EP0996310A1 - Method for determining the position and the intensity of sound sources - Google Patents
Method for determining the position and the intensity of sound sources Download PDFInfo
- Publication number
- EP0996310A1 EP0996310A1 EP99810839A EP99810839A EP0996310A1 EP 0996310 A1 EP0996310 A1 EP 0996310A1 EP 99810839 A EP99810839 A EP 99810839A EP 99810839 A EP99810839 A EP 99810839A EP 0996310 A1 EP0996310 A1 EP 0996310A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sound
- sources
- sound sources
- substitute
- location
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/005—Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
Definitions
- the invention relates to a method for determining the location and the Sound power of replacement sound sources according to the preamble of independent claim.
- Determining the sound power from many different places today typically takes place with an arrangement of microphones (Array measurement technology).
- a microphone line (but also a surface arrangement of microphones) can be used.
- Such an arrangement for determining the sound power is described for example in EP-A-0,847,224.
- a method as described by the features of the independent claim is characterized.
- acts it is a method for determining the location and the Sound power of substitute sound sources, in which method with the help of a Arrangement of several sound receivers first of all actually existing sound is received and the corresponding signals of the Sound receivers are evaluated, e.g. with the help of the "Delay & Sum "method or with the help of other methods one or more essentially point-shaped substitute sound sources are determined, the determination of the location and the sound power of the individual in Substantial point-like substitute sound sources take place in such a way that the Superposition of the sound they produce as closely as possible total sound actually received by the sound receivers.
- the fact that the sound actually received is virtually "simulated” due to the sound from essentially point-shaped substitute sound sources a resolution that can be achieved with conventional methods long ago would push boundaries.
- the location is determined and the sound power of the essentially point-shaped substitute sound sources a deconvolution of those signals of the sound receivers has been carried out, that correspond to the sound actually received.
- a deconvolution of those signals of the sound receivers can be associated with the respective arrangement of sound receivers Focus club are taken into account.
- the deconvolution can be done in such a way that the weighted contribution from several fictitious, essentially punctiform sound sources on several different locations is taken into account. With the help of the weighted contribution These fictitious sound sources can then be the location and the sound power of the Substitute sound sources can be determined.
- the weighting can be general so that the coefficients with which the individual fictitious Sound sources are weighted, in principle negative, positive or zero could be.
- Weighting of fictitious sound sources can only be positive or zero.
- This Variant corresponds to physical reality because it only has sound sources positive sound power or with sound power zero (no sound source).
- Determining the location and the sound power of the essentially punctiform substitute sound sources can then be specially designed that the mean square error between the actually of the sound receivers and the sound received by the essential point-shaped substitute sound sources generated sound is minimal.
- Another variant is characterized in that the Determination of the location and the sound power of the essentially punctiform substitute sound sources take place in such a way that the actually received sound signals from the local area into a "local" (in Difference to a temporal) frequency range can be transformed. There they are divided by a signal which corresponds to that from the local area in the local frequency range transformed signal of the focus lobe of the Arrangement of sound receivers corresponds. That from this division resulting signal is from the local frequency range in the Local area transformed back.
- This variant takes into account that the signal is a point Sound source in the local area with the focus lobe of the arrangement of Sound receivers must be folded in order to actually exist Sound.
- a fold in the local area corresponds to one Multiplication in the local frequency range. Because the actual one Sound and the focal lobe of the arrangement of sound receivers known are, but not the location of the point replacement sound source, must be in the local frequency range a division of the actually existing sound by the signal corresponding to the focus lobe. That from this The resulting signal must then be returned to the local area be transformed back.
- Fig. 1 an example of actually existing sound S is shown (the Ordinate is e.g. a measure of the sound power), such as that of the microphones of a microphone line (not shown) has been received.
- the Ordinate is e.g. a measure of the sound power
- the microphones of a microphone line (not shown) has been received.
- Microphone arrangements suitable for this purpose are already mentioned in the introduction known EP-A-0.847.224 known. It doesn't have to be one Acting a "one-dimensional" microphone line, it is very possible to use one to use two-dimensional microphone arrangement. You can see that Sound occurs over a local area that is from the negative X coordinate -2 extends to the positive X coordinate 1.5. However, it is not possible to get more information about the exact distribution of sound sources do.
- FIG. 2 shows a signal which is received by the microphone line has been.
- This signal is from a point sound source with a normalized sound power at the X coordinate 0 in a given Distance from the microphone line has been created, i.e. the focus club of the Microphone line has been taken into account.
- the goal is now, but not otherwise further resolvable local distribution of the sound from FIG. 1 resolve by the sound actually received by the microphone line is simulated as exactly as possible by substitute sound sources. Because exactly punctual sound sources do not exist in reality, one speaks often from essentially punctiform sound sources. With the signal in FIG. 2 you can see that a point-shaped sound source with the X coordinate 0 at the microphone line produces a signal which differs from the X coordinate -1 extends up to positive X coordinate 1.
- Fig. 3 it can be seen that the actually existing sound is simulated has been through the superposition of the signals S1, S2, S3 from three onwards point-shaped arranged at different X coordinates Substitute sound sources with different sound power.
- the single ones Solid lines S1, S2, S3 each correspond to the signal one a certain place with a given distance from the Microphone line arranged point-like sound source, as easily from a Comparison with Fig. 2 can be seen.
- the dashed line in Fig. 3 shows the Course of the actually existing sound S from FIG. 1, which is the Superposition of the signals S1, S2, S3 of the three punctiform Substitute sound sources correspond to different sound power. It is one Deconvolution of the sound S actually present from FIG. 1 Have been carried out.
- FIG. 4 it results from FIG. 3 that in one specified distance from the microphone line at the X coordinate -1 a Substitute sound source Q1 is arranged, also at the X coordinate -0.5 one Substitute sound source Q2 and finally at the X coordinate 0.5 one Substitute sound source Q3.
- the substitute sound sources Q1, Q2, Q3 each have one different sound power.
- the superimposition of the signals of the three Substitute sound sources result in the actual sound S from FIG. 1 is still that the triangular distribution of the substitute sound sources Dirac impacts at the above-mentioned X coordinates, which are due to the selected resolution for the X coordinate when printing a triangular Have shape.
- the difficulty with this procedure is to determine how many Substitute sound sources for an actually received sound S in one specified distance from the microphone line must be selected which location they have to be arranged and which Sound power they must have to the actually received sound S reproduce as closely as possible.
- the first alternative is based on several fictitious sound sources, spread over the entire local area of interest in one predetermined distance from the microphone line are arranged.
- the The focus lobe of the microphone line points over the entire area of interest Area the same shape, it can - as explained at the beginning - electronically via the local area of interest bit by bit be pivoted. This depends on the pivoting interval of the focus lobe assumed fictitious sound sources are now using a Computer program weighted such that each fictitious sound source with a Weighted coefficient that is either positive, zero or negative.
- the requirement here is that the sound S actually received is as good as is possible simulated by substitute sound sources, their respective location and their respective sound power can still be found.
- the second alternative is somewhat similar to the first alternative, but differs from it in that the coefficients with which the fictitious sound sources are to be weighted can only ever be positive or zero.
- This alternative is particularly advantageous because it takes physical reality into account from the start - there are only sound sources with positive sound power or with no sound power (zero sound power, no sound source).
- the criterion for determining the locations and the sound power of the substitute sound sources is such that the mean square error between the actual sound S and the sound generated by the substitute sound sources is ultimately minimal.
- a computer program suitable for this procedure is, for example, the computer program known from the company "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA, known as” nnls "( n on n egative l east s quares) ".
- This calculation program is offered in an "Optimization Toolbox” of mathematical calculation programs for use together with the "Toolbox” MATLAB® already mentioned.
- the computer program "nnls" determines the locations and the sound power of the substitute sound sources under the above-mentioned requirement.
- the third alternative differs from the procedure basically of the two alternatives described above.
- the actually received sound S from the local area (FIG. 1) via a Fourier transformation (for example via a discrete Fourier transformation FFT) into a local one Frequency range transformed.
- a Fourier transformation for example via a discrete Fourier transformation FFT
- Fig. 2 it results from an (to be determined) arrangement of Equivalent switching sources Q1, Q2, Q3 with a switching power to be determined and the signal coming from the microphone line from a punctiform Sound source is received, which is arranged at a specific location, the sound S by folding the respective (already weighted) Dirac collisions (Fig. 4) with the respective signal, which is the response of the Microphone line represents a point sound source (Fig. 2).
- the Results of this convolution are shown in Fig. 3 and become additive overlaid.
- a fold in the local area means nothing other than one Multiplication in a corresponding local frequency range.
- Dirac impacts are with the in the local frequency domain transformed signal which is the answer represents the microphone line to a punctiform sound source multiply to the one transformed into the local frequency domain Signal of the sound actually present.
- the local Distribution and weighting of Dirac shocks in the local area But finding out is exactly the problem to be solved. Therefore, must thus the signal of the transformed into the local frequency range actually existing sound can be divided by the signal which the response of the microphone line to a punctiform sound source in the local Frequency range corresponds. This division then results in local Frequency range a signal which is in the local frequency range of Distribution and weighting of the Dirac shocks corresponds. By a Reverse transformation of this signal from the local frequency range into the The local area then results in the arrangement and the sound power of the Substitute sound sources.
- a computer program suitable for this procedure, with which such a transformation can be carried out from the local area into the local frequency range and also a corresponding reverse transformation from the local frequency range into the local area, is under the name "fft ( f ast F ourier t ransformation) Well-known computer program from the company "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA”. This program is offered in a "toolbox” of mathematical computer programs under the name MATLAB®. The computer program "fft” then determines the locations and the sound power of the substitute sound sources, with the proviso that the actually received sound S is simulated as well as possible by substitute sound sources.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Bestimmung des Ortes und der Schalleistung von Ersatzschallquellen gemäss dem Oberbegriff des unabhängigen Patentanspruchs.The invention relates to a method for determining the location and the Sound power of replacement sound sources according to the preamble of independent claim.
Die Bestimmung der Schalleistung, die von vielen unterschiedlichen Orten her kommt, erfolgt heute typischerweise mit einer Anordnung von Mikrofonen (Arraymesstechnik). Hierzu kann beispielsweise eine Mikrofonzeile (aber auch eine flächenmässige Anordnung von Mikrofonen) zum Einsatz kommen. Eine derartige Anordnung zur Bestimmung der Schalleistung ist beispielsweise in der EP-A-0,847,224 beschrieben.Determining the sound power from many different places today, typically takes place with an arrangement of microphones (Array measurement technology). For example, a microphone line (but also a surface arrangement of microphones) can be used. Such an arrangement for determining the sound power is described for example in EP-A-0,847,224.
Will man die Schalleistung bestimmen, die von vielen unterschiedlichen Orten her kommt, so ist es durchaus üblich Mikrofone einzusetzen, die für alle interessierenden Richtungen eine etwa gleiche Emfpindlichkeit aufweisen. Die Fokussierung einer solchen Mikrofonzeile in eine bestimmte Richtung (die im Unterschied hierzu bei einem Richtmikrofon durch die zugehörige sehr schmale Fokuskeule gegeben ist) kann bei Mikrofonen, welche für alle interessierenden Richtungen eine etwa gleiche Empfindlichkeit aufweisen, elektronisch bewirkt werden. Dazu werden die Unterschiede in der Laufzeit des Schalls bei der Auswertung der Signale der einzelnen Mikrofone berücksichtigt.If you want to determine the sound power, that of many different ones Places, it is quite common to use microphones for all directions of interest have approximately the same sensitivity exhibit. The focus of such a microphone line in a certain Direction (which, in contrast to this, with a directional microphone through the associated very narrow focus lobe) can be used with microphones, which is roughly the same for all directions of interest Have sensitivity, can be effected electronically. To do this, the Differences in the transit time of the sound when evaluating the signals of the individual microphones taken into account.
Sind beispielsweise alle Mikrofone auf einer Geraden angeordnet (Mikrofonzeile) und wird ein Ort untersucht, bei welchem die von diesem Ort ausgehende (vereinfacht angenommen: ebene) Schallwellenfront mit der Geraden, auf der die Mikrofone angeordnet sind, einen Winkel einschliesst (ebenes Problem), so kann aus dem Abstand der Mikrofone der Mikrofonzeile voneinander und aus dem besagten Winkel der Laufzeitunterschied ermittelt werden, der sich ergibt, wenn eine von dem in Rede stehenden Ort ausgehende Schallwellenfront auf die einzelnen Mikrofone der Mikrofonzeile auftrifft. Weil der Schall an einem etwas weiter von dem Ort der Schallquelle entfernt angeordneten Mikrofon der Mikrofonzeile später ankommt als an einem etwas näher an der Schallquelle angeordneten Mikrofon, wird bei der Auswertung der Mikrofonsignale bei dem etwas weiter entfernt angeordneten Mikrofon nur der um den ermittelten Laufzeitunterschied später ankommende Schall berücksichtigt. Dieses Verfahren wird für verschiedene Orte über den gesamten interessierenden Bereich durchgeführt. Derartige Vorgehensweisen sind als sogenannte "Delay&Sum"-Verfahren bekannt. Mit einem solchen Verfahren kann der tatsächlich vorhandene Schall erfasst werden. Allerdings entspricht die Auflösung infolge der beschränkten Anzahl der zur Verfügung stehenden Mikrofone in einigen Fällen nicht den Anforderungen oder Wünschen.For example, are all microphones arranged on a straight line (Microphone line) and a location is examined at which the location outgoing (simply assumed: flat) sound wave front with the Straight line on which the microphones are arranged encloses an angle (flat problem), so the distance between the microphones of the microphone row the transit time difference is determined from one another and from said angle which arises if one of the place in question outgoing sound wave front onto the individual microphones of the microphone row hits. Because the sound at a little further from the location of the sound source remotely located microphone of the microphone row arrives later than arrives a microphone located a little closer to the sound source is used in the Evaluation of the microphone signals in the somewhat further away Microphone only the one arriving later by the determined transit time difference Sound considered. This procedure is used for different locations entire area of interest. Such Procedures are known as so-called "delay & sum" processes. With With such a method, the actually existing sound can be recorded become. However, the resolution corresponds to the limited number of the available microphones in some cases not the Requirements or requests.
In der bereits weiter oben angesprochenen EP-A-0,847,224 ist ein Verfahren vorgeschlagen worden, was unter dem Namen "Sparse"-Technik bekannt ist. Dieses Verfahren berücksichtigt, dass bei einer Anordnung mit lauter gleich beabstandeten Mikrofonen einige Information redundant ist. Man kann dann Mikrofone, welche redundante Signale liefern, weglassen und dennoch zu gleich guten Ergebnissen gelangen. Die weggelassenen Mikrofone können dann zur Vergrösserung des Mikrofonarrays verwendet werden (wodurch die Auflösung bei gleicher Mikrofonanzahl verbessert werden kann).A process is described in EP-A-0,847,224, which was already mentioned above proposed what is known as the "sparse" technique. This procedure takes into account that with an arrangement with nois equal spaced microphones some information is redundant. Then you can Microphones that deliver redundant signals are omitted and still closed get equally good results. The omitted microphones can can then be used to enlarge the microphone array (resulting in the Resolution can be improved with the same number of microphones).
Eine einmal gegebene Anordnung mit einer festen Anzahl von Mikrofonen weist für den oben genannten Typ von Mikrofonen (bei denen die Empfindlichkeit in allen interessierenden Richtungen in etwa gleich ist) als Ganzes eine wohldefinierte Fokuskeule auf, die für alle interessierenden Orte etwa gleich ist. Diese Fokuskeule weist eine bestimmte Breite auf. Durch diese gegebene Breite der Fokuskeule werden nahe beieinanderliegende Quellen "verschmiert" und können somit nicht als voneinander getrennte Quellen erkannt werden.A given arrangement with a fixed number of microphones points for the above type of microphones (where the Sensitivity is approximately the same in all directions of interest) as Whole a well-defined focus club on that for all places of interest is about the same. This focus lobe has a certain width. By this given width of the focus lobe will be close together Sources "smeared" and can therefore not be separated Sources are recognized.
Es ist eine Aufgabe der Erfindung, für eine gegebene Anordnung mit einer festen Anzahl und gegebenen Abständen von Mikrofonen die örtliche Auflösung zu erhöhen.It is an object of the invention for a given arrangement with a fixed number and given distances of microphones the local Increase resolution.
Diese Aufgabe wird durch ein Verfahren gelöst, wie es durch die Merkmale des unabhängigen Patentanspruchs charakterisiert ist. Insbesondere handelt es sich dabei um ein Verfahren zur Bestimmung des Ortes und der Schalleistung von Ersatzschallquellen, bei welchem Verfahren mit Hilfe einer Anordnung von mehreren Schallempfängern zunächst der tatsächlich vorhandene Schall empfangen wird und die entsprechenden Signale der Schallempfänger ausgewertet werden, z.B. mit Hilfe der genannten "Delay & Sum" - Methode oder mit Hilfe von anderen Methoden. Sodann werden eine oder mehrere im wesentlichen punktförmigen Ersatzschallquellen bestimmt, wobei die Bestimmung des Ortes und der Schalleistung der einzelnen im wesentlichen punktförmigen Ersatzschallquellen derart erfolgt, dass die Überlagerung des von ihnen erzeugten Schalls möglichst genau den gesamten von den Schallempfängern tatsächlich empfangenen Schall ergibt. Dadurch, dass der tatsächlich empfangene Schall quasi "nachgebildet" wird durch den Schall von im wesentlichen punktförmigen Ersatzschallquellen ist eine Auflösung erreichbar, die mit herkömmlichen Methoden längst an ihre Grenzen stossen würde.This problem is solved by a method as described by the features of the independent claim is characterized. In particular acts it is a method for determining the location and the Sound power of substitute sound sources, in which method with the help of a Arrangement of several sound receivers first of all actually existing sound is received and the corresponding signals of the Sound receivers are evaluated, e.g. with the help of the "Delay & Sum "method or with the help of other methods one or more essentially point-shaped substitute sound sources are determined, the determination of the location and the sound power of the individual in Substantial point-like substitute sound sources take place in such a way that the Superposition of the sound they produce as closely as possible total sound actually received by the sound receivers. The fact that the sound actually received is virtually "simulated" due to the sound from essentially point-shaped substitute sound sources a resolution that can be achieved with conventional methods long ago Would push boundaries.
Bei einer vorteilhaften Ausführungsvariante wird zur Bestimmung des Ortes und der Schalleistung der im wesentlichen punktförmigen Ersatzschallquellen eine Dekonvolution derjenigen Signale der Schallempfänger durchgeführt, die dem tatsächlich empfangenen Schall entsprechen. Bei der Dekonvolution kann eine zu der jeweiligen Anordnung von Schallempfängern zugehörige Fokuskeule berücksichtigt werden.In an advantageous embodiment, the location is determined and the sound power of the essentially point-shaped substitute sound sources a deconvolution of those signals of the sound receivers has been carried out, that correspond to the sound actually received. At the deconvolution can be associated with the respective arrangement of sound receivers Focus club are taken into account.
Die Dekonvolution kann derart erfolgen, dass der gewichtete Beitrag von mehreren fiktiven, im wesentlichen punktförmigen Schallquellen an mehreren verschiedenen Orten berücksichtigt wird. Mit Hilfe des gewichteten Beitrags dieser fiktiven Schallquellen kann dann der Ort und die Schalleistung der Ersatzschallquellen ermittelt werden. Dabei kann die Gewichtung allgemein so erfolgen, dass die Koeffizienten, mit denen die einzelnen fiktiven Schallquellen gewichtet werden, vom Prinzip her negativ, positiv oder null sein können.The deconvolution can be done in such a way that the weighted contribution from several fictitious, essentially punctiform sound sources on several different locations is taken into account. With the help of the weighted contribution These fictitious sound sources can then be the location and the sound power of the Substitute sound sources can be determined. The weighting can be general so that the coefficients with which the individual fictitious Sound sources are weighted, in principle negative, positive or zero could be.
Bei einer vorteilhaften Weiterbildung dieses Verfahrens darf jedoch die Gewichtung der fiktiven Schallquellen nur positiv oder null sein. Diese Variante entspricht der physikalischen Realität, weil es nur Schallquellen mit positiver Schalleistung oder mit Schalleistung null (keine Schallquelle) gibt.In an advantageous further development of this method, however Weighting of fictitious sound sources can only be positive or zero. This Variant corresponds to physical reality because it only has sound sources positive sound power or with sound power zero (no sound source).
Die Ermittelung des Ortes und der Schalleistung der im wesentlichen punktförmigen Ersatzschallquellen kann dann speziell mit der Massgabe erfolgen, dass der mittlere quadratische Fehler zwischen dem tatsächlich von den Schallempfängern empfangenen Schall und dem durch die im wesentlichen punktförmigen Ersatzschallquellen erzeugten Schall minimal ist. Determining the location and the sound power of the essentially punctiform substitute sound sources can then be specially designed that the mean square error between the actually of the sound receivers and the sound received by the essential point-shaped substitute sound sources generated sound is minimal.
Eine andere Ausführungsvariante zeichnet sich dadurch aus, dass die Ermittelung des Ortes und der Schalleistung der im wesentlichen punktförmigen Ersatzschallquellen derart erfolgt, dass die tatsächlich empfangenen Schallsignale aus dem Ortsbereich in einen "örtlichen" (im Unterschied zu einem zeitlichen) Frequenzbereich transformiert werden. Dort werden sie durch ein Signal dividiert, welches dem aus dem Ortsbereich in den örtlichen Frequenzbereich transformierten Signal der Fokuskeule der Anordnung von Schallempfängern entspricht. Das aus dieser Division resultierende Signal wird aus dem örtlichen Frequenzbereich in den Ortsbereich zurücktransformiert.Another variant is characterized in that the Determination of the location and the sound power of the essentially punctiform substitute sound sources take place in such a way that the actually received sound signals from the local area into a "local" (in Difference to a temporal) frequency range can be transformed. There they are divided by a signal which corresponds to that from the local area in the local frequency range transformed signal of the focus lobe of the Arrangement of sound receivers corresponds. That from this division resulting signal is from the local frequency range in the Local area transformed back.
Diese Variante berücksichtigt, dass das Signal einer punktförmigen Schallquelle im Ortsbereich mit der Fokuskeule der Anordnung von Schallempfängern gefaltet werden muss, um zu dem tatsächlich vorhanden Schall zu gelangen. Eine Faltung im Ortsbereich entspricht einer Multiplikation im örtlichen Frequenzbereich. Da der tatsächlich vorhandene Schall und die Fokuskeule der Anordnung von Schallempfängern bekannt sind, nicht jedoch der Ort der punktförmigen Ersatzschallquelle, muss im örtlichen Frequenzbereich eine Division des tatsächlich vorhandenen Schalls durch das der Fokuskeule entsprechende Signal erfolgen. Das aus dieser Division resultierende Signal muss dann wieder in den Ortsbereich zurücktransformiert werden.This variant takes into account that the signal is a point Sound source in the local area with the focus lobe of the arrangement of Sound receivers must be folded in order to actually exist Sound. A fold in the local area corresponds to one Multiplication in the local frequency range. Because the actual one Sound and the focal lobe of the arrangement of sound receivers known are, but not the location of the point replacement sound source, must be in the local frequency range a division of the actually existing sound by the signal corresponding to the focus lobe. That from this The resulting signal must then be returned to the local area be transformed back.
Weitere vorteilhafte Ausgestaltungen ergeben sich aus der nachfolgenden Beschreibung von vorteilhaften Ausführungsvarianten des erfindungsgemässen Verfahrens anhand der Zeichnung. Further advantageous configurations result from the following Description of advantageous variants of the inventive method with reference to the drawing.
In der Zeichnung zeigen schematisch:
- Fig. 1
- Ein Beispiel für tatsächliche vorhandenen Schall (Schalleistung), der mit Hilfe einer Anordnung von Schallempfängern empfangen und ausgewertet worden ist (z.B. mittels der "Delay & Sum" - Methode), aufgetragen über dem Ort,
- Fig. 2
- ein Beispiel für das von einer Anordnung von Schallempfängern empfangene Signal, welches von einer punktförmigen Schallquelle an einer normierten Stärke an einem vorgegebenen Ort erzeugt worden ist,
- Fig. 3
- eine Nachbildung des tatsächlich vorhandenen Schalls aus Fig. 1 durch drei Signale, die an drei verschiedenen Orten jeweils von einer punktförmigen Ersatzchallquelle einer unterschiedlichen Stärke erzeugt worden sind
- Fig. 4
- die zugehörige örtliche Verteilung der punktförmigen Ersatzchallquellen.
- Fig. 1
- An example of actual sound (sound power) that has been received and evaluated using an arrangement of sound receivers (eg using the "Delay &Sum" method), plotted over the location,
- Fig. 2
- an example of the signal received by an arrangement of sound receivers, which was generated by a point-shaped sound source at a standardized strength at a predetermined location,
- Fig. 3
- a replica of the actually existing sound from FIG. 1 by three signals which have been generated at three different locations by a point-like substitute sound source of different strength
- Fig. 4
- the associated local distribution of the point substitute sound sources.
In Fig. 1 ist ein Beispiel für tatsächlich vorhandenen Schall S dargestellt (die Ordinate ist z.B. ein Mass für die Schalleistung), wie er beispielsweise von den Mikrofonen einer Mikrofonzeile (nicht dargestellt) empfangen worden ist. Hierfür geeignete Mikrofonanordnungen sind aus der eingangs bereits genannten EP-A-0,847,224 bekannt. Dabei muss es sich keinesfalls um eine "eindimensionale" Mikrofonzeile handeln, es ist sehr wohl auch möglich, eine zweidimenionale Mikrofonanordnung zu verwenden. Man erkennt, dass Schall über einen örtlichen Bereich verteilt auftritt, der von der negativen X-Koordinate -2 bis zur positiven X-Koordinate 1.5 reicht. Es ist jedoch nicht möglich, weitere Angaben über die genaue Verteilung der Schallquellen zu machen.In Fig. 1 an example of actually existing sound S is shown (the Ordinate is e.g. a measure of the sound power), such as that of the microphones of a microphone line (not shown) has been received. Microphone arrangements suitable for this purpose are already mentioned in the introduction known EP-A-0.847.224 known. It doesn't have to be one Acting a "one-dimensional" microphone line, it is very possible to use one to use two-dimensional microphone arrangement. You can see that Sound occurs over a local area that is from the negative X coordinate -2 extends to the positive X coordinate 1.5. However, it is not possible to get more information about the exact distribution of sound sources do.
In Fig. 2 ist ein Signal dargestellt, welches von der Mikrofonzeile empfangen worden ist. Dieses Signal ist von einer punktförmigen Schallquelle mit einer normierten Schalleistung bei der X-Koordinate 0 in einem vorgegebenen Abstand von der Mikrofonzeile erzeugt worden, d.h. die Fokuskeule der Mikrofonzeile ist berücksichtigt worden. Ziel ist es nun, die ansonsten nicht weiter auflösbare örtliche Verteilung des Schalls aus Fig. 1 weiter aufzulösen, indem der tatsächlich von der Mikrofonzeile empfangene Schall durch Ersatzschallquellen so genau wie möglich nachgebildet wird. Da exakt punktförmige Schallquellen in der Realität nicht existieren, spricht man oft von im wesentlichen punktförmigen Schallquellen. Bei dem Signal in Fig. 2 erkennt man, dass eine punktförmige Schallquelle bei der X-Koordinate 0 bei der Mikrofonzeile ein Signal hervorruft, welches sich von der X-Koordinate -1 bis zu positiven X-Koordinate 1 erstreckt.2 shows a signal which is received by the microphone line has been. This signal is from a point sound source with a normalized sound power at the X coordinate 0 in a given Distance from the microphone line has been created, i.e. the focus club of the Microphone line has been taken into account. The goal is now, but not otherwise further resolvable local distribution of the sound from FIG. 1 resolve by the sound actually received by the microphone line is simulated as exactly as possible by substitute sound sources. Because exactly punctual sound sources do not exist in reality, one speaks often from essentially punctiform sound sources. With the signal in FIG. 2 you can see that a point-shaped sound source with the X coordinate 0 at the microphone line produces a signal which differs from the X coordinate -1 extends up to positive X coordinate 1.
In Fig. 3 erkennt man, dass der tatsächlich vorhandene Schall nachgebildet worden ist durch die Überlagerung der Signale S1,S2,S3 von drei an unterschiedlichen X-Koordinaten angeordneten punktförmigen Ersatzschallquellen mit unterschiedlicher Schalleistung. Die einzelnen durchgezogenen Linien S1,S2,S3 entsprechen jeweils dem Signal einer an einem bestimmten Ort mit einem vorgegebenen Abstand von der Mikrofonzeile angeordneten punktförmigen Schallquelle, wie leicht aus einem Vergleich mit Fig. 2 zu erkennen ist. Die gestrichtelte Linie in Fig. 3 zeigt den Verlauf des tatsächlich vorhandenen Schalls S aus Fig. 1, welcher der Überlagerung der Signale S1,S2,S3 der drei punktförmigen Ersatzschallquellen unterschiedlicher Schalleistung entspricht. Es ist eine Dekonvolution des tatsächlich vorhandenen Schalls S aus Fig. 1 durchgeführt worden.In Fig. 3 it can be seen that the actually existing sound is simulated has been through the superposition of the signals S1, S2, S3 from three onwards point-shaped arranged at different X coordinates Substitute sound sources with different sound power. The single ones Solid lines S1, S2, S3 each correspond to the signal one a certain place with a given distance from the Microphone line arranged point-like sound source, as easily from a Comparison with Fig. 2 can be seen. The dashed line in Fig. 3 shows the Course of the actually existing sound S from FIG. 1, which is the Superposition of the signals S1, S2, S3 of the three punctiform Substitute sound sources correspond to different sound power. It is one Deconvolution of the sound S actually present from FIG. 1 Have been carried out.
Wie man aus Fig. 4 erkennen kann, resultiert aus Fig. 3, dass in einem vorgegebenen Abstand von der Mikrofonzeile bei der X-Koordinate -1 eine Ersatzschallquelle Q1 angeordnet ist, ferner bei der X-Koordinate -0.5 eine Ersatzschallquelle Q2 und schliesslich bei der X-Koordinate 0.5 eine Ersatzschallquelle Q3. Die Ersatzschallquellen Q1,Q2,Q3 weisen jeweils eine unterschiedliche Schalleistung auf. Die Überlagerung der Signale der drei Ersatzschallquellen ergibt den tatsächlichen Schall S aus Fig. 1. Anzumerken ist noch, dass die dreieckförmige Verteilung der Ersatzschallquellen Dirac-Stösse bei den obengenannten X-Koordinaten sind, die aber aufgrund der gewählten Auflösung für die X-Koordinate beim Drucken eine dreieckförmige Gestalt aufweisen.As can be seen from FIG. 4, it results from FIG. 3 that in one specified distance from the microphone line at the X coordinate -1 a Substitute sound source Q1 is arranged, also at the X coordinate -0.5 one Substitute sound source Q2 and finally at the X coordinate 0.5 one Substitute sound source Q3. The substitute sound sources Q1, Q2, Q3 each have one different sound power. The superimposition of the signals of the three Substitute sound sources result in the actual sound S from FIG. 1 is still that the triangular distribution of the substitute sound sources Dirac impacts at the above-mentioned X coordinates, which are due to the selected resolution for the X coordinate when printing a triangular Have shape.
Die Schwierigkeit bei diesem Verfahren ist, zu ermitteln, wie viele Ersatzschallquellen bei einem tatsächlich empfangenen Schall S in einem vorgegebenen Abstand von der Mikrofonzeile gewählt werden müssen, an welchem Ort sie jeweils angeordnet werden müssen und welche Schalleistung sie aufweisen müssen, um den tatsächlich empfangenen Schall S möglichst genau nachzubilden. Hierzu bieten sich mehrere Alternativen an, von denen drei nachfolgend genauer beleuchtet werden.The difficulty with this procedure is to determine how many Substitute sound sources for an actually received sound S in one specified distance from the microphone line must be selected which location they have to be arranged and which Sound power they must have to the actually received sound S reproduce as closely as possible. There are several alternatives for this, Three of which are examined in more detail below.
Bei der ersten Alternative geht man von mehreren fiktiven Schallquellen aus, die über den gesamten interessierenden örtlichen Bereich verteilt in einem vorgegebenen Abstand von der Mikrofonzeile angeordnet sind. Die Fokuskeule der Mikrofonzeile weist über den gesamten interessierenden Bereich die gleiche Gestalt auf, sie kann - wie eingangs erläutert - elektronisch über den interessierdenden örtlichen Bereich Stück für Stück geschwenkt werden. Diese je nach Schwenkintervall der Fokuskeule angenommenen fiktiven Schallquellen werden nun mit Hilfe eines Rechenprogrammes derart gewichtet, dass jede fiktive Schallquelle mit einem Koeffizienten gewichtet wird, der entweder positiv, null oder negativ ist. Die Massgabe dabei ist, dass der tatsächlich empfangene Schall S so gut wie möglich nachgebildet wird durch Ersatzschallquellen, deren jeweiliger Ort und deren jeweilige Schalleistung noch zu finden sind. Ein für diese Vorgehensweise geeignetes Rechenprogramm ist beispielsweise das unter der Bezeichnung "deconv" bekannte Rechenprogramm von der Firma "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA". Dieses Programm wird in einer "Toolbox" von mathematischen Rechenprogrammen angeboten unter dem Namen MATLAB®. Das Rechenprogramm "deconv" ermittelt dann die Orte und die Schalleistung der Ersatzschallquellen unter der oben genannten Massgabe.The first alternative is based on several fictitious sound sources, spread over the entire local area of interest in one predetermined distance from the microphone line are arranged. The The focus lobe of the microphone line points over the entire area of interest Area the same shape, it can - as explained at the beginning - electronically via the local area of interest bit by bit be pivoted. This depends on the pivoting interval of the focus lobe assumed fictitious sound sources are now using a Computer program weighted such that each fictitious sound source with a Weighted coefficient that is either positive, zero or negative. The The requirement here is that the sound S actually received is as good as is possible simulated by substitute sound sources, their respective location and their respective sound power can still be found. One for this Appropriate computing program is, for example, that under the name "deconv" known computer program from the company "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA " Program is in a "toolbox" of mathematical computing programs offered under the name MATLAB®. The "deconv" computer program then determines the locations and the sound power of the substitute sound sources the above requirement.
Die zweite Alternative ähnelt in gewisser Weise der ersten Alternative, weicht aber insofern von dieser ab, als die Koeffizienten, mit denen die fiktiven Schallquellen zu gewichten sind, stets nur positiv oder null sein können. Diese Alternative ist deshalb besonders vorteilhaft, weil sie der physikalischen Realität von Anfang an Rechnung trägt - es gibt ja nur Schallquellen mit positiver Schalleistung bzw. mit keiner Schalleistung (Schalleistung null, keine Schallquelle). Die Massgabe bei der Ermittlung der Orte und der Schalleistung der Ersatzschallquellen ist hier so, dass der mittlere quadratische Fehler zwischen dem tatsächlichen Schall S und dem durch die Ersatzschallquellen erzeugten Schall letztlich minimal ist. Ein für diese Vorgehensweise geeignetes Rechenprogramm ist beispielsweise das unter der Bezeichnung "nnls" (non negative least squares) bekannte Rechenprogramm der Firma "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA". Dieses Rechenprogramm wird in einer "Optimization Toolbox" von mathematischen Rechenprogrammen für den Gebrauch zusammen mit der bereits gennannten "Toolbox" MATLAB® angeboten. Das Rechenprogramm "nnls" ermittelt die Orte und die Schalleistung der Ersatzschallquellen unter der oben genannten Massgabe.The second alternative is somewhat similar to the first alternative, but differs from it in that the coefficients with which the fictitious sound sources are to be weighted can only ever be positive or zero. This alternative is particularly advantageous because it takes physical reality into account from the start - there are only sound sources with positive sound power or with no sound power (zero sound power, no sound source). The criterion for determining the locations and the sound power of the substitute sound sources is such that the mean square error between the actual sound S and the sound generated by the substitute sound sources is ultimately minimal. A computer program suitable for this procedure is, for example, the computer program known from the company "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA, known as" nnls "( n on n egative l east s quares) ". This calculation program is offered in an "Optimization Toolbox" of mathematical calculation programs for use together with the "Toolbox" MATLAB® already mentioned. The computer program "nnls" determines the locations and the sound power of the substitute sound sources under the above-mentioned requirement.
Die dritte Alternative unterscheidet sich von der Vorgehensweise grundsätzlich von den beiden vorstehend beschriebenen Alternativen. Bei dieser dritten Alternative wird nämlich der tatsächlich empfangene Schall S aus dem Ortsbereich (Fig. 1) über eine Fouriertransformation (beispielsweise über eine diskrete Fouriertransformation FFT) in einen örtlichen Frequenzbereich transformiert. Wenn man nämlich Fig. 2, Fig. 3 und Fig. 4 betrachtet, so ergibt sich aus einer (zu bestimmenden) Anordnung von Ersatzschaltquellen Q1,Q2,Q3 mit einer zu bestimmenden Schalleistung und dem Signal welches von der Mikrofonzeile von einer punktförmigen Schallquelle empfangen wird, die an einem bestimmten Ort angeordnet ist, der Schall S durch eine Faltung der jeweiligen (bereits gewichteten) Dirac-Stösse (Fig. 4) mit dem jeweiligen Signal, welches die Antwort der Mikrofonzeile auf eine punktförmige Schallquelle darstellt (Fig. 2). Die Ergebnisse dieser Faltung sind in Fig. 3 dargestellt und werden additiv überlagert.The third alternative differs from the procedure basically of the two alternatives described above. At this third alternative is the actually received sound S from the local area (FIG. 1) via a Fourier transformation (for example via a discrete Fourier transformation FFT) into a local one Frequency range transformed. If you look at Fig. 2, Fig. 3 and Fig. 4 considered, it results from an (to be determined) arrangement of Equivalent switching sources Q1, Q2, Q3 with a switching power to be determined and the signal coming from the microphone line from a punctiform Sound source is received, which is arranged at a specific location, the sound S by folding the respective (already weighted) Dirac collisions (Fig. 4) with the respective signal, which is the response of the Microphone line represents a point sound source (Fig. 2). The Results of this convolution are shown in Fig. 3 and become additive overlaid.
Eine Faltung im Ortsbereich bedeutet aber nichts Anderes als eine Multiplikation in einem korrespondierenden örtlichen Frequenzbereich. Die in den örtlichen Frequenzbereich transformierten Dirac-Stösse sind mit dem in den örtlichen Frequenzbereich transformierten Signal, welches die Antwort der Mikrofonzeile auf eine punktförmige Schallquelle darstellt, zu multiplizieren, um zu dem in den örtlichen Frequenzbereich transformierten Signal des tatsächlich vorhandenen Schalls zu gelangen. Die örtliche Verteilung und die Gewichtung der Dirac-Stösse im Ortsbereich herauszufinden ist aber gerade das zu lösende Problem. Demzufolge muss also das in den örtlichen Frequenzbereich transformierte Signal des tatsächlich vorhandenen Schalls durch das Signal dividiert werden, welches der Antwort der Mikrofonzeile auf eine punktförmige Schallquelle im örtlichen Frequenzbereich entspricht. Aus dieser Division ergibt sich dann im örtlichen Frequenzbereich ein Signal, welches im örtlichen Frequenzbereich der Verteilung und Gewichtung der Dirac-Stösse entspricht. Durch eine Rücktransformation dieses Signals aus dem örtlichen Frequenzbereich in den Ortsbereich ergibt sich dann die Anordnung und die Schalleistung der Ersatzschallquellen.A fold in the local area means nothing other than one Multiplication in a corresponding local frequency range. In the the local frequency range transformed Dirac impacts are with the in the local frequency domain transformed signal which is the answer represents the microphone line to a punctiform sound source multiply to the one transformed into the local frequency domain Signal of the sound actually present. The local Distribution and weighting of Dirac shocks in the local area But finding out is exactly the problem to be solved. Therefore, must thus the signal of the transformed into the local frequency range actually existing sound can be divided by the signal which the response of the microphone line to a punctiform sound source in the local Frequency range corresponds. This division then results in local Frequency range a signal which is in the local frequency range of Distribution and weighting of the Dirac shocks corresponds. By a Reverse transformation of this signal from the local frequency range into the The local area then results in the arrangement and the sound power of the Substitute sound sources.
Ein für diese Vorgehensweise geeignetes Rechenprogramm, mit welchem eine derartige Transformation aus dem Ortsbereich in den örtlichen Frequenzbereich durchgeführt werden kann und ebenso eine entsprechende Rücktransformation aus dem örtlichen Frequenzbereich in den Ortsbereich, ist das unter dem Namen "fft (fast Fourier transformation) bekannte Rechenprogramm der Firma "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA". Dieses Programm wird in einer "Toolbox" von mathematischen Rechenprogrammen angeboten unter dem Namen MATLAB®. Das Rechenprogramm "fft" ermittelt dann die Orte und die Schalleistung der Ersatzschallquellen, mit der Massgabe, den tatsächlich empfangenen Schall S so gut wie möglich durch Ersatzschallquellen nachzubilden.A computer program suitable for this procedure, with which such a transformation can be carried out from the local area into the local frequency range and also a corresponding reverse transformation from the local frequency range into the local area, is under the name "fft ( f ast F ourier t ransformation) Well-known computer program from the company "The Math Works Inc., 24, Prime Park Way, Natick, MA 01760-1500, USA". This program is offered in a "toolbox" of mathematical computer programs under the name MATLAB®. The computer program "fft" then determines the locations and the sound power of the substitute sound sources, with the proviso that the actually received sound S is simulated as well as possible by substitute sound sources.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19990810839 EP0996310B1 (en) | 1998-10-19 | 1999-09-21 | Method for determining the position and the intensity of sound sources |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98811036 | 1998-10-19 | ||
EP98811036 | 1998-10-19 | ||
EP19990810839 EP0996310B1 (en) | 1998-10-19 | 1999-09-21 | Method for determining the position and the intensity of sound sources |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0996310A1 true EP0996310A1 (en) | 2000-04-26 |
EP0996310B1 EP0996310B1 (en) | 2004-04-14 |
Family
ID=26152059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990810839 Expired - Lifetime EP0996310B1 (en) | 1998-10-19 | 1999-09-21 | Method for determining the position and the intensity of sound sources |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0996310B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63120228A (en) * | 1986-11-10 | 1988-05-24 | Yoshida Kogyo Kk <Ykk> | Method for separating and measuring directional component of sound |
EP0331585A2 (en) * | 1988-03-04 | 1989-09-06 | Societe De Prospection Electrique Schlumberger | Method for deconvolution of unknown source signatures from unknown waveform data |
US4980870A (en) * | 1988-06-10 | 1990-12-25 | Spivey Brett A | Array compensating beamformer |
JPH05118906A (en) * | 1991-10-24 | 1993-05-14 | Yamaha Corp | Method and device for acoustic measurement |
EP0847224A1 (en) * | 1996-12-04 | 1998-06-10 | Sulzer Innotec Ag | Device for detecting sound sources and method for operating the same |
-
1999
- 1999-09-21 EP EP19990810839 patent/EP0996310B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63120228A (en) * | 1986-11-10 | 1988-05-24 | Yoshida Kogyo Kk <Ykk> | Method for separating and measuring directional component of sound |
EP0331585A2 (en) * | 1988-03-04 | 1989-09-06 | Societe De Prospection Electrique Schlumberger | Method for deconvolution of unknown source signatures from unknown waveform data |
US4980870A (en) * | 1988-06-10 | 1990-12-25 | Spivey Brett A | Array compensating beamformer |
JPH05118906A (en) * | 1991-10-24 | 1993-05-14 | Yamaha Corp | Method and device for acoustic measurement |
EP0847224A1 (en) * | 1996-12-04 | 1998-06-10 | Sulzer Innotec Ag | Device for detecting sound sources and method for operating the same |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 12, no. 368 (P - 766) 4 October 1988 (1988-10-04) * |
PATENT ABSTRACTS OF JAPAN vol. 17, no. 481 (P - 1604) 31 August 1993 (1993-08-31) * |
Also Published As
Publication number | Publication date |
---|---|
EP0996310B1 (en) | 2004-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69120004T2 (en) | Process for transforming a multi-beam sonar image | |
DE69114934T2 (en) | Ultrasound imaging with radial scanning of a trapezoidal sector. | |
DE2645738A1 (en) | ULTRASONIC BEAM SCANNING | |
EP3803454B1 (en) | Synthetic-aperture radar method and synthetic-aperture radar device | |
DE3881449T2 (en) | Apodization of an ultrasound broadcast. | |
DE69106049T2 (en) | Ultrasound imaging device with adaptive phase aberration correction. | |
DE3831537A1 (en) | METHOD AND ARRANGEMENT FOR ADAPTIVELY REDUCING PHASE ABERRATION EFFECTS | |
DE69311193T2 (en) | Enlargement of the radar reflecting surface with phase-conjugated pulse signals | |
DE2617674A1 (en) | ULTRASONIC METHODS FOR EVALUATION OR DETERMINATION OF ACOUSTIC INHOMOGENITIES | |
DE102008023862A1 (en) | Apparatus and method for generating an ultrasound image | |
DE69223158T2 (en) | RECEIVER BEAM FORM FOR AN ULTRASONIC DIAGNOSTIC DEVICE | |
EP3709014A1 (en) | Transducer assembly for ultrasonic testing head systems, ultrasonic testing head system and test method | |
DE69015565T2 (en) | Ultrasonic testing device. | |
DE69734002T2 (en) | ULTRASONIC DIAGNOSIS DEVICE | |
DE69203369T2 (en) | Method and device for testing a group antenna during its operation. | |
DE60029612T2 (en) | METHOD AND DEVICE FOR FOCUSING WIDE WAVES OF A PHASE-CONTROLLED ARRAY IN SPHERICAL RESTRICTED MATERIALS | |
EP0437649A1 (en) | Method of ultrasound imaging | |
EP0837334A2 (en) | Procedure and apparatus for determining incident receiver power or energy of at least one signal | |
EP0996310B1 (en) | Method for determining the position and the intensity of sound sources | |
DE4119150A1 (en) | Gait analyser for measuring human body movement - uses ultrasonic transmitters and receivers activated at different times, arranged on two sides of human body | |
DE10038912A1 (en) | Repositioning moving target in SAR images consisting of multichannel range/Doppler measuring data with Doppler resolution cells | |
CH695473A5 (en) | A method of inspecting a radio channel. | |
DE2845164C2 (en) | Target location and distance measuring system | |
DE4206570C2 (en) | Ultrasound speedometer | |
EP4264314A1 (en) | Programmable fiber-optic delay line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000929 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20030122 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SULZER MARKETS AND TECHNOLOGY AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040414 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040414 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040414 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040414 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040414 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040414 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040414 |
|
REF | Corresponds to: |
Ref document number: 59909154 Country of ref document: DE Date of ref document: 20040519 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040921 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040921 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040930 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
BERE | Be: lapsed |
Owner name: *SULZER MARKETS AND TECHNOLOGY A.G. Effective date: 20040930 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050401 |
|
26N | No opposition filed |
Effective date: 20050117 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040921 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20050826 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: *SULZER MARKETS AND TECHNOLOGY A.G. Effective date: 20040930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040914 |