the measuring task, fluctuations in the natural ionization rate are compensated for and unwanted flashovers are prevented. The central ionization electrode, which is uniform for both chambers, gives both chambers the same potentials, so that the regulation of the reference current corresponds to a setpoint specification of the basic current in the measuring chamber, ie the current intensity that would occur without aerosols.
Deviations from the normal state can then only be traced back to aerosols in the measuring chamber.
Die Stromversorgung für den erfindungsgemäßen Ionisationsrauchmelder
erfolgt entweder über ein Zweileitungssystem, das gleichzeitig für den
Datenaustausch zwischen den Meldern und den Zentraleinheiten dient, oder
eigenständig, wenn es sich um autark arbeitende Detektorsysteme handelt.
Aktiv ansaugende Ionisationsrauchmeldersysteme, die mit zentralen
Einheiten verbunden und unter Umständen untereinander verkoppelt sind,
erhalten ihre Energieversorgung bevorzugt über getrennt zu den
Datenversorgungsleitungen geführte Stromversorgungsleitungen von den
zentralen Einheiten.
Die Erfindung soll nun anhand eines Ausführungsbeispiels und der Figuren 1
bis 4 näher erläutert werden.The power supply for the ionization smoke detector according to the invention takes place either via a two-line system which simultaneously serves for the data exchange between the detectors and the central units, or independently, if it is a self-sufficient detector system. Active suction ionization smoke alarm systems, which are connected to central units and, under certain circumstances, are coupled to one another, preferably receive their energy supply from the central units via power supply lines which are routed separately to the data supply lines.
The invention will now be explained in more detail using an exemplary embodiment and FIGS. 1 to 4.
Es zeigen:
- Fig. 1
- den einfachen Aufbau eines erfindungsgemäßen zylindrischen Kammersystems mit einer gemeinsamen Ionisierungselektrode in Form eines Drahtes,
- Fig. 2
- das Kammersystem mit Zwischenelektroden und Schirmelektrode,
- Fig. 3
- ein Blockschaltbild zur Regelung des Referenzkammerstroms,
- Fig. 4
- ein Blockschaltbild zur Regelung des Referenzkammerstroms mit unterlagerter Spannungsregelung.
In
Diese Anordnung ermöglicht es, die Ströme für die Meß- und Referenzkammer getrennt zu messen.
Weitere vorteilhafte Ausführungsformen der Erfindung beziehen sich auf die Möglichkeit, zusätzliche Steuervorgänge durchführen zu können.
Wie in Fig. 2 dargestellt, erlaubt die
- Fig. 1
- the simple construction of a cylindrical chamber system according to the invention with a common ionization electrode in the form of a wire,
- Fig. 2
- the chamber system with intermediate electrodes and shield electrode,
- Fig. 3
- a block diagram for controlling the reference chamber current,
- Fig. 4
- a block diagram for controlling the reference chamber current with subordinate voltage control.
The
The
Through the
In both
The wire-shaped
This arrangement makes it possible to measure the currents for the measuring and reference chamber separately.
One end of the two
Further advantageous embodiments of the invention relate to the possibility of being able to carry out additional control processes.
As shown in FIG. 2, the arrangement of
Dadurch kann z. B. erreicht werden, daß nur ein Teil der Ionen, die im
Bereich hoher Feldstärken in der Nähe der mit Hochspannung
beaufschlagten Ionisierungselektrode 4 gebildet werden, zu den äußeren als
Gegenelektroden 1, 3 ausgebildeten Kammerwänden 17 und 18 gelangen.
Die dadurch verminderte Laufgeschwindigkeit führt zu einem noch besseren
Anlagerungsvermögen der Ionen an vorhandene Rauch-Aerosole.
Die Zwischenelektroden 10, 14 können beispielsweise auch als Drahtgitter
oder Drahtnetz ausgebildet sein.
Das gesamte System kann zudem noch durch eine äußere, schirmende
Elektrode 13 umhüllt werden, die zum Durchlaß von Gasmolekülen
ausreichend perforiert sein muß oder ebenfalls aus einem Drahtgitter
bestehen kann (Fig. 2).This can, for. B. can be achieved that only some of the ions, which are formed in the area of high field strengths near the high-
The resulting reduced running speed leads to an even better ability of the ions to attach to existing smoke aerosols.
The
The entire system can also be covered by an outer, shielding
Trotz des geringen Querschnitts der Ionisierungselektrode 4, reichen
Niederspannungen nicht aus, um die zu einer ausreichenden
Beschleunigung der Ladungsträger notwendigen Feldstärken zu erzeugen.
Die dafür notwendigen Spannungen, die je nach Elektrodenform und
Kammeraufbauten zwischen einigen Hundert und einigen Tausend Volt
betragen können, werden entweder induktiv, z. B. mittels Sperrschwingern,
oder mittels Piezzotransformatoren erzeugt. Die notwendige
Verbraucherleistung ist sehr gering, da die Kammerströme im Bereich von
pA bis nA liegen. Über eine Gleichrichtereinheit oder über eine
Modulatorschaltung werden die Spannungen den Elektroden zugeführt.
Die Regelung der Höhe des Referenzkammerstromes 24 sowie die
Auswertung und Korrektur seiner Abweichungen vom Normalzustand
werden vom Prinzip her in Fig. 3 beschrieben.
Ein vorgegebener Sollwert 19 des Referenzkammerstromes in Fig. 3 wird mit
der Ist-Stromstärke des Referenzkammerstroms 24 verglichen. Der
Differenzwert beider Meßgrößen wird einem Regler 21 zugeführt, dessen
Ausgangssignal den Hochspannungsgenerator 16 steuert.
Die Hochspannung der Ionisierungselektrode 4 wird dadurch so eingestellt,
daß sich die Ist-Stromstärke des Referenzkammerstromes 24 dem
vorgegebenem Wert angleicht. Die gleiche Hochspannung wirkt auch auf die
Meßkammer 17, so daß sich dort ebenfalls die angepaßte Ist-Stromstärke
des Meßkammerstromes 23 einstellt.
Abweichungen von der eingestellten Ist-Stromstärke in der Meßkammer 17
sind dann im wesentlichen nur auf den Einfluß von Rauch-Aerosolen
zurückzuführen.Despite the small cross-section of the
The voltages required for this, which can be between a few hundred and a few thousand volts depending on the shape of the electrode and the chamber structure, are either inductive, e.g. B. generated by means of blocking oscillators, or by means of piezotransformers. The required consumer power is very low because the chamber currents are in the range from pA to nA. The voltages are supplied to the electrodes via a rectifier unit or a modulator circuit.
The regulation of the level of the reference chamber current 24 and the evaluation and correction of its deviations from the normal state are described in principle in FIG. 3.
A
The high voltage of the
Deviations from the set actual current in the measuring
In einer weiteren bevorzugten Ausführungsform läßt sich die Dynamik der
Regelung weiter verbessern, indem man der Stromregelung beispielsweise
eine Spannungsregelung 25 unterlagert. Das Funktionsprinzip einer solchen
Ausführung wird in Fig. 4 näher beschrieben. Auch hier wird eine
Abweichung des Referenzkammerstromes 24 einem Regler 21 zugeführt.
Das Ausgangssignal dieses Reglers 21 bildet nun den Sollwert für einen
unterlagerten Spannungsregelkreis 25. Die Abbildung der Hochspannung
wird nun mit diesem Sollwert verglichen und die Regelabweichung einem
Spannungsregelverstärker 22 zugeführt, dessen Ausgangssignal den
Hochspannungsgenerator 16 veranlaßt, eine entsprechende Spannung zu
erzeugen. Danach werden wieder die Abbildungen der beiden
Kammerströme 23, 24 miteinander verglichen und die Abweichung vom
Normalzustand analysiert. Durch dieses Prinzip der Regelung des
Referenzkammerstromes 24 können zeitliche Schwankungen der
Hintergrundionisierungen durch Änderungen des
Stoßionisierungsvermögens ausgeglichen werden.
Die erfindungsgemäße Anordnung der durch beide Kammern
durchgehenden Elektrode erlaubt eine gleichmäßige Ausbildung des
ionenerzeugenden elektrischen Feldes beider Kammern. Dadurch werden
die in den einzelnen Volumeneinheiten der Kammersysteme stark
schwankenden natürlichen Ionisierungen besser ausgeglichen, was zu einer
erheblichen Verbesserung der Meßgenauigkeit von Aerosolpartikeln in der
zu überwachenden Umgebungsatmosphäre führt. In a further preferred embodiment, the dynamics of the regulation can be further improved by, for example, subordinating the current regulation to a
The output signal of this
The arrangement according to the invention of the electrode passing through both chambers allows the ion-generating electric field of both chambers to be formed uniformly. As a result, the natural ionizations which fluctuate strongly in the individual volume units of the chamber systems are better compensated, which leads to a considerable improvement in the measurement accuracy of aerosol particles in the ambient atmosphere to be monitored.
Ein weiterer Vorteil der Erfindung besteht in der Regelung des
Referenzkammerstromes 24 durch eine Signalauswerte- und Umformeinheit
(15 und 20 in Fig. 3 und Fig. 4). Dadurch befindet sich der
Referenzkammerstrom 24 immer in dem für die Meßaufgabe optimalen
Bereich, um Schwankungen in der natürlichen Ionisierung oder ungewollte
Überschläge zu verhindern.
Durch die Anordnung einer zusätzlichen Zwischenelektrode 10, 14 läßt sich
die Laufgeschwindigkeit der Ladungsträger vermindern und eine noch
bessere Anlagerung der Aerosole erreichen, was wiederum zur Erhöhung
der Empfindlichkeit und Meßgenauigkeit des Ionisationsrauchmelders
beiträgt.Another advantage of the invention is the regulation of the
By arranging an additional
Durch Anordnung einer entsprechend perforierten äußeren Schirmelektrode kann das Eindringen ionisierender Strahlung in das Gasvolumen der beiden Kammern in bestimmten Grenzen gesteuert werden. By arranging a correspondingly perforated outer shield electrode can prevent the penetration of ionizing radiation into the gas volume of the two Chambers can be controlled within certain limits.
- 1.1.
- Gegenelektrode der MeßkammerCounter electrode of the measuring chamber
- 2.2nd
- Isolator mit Durchgangs- und AusgleichsöffnungIsolator with through and compensation opening
- 3.3rd
- Gegenelektrode der ReferenzkammerCounter electrode of the reference chamber
- 4.4th
- IonisierungselektrodeIonizing electrode
- 5.5.
- Anschluß für Versorgungs- und AuswerteschaltungConnection for supply and evaluation circuit
- 6.6.
- Anschluß für Versorgungs- und AuswerteschaltungConnection for supply and evaluation circuit
- 7.7.
- Isolator-Grundfläche der MeßkammerIsolator base of the measuring chamber
- 8.8th.
- Ausgleichsöffnung (Diffusionsöffnung)Equalization opening (diffusion opening)
- 9.9.
- Öffnungen für den Gaseintritt (Aerosole)Gas inlet openings (aerosols)
- 10.10th
- ZwischenelektrodeIntermediate electrode
- 11.11.
- Versorgungsschaltung ZwischenelektrodeSupply circuit intermediate electrode
- 12.12th
- Versorgungsschaltung ZwischenelektrodeSupply circuit intermediate electrode
- 13.13.
- äußere Schirmelektrode (perforiert)outer shield electrode (perforated)
- 14.14.
- ZwischenelektrodeIntermediate electrode
- 15.15.
- StromversorgungsschaltungPower supply circuit
- 16.16.
- HochspannungsgeneratorHigh voltage generator
- 17.17th
- MeßkammerMeasuring chamber
- 18.18th
- ReferenzkammerReference chamber
- 19.19th
- Sollstromstärke des ReferenzkammerstromesTarget current of the reference chamber current
- 20.20th
- SpannungsregelschaltungVoltage control circuit
- 21.21.
- StromregelverstärkerCurrent control amplifier
- 22.22.
- SpannungsregelverstärkerVoltage regulator amplifier
- 23.23.
- Ist-Stromstärke der MeßkammerActual current of the measuring chamber
- 24.24th
- Ist-Stromstärke der ReferenzkammerActual current of the reference chamber
- 25.25th
- HochspannungsregelungHigh voltage regulation
Claims (17)
dadurch gekennzeichnet, daß
die Ionisierungselektrode (4) einstückig ausgebildet ist und durch die Referenzkammer (18) und die Meßkammer (17) läuft.Ionization smoke detector for aerosol detection with at least one ionization electrode (4) and at least two mutually insulated counter electrodes (1, 3), which are components of the measuring chamber (17) and the reference chamber (18) and each include a gas volume, at least one power supply being provided,
characterized in that
the ionization electrode (4) is made in one piece and runs through the reference chamber (18) and the measuring chamber (17).
dadurch gekennzeichnet, daß
die Ionisierungselektrode (4) drahtförmig ausgebildet ist und eine stark gekrümmte Oberfläche zur Erzeugung hoher elektrischer Feldstärken aufweist.Ionization smoke detector according to claim 1,
characterized in that
the ionization electrode (4) is wire-shaped and has a strongly curved surface for generating high electric field strengths.
dadurch gekennzeichnet, daß
die Meßkammer (17) und die Referenzkammer (18) hohlzylinderförmig ausgebildet sind, wobei der Zylindermantel beider Kammern (17, 18) durch die Gegenelektroden (1, 3) gebildet wird, welche mittels eines Isolators (2) voneinander elektrisch isoliert sind.Ionization smoke detector according to claim 1 or 2,
characterized in that
the measuring chamber (17) and the reference chamber (18) have a hollow cylindrical shape, the cylinder jacket of both chambers (17, 18) being formed by the counter electrodes (1, 3) which are electrically insulated from one another by means of an insulator (2).
dadurch gekennzeichnet, daß
der Isolator (2) mit einer Ausgleichsöffnung (8) versehen ist, welche zum Gasaustausch zwischen der Refenzkammer (18) und der Meßkammer (17) und als Durchgang für die beide Kammern (17, 18) durchlaufende Ionisierungselektrode (4) dient. Ionization smoke detector according to claim 3,
characterized in that
the insulator (2) is provided with a compensating opening (8) which serves for gas exchange between the reference chamber (18) and the measuring chamber (17) and as a passage for the ionization electrode (4) passing through both chambers (17, 18).
zwischen der beide Kammern (17, 18) durchlaufenden Ionisierungselektrode (4) und den Gegenelektroden (1, 3) jeweils mindestens eine Zwischenelektrode (10,14) angeordnet ist, welche gegenüber den anderen Elektroden (1,3) mit unterschiedlichem Potential beaufschlagbar ist.Ionization smoke detector according to one or more of the preceding claims, characterized in that
At least one intermediate electrode (10, 14) is arranged between the ionization electrode (4) passing through both chambers (17) and the counter electrodes (1, 3), which can be acted upon with different potential compared to the other electrodes (1, 3).
dadurch gekennzeichnet, daß
eine äußere, perforierte Schirmelektrode (13) die gesamte Anordnung (1, 2, 3, 4, 5, 6, 7, 10, 11, 14) umschließt und mit einem gegenüber den anderen Elektroden (1, 3, 10, 14) unterschiedlichem Potential beaufschlagbar ist.Ionization smoke detector, according to claim 5,
characterized in that
an outer, perforated shield electrode (13) encloses the entire arrangement (1, 2, 3, 4, 5, 6, 7, 10, 11, 14) and with a different one from the other electrodes (1, 3, 10, 14) Potential can be applied.
dadurch gekennzeichnet, daß
eine Stromversorgungsschaltung (15) zur Steuerung der Kammerströme (23, 24) vorgesehen ist, welche einen Stromregelverstärker (21) und einen Hochspannungsgenerator (16) umfaßt.Ionization smoke detector according to one of the preceding claims,
characterized in that
a power supply circuit (15) for controlling the chamber currents (23, 24) is provided, which comprises a current control amplifier (21) and a high voltage generator (16).
dadurch gekennzeichnet, daß
der Stromversorgungsschaltung (15) eine Spannungsregelschaltung (20) unterlagert ist, welche eine Hochspannungsregelung (25) mit einem Spannungsregelverstärker (22) umfaßt. Ionization smoke detector according to claim 7,
characterized in that
The power supply circuit (15) is subordinated to a voltage control circuit (20) which comprises a high voltage control (25) with a voltage control amplifier (22).
dadurch gekennzeichnet, daß
der Hochspannungsgenerator (16) zur Erzeugung der Hochspannung für die Elektroden (1, 3, 4) als Sperrschwinger ausgebildet ist.Ionization detector according to one of claims 5 to 8,
characterized in that
the high voltage generator (16) for generating the high voltage for the electrodes (1, 3, 4) is designed as a blocking oscillator.
dadurch gekennzeichnet, daß
der Hochspannungsgenerator (16) zur Erzeugung der Hochspannung für die Elektroden (1, 3, 4) als Piezzotransformator ausgebildet ist.Ionization smoke detector according to one of claims 5 to 8,
characterized in that
the high voltage generator (16) for generating the high voltage for the electrodes (1, 3, 4) is designed as a piezotransformer.
dadurch gekennzeichnet, daß
die zur Ausbildung eines Ionenstromes in der Meßkammer (17) und der Referenzkammer (18) notwendigen Ionen durch eine beide Kammern (17, 18) durchlaufende Ionisierungselektrode (4) erzeugt werden.Method for operating an ionization smoke detector according to one or more of the preceding claims,
characterized in that
the ions necessary for the formation of an ion current in the measuring chamber (17) and the reference chamber (18) are generated by an ionization electrode (4) passing through both chambers (17, 18).
die Stromversorgung (15) der Referenzkammer (18) derart geregelt ist, daß eine vorgegebene Sollstromstärke (19) mit der Ist-Stromstärke des Referenzkammerstromes (24) verglichen und der Differenzwert beider Meßgrößen einem Stromregelverstärker (21) zugeführt wird, dessen Ausgangssignal den Hochspannungsgenerator (16) steuert, welcher die Hochspannung der Ionisierungselektrode (4) so eingestellt, daß sich die Stromstärke des Referenzkammerstromes (24) der vorgegebenen Sollstromstärke (19) angleicht, wobei die gleiche Hochspannung auch auf den Meßkammerstrom (23) wirkt, so daß sich dort ebenfalls die an die Sollstromstärke angepaßte Stromstärke des Meßkammerstromes (23) einstellt, also die Stellgröße Hochspannung für beide Kammern (17,18) in gleicher Weise über die gemeinsame Ionisierungselektrode (4) aufgeschaltet wird. A method according to claim 11, characterized in that
the power supply (15) of the reference chamber (18) is regulated in such a way that a predetermined target current (19) is compared with the actual current of the reference chamber current (24) and the difference between the two measured variables is fed to a current control amplifier (21) whose output signal is sent to the high-voltage generator ( 16) which controls the high voltage of the ionization electrode (4) so that the current strength of the reference chamber current (24) matches the predetermined target current strength (19), the same high voltage also acting on the measuring chamber current (23), so that there too adjusts the current strength of the measuring chamber current (23) which is adapted to the target current strength, that is to say the high voltage control variable for both chambers (17, 18) is applied in the same way via the common ionization electrode (4).
die Stromversorgungsschaltung (15) mit einer zusätzlichen Spannungsregelschaltung (20) derart verschachtelt wird,
daß das Ausgangssignal des Stromregelverstärkers (21) den Sollwert für einen unterlagerten Spannungsregelkreis (25) bildet, wobei die Abbildung der Hochspannung der Ionisierungselektrode (4) mit diesem Sollwert verglichen und die Regelabweichung einem Spannungsreglerverstärker (22) zugeführt wird, dessen Ausgangssignal den Hochspannungsgenerator (16) veranlaßt, eine entsprechend korrigierte Spannung zu erzeugen, wobei anschließend die beiden Kammerströme (23, 24) miteinander verglichen und die Abweichung vom Normalzustand analysiert werden, womit sich zeitliche Schwankungen der Hintergrundionisation ausgleichen lassen.Method for operating an ionization smoke detector according to claim 12, characterized in that
the power supply circuit (15) is interleaved with an additional voltage regulating circuit (20),
that the output signal of the current control amplifier (21) forms the setpoint for a subordinate voltage control loop (25), the image of the high voltage of the ionization electrode (4) being compared with this setpoint and the control deviation being fed to a voltage regulator amplifier (22), the output signal of which is sent to the high voltage generator (16 ) causes a correspondingly corrected voltage to be generated, the two chamber currents (23, 24) then being compared with one another and the deviation from the normal state being analyzed, with which time fluctuations in the background ionization can be compensated.
dadurch gekennzeichnet, daß
die Polarität der an den Elektroden (1, 3 ,4) anliegenden Hochspannung, und damit der Kammerströme, gewechselt werden kann; wobei auch die Polarität der Zwischenelektroden (10, 14) und der Schirmelektrode (13) wechselbar ist.Method according to one of the preceding claims,
characterized in that
the polarity of the high voltage applied to the electrodes (1, 3, 4), and thus the chamber currents, can be changed; the polarity of the intermediate electrodes (10, 14) and the shield electrode (13) can also be changed.
die Höhe der mittels Stromversorgung (15, 20) geregelten Stromstärke auf die jeweiligen Einsatzbedingungen des Melders abgestimmt wird.A method according to claim 14, characterized in that
the level of the current strength regulated by means of the power supply (15, 20) is matched to the respective operating conditions of the detector.
die Stromstärke (23) in der Meßkammer (1) getrennt von der Stromstärke (24) in der Referenzkammer (3) gemessen wird.A method according to claim 13 or 14, characterized in that
the current (23) in the measuring chamber (1) is measured separately from the current (24) in the reference chamber (3).
die Auswertung der Meßergebnisse beider Stromstärken zur Aerosoldichtemessung genutzt wird.A method according to claim 15, characterized in that
the evaluation of the measurement results of both currents is used for aerosol density measurement.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19854780A DE19854780C2 (en) | 1998-11-27 | 1998-11-27 | Ionization smoke detectors |
DE19854780 | 1998-11-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1005005A2 true EP1005005A2 (en) | 2000-05-31 |
EP1005005A3 EP1005005A3 (en) | 2001-04-11 |
EP1005005B1 EP1005005B1 (en) | 2005-01-19 |
Family
ID=7889233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99122883A Expired - Lifetime EP1005005B1 (en) | 1998-11-27 | 1999-11-17 | Ionisation smoke detector |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1005005B1 (en) |
AT (1) | ATE287567T1 (en) |
DE (2) | DE19854780C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2971354A1 (en) * | 2011-02-04 | 2012-08-10 | Inst Pour Le Dev De La Science L Education Et La Technologie Idset | Smoke detector for detecting fire to reduce fire hazard in building, has electrometer for measuring electric quantity representing movement speed of electric charges between first and second electrodes to set off alarm |
WO2014016473A1 (en) * | 2012-07-24 | 2014-01-30 | Finsecur S.A. | Smoke detector |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018006104A1 (en) | 2018-08-01 | 2019-03-07 | Daimler Ag | High-voltage protection system for a high-voltage battery and method for monitoring the high-voltage battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2386873A1 (en) * | 1977-04-08 | 1978-11-03 | Anvar | IONIZATION FIRE DETECTOR DEVICE |
DE4410090C1 (en) * | 1994-03-24 | 1995-07-06 | Preussag Ag Minimax | Smoke alarm using ionisation and optical scattering effects |
EP0820045A2 (en) * | 1996-07-18 | 1998-01-21 | Siemens Aktiengesellschaft | Ionization type smoke detector |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4402518C2 (en) * | 1994-01-28 | 1997-10-23 | Preussag Ag Minimax | Ionization smoke detectors |
-
1998
- 1998-11-27 DE DE19854780A patent/DE19854780C2/en not_active Expired - Lifetime
-
1999
- 1999-11-17 AT AT99122883T patent/ATE287567T1/en active
- 1999-11-17 DE DE59911481T patent/DE59911481D1/en not_active Expired - Lifetime
- 1999-11-17 EP EP99122883A patent/EP1005005B1/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2386873A1 (en) * | 1977-04-08 | 1978-11-03 | Anvar | IONIZATION FIRE DETECTOR DEVICE |
DE4410090C1 (en) * | 1994-03-24 | 1995-07-06 | Preussag Ag Minimax | Smoke alarm using ionisation and optical scattering effects |
EP0820045A2 (en) * | 1996-07-18 | 1998-01-21 | Siemens Aktiengesellschaft | Ionization type smoke detector |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2971354A1 (en) * | 2011-02-04 | 2012-08-10 | Inst Pour Le Dev De La Science L Education Et La Technologie Idset | Smoke detector for detecting fire to reduce fire hazard in building, has electrometer for measuring electric quantity representing movement speed of electric charges between first and second electrodes to set off alarm |
WO2014016473A1 (en) * | 2012-07-24 | 2014-01-30 | Finsecur S.A. | Smoke detector |
US9286780B2 (en) | 2012-07-24 | 2016-03-15 | Finsecur | Smoke detector |
Also Published As
Publication number | Publication date |
---|---|
EP1005005B1 (en) | 2005-01-19 |
DE19854780A1 (en) | 2000-06-08 |
ATE287567T1 (en) | 2005-02-15 |
EP1005005A3 (en) | 2001-04-11 |
DE59911481D1 (en) | 2005-02-24 |
DE19854780C2 (en) | 2001-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102004061300B3 (en) | Method and device for influencing combustion processes | |
EP0233579B1 (en) | Method and apparatus for determining small quantities of gases or vapours in gas mixtures | |
EP0127645B1 (en) | Fire alarm and electrode device therefor | |
DE102005007746B4 (en) | Ion mobility spectrometer with parallel drift gas and ion carrier gas flow | |
EP1557667A1 (en) | Gas analysis method and ionisation detector for carrying out said method | |
DE2048817A1 (en) | Method and device for indicating smoke, gas or rapid temperature rise | |
DE1548623A1 (en) | Device for examining gaseous media | |
CH681932A5 (en) | ||
DE2538123A1 (en) | ARRANGEMENT FOR MASS SPECTROMETRIC DETECTION OF IONS | |
EP3831515B1 (en) | Detection of smoke events and electron beam melting system | |
DE19854780C2 (en) | Ionization smoke detectors | |
DE102013015046A1 (en) | Imaging mass spectrometer for analyzing position and intensity distributions of track links, has voltage control part controlling voltage applied to electrode such that lens effect of lens system increases with time over time period | |
DE102017222071A1 (en) | Ion-mobility spectrometer | |
DE2743761A1 (en) | SMOKE DETECTOR | |
EP0077417A1 (en) | Highly stabilized beam generator for charged particles | |
DE102016110495A1 (en) | Apparatus and method for generating, storing and releasing ions from a surrounding residual gas atmosphere | |
DE68907993T2 (en) | Parallax-free gas-filled X-ray detector. | |
DE102021121570A1 (en) | Apparatus, method and system for measuring the degree of vacuum of an X-ray tube | |
DE1648898A1 (en) | Field ionization mass spectrometer with ion beam control device | |
DE10344462B4 (en) | Particle mass spectrometer for the detection of nanoparticles and processes | |
DE102008028423B4 (en) | Method and device for determining at least one influencing variable of a combustion process | |
EP0820045A2 (en) | Ionization type smoke detector | |
DE3005497C2 (en) | ||
DE2546970C3 (en) | Ionization smoke detector | |
DE102022116682A1 (en) | Photo-ionization detector (PID) with several measuring cells and method using such a PID |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010809 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20040102 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MINIMAX GMBH & CO KG |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20050119 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050119 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59911481 Country of ref document: DE Date of ref document: 20050224 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050419 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050419 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050430 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20050119 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051130 |
|
26N | No opposition filed |
Effective date: 20051020 |
|
EN | Fr: translation not filed | ||
BERE | Be: lapsed |
Owner name: MINIMAX G.M.B.H. & CO KG Effective date: 20051130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20181120 Year of fee payment: 20 Ref country code: DE Payment date: 20181122 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20181126 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59911481 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 287567 Country of ref document: AT Kind code of ref document: T Effective date: 20191117 |