EP0995523A1 - Vertical continuous casting plant with optimised molten metal level measuring - Google Patents

Vertical continuous casting plant with optimised molten metal level measuring Download PDF

Info

Publication number
EP0995523A1
EP0995523A1 EP98811066A EP98811066A EP0995523A1 EP 0995523 A1 EP0995523 A1 EP 0995523A1 EP 98811066 A EP98811066 A EP 98811066A EP 98811066 A EP98811066 A EP 98811066A EP 0995523 A1 EP0995523 A1 EP 0995523A1
Authority
EP
European Patent Office
Prior art keywords
measuring
measuring system
mold
level
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98811066A
Other languages
German (de)
French (fr)
Inventor
Etienne Caloz
Jean-Pierre Seppey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Priority to EP98811066A priority Critical patent/EP0995523A1/en
Priority to PCT/EP1999/007868 priority patent/WO2000024535A1/en
Priority to AU63407/99A priority patent/AU749027B2/en
Priority to CA002348613A priority patent/CA2348613A1/en
Priority to EP99950752A priority patent/EP1133371A1/en
Publication of EP0995523A1 publication Critical patent/EP0995523A1/en
Priority to ZA200102812A priority patent/ZA200102812B/en
Priority to IS5920A priority patent/IS5920A/en
Priority to NO20011978A priority patent/NO20011978L/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/185Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means

Definitions

  • the invention relates to a vertical continuous casting system, in particular a vertical continuous casting system for the automatic continuous casting of aluminum alloys, comprising at least one mold with a start-up base arranged on a lowerable casting table, a pouring channel system for transporting a molten metal from an oven into the individual molds, and a measuring device for each mold for determining the time-dependent molten metal level N (t) and a flow control device for controlling the supply of metal in the individual molds depending upon the difference between a predetermined desired value curve to N (t) and the measured time-dependent molten metal level N (t).
  • the invention further relates to a method for the vertical continuous casting of metals, in particular aluminum alloys, in a casting plant comprising at least one mold, in which method the liquid metal is fed from an oven via a trough system to the individual molds and via a flow control device into which one can be lowered
  • Approach trays arranged at the casting table are first passed closed molds during a filling phase, starting from an initial level of the metal melt, at which metal melt level control begins, up to a predetermined level, at which the lowering of the casting table for producing the metal strands begins, and throughout lowering phase, the time-dependent metal level N (t) in each mold with a measuring apparatus and measured with a time-dependent setpoint to N (t) is compared, and the metal supply in the individual ingot molds by means of a flow-through
  • the control device is controlled according to the time-dependent difference between the actual and setpoint value of the metal level.
  • Such a method, as well as such a vertical continuous casting installation containing several molds are known for example from DE-OS 32 05 480 A1.
  • the detection of the metal level is done by means of a float as a sensor that rests on the surface of the metal column and consists of a heat-resistant material, which must be selected so that a Absorption of molten metal or contaminants is avoided.
  • Patent EP-B 0 517 629 also describes a device described at the outset and describe a corresponding process for vertical continuous casting of metals, whereby to record the time-dependent molten metal level in the individual molds a capacitive sensor is used.
  • the capacitive level measurement takes place between the surface of the molten metal and one to it at a certain distance located plate, which is at a distance from the metal surface by means of a servo motor is adjusted in such a way that the capacity is constant and equal to a reference capacity is.
  • WO 98/32559 describes a method according to which the metal level in all molds simultaneously according to a setpoint curve identical for all molds is regulated, its slope at the beginning of the regulation in comparison to the mean slope is greater and at the end of the start-up phase is smaller than the average gradient.
  • the filling level of the molds is typically at the beginning of the lowering process between 120 and 200 mm.
  • the precise control of the metal level is particularly in the Lowering phase of crucial importance for a trouble-free operation of a Casting machine.
  • the precise control of the metal level in the individual molds requires one correspondingly accurate measurement of the fill level.
  • precise metal level control requires an accurate and reproducible level measurement over a large measuring range of typically 200 mm.
  • the importance of a precise metal level determination is used in particular in the further developed controls of multi-mold continuous casting plants, such as in the case of controls according to WO 98/32559, where the level control is done with non-linear setpoint curves, greatly increased.
  • Inductive or capacitive sensors are suitable for the exact level determination.
  • the required accuracy can only be achieved in one with inductive sensors Reach measuring range of approx. 30-50 mm.
  • the known from the prior art Vertical continuous casting plants therefore use most facilities where such Sensors using a precision mechanism in cooperation with a servo or Stepper motor are tracked in such a way that the required measurement accuracy allowed measuring range is not exceeded.
  • Capacitive sensors can be used for gutters Measuring ranges of, for example, up to 300 mm can be used; however, they show one great dependence on the external measurement conditions, so that a frequent Recalibration is required.
  • Laser-optical methods can be used for level measurement of highly reflective measuring goods can only be used to a limited extent. Such methods are suitable in principle for level measurement of metal alloys, for example aluminum alloys, during the mold filling phase and at the beginning of the lowering phase. During the lowering phase forms after a few minutes - at least with aluminum alloys Beginning of the lowering phase a highly reflective oxide layer, which the use of laser optics Level measurement procedure severely impaired or even impossible.
  • metal alloys for example aluminum alloys
  • Ultrasound and microwave methods based on the radar principle have a large one Measuring range and allow contactless level measurement, but do not show that required measurement accuracy, at least not for the lowering phase of the continuous casting process.
  • the ultrasonic level measurement methods are strongly temperature-dependent, and that Microwave level measurement methods are sensitive to the measurement environment.
  • the invention is therefore based on the object of a vertical continuous casting plant at the beginning mentioned type with a precise, reliable and inexpensive level measurement to make available and to specify a method of the type mentioned at the outset, in which the metal level measurement is carried out in a simple manner with high precision can be.
  • the object on which the vertical continuous casting installation is based solved in that the measuring device from two physically different working Measuring systems with one sensor each, the sensors with respect to each measuring device the mold is fixed at a predetermined and fixed distance, and the first Measuring system with a measuring accuracy of at least 200 mm has at least ⁇ 2 mm, and the second measuring system in a measuring range of at least 20 mm has a measurement accuracy of at least ⁇ 0.1 mm.
  • the invention advantageously relates to vertical continuous casting plants with several molds.
  • the device according to the invention also comprises vertical continuous casting plants with only a single mold.
  • the solution according to the invention is based on the idea that at the start of the continuous casting process, i.e. during the first filling phase of those initially closed by the approach floor Chill mold, and during the remaining filling phase, as well as during the lowering process of the casting table different level measuring devices can be used, which the specific requirements during the different phases Take into account.
  • the invention is further based on the knowledge that a large measuring range of approximately 200 min only during the first filling phase of those initially closed by the start-up floor Chill mold is required, and in the subsequent filling and lowering phase of the casting table a smaller measuring range of, for example, 15-20 mm is sufficient.
  • a less high measurement accuracy is required during the start phase than in the subsequent filling and lowering phase, since the filling level in the first filling phase is very different changed quickly.
  • the subsequent filling and lowering phase is a very high measurement accuracy required.
  • measuring range means a measuring range in which the values as a whole Range between a maximum and a minimum measured value, where the difference between the maximum and the minimum value Measuring range corresponds.
  • the measured values are in a measuring range of 200 min in a value range between 0 and 200 mm.
  • a measuring device is preferred in which the first measuring system is based on an optical, capacitive, ultrasonic or microwave method, and the second measuring system based on an inductive, capacitive or optical method.
  • a measuring device in which the first measuring system is located on a optical or an ultrasonic or microwave method, and the second measuring system based on an inductive or capacitive process.
  • the first filling phase of the mold closed with the start-up floor usually takes place at the highest possible speed so that the metal level at the beginning of the Mold filling rises very quickly. This will cause the mold to start filling a turbulent flow is formed so that no flat at the beginning of the filling process Melt surface is present, which causes the reflective properties of the melt surface compared to a flat surface of the same metal turn out much smaller. For this reason, as well as those not yet formed in this phase of the process Oxide skin allows the first filling phase to be measured using a laser-optical level Method. For the subsequent casting process, i.e. during the rest of the filling phase and during the lowering process of the casting table, the use of a laser-optical is suitable Level measurement method due to the high reflection of the essentially flat Molten metal surface not for all alloys.
  • a level measurement with ultrasound is based either on the measurement of the runtime of a Sound pulse or on the measurement of sound absorption.
  • the measurement of the Transit time of an ultrasonic pulse i.e. the removal of the melt surface is from the transit time between the transmitted and received signal. That works Runtime procedure usually based on the principle of the echo sounder, i.e. an electrical impulse is, for example, by one on the start-up floor or on a lower area of the mold attached piezoelectric transducer converted into an ultrasonic pulse, which is emitted into the melt and from the melt-air boundary layer partially is reflected, the reflected ultrasound pulse (echo) to a similar piezoelectric transducer hits in which the echo turns into an electrical pulse is converted back.
  • the fill level results from the transit time of the sound pulse and the speed of sound.
  • the fill level can also be based on the same sonar principle measure when the ultrasonic transmitter and receiver are in the air space above the Melt surface is arranged. With ultrasonic level measurement has to Temperature of the media to be taken into account, since the speed of sound is temperature dependent.
  • Microwave transmitter and receiver When measuring the level with microwaves according to the radar principle Microwave transmitter and receiver as well as an antenna attached above the mold.
  • the surface of the molten metal partially reflects that from the microwave transmitter emerging, usually frequency-modulated, electromagnetic waves or Impulses.
  • the distance between the antenna and the melt surface is determined according to the Radar principle measured.
  • a Microwave signal emitted of constant amplitude and again after reflection received and mixed with part of the transmission signal; the frequency of the mixer output signal is proportional to the runtime and therefore a measure of the distance between the transmitter and the melt surface.
  • An optical level measurement can be an interferometric distance measurement, a laser runtime method or a triangulation procedure.
  • the distance of the reflecting Melt surface measured by a sensor. Either the Phase angle difference between reflected and unreflected, modulated laser beam evaluated, or the displacement of the reflector surface is measured (Melt surface) with a counting laser interferometer.
  • interferometric Distance measurement is expediently a monochromatic laser beam split a semitransparent mirror into a measuring and a reference beam. Both beams are emitted by one reflector, one fixed and one movable, reflected. The reflected rays are superimposed on the semi-transparent mirror, creating interference fringes that are transverse to and from the receiver to be analyzed.
  • the level measurement can be carried out by a direct transit time measurement a light pulse or a phase measurement.
  • phase measurement the transmission signal is expediently converted to a carrier signal, for example in the MHz range, modulated, the measurement of the phase shift after demodulation in the receiver.
  • the direct transit time measurement is based on the radar principle, in which smallest time differences in the nano to picosecond range can be measured.
  • the level measurement is traced back to an angle measurement.
  • a highly focused beam of light from a laser hits under a pointed one Angle on the surface of the melt and is reflected on it.
  • the reflected light beam strikes a certain point on the receiver, i.e. for example of a location detector.
  • the position detector can be a CCD line, for example (Batch Coupled Device), which consist of a large number of light-sensitive components (pixels). With a CCD line this position can recorded and converted into the level using the angle or path difference.
  • the Imaging location of the reflected laser beam on the position detector shifts into Dependence on the distance of the melt surface from the sensor.
  • the capacity is dependent on the melt height measured.
  • the capacity changes, for example, through the degree of coverage or the distance between two given surfaces.
  • the capacity changes also by changing the dielectric constant (e.g. the air) Introduction of the molten metal.
  • a change in capacity is, for example, about demonstrated the change in capacitive resistance.
  • the sensors are predetermined and in relation to the mold fixed distance, i.e. the two measuring systems have no device to adjust the height of the sensors.
  • measuring systems that have no mechanically moving parts, and in particular no mechanical precision parts. Measuring systems are further preferred, that work contactlessly in relation to the molten metal.
  • a measuring device for each casting unit (mold) is particularly preferred, in which the first measuring system on an optical method, in particular on a triangulation method, and the second measuring system is based on an inductive method.
  • a first measuring system with a measuring range of up to is very particularly preferred 200 mm, whereby a measuring accuracy of ⁇ 1 mm is achieved in the whole measuring range.
  • the measuring accuracy of the first measuring system is typically between ⁇ 0.1 mm and ⁇ 2 mm, preferably between ⁇ 0.1 mm and ⁇ 1 mm.
  • the measuring range of the second measuring system is typically 20 to 50 mm, the Measuring accuracy typically between ⁇ 0.01 mm and ⁇ 0.1 mm, preferably between ⁇ Is 0.01 mm and ⁇ 0.08 mm.
  • the combination of an optical sensor with an inductive sensor allows provision a compact and powerful measuring device, which on the one hand does not expensive, sensitive and elaborately designed, mechanical sensor tracking devices required and on the other hand due to the measuring range and measuring accuracy an efficient level measurement for the individual casting phases the metal melt allows with sufficiently high accuracy.
  • the inventive Continuous caster is particularly suitable for a control algorithm for Introducing metal into the individual molds, in which non-linear Setpoint curves can be used to control the level of molten metal.
  • the Measurement of the time-dependent metal level N (t) with a measuring device consisting of two physically different working measuring systems is carried out, whereby starting from the initial level until reaching a predetermined melt level done by a first measuring system with a first sensor, and for the further Measurement of the time-dependent metal level curve N (t) during the subsequent one Filling and lowering phases a second measuring system with a second sensor is used, and the sensors of the two measuring systems with respect to the mold are fixed and take a constant position throughout the continuous casting process.
  • the filling phase begins with the introduction of liquid metal onto the start-up floor and ends with the start of lowering the start-up floor, ie when the start level N s is reached at time t s .
  • the metal level control usually only begins when a certain metal level N a is reached at time t a in the mold, which is initially closed by the start-up floor.
  • the first filling phase denotes the period from the start of the introduction of liquid metal into the mold until the time t w , at which the change from the first to the second measuring system for the metal level determination takes place, where t w denotes the time at which the metal level in the first a mold closed by the start-up floor reaches a predetermined height N w .
  • the period between t w and t s describes the second or the further filling phase, or that of the first filling phase that follows.
  • the lowering phase begins when the start level N s is reached at time t s and lasts until the end or the termination of the continuous casting process.
  • the flow control device is a function of the difference of the measured metal level path N (t) of the setpoint curve N soll (t) controlled by a control unit, said flow control device determines the current flowing into the mold molten metal amount.
  • the control unit determines, for example, the start time t a of the mold filling, the time t w for changing the measuring system, the standard time t s of the lowering process, the filling of the mold or the amount of metal to be introduced into the mold per unit of time during the filling phase and during the Lowering process, the lowering speed of the casting table and the control of the measuring system responsible for level measurement N (t).
  • the control unit may also serve to monitor and control further process parameters, such as cooling water supply, CO 2 supply, supply of refining agent, EMC power supply, and automatically initiate the lowering process of the casting table, for example.
  • the metal supply into the individual molds is only regulated directly up to the starting time t s by the time-dependent difference between the actual and the setpoint value of the metal level.
  • the direct control of the metal supply takes place after the start of the lowering process as a function of the bar length, ie as a function of the vertical casting table position, and on the basis of the difference between the actual and target value of the metal level. Accordingly, the control of the metal supply takes place after the start time t s by the bar length-dependent difference between the actual and target value of the metal level. Since the lowering process usually takes place at a constant speed, the bar length increases linearly with time, so that the regulation of the metal supply is also regulated during the lowering process in accordance with the time-dependent difference between the actual and target value of the metal level.
  • the time t a of the start of the level control is preferably determined by measuring the metal level, in particular by level measurement using a laser-optical method.
  • the level measurement by means of the second measuring system i.e. the time of the change of the measuring systems, can either be triggered by a control unit based on the measured metal level, or according to a preferred embodiment, in particular when using a second measuring system with an inductive measuring method, directly by the Melt levels are triggered by changing the measuring system at a time at which the melt enters, for example, the cavity formed by an inductively operating measuring coil.
  • the method according to the invention is suitable for casting plants with only one mold; in particular However, it is suitable for vertical continuous casting plants with several molds.
  • the sensors of the two measuring systems take one casting unit with regard to the mold, a fixed and constant one during the entire continuous casting process Position on, i.e. the measurement takes place without any mechanical tracking device in Form, for example, a height adjustment of the sensors. This is preferably done Level measurement during the first filling phase with regard to the metal melt without contact.
  • the measuring systems include continuously and discontinuously working Level detection systems. Accordingly, the inventive method can by a continuous and / or discontinuous level measurement can be carried out.
  • the Level measurement with the second measuring system is a continuous metal level measurement prefers.
  • the measurement is preferably carried out with the first Measuring system at discrete points in time, in particular with 3 to 10 measured values, the Level measurement with the second measuring system is carried out continuously.
  • the lowering of the casting table begins with the Appropriately soils as soon as the start level is reached in a mold.
  • the metal level in the launder from the start of the filling phase is also preferred Approach floors and the molds on up to and with the stationary pouring phase (lowering phase) kept at a constant level.
  • the continuous casting installation according to the invention and the method according to the invention are suitable for the casting of all continuously castable metals, but preferably for the continuous casting of Aluminum, magnesium and copper alloys.
  • Those according to the invention are particularly suitable Continuous casting plant and the method according to the invention, however, for continuous casting of aluminum alloys.
  • the vertical continuous casting installation shown in FIG. 1 contains a mold 10 with a start-up floor 14 arranged on a lowerable casting table 16, a lifting / lowering device 11 for the casting table, which is driven by a motor 12, the motor being controlled by a control unit 34, a metal level measuring device consisting of two measuring systems 22, 26, a pouring channel system 20 for transporting a molten metal 18 from a furnace (not shown) into the mold 10, a flow control device 30 controlled by the control unit 34 determining the amount of molten metal to be introduced into the mold.
  • the control unit 34 determines, inter alia, the starting time t a of the mold filling, the starting time t s of the lowering process, the filling of the mold or the amount of metal 18 to be introduced into the mold 10 per unit of time during the filling phase and during the lowering process and the lowering speed of the casting table 16 , wherein the control unit 34 operates as a function of the metal level measurement N (t) and a predetermined setpoint curve N Soll (t).
  • the flow control device 30 shown by way of example in FIG. 1 essentially exists from an inlet opening 33 located in the trough 20, which is from a vertically movable plug 32 is closable.
  • the plug 32 can be passed through on the one hand Lower it into the inlet opening 33 into the closed position, or by lifting it Opening cross section and thus the supply of molten metal 18 in the mold 10 accordingly be enlarged.
  • the plug 32 has a stuffing rod, which by a Holding device guided and driven by a motor 31, the motor over the control unit 34 is controlled.
  • the casting trough 20 Before a casting begins, all settings on the Casting plant checked. When all starting conditions are met, tilting of the furnace containing the liquid metal, the casting trough 20 to a predetermined Metal level filled. As soon as a sensor - for example an inductive sensor - a Indicates predetermined fill level in the trough 20, the inlet opening 33 of the Watering trough 20 by lifting the plug 32 of the flow control device 30 released and the filling of the approach floors 14 and 10 molds with the liquid Metal 18 starts.
  • the metal level N (t) takes place in the start-up base 14 or in the mold 10, for example PID-controlled, via a measuring device containing two measuring systems 22, 26.
  • the mold 10 shown in Figure 1 is shown in the closed state, i.e. the The mold 10 rests on the approach floor, the lowering process not yet having started. However, the filling phase is almost complete because the mold 10 is already close to second sensor 28 is filled with liquid metal 18.
  • the first sensor 24 is at a greater distance from the approach floor 14 than the second Sensor 28. This ensures that the on a laser optical Process based, first sensor 24 does not come into contact with the melt 18.
  • the sensors 24 and 28 are at a fixed distance from the respective other measuring system 22 or 26 connected.
  • the two measuring systems 22 and 26 are mechanical to one another firmly connected, i.e.
  • the two measuring systems usually form one with the other mechanical unit.
  • the distance of the sensors 24, 28 from the mold is constant during the entire continuous casting process, ie the distance of the sensors 24, 28 from the metal surface changes constantly, in particular during the filling phase of the mold. Accordingly, at the beginning of the filling phase, the distance of the sensors 24, 28 from the molten metal surface, respectively. to the approach floor 14 is greatest, while this distance decreases continuously or discontinuously during the filling phase and remains essentially constant after reaching the start level N s , ie at the beginning and during the lowering process.
  • the embodiment shown in the drawing relates to continuous casting with a conventional mold.
  • the vertical continuous caster according to the invention also includes other casting methods, such as casting in an electromagnetic Alternating field (EMC), i.e. using an electromagnetic Mold.
  • EMC electromagnetic Alternating field
  • FIG. 2 shows an example of a setpoint curve N to (t) for the inventive method.
  • the setpoint curve N soll (t) shown in FIG. 2 is polygonal and is suitable, for example, for discontinuous control of the metal level. In a range close to the initial level N a , the setpoint curve N set (t) has a value that is relative to the mean slope greater incline. On the other hand, the setpoint curve N to (t) in an up to the starting level N s nearby area a with respect to the central pitch smaller pitch.
  • the value N SOLL (t w) the amount N w at the time t w is the change from the first measurement system 22 to the second measuring system 26 instead.
  • the point in time t w is determined by the entry of the melt into the cavity formed by an inductively working measuring coil. Accordingly, the metal height N (t) above the approach floor 14 during the first filling phase, ie until the filling height has reached the value N w , is determined with the first measuring system 22, which has a large measuring range.
  • the metal height is determined with the second measuring system 26, the measuring range of which is smaller than the first measuring system 22, but has a high measuring accuracy.
  • the high measurement accuracy is particularly important from time t w , since thereafter the setpoint curve N soll (t) is preferably flatter than the mean slope, and thus the metal supply to the individual casting units in a continuous casting installation having several molds 10 until the actual casting start t s , which is initiated by lowering the casting table 16, can be optimally controlled.
  • the starting level N s ie the height of the surface of the liquid metal 18 above the approach floor 14 at the starting time t s , is typically between 100 and 200 mm and in particular between 120 and 190 mm.
  • Starting level t a - the starting level N s is typically reached within a time of 20 to 90 s or preferably within 25 to 45 s.

Abstract

The measuring apparatus consists of two physically different working measuring systems (22, 26) each with a sensor (24, 28). The sensors are fixed in a predetermined position with respect to the mold (10). The first measuring system (22) has a measuring precision of at least plus or minus 2 mm in a measuring region of at least 200 mm. The second measuring system (26) has a measuring precision of at least plus or minus 0.1 mm in a measuring region of at least 20 mm. Vertical continuous casting plant comprises a mold (10) with a moving floor (14) arranged on a sinking casting plate (16), a launder system (20) for transporting a metal melt from an oven into the mold, a measuring apparatus for determining a time-dependent metal melt level (N(t)), and a through-flow regulator (30) to control the metal supply in the mold depending on the difference of a prescribed theoretical value progression Nsoll(t) and the measured time-dependent metal melt level (N(t)). The measuring apparatus consists of two physically different working measuring systems (22, 26) each with a sensor (24, 28). The sensors are fixed in a predetermined position with respect to the mold (10). The first measuring system (22) has a measuring precision of at least plus or minus 2 mm in a measuring region of at least 200 mm. The second measuring system (26) has a measuring precision of at least plus or minus 0.1 mm in a measuring region of at least 20 mm.

Description

Die Erfindung betrifft eine Vertikalstranggiessanlage, insbesondere eine Vertikalstranggiessanlage zum automatischen Stranggiessen von Aluminiumlegierungen, enthaltend wenigstens eine Kokille mit auf einem absenkbaren Giesstisch angeordnetem Anfahrboden, ein Giessrinnensystem zum Transport einer Metallschmelze von einem Ofen in die einzelnen Kokillen, für jede Kokille eine Messvorrichtung zur Bestimmung des zeitabhängigen Metallschmelzenniveaus N(t) und eine Durchflussregelungsvorrichtung zur Steuerung der Metallzufuhr in die einzelnen Kokillen in Abhängigkeit der Differenz eines vorgegebenen Sollwertverlaufes Nsoll(t) und des gemessenen zeitabhängigen Metallschmelzenniveaus N(t).The invention relates to a vertical continuous casting system, in particular a vertical continuous casting system for the automatic continuous casting of aluminum alloys, comprising at least one mold with a start-up base arranged on a lowerable casting table, a pouring channel system for transporting a molten metal from an oven into the individual molds, and a measuring device for each mold for determining the time-dependent molten metal level N (t) and a flow control device for controlling the supply of metal in the individual molds depending upon the difference between a predetermined desired value curve to N (t) and the measured time-dependent molten metal level N (t).

Die Erfindung betrifft weiter ein Verfahren zum Vertikalstranggiessen von Metallen, insbesondere von Aluminiumlegierungen, in einer wenigstens eine Kokille umfassenden Giessanlage, bei welchem Verfahren das flüssige Metall von einem Ofen über ein Giessrinnensystem an die einzelnen Kokillen herangeführt und über eine Durchflussregelungsvorrichtung in die von auf einem absenkbaren Giesstisch angeordneten Anfahrböden während einer Füllphase zunächst geschlossenen Kokillen geleitet wird, wobei ausgehend von einem Anfangsniveau der Metallschmelze, bei der eine Metallschmelzen-Niveauregelung beginnt, bis zu einem vorbestimmten Stantniveau, bei dem das Absenken des Giesstisches zur Erzeugung der Metallstränge beginnt, und während der gesamten Absenkphase das zeitabhängige Metallniveau N(t) in jeder Kokille mit einer Messvorrichtung gemessen und mit einer zeitabhängigen Sollwertvorgabe Nsoll(t) verglichen wird, und die Metallzufuhr in die einzelnen Kokillen mittels einer Durchflussregelungsvorrichtung gemäss der zeitabhängigen Differenz zwischen Ist- und Sollwert des Metallniveaus geregelt wird.The invention further relates to a method for the vertical continuous casting of metals, in particular aluminum alloys, in a casting plant comprising at least one mold, in which method the liquid metal is fed from an oven via a trough system to the individual molds and via a flow control device into which one can be lowered Approach trays arranged at the casting table are first passed closed molds during a filling phase, starting from an initial level of the metal melt, at which metal melt level control begins, up to a predetermined level, at which the lowering of the casting table for producing the metal strands begins, and throughout lowering phase, the time-dependent metal level N (t) in each mold with a measuring apparatus and measured with a time-dependent setpoint to N (t) is compared, and the metal supply in the individual ingot molds by means of a flow-through The control device is controlled according to the time-dependent difference between the actual and setpoint value of the metal level.

Ein solches Verfahren, sowie eine derartige, mehrere Kokillen enthaltende Vertikalstranggiessanlage sind beispielsweise aus der DE-OS 32 05 480 A1 bekannt. Gemäss der in DE-OS 32 05 480 A1 beschriebenen Lehre geschieht die Erfassung des Metallpegels mittels einem Schwimmer als Messaufnehmer, der auf der Oberfläche der Metallsäule aufliegt und aus einem hitzebeständigen Material besteht, welches derart gewählt sein muss, dass eine Absorption von geschmolzenem Metall oder von Verunreinigungen vermieden wird.Such a method, as well as such a vertical continuous casting installation containing several molds are known for example from DE-OS 32 05 480 A1. According to the in DE-OS 32 05 480 A1 described teaching, the detection of the metal level is done by means of a float as a sensor that rests on the surface of the metal column and consists of a heat-resistant material, which must be selected so that a Absorption of molten metal or contaminants is avoided.

In der Patentschrift EP-B 0 517 629 werden ebenfalls eine eingangs beschriebene Vorrichtung und ein entsprechendes Verfahren zum Vertikalstranggiessen von Metallen beschieben, wobei zur Erfassung des zeitabhängigen Metallschmelzenniveaus in den einzelnen Kokillen ein kapazitiver Sensor verwendet wird. Dabei erfolgt die kapazutive Niveaumessung zwischen der Oberfläche der Metallschmelze und einer sich dazu in einem bestimmten Abstand befindlichen Platte, welche in ihrem Abstand zur Metalloberfläche mittels einem Servomotor jeweils derart nachgeführt wird, dass die Kapazität konstant und gleich einer Referenzkapazität ist.Patent EP-B 0 517 629 also describes a device described at the outset and describe a corresponding process for vertical continuous casting of metals, whereby to record the time-dependent molten metal level in the individual molds a capacitive sensor is used. The capacitive level measurement takes place between the surface of the molten metal and one to it at a certain distance located plate, which is at a distance from the metal surface by means of a servo motor is adjusted in such a way that the capacity is constant and equal to a reference capacity is.

Bei einer mehrsträngigen Stranggiessanlage ist für deren störungsfreien Betrieb insbesondere die Beherrschung des Anfahrvorganges, d.h. die optimale Steuerung der Metallzufuhr zu den einzelnen Giesseinheiten bis zum eigentlichen Giessstart, der durch das Absenken des Giesstisches eingeleitet wird, entscheidend. Um den Metallstand in den einzelnen Kokillen während der Anfahrphase in möglichst kurzer Zeit auf ein für den Beginn des Absenkens des Giesstisches vorbestimmtes Niveau zu regeln, ohne dass die Gefahr des Einfrierens von Metall besteht, beschreibt die WO 98/32559 ein Verfahren, gemäss dem das Metallniveau in allen Kokillen gleichzeitig nach einer für alle Kokillen identischen Sollwertkurve geregelt wird, deren Steigung zu Beginn des Regelns im Vergleich zur mittleren Steigung grösser ist und zum Ende der Anfahrphase hin kleiner ist als die mittlere Steigung.In the case of a multi-strand continuous caster, this is particularly important for its trouble-free operation mastery of the starting process, i.e. the optimal control of the metal supply to the individual casting units until the actual casting start, which is achieved by lowering of the casting table is crucial. The metal level in the individual molds in the shortest possible time during the start-up phase to start lowering of the casting table to regulate the predetermined level without the risk of freezing consists of metal, WO 98/32559 describes a method according to which the metal level in all molds simultaneously according to a setpoint curve identical for all molds is regulated, its slope at the beginning of the regulation in comparison to the mean slope is greater and at the end of the start-up phase is smaller than the average gradient.

Typischerweise beträgt das Füllniveau der Kokillen für den Beginn des Absenkvorganges zwischen 120 und 200 mm. Die präzise Steuerung des Metallniveaus ist insbesondere in der Absenkphase von ausschlaggebender Bedeutung für einen störungsfreien Betrieb einer Giessanlage. Die präzise Steuerung des Metallniveaus in den einzelen Kokillen bedingt eine entsprechend genaue Messung der Füllhöhe. Demzufolge erfordert die präzise MetallniveauSteuerung einer Giessanlage eine genaue und reproduzierbare Niveaumessung über einen grossen Messbereich von typischerweise 200 mm. Die Bedeutung einer präzisen Metallniveau-Bestimmung wird insbesondere bei den weiterentwickelten Steuerungen von Mehrkokillen-Stranggiessanlagen, wie beispielsweise bei Steuerungen gemäss der WO 98/32559, bei der die Niveau-Regelung mit nicht-linearen Sollwertkurven geschieht, stark erhöht.The filling level of the molds is typically at the beginning of the lowering process between 120 and 200 mm. The precise control of the metal level is particularly in the Lowering phase of crucial importance for a trouble-free operation of a Casting machine. The precise control of the metal level in the individual molds requires one correspondingly accurate measurement of the fill level. As a result, precise metal level control requires an accurate and reproducible level measurement over a large measuring range of typically 200 mm. The importance of a precise metal level determination is used in particular in the further developed controls of multi-mold continuous casting plants, such as in the case of controls according to WO 98/32559, where the level control is done with non-linear setpoint curves, greatly increased.

Für die genaue Füllniveau-Bestimmung eignen sich induktive oder kapazitive Sensoren. Die erforderliche Genauigkeit lässt sich mit induktiven Sensoren jedoch nur in einem Messbereich von ca. 30-50 mm erreichen. Die aus dem Stand der Technik bekannten Vertikalstranggiessanlagen verwenden deshalb meisten Einrichtungen, bei denen derartige Sensoren mittels einer Präzisionsmechanik im Zusammenwirken mit einem Servo-oder Schrittmotor derart nachgeführt werden, dass der für die geforderte Messgenauigkeit erlaubte Messbereich nicht überschritten wird. Kapazitive Sensoren können für gosse Messbereiche von beispielsweise bis zu 300 mm eingesetzt werden; sie zeigen jedoch eine grosse Abhängigkeit von den äusseren Messbedingungen, so dass eine häufige Nachkalibrierung erforderlich wird. Inductive or capacitive sensors are suitable for the exact level determination. The However, the required accuracy can only be achieved in one with inductive sensors Reach measuring range of approx. 30-50 mm. The known from the prior art Vertical continuous casting plants therefore use most facilities where such Sensors using a precision mechanism in cooperation with a servo or Stepper motor are tracked in such a way that the required measurement accuracy allowed measuring range is not exceeded. Capacitive sensors can be used for gutters Measuring ranges of, for example, up to 300 mm can be used; however, they show one great dependence on the external measurement conditions, so that a frequent Recalibration is required.

Für Füllstands- und Abstandsmessungen sind prinzipiell auch Laser-optische-, Ultraschall- und Mikrowellen-Verfahren bekannt.For level and distance measurements, laser-optical, Ultrasound and Microwave process known.

Laseroptische Verfahren können für die Füllstandmessung von hochreflektierenden Messgütern nur beschränkt eingesetzt werden. Dabei eignen sich derartige Verfahren prinzipiell zur Niveaumessung von Metalllegierungen, beispielsweise von Aluminiumlegierungen, während der Füllphase der Kokille und zu Beginn der Absenkphase. Während der Absenkphase bildet sich - zumindest bei Aluminiumlegierungen - nach einigen Minuten nach Beginn der Absenkphase eine hochreflektierende Oxidschicht, welche den Einsatz Laseroptischer Verfahren zur Niveaumessung stark beeinträchtigt oder gar verunmöglicht.Laser-optical methods can be used for level measurement of highly reflective measuring goods can only be used to a limited extent. Such methods are suitable in principle for level measurement of metal alloys, for example aluminum alloys, during the mold filling phase and at the beginning of the lowering phase. During the lowering phase forms after a few minutes - at least with aluminum alloys Beginning of the lowering phase a highly reflective oxide layer, which the use of laser optics Level measurement procedure severely impaired or even impossible.

Ultraschall- und Mikrowellenverfahren nach dem Radar-Prinzip weisen zwar einen grossen Messbereich auf und erlauben eine kontaktlose Niveaumessung, zeigen jedoch nicht die geforderte Messgenauigkeit, zumindest nicht für die Absenkphase des Stranggiessprozesses. Zudem sind die Ultraschall-Füllstandsmessverfahren stark temperaturabhängig, und die Mikrowellen-Füllstandsmessverfahren werden empfindlich durch die Messumgebung beeinflusst.Ultrasound and microwave methods based on the radar principle have a large one Measuring range and allow contactless level measurement, but do not show that required measurement accuracy, at least not for the lowering phase of the continuous casting process. In addition, the ultrasonic level measurement methods are strongly temperature-dependent, and that Microwave level measurement methods are sensitive to the measurement environment.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Vertikalstranggiessanlage der eingangs genannten Art mit einer präzisen, funktionssicheren und kostengünstigen Füllstandsmessung zur Verfügung zu stellen und ein Verfahren der eingangs genannten Art anzugeben, bei welchem die Metallniveau-Messung auf einfache Weise mit hoher Präzision durchgeführt werden kann.The invention is therefore based on the object of a vertical continuous casting plant at the beginning mentioned type with a precise, reliable and inexpensive level measurement to make available and to specify a method of the type mentioned at the outset, in which the metal level measurement is carried out in a simple manner with high precision can be.

Erfindungsgemäss wird die der Vertikalstranggiessanlage zugrunde liegende Aufgabe dadurch gelöst, dass die Messvorrichtung aus zwei physikalisch unterschiedlich arbeitenden Messsystemen mit je einem Sensor besteht, die Sensoren jeder Messvorrichtung bezüglich der Kokille in einem vorbestimmten und festbleibenden Abstand fixiert sind, und das erste Messsystem in einem Messbereich von wenigstens 200 mm eine Messgenaugkeit von mindestens ± 2 mm aufweist, und das zweite Messsystem in einem Messbereich von wenigstens 20 mm eine Messgenauigkeit von mindestens ± 0.1 mm aufweist.According to the invention, the object on which the vertical continuous casting installation is based solved in that the measuring device from two physically different working Measuring systems with one sensor each, the sensors with respect to each measuring device the mold is fixed at a predetermined and fixed distance, and the first Measuring system with a measuring accuracy of at least 200 mm has at least ± 2 mm, and the second measuring system in a measuring range of at least 20 mm has a measurement accuracy of at least ± 0.1 mm.

Die Erfindung betrifft vorteilhaft Vertikalstranggiessanlagen mit mehreren Kokillen. Die erfindungsgemässe Vorrichtung umfasst jedoch auch Vertikalstranggiessanlagen mit nur einer einzigen Kokille. The invention advantageously relates to vertical continuous casting plants with several molds. The However, the device according to the invention also comprises vertical continuous casting plants with only a single mold.

Der erfindungsgemässen Lösung liegt die Idee zugrunde, dass zu Beginn des Stranggiessprozesses, d.h. während der ersten Füllphase der durch den Anfahrboden zunächst geschlossenen Kokille, und während der restlichen Füllphase, sowie während dem Absenkvorgang des Giesstisches verschiedene Niveaumessvorrichtungen eingesetzt werden können, welche den spezifischen Erfordernissen während den prinzipiell verschiedenen Phasen optimal Rechnung tragen.The solution according to the invention is based on the idea that at the start of the continuous casting process, i.e. during the first filling phase of those initially closed by the approach floor Chill mold, and during the remaining filling phase, as well as during the lowering process of the casting table different level measuring devices can be used, which the specific requirements during the different phases Take into account.

Die Erfindung beruht weiter auf der Erkenntnis, dass ein grosser Messbereich von ca. 200 min nur während der ersten Füllphase der durch den Anfahrboden zunächst geschlossenen Kokille benötigt wird, und in der daran anschliessenden Füll- und Absenkphase des Giesstisches ein kleinerer Messbereich von beispielsweise 15-20 mm ausreicht. Zudem ist während der Startphase eine weniger hohe Messgenauigkeit erforderlich als in der nachfolgenden Füll- und Absenkphase, da sich das Füllniveau in der ersten Füllphase sehr schnell verändert. Während der nachfolgenden Füll- und Absenkphase ist dagegen eine sehr hohe Messgenauigkeit erforderlich.The invention is further based on the knowledge that a large measuring range of approximately 200 min only during the first filling phase of those initially closed by the start-up floor Chill mold is required, and in the subsequent filling and lowering phase of the casting table a smaller measuring range of, for example, 15-20 mm is sufficient. In addition is a less high measurement accuracy is required during the start phase than in the subsequent filling and lowering phase, since the filling level in the first filling phase is very different changed quickly. During the subsequent filling and lowering phase, however, is a very high measurement accuracy required.

Der Begriff Messbereich bedeuted einen Messwertbereich, bei dem die Werte im gesamten Bereich zwischen einem maximalen und einem minimalen Messwert liegen können, wobei die Differenz zwischen dem Maximal- und dem Minimalwert betragsmässig dem Messbereich entspricht. Beipielsweise liegen die Messwerte bei einem Messbereich von 200 min in einem Wertebereich zwischen 0 und 200 mm.The term measuring range means a measuring range in which the values as a whole Range between a maximum and a minimum measured value, where the difference between the maximum and the minimum value Measuring range corresponds. For example, the measured values are in a measuring range of 200 min in a value range between 0 and 200 mm.

Bevorzugt wird eine Messvorrichtung, bei der das erste Messsystem auf einem optischen, kapazitiven, Ultraschall- oder Mikrowellen-Verfahren, und das zweite Messsystem auf einem induktiven, kapazitiven oder optischen Verfahren basiert.A measuring device is preferred in which the first measuring system is based on an optical, capacitive, ultrasonic or microwave method, and the second measuring system based on an inductive, capacitive or optical method.

Insbesondere bevorzugt wird eine Messvorrichtung, bei der das erste Messsystem auf einem optischen oder einem Ultraschall- oder Mikrowellen-Verfahren, und das zweite Messsystem auf einem induktiven oder kapazitiven Verfahren basiert.A measuring device in which the first measuring system is located on a optical or an ultrasonic or microwave method, and the second measuring system based on an inductive or capacitive process.

Die erste Füllphase der mit dem Anfahrboden verschlossenen Kokille geschieht üblicherweise mit einer möglichst hohen Geschwindigkeit, so dass das Metallniveau zu Beginn der Kokillenfüllung sehr rasch ansteigt. Dadurch wird in der Kokille zu Beginn der Füllphase eine turbulente Strömung ausgebildet, so dass zu Beginn des Füllvorganges keine ebene Schmelzenoberfläche vorliegt, wodurch die Reflexionseigenschaften der Schmelzenoberfläche gegenüber einer ebenen Oberfläche desselben Metalls wesentlich geringer ausfallen. Aus diesem Grunde, sowie aufgrund der in dieser Verfahrensphase noch nicht gebildeten Oxidhaut erlaubt die erste Füllphase eine Niveaumessung mittels Laser-optischer Verfahren. Für das nachfolgende Giessverfahren, d.h. während der restlichen Füllphase und während dem Absenkvorgang des Giesstisches, eignet sich die Anwendung eines Laser-optischen Niveau-Messverfahrens aufgrund der hohen Reflexion der im wesentlichen ebenen Metallschmelzenoberfläche nicht für alle Legierungen.The first filling phase of the mold closed with the start-up floor usually takes place at the highest possible speed so that the metal level at the beginning of the Mold filling rises very quickly. This will cause the mold to start filling a turbulent flow is formed so that no flat at the beginning of the filling process Melt surface is present, which causes the reflective properties of the melt surface compared to a flat surface of the same metal turn out much smaller. For this reason, as well as those not yet formed in this phase of the process Oxide skin allows the first filling phase to be measured using a laser-optical level Method. For the subsequent casting process, i.e. during the rest of the filling phase and during the lowering process of the casting table, the use of a laser-optical is suitable Level measurement method due to the high reflection of the essentially flat Molten metal surface not for all alloys.

Erfindungsgemäss kann das erste Messsystem Messaufnehmer oder Sensoren betreffen, welche auf einem der nachfolgend beschriebenen Füllstandsmess-Verfahren beruhen:

  • a) Ultraschall-Verfahren
  • b) Optische Verfahren
  • c) Mikrowellen-Verfahren nach dem Radar-Prinzip
  • d) Kapazitive Verfahren
  • According to the invention, the first measuring system can relate to sensors or sensors which are based on one of the level measuring methods described below:
  • a) Ultrasound procedure
  • b) Optical processes
  • c) Microwave method based on the radar principle
  • d) Capacitive processes
  • Eine Füllstandmessung mit Ultraschall basiert entweder auf der Messung der Laufzeit eines Schallimpulses oder auf der Messung der Schallabsorption. Bevorzugt wird die Messung der Laufzeit eines Ultraschallimpulses, d.h. die Entfernung der Schmelzenoberfläche wird aus der Laufzeit zwischen gesendetem und empfangenem Signal berechnet. Dabei arbeitet das Laufzeitverfahren üblicherweise nach dem Prinzip des Echolots, d.h. ein elektrischer Impuls wird beispielsweise durch einen am Anfahrboden oder an einem unteren Bereich der Kokille angebrachten piezoelektrischen Schwinger in einen Ultraschallimpuls umgewandelt, welcher in die Schmelze ausgesendet und von der Grenzschicht Schmelze-Luft teilweise reflektiert wird, wobei der reflektierte Ultraschallimpuls (Echo) auf einen gleichartigen piezoelektrischen Schwinger trifft, in dem das Echo in einen elektrischen Impuls zurückverwandelt wird. Die Füllhöhe ergibt sich dabei aus der Laufzeit des Schallimpulses und der Schallgeschwindigkeit. Der Füllstand lässt sich auch nach demselben Echolot-Prinzip messen, wenn der Ultraschallsender und Empfänger im Luftraum über der Schmelzenoberfläche angeordnet ist. Bei der Ultraschall-Füllstandsmessung muss die Temperatur der Messmedien mitberücksichtigt werden, da die Schallgeschwindigkeit temperaturabhängig ist.A level measurement with ultrasound is based either on the measurement of the runtime of a Sound pulse or on the measurement of sound absorption. The measurement of the Transit time of an ultrasonic pulse, i.e. the removal of the melt surface is from the transit time between the transmitted and received signal. That works Runtime procedure usually based on the principle of the echo sounder, i.e. an electrical impulse is, for example, by one on the start-up floor or on a lower area of the mold attached piezoelectric transducer converted into an ultrasonic pulse, which is emitted into the melt and from the melt-air boundary layer partially is reflected, the reflected ultrasound pulse (echo) to a similar piezoelectric transducer hits in which the echo turns into an electrical pulse is converted back. The fill level results from the transit time of the sound pulse and the speed of sound. The fill level can also be based on the same sonar principle measure when the ultrasonic transmitter and receiver are in the air space above the Melt surface is arranged. With ultrasonic level measurement has to Temperature of the media to be taken into account, since the speed of sound is temperature dependent.

    Bei einer Füllstandsmessung mit Mikrowellen nach dem Radar-Prinzip werden Mikrowellensender und -Empfänger sowie eine Antenne oberhalb der Kokille angebracht. Die Oberfläche der Metallschmelze reflektiert teilweise die aus dem Mikrowellensender austretenden, üblicherweise frequenzmodulierten, elektromagnetischen Wellen oder Impulse. Die Entfernung zwischen Antenne und Schmelzenoberfläche wird dabei nach dem Radar-Prinzip gemessen. In einer bevorzugten Ausführungsform dieses Verfahrens wird ein Mikrowellensignal konstanter Amplitude abgestrahlt und nach der Reflexion wieder empfangen und mit einem Teil des Sendesignals gemischt; die Frequenz des Mischer-Ausgangssignals ist proportional zur Laufzeit und damit ein Mass für die Entfernung zwischen Sender und Schmelzenoberfläche.When measuring the level with microwaves according to the radar principle Microwave transmitter and receiver as well as an antenna attached above the mold. The surface of the molten metal partially reflects that from the microwave transmitter emerging, usually frequency-modulated, electromagnetic waves or Impulses. The distance between the antenna and the melt surface is determined according to the Radar principle measured. In a preferred embodiment of this method, a Microwave signal emitted of constant amplitude and again after reflection received and mixed with part of the transmission signal; the frequency of the mixer output signal is proportional to the runtime and therefore a measure of the distance between the transmitter and the melt surface.

    Eine optische Füllstandsmessung kann eine interferometrische Abstandsmessung, ein Laser-Laufzeitverfahren oder ein Triangulationsverfahren betreffen.An optical level measurement can be an interferometric distance measurement, a laser runtime method or a triangulation procedure.

    Bei der interferometrischen Abstandsmessung wird die Entfernung der reflektierenden Schmelzenoberfläche von einem Sensor gemessen. Dabei wird als Messsignal entweder die Phasenwinkeldifferenz zwischen reflektiertem und nichtreflektiertem, moduliertem Laserstrahl ausgewertet, oder es erfolgt die Messung der Verschiebung der Reflektoroberfläche (Schmelzenoberfläche) mit einem zählenden Laserinterferometer. Bei der interferometrischen Abstandsmessung wird zweckmässigerweise ein monochromatischer Laserstrahl an einem halbdurchlässigen Spiegel in einen Mess- und einen Referenzstrahl aufgespalten. Dabei werden beide Strahlen von je einem Reflektor, einem feststehenden und einem beweglichen, reflektiert. Die reflektierten Strahlen überlagern sich am halbdurchlässigen Spiegel, wobei Interferenzstreifen entstehen, die quer zum Empfänger liegen und von diesem analysiert werden. Eine Abstandsänderung der Schmelzenoberfläche von λ/4 (λ=Wellenlänge des Laserstrahls) bewirkt eine maximale Änderung der Lichtintensität, so dass sich die Änderung des Schmelzenniveaus aus der Anzahl der registrierten Maxima bzw. Minima und der Wellenlänge ergibt.With the interferometric distance measurement the distance of the reflecting Melt surface measured by a sensor. Either the Phase angle difference between reflected and unreflected, modulated laser beam evaluated, or the displacement of the reflector surface is measured (Melt surface) with a counting laser interferometer. With interferometric Distance measurement is expediently a monochromatic laser beam split a semitransparent mirror into a measuring and a reference beam. Both beams are emitted by one reflector, one fixed and one movable, reflected. The reflected rays are superimposed on the semi-transparent mirror, creating interference fringes that are transverse to and from the receiver to be analyzed. A distance change of the melt surface of λ / 4 (λ = wavelength of the laser beam) causes a maximum change in the light intensity, see above that the change in melt level results from the number of registered maxima or minima and the wavelength.

    Beim Laser-Laufzeitverfahren kann die Füllstandsmessung durch eine direkte Laufzeitmessung eines Lichtimpulses oder durch eine Phasenmessung erfolgen. Bei der Phasenmessung wird das Sendesignal zweckmässigerweise auf ein Trägersignal, beispielsweise im MHz-Bereich, aufmoduliert, wobei die Messung der Phasenverschiebung nach der Demodulation im Empfänger erfolgt. Die direkte Laufzeitmessung erfolgt nach dem Radar-Prinzip, wobei kleinste Zeitdifferenzen im Nano- bis Picosekundenbereich gemessen werden.In the laser transit time method, the level measurement can be carried out by a direct transit time measurement a light pulse or a phase measurement. During phase measurement the transmission signal is expediently converted to a carrier signal, for example in the MHz range, modulated, the measurement of the phase shift after demodulation in the receiver. The direct transit time measurement is based on the radar principle, in which smallest time differences in the nano to picosecond range can be measured.

    Beim Triangulationsverfahren wird die Füllstandsmessung auf eine Winkelmessung zurückgeführt. Dabei trifft ein stark gebündelter Lichtstrahl eines Lasers unter einem spitzen Winkel auf die Schmelzenoberfläche und wird daran reflektiert. Abhängig vom Füllstand trifft der reflektierte Lichtstrahl auf eine bestimmte Stelle des Empfängers, d.h. beispielsweise eines Lagedetektors. Der Lagedetektor kann beispielsweise eine CCD-Zeile (Charge Coupled Device) darstellen, welche aus einer hohen Anzahl in einer Zeile angeordneter, lichtempfindlicher Bauelemente (Pixel) besteht. Mit einer CCD-Zeile kann diese Position erfasst und über die Winkel- oder Wegdifferenz in den Füllstand umgerechnet werden. Der Abbildungsort des reflektierten Laserstrahls auf dem Lagedetektor verschiebt sich in Abhängigkeit vom Abstand der Schmelzenoberfläche vom Sensor.In the triangulation process, the level measurement is traced back to an angle measurement. A highly focused beam of light from a laser hits under a pointed one Angle on the surface of the melt and is reflected on it. Depending on the level the reflected light beam strikes a certain point on the receiver, i.e. for example of a location detector. The position detector can be a CCD line, for example (Batch Coupled Device), which consist of a large number of light-sensitive components (pixels). With a CCD line this position can recorded and converted into the level using the angle or path difference. The Imaging location of the reflected laser beam on the position detector shifts into Dependence on the distance of the melt surface from the sensor.

    Bei der kapazitiven Füllstandsmessung wird die Kapazität in Abhängigkeit von der Schmelzenhöhe gemessen. Die Kapazität verändert sich beispielsweise durch den Grad der Überdeckung oder den Abstand zweier gegebener Flächen. Die Kapazität verändert sich jedoch auch durch eine Veränderung der Dielektrizitätskonstanten (z.B. der Luft) durch Einbringung der Metallschmelze. Eine Veränderung der Kapazität wird beispielsweise über die Veränderung des kapazitiven Widerstandes nachgewiesen.With capacitive level measurement, the capacity is dependent on the melt height measured. The capacity changes, for example, through the degree of coverage or the distance between two given surfaces. However, the capacity changes also by changing the dielectric constant (e.g. the air) Introduction of the molten metal. A change in capacity is, for example, about demonstrated the change in capacitive resistance.

    Erfindungsgemäss kann das zweite Messsystem Messaufnehmer oder Sensoren betreffen, welche auf einem der nachfolgend beschriebenen Füllstandsmess-Verfahren beruhen:

  • e) kapazitiv
  • f) induktiv
  • g) optisch
  • According to the invention, the second measuring system can relate to sensors or sensors which are based on one of the level measuring methods described below:
  • e) capacitive
  • f) inductive
  • g) optically
  • Die induktiven Sensoren beruhen bevorzugt auf der Messung der Veränderung des induktiven Widerstandes XL, mit: XL = ωL, wobei L = N 2·µ·A s und

    N =
    Windungszahl
    s =
    Weglänge der magnetischen Feldlinien
    A =
    die von den magnetischen Feldlinien durchsetzte Fläche,
    m =
    Permeabilität des Materials.
    The inductive sensors are preferably based on measuring the change in the inductive resistance X L , with: X L = ωL, in which L = N 2nd · Μ · A s and
    N =
    Number of turns
    s =
    Path length of the magnetic field lines
    A =
    the area penetrated by the magnetic field lines,
    m =
    Permeability of the material.

    Erfindungsgemäss sind die Sensoren bezüglich der Kokille in einem vorbestimmten und festbleibenden Abstand angeordnet, d.h. die beiden Messsysteme weisen keine Vorrichtung zur Höhenverstellung der Sensoren auf.According to the invention, the sensors are predetermined and in relation to the mold fixed distance, i.e. the two measuring systems have no device to adjust the height of the sensors.

    Bevorzugt werden zudem Messsysteme, die keine mechanisch beweglichen Teile, und insbesondere keine mechanischen Präzisionsteile, aufweisen. Weiter bevorzugt werden Messsysteme, die in Bezug auf die Metallschmelze berührungslos arbeiten.Also preferred are measuring systems that have no mechanically moving parts, and in particular no mechanical precision parts. Measuring systems are further preferred, that work contactlessly in relation to the molten metal.

    Besonders bevorzugt wird eine Messvorrichtung für jede Giesseinheit (Kokille), bei der das erste Messsystem auf einem optischen Verfahren, insbesondere auf einem Triangulationsverfahren, und das zweite Messsystem auf einem induktiven Verfahren basiert. A measuring device for each casting unit (mold) is particularly preferred, in which the first measuring system on an optical method, in particular on a triangulation method, and the second measuring system is based on an inductive method.

    Ganz besonders bevorzugt wird ein erstes Messsystem mit einem Messbereich von bis zu 200 mm, wobei im ganzen Messbereich eine Messgenauigkeit von ± 1 mm erreicht wird.A first measuring system with a measuring range of up to is very particularly preferred 200 mm, whereby a measuring accuracy of ± 1 mm is achieved in the whole measuring range.

    Die Messgenauigkeit des ersten Messsystems beträgt typischerweise zwischen ± 0.1 mm und ± 2 mm, bevorzugt zwischen ± 0.1 mm und ± 1 mm.The measuring accuracy of the first measuring system is typically between ± 0.1 mm and ± 2 mm, preferably between ± 0.1 mm and ± 1 mm.

    Der Messbereich des zweiten Messsystems beträgt typischerweise 20 bis 50 mm, wobei die Messgenauigkeit typischerweise zwischen ± 0.01 mm und ± 0.1 mm, bevorzugt zwischen ± 0.01 mm und ± 0.08 mm beträgt.The measuring range of the second measuring system is typically 20 to 50 mm, the Measuring accuracy typically between ± 0.01 mm and ± 0.1 mm, preferably between ± Is 0.01 mm and ± 0.08 mm.

    Die Kombination eines optischen Sensors mit einem induktiven Sensor erlaubt die Bereitstellung einer kompakten und leistungsfähigen Messvorrichtung, welche einerseits keine teuren, empfindlichen und aufwendig gestalteten, mechanischen Sensor-Nachführ-Vorrichtungen benötigt und andererseits aufgrund der bezüglich Messbereich und Messgenauigkeit für die einzelnen Giessphasen angepassten Sensoreigenschaften eine effiziente Niveaumessung der Metallschmelze mit ausreichend hoher Genauigkeit erlaubt. Die erfindungsgemässe Stranggiessanlage eignet sich insbesondere auch für einen Regelungsalgorithmus zum Einleiten von Metall in die einzelnen Kokillen, bei welchem nicht-lineare Sollwertkurven für die Steuerung des Metallschmelzen-Niveaus verwendet werden.The combination of an optical sensor with an inductive sensor allows provision a compact and powerful measuring device, which on the one hand does not expensive, sensitive and elaborately designed, mechanical sensor tracking devices required and on the other hand due to the measuring range and measuring accuracy an efficient level measurement for the individual casting phases the metal melt allows with sufficiently high accuracy. The inventive Continuous caster is particularly suitable for a control algorithm for Introducing metal into the individual molds, in which non-linear Setpoint curves can be used to control the level of molten metal.

    Durch die Vermeidung mechanischer Nachführvorrichtungen der Sensoren wird zudem für die Niveaumessung hinsichtlich der vertikalen Abmessungen wesentlich weniger Raum benötigt, so dass die Giessanlage kompakter gebaut werden kann.By avoiding mechanical tracking devices of the sensors is also for the level measurement with respect to the vertical dimensions significantly less space needed so that the casting system can be built more compact.

    Zur erfindungsgemässen Lösung der das Verfahren betreffenden Aufgabe führt, dass die Messung des zeitabhängigen Metallniveaus N(t) mit einer Messvorrichtung bestehend aus zwei physikalisch unterschiedlich arbeitenden Messsystemen durchgeführt wird, wobei ausgehend vom Anfangsniveau bis zur Erreichung eines vorbestimmten Schmelzenniveaus durch ein erstes Messsystem mit einem ersten Sensor geschieht, und für die weitere Messung des zeitabhängigen Metallniveau-Verlaufes N(t) während der daran anschliessenden Füll- und Absenkphasen ein zweites Messsystem mit einem zweiten Sensor verwendet wird, und die Sensoren der beiden Messsysteme bezüglich der Kokille eine feste und während dem ganzen Stranggiessprozess konstante Position einnehmen.In order to achieve the object of the method according to the invention, the Measurement of the time-dependent metal level N (t) with a measuring device consisting of two physically different working measuring systems is carried out, whereby starting from the initial level until reaching a predetermined melt level done by a first measuring system with a first sensor, and for the further Measurement of the time-dependent metal level curve N (t) during the subsequent one Filling and lowering phases a second measuring system with a second sensor is used, and the sensors of the two measuring systems with respect to the mold are fixed and take a constant position throughout the continuous casting process.

    Die Füllphase beginnt mit dem Einleiten von flüssigem Metall auf den Anfahrboden und endet mit dem Beginn des Absenkens des Anfahrbodens, d.h. wenn das Startniveau Ns zur Zeit ts erreicht ist. Die Metallniveauregelung beginnt üblicherweise erst, wenn ein bestimmtes Metallniveau Na zur Zeit ta in der zunächst durch den Anfahrboden geschlossenen Kokille erreicht ist. Die erste Füllphase bezeichnet den Zeitraum von Beginn des Einleitens von flüssigem Metall in die Kokille bis zur Zeit tw, bei der vom ersten zum zweiten Messsystem für die Metallniveau-Bestimmung gewechselt wird, wobei tw die Zeit bezeichnet, zu der das Metallniveau in der zunächst durch den Anfahrboden geschlossenen Kokille eine vorbestimmte Höhe Nw erreicht. Der Zeitraum zwischen tw und ts beschreibt die zweite oder die weitere Füllphase, bzw. die der ersten sich anschliessende Füllphase. Die Absenkphase beginnt mit dem Erreichen des Startniveaus Ns zur Zeit ts und dauert bis zum Ende oder zum Abbruch des Stranggiessprozesses.The filling phase begins with the introduction of liquid metal onto the start-up floor and ends with the start of lowering the start-up floor, ie when the start level N s is reached at time t s . The metal level control usually only begins when a certain metal level N a is reached at time t a in the mold, which is initially closed by the start-up floor. The first filling phase denotes the period from the start of the introduction of liquid metal into the mold until the time t w , at which the change from the first to the second measuring system for the metal level determination takes place, where t w denotes the time at which the metal level in the first a mold closed by the start-up floor reaches a predetermined height N w . The period between t w and t s describes the second or the further filling phase, or that of the first filling phase that follows. The lowering phase begins when the start level N s is reached at time t s and lasts until the end or the termination of the continuous casting process.

    Die Durchflussregelungsvorrichtung wird in Abhängigkeit von der Differenz des gemessenen Metallniveau-Verlaufes N(t) von der Sollwertkurve Nsoll(t) mittels einer Kontrolleinheit gesteuert, wobei die Durchflussregelungsvorrichtung die in die Kokille fliessende Metallschmelzenmenge bestimmt. Die Kontrolleinheit bestimmt beispielsweise den Anfangszeitpunkt ta der Kokillenfüllung, den Zeitpunkt tw für den Wechsel des Messystems, die Stanzeit ts des Absenkvorganges, die Füllung der Kokille bzw. die Menge des pro Zeiteinheit in die Kokille einzuleitenden Metalls während der Einfüllphase und während dem Absenkvorgang, die Absenkgeschwindigkeit des Giesstisches und die Steuerung des für die Niveaumessung N(t) zuständigen Messsystems. Die Kontrolleinheit dient gegebenenfalls jedoch auch zur Überwachung und Steuerung weiterer Verfahrensparameter, wie beispielsweise Kühlwasserzuführung, CO2-Zufuhr, Zufuhr von Komfeinungsmittel, EMC-Stromzufuhr, und initiiert beispielsweise automatisch den Absenkvorgang des Giesstisches.The flow control device is a function of the difference of the measured metal level path N (t) of the setpoint curve N soll (t) controlled by a control unit, said flow control device determines the current flowing into the mold molten metal amount. The control unit determines, for example, the start time t a of the mold filling, the time t w for changing the measuring system, the standard time t s of the lowering process, the filling of the mold or the amount of metal to be introduced into the mold per unit of time during the filling phase and during the Lowering process, the lowering speed of the casting table and the control of the measuring system responsible for level measurement N (t). However, the control unit may also serve to monitor and control further process parameters, such as cooling water supply, CO 2 supply, supply of refining agent, EMC power supply, and automatically initiate the lowering process of the casting table, for example.

    In einer bevorzugten Ausführungsform des erfindungsgemässen Verfahrens wird die Metallzufuhr in die einzelnen Kokillen nur bis zur Startzeit ts direkt durch die zeitabhängige Differenz zwischen Ist- und Sollwert des Metallniveaus geregelt. Im weiteren geschieht die direkte Regelung der Metallzufuhr nach dem Start des Absenkvorganges in Abhängigkeit der Barrenlänge, d.h. in Funktion der vertikalen Giesstisch-Position, sowie aufgrund der Differenz zwischen Ist- und Sollwert des Metallniveaus. Demnach geschieht die Regelung der Metallzufuhr nach der Startzeit ts durch die Barrenlängen-abhängige Differenz zwischen Ist- und Sollwert des Metallniveaus. Da der Absenkvorgang üblicherweise mit konstanter Geschwindigkeit vor sich geht, nimmt die Barrenlänge linear mit der Zeit zu, so dass die Regelung der Metallzufuhr auch während dem Absenkvorgang gemäss der zeitabhängigen Differenz zwischen Ist- und Sollwert des Metallniveaus geregelt wird. In a preferred embodiment of the method according to the invention, the metal supply into the individual molds is only regulated directly up to the starting time t s by the time-dependent difference between the actual and the setpoint value of the metal level. Furthermore, the direct control of the metal supply takes place after the start of the lowering process as a function of the bar length, ie as a function of the vertical casting table position, and on the basis of the difference between the actual and target value of the metal level. Accordingly, the control of the metal supply takes place after the start time t s by the bar length-dependent difference between the actual and target value of the metal level. Since the lowering process usually takes place at a constant speed, the bar length increases linearly with time, so that the regulation of the metal supply is also regulated during the lowering process in accordance with the time-dependent difference between the actual and target value of the metal level.

    Bevorzugt wird der Zeitpunkt ta des Beginns der Niveauregelung durch Messung des Metallniveaus, insbesondere durch eine Niveaumessung mittels einem Laser-optischen Verfahren, bestimmt. Die Auslösung der Niveaumessung mittels dem zweiten Messsystem, d.h. der Zeitpunkt des Wechsels der Messsysteme, kann entweder durch eine Kontrolleinheit aufgrund des gemessenen Metallniveaus geschehen, oder er kann gemäss einer bevorzugten Ausführungsform, insbesondere bei Verwendung eines zweiten Messsystems mit einem induktiven Messverfahren, direkt durch den Schmelzenpegel ausgelöst werden, indem der Messsystem-Wechsel zu einem Zeitpunkt stattfindet, bei dem die Schmelze beispielsweise in den von einer induktiv arbeitenden Messspule gebildeten Hohlraum eintritt.The time t a of the start of the level control is preferably determined by measuring the metal level, in particular by level measurement using a laser-optical method. The level measurement by means of the second measuring system, i.e. the time of the change of the measuring systems, can either be triggered by a control unit based on the measured metal level, or according to a preferred embodiment, in particular when using a second measuring system with an inductive measuring method, directly by the Melt levels are triggered by changing the measuring system at a time at which the melt enters, for example, the cavity formed by an inductively operating measuring coil.

    Das erfindungsgemässe Verfahren eignet sich für Giessanlagen mit nur einer Kokille; insbesondere geignet ist es jedoch für Vertikalstranggiessanlagen mit mehreren Kokillen.The method according to the invention is suitable for casting plants with only one mold; in particular However, it is suitable for vertical continuous casting plants with several molds.

    Erfindungsgemäss nehmen die Sensoren der beiden Messsysteme einer Giesseinheit bezüglich der Kokille eine feste und während dem ganzen Stranggiessverfahren konstante Position ein, d.h. die Messung erfolgt ohne jegliche mechanische Nachführvorrichtung in Form beispielsweise einer Höheneinstellung der Sensoren. Bevorzugt erfolgt die Nivaumessung während der ersten Füllphase bezüglich der Metallschmelze berührungslos.According to the invention, the sensors of the two measuring systems take one casting unit with regard to the mold, a fixed and constant one during the entire continuous casting process Position on, i.e. the measurement takes place without any mechanical tracking device in Form, for example, a height adjustment of the sensors. This is preferably done Level measurement during the first filling phase with regard to the metal melt without contact.

    Die Messsysteme umfassen kontinuierlich und diskontinuierlich arbeitende Niveauerfassungssysteme. Demzufolge kann das erfindungsgemässe Verfahren durch eine kontinuierliche und/oder diskontinuierliche Niveaumessung durchgeführt werden. Bei der Niveaumessung mit dem zweiten Messsystem wird eine kontinuierliche Metall-Niveaumessung bevorzugt. Weiter bevorzugt erfolgt die Messung mit dem ersten Messsystem zu diskreten Zeitpunkten, insbesondere mit 3 bis 10 Messwerten, wobei die Niveaumessung mit dem zweiten Messsystem kontinuierlich durchgeführt wird.The measuring systems include continuously and discontinuously working Level detection systems. Accordingly, the inventive method can by a continuous and / or discontinuous level measurement can be carried out. In the Level measurement with the second measuring system is a continuous metal level measurement prefers. The measurement is preferably carried out with the first Measuring system at discrete points in time, in particular with 3 to 10 measured values, the Level measurement with the second measuring system is carried out continuously.

    Bei Giessanlagen mit mehreren Kokillen beginnt das Absenken des Giesstisches mit den Anfahrböden zweckmässigerweise sobald in einer Kokille das Startniveau erreicht ist.In casting plants with several molds, the lowering of the casting table begins with the Appropriately soils as soon as the start level is reached in a mold.

    Bevorzugt wird auch der Metallstand in der Giessrinne vom Beginn der Füllphase der Anfahrböden und der Kokillen an bis und mit der stationären Giessphase (Absenkphase) auf einem konstanten Niveau gehalten.The metal level in the launder from the start of the filling phase is also preferred Approach floors and the molds on up to and with the stationary pouring phase (lowering phase) kept at a constant level.

    Weitere vorteilhafte Weiterbildungen des erfindungsgemässen Verfahrens ergeben sich aus den Unteransprüchen. Further advantageous developments of the method according to the invention result from the subclaims.

    Die erfindungsgemässe Stranggiessanlage und das erfindungsgemäss Verfahren eignen sich zum Giessen aller stranggussfähigen Metalle, bevorzugt jedoch zum Stranggiessen von Aluminium-, Magnesium- und Kupferlegierungen. Besonders geeignet sind die erfindungsgemässe Stranggiessanlage und das erfindungsgemässe Verfahren jedoch für das Stranggiessen von Aluminiumlegierungen.The continuous casting installation according to the invention and the method according to the invention are suitable for the casting of all continuously castable metals, but preferably for the continuous casting of Aluminum, magnesium and copper alloys. Those according to the invention are particularly suitable Continuous casting plant and the method according to the invention, however, for continuous casting of aluminum alloys.

    Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den in den Figuren 1 und 2 dargestellten Ausführungsbeispielen, sowie aus der Figurenbeschreibung.

    Figur 1
    zeigt schematisch einen vereinfachten Querschnitt durch einen Teil einer Kokille mit eingefahrenem Anfahrboden.
    Figur 2
    zeigt schematisch eine Sollwertkurve des zeitlichen Verlaufs des Metallniveaus in einer Kokille.
    Further advantages, features and details of the invention result from the exemplary embodiments shown in FIGS. 1 and 2 and from the description of the figures.
    Figure 1
    shows schematically a simplified cross section through part of a mold with a retracted approach floor.
    Figure 2
    shows schematically a setpoint curve of the time course of the metal level in a mold.

    Die in Figur 1 dargestellte Vertikalstranggiessanlage enthält eine Kokille 10 mit einem auf einem absenkbaren Giesstisch 16 angeordneten Anfahrboden 14, eine Hebe/Senk-Vorrichtung 11 für den Giesstisch, welche durch einen Motor 12 angetrieben wird, wobei der Motor über eine Kontrolleinheit 34 gesteuert wird, eine Metallniveau-Messvorrichtung bestehend aus zwei Messsystemen 22, 26, ein Giessrinnensystem 20 zum Transport einer Metallschmelze 18 von einem Ofen (nicht eingezeichnet) in die Kokille 10, wobei eine durch die Kontrolleinheit 34 gesteuerte Durchflussregelungsvorrichtung 30 die in die Kokille einzuleitende Metallschmelzenmenge bestimmt. Die Kontrolleinheit 34 bestimmt u.a. den Anfangszeitpunkt ta der Kokillenfüllung, die Startzeit ts des Absenkvorganges, die Füllung der Kokille bzw. die Menge des pro Zeiteinheit in die Kokille 10 einzuleitenden Metalls 18 während der Einfüllphase und während dem Absenkvorgang und die Absenkgeschwindigkeit des Giesstisches 16, wobei die Kontrolleinheit 34 in Abhängigkeit der Metallniveaumessung N(t) und einer vorgegebenen Sollwertkurve Nsoll(t) arbeitet.The vertical continuous casting installation shown in FIG. 1 contains a mold 10 with a start-up floor 14 arranged on a lowerable casting table 16, a lifting / lowering device 11 for the casting table, which is driven by a motor 12, the motor being controlled by a control unit 34, a metal level measuring device consisting of two measuring systems 22, 26, a pouring channel system 20 for transporting a molten metal 18 from a furnace (not shown) into the mold 10, a flow control device 30 controlled by the control unit 34 determining the amount of molten metal to be introduced into the mold. The control unit 34 determines, inter alia, the starting time t a of the mold filling, the starting time t s of the lowering process, the filling of the mold or the amount of metal 18 to be introduced into the mold 10 per unit of time during the filling phase and during the lowering process and the lowering speed of the casting table 16 , wherein the control unit 34 operates as a function of the metal level measurement N (t) and a predetermined setpoint curve N Soll (t).

    Die in Figur 1 beispielhaft gezeigte Durchflussregelungsvorrichtung 30 besteht im wesentlichen aus einer in der Giessrinne 20 befindlichen Einleitöffnung 33, welche von einem vertikal bewegbaren Stopfen 32 verschliessbar ist. Der Stopfen 32 lässt sich einerseits durch Absenken in die Einleitöffnung 33 in Schliessstellung bringen, bzw. durch Heben kann der Öffnungsquerschnitt und damit die Zufuhr von Metallschmelze 18 in die Kokille 10 entsprechend vergrössert werden. Der Stopfen 32 weist eine Stopfstange auf, welche durch eine Haltevorrichtung geführt und von einem Motor 31 angetrieben wird, wobei der Motor über die Kontrolleinheit 34 gesteuert wird. The flow control device 30 shown by way of example in FIG. 1 essentially exists from an inlet opening 33 located in the trough 20, which is from a vertically movable plug 32 is closable. The plug 32 can be passed through on the one hand Lower it into the inlet opening 33 into the closed position, or by lifting it Opening cross section and thus the supply of molten metal 18 in the mold 10 accordingly be enlarged. The plug 32 has a stuffing rod, which by a Holding device guided and driven by a motor 31, the motor over the control unit 34 is controlled.

    Vor Beginn eines Abgusses werden während einer Prüfphase sämtliche Einstellungen an der Giessanlage überprüft. Wenn sämtliche Startbedingungen erfüllt sind, wird durch Kippen des das flüssige Metall enthaltenden Ofens die Giessrinne 20 bis auf ein vorgegebenes Metallniveau gefüllt. Sobald ein Sensor - beispielsweise ein induktiver Messwertgeber - eine vorgegebene Füllhöhe in der Giessrinne 20 anzeigt, wird die Einleitöffnung 33 der Giessrinne 20 durch Anheben des Stopfens 32 der Durchflussregelungsvorrichtung 30 freigegeben und das Füllen der Anfahrböden 14 und der Kokillen 10 mit dem flüssigen Metall 18 beginnt. Der Metallstand N(t) im Anfahrboden 14 bzw. in der Kokille 10 erfolgt, beispielsweise PID-geregelt, über eine Messvorrichtung enthaltend zwei Messsysteme 22, 26.Before a casting begins, all settings on the Casting plant checked. When all starting conditions are met, tilting of the furnace containing the liquid metal, the casting trough 20 to a predetermined Metal level filled. As soon as a sensor - for example an inductive sensor - a Indicates predetermined fill level in the trough 20, the inlet opening 33 of the Watering trough 20 by lifting the plug 32 of the flow control device 30 released and the filling of the approach floors 14 and 10 molds with the liquid Metal 18 starts. The metal level N (t) takes place in the start-up base 14 or in the mold 10, for example PID-controlled, via a measuring device containing two measuring systems 22, 26.

    Die in Figur 1 dargestellte Kokille 10 ist im geschlossenen Zustand dargestellt, d.h. der Anfahrboden liegt der Kokille 10 an, wobei der Absenkvorgang noch nicht begonnen hat. Die Einfüllphase ist jedoch fast abgeschlossen, da die Kokille 10 bereits bis nahe des zweiten Sensors 28 mit flüssigem Metall 18 aufgefüllt ist.The mold 10 shown in Figure 1 is shown in the closed state, i.e. the The mold 10 rests on the approach floor, the lowering process not yet having started. However, the filling phase is almost complete because the mold 10 is already close to second sensor 28 is filled with liquid metal 18.

    Der erste Sensor 24 weist einen grösseren Abstand zum Anfahrboden 14 auf als der zweite Sensor 28. Damit wird sichergestellt, dass der auf einem Laser-optischen Verfahren beruhende, erste Sensor 24 nicht mit der Schmelze 18 in Kontakt kommt. Der auf einem induktiven Messverfahren beruhende, zweite Sensor 28 benötigt jedoch, zumindest teilweise, den direkten Kontakt mit der Schmelze 18.The first sensor 24 is at a greater distance from the approach floor 14 than the second Sensor 28. This ensures that the on a laser optical Process based, first sensor 24 does not come into contact with the melt 18. The one on an inductive However, second sensor 28 based on the measurement method requires, at least in part, the direct contact with the melt 18.

    Die Sensoren 24 und 28 sind in festem Abstand mit dem jeweiligen übrigen Messsystem 22 bzw. 26 verbunden. Zudem sind die beiden Messsysteme 22 und 26 untereinander mechanisch fest verbunden, d.h. üblicherweise bilden die beiden Messsysteme miteinander eine mechanische Einheit.The sensors 24 and 28 are at a fixed distance from the respective other measuring system 22 or 26 connected. In addition, the two measuring systems 22 and 26 are mechanical to one another firmly connected, i.e. The two measuring systems usually form one with the other mechanical unit.

    Der Abstand der Sensoren 24, 28 von der Kokille ist während dem ganzen Stranggiessprozess konstant, d.h. der Abstand der Sensoren 24, 28 von der Metalloberfläche ändert sich insbesondere während der Einfüllphase der Kokille ständig. Demzufolge ist zu Beginn der Einfüllphase der Abstand der Sensoren 24, 28 zur Metallschmelzenoberfläche resp. zum Anfahrboden 14 am grössten, während sich dieser Abstand während der Einfüllphase kontinuierlich oder diskontinuierlich verkleinert und nach Erreichen des Startniveaus Ns, d.h. bei Beginn und während des Absenkvorganges im wesentlichen konstant bleibt. The distance of the sensors 24, 28 from the mold is constant during the entire continuous casting process, ie the distance of the sensors 24, 28 from the metal surface changes constantly, in particular during the filling phase of the mold. Accordingly, at the beginning of the filling phase, the distance of the sensors 24, 28 from the molten metal surface, respectively. to the approach floor 14 is greatest, while this distance decreases continuously or discontinuously during the filling phase and remains essentially constant after reaching the start level N s , ie at the beginning and during the lowering process.

    Das in der Zeichnung wiedergegebene Ausführungsbeispiel bezieht sich auf das Strang-giessen mit einer konventionellen Kokille. Die erfindungsgemässe Vertikalstranggiessanlage umfasst jedoch auch andere Giessverfahren, wie beispielsweise das Giessen in einem elektromagnetischen Wechselfeld (EMC), d.h. unter Verwendung einer elektromagnetischen Kokille.The embodiment shown in the drawing relates to continuous casting with a conventional mold. The vertical continuous caster according to the invention however, also includes other casting methods, such as casting in an electromagnetic Alternating field (EMC), i.e. using an electromagnetic Mold.

    Figur 2 zeigt beispielhaft einen Sollwertverlauf Nsoll(t) für das erfindungsgemässe Verfahren. Sobald das Metall in einer Kokille 10 ein vorbestimmtes Anfangsniveau Na bei der Anfangszeit ta erreicht hat, beginnt die Metallniveauregelung aufgrund des Sollwertverlaufes Nsoll(t) und des gemessenen Metallstandes N(t) bis das Metallniveau in der durch den Anfahrboden 14 geschlossenen Kokille 10 das Startniveau Ns bei der Startzeit ts erreicht hat, wo das Absenken des Giesstisches 16 zur Erzeugung der Metallstränge beginnt.2 shows an example of a setpoint curve N to (t) for the inventive method. Once the metal in a mold 10, a predetermined initial level N A at the start time t A has been reached, the metal level control starts due to the setpoint curve N soll (t) and the measured metal level N (t) to the metal level in the closed by the Anfahrboden 14 mold 10 has reached the start level N s at the start time t s , where the lowering of the casting table 16 for producing the metal strands begins.

    Die in Figur 2 gezeigte Sollwertkurve Nsoll(t) ist polygonal und eignet sich beispielsweise für eine diskontinuierliche Regelung des Metallstandes. In einem dem Anfangsniveau Na naheliegenden Bereich weist die Sollwertkurve Nsoll(t) eine gegenüber der mittleren Steigung

    Figure 00130001
    grossere Steigung auf. Hingegen weist die Sollwertkurve Nsoll(t) in einem gegen das Startniveau Ns naheliegenden Bereich eine gegenüber der mittleren Steigung kleinere Steigung auf.The setpoint curve N soll (t) shown in FIG. 2 is polygonal and is suitable, for example, for discontinuous control of the metal level. In a range close to the initial level N a , the setpoint curve N set (t) has a value that is relative to the mean slope
    Figure 00130001
    greater incline. On the other hand, the setpoint curve N to (t) in an up to the starting level N s nearby area a with respect to the central pitch smaller pitch.

    Zum Zeitpunkt tw weist der Sollwert Nsoll(tw) die Höhe Nw auf Zum Zeitpunkt tw findet die Umstellung vom ersten Messsytem 22 auf das zweite Messsystem 26 statt. Bei dem in Figur 1 dargestellten, auf einem induktiven Messverfahren beruhenden, zweiten Messsystem 26 wird der Zeitpunkt tw durch den Eintritt der Schmelze in den von einer induktiv arbeitenden Messspule gebildeten Hohlraum bestimmt. Demnach wird die Metallhöhe N(t) über dem Anfahrboden 14 während der ersten Füllphase, d.h. bis die Füllhöhe den Wert Nw erreicht hat, mit dem ersten Messsystem 22 ermittelt, welches einen grossen Messbereich aufweist. Nach dem Zeitpunkt tw, wird die Metallhöhe mit dem zweiten Messsystem 26 ermittelt, dessen Messbereich gegenüber dem ersten Messsystem 22 kleiner ist, jedoch eine hohe Messgenauigkeit aufweist. Die hohe Messgenauigkeit ist insbesondere ab dem Zeitpunkt tw wesentlich, da danach der Sollwertverlauf Nsoll(t) gegenüber der mittleren Steigung bevorzugt flacher verläuft, und damit die Metallzufuhr bei einer mehrere Kokillen 10 aufweisenden Stranggiessanlage zu den einzelnen Giesseinheiten bis zum eigentlichen Giessstart ts, der durch das Absenken des Giesstisches 16 eingeleitet wird, optimal gesteuert werden kann. At the time t w, the value N SOLL (t w) the amount N w at the time t w is the change from the first measurement system 22 to the second measuring system 26 instead. In the second measuring system 26 shown in FIG. 1, which is based on an inductive measuring method, the point in time t w is determined by the entry of the melt into the cavity formed by an inductively working measuring coil. Accordingly, the metal height N (t) above the approach floor 14 during the first filling phase, ie until the filling height has reached the value N w , is determined with the first measuring system 22, which has a large measuring range. After the time t w , the metal height is determined with the second measuring system 26, the measuring range of which is smaller than the first measuring system 22, but has a high measuring accuracy. The high measurement accuracy is particularly important from time t w , since thereafter the setpoint curve N soll (t) is preferably flatter than the mean slope, and thus the metal supply to the individual casting units in a continuous casting installation having several molds 10 until the actual casting start t s , which is initiated by lowering the casting table 16, can be optimally controlled.

    Das Startniveau Ns, d.h. die Höhe der Oberfläche des flüssigen Metalles 18 über dem Anfahrboden 14 zur Startzeit ts, liegt typischerweise zwischen 100 und 200 mm und insbesondere zwischen 120 und 190 mm. Das Startniveau Ns wird - ausgehend vom Anfangszeitpunkt ta - typischerweise in einer Zeit von 20 bis 90 s oder bevorzugt innerhalb von 25 bis 45 s erreicht.The starting level N s , ie the height of the surface of the liquid metal 18 above the approach floor 14 at the starting time t s , is typically between 100 and 200 mm and in particular between 120 and 190 mm. Starting level t a - the starting level N s is typically reached within a time of 20 to 90 s or preferably within 25 to 45 s.

    Claims (11)

    Vertikalstrauggiessanlage, insbesondere Vertikalstranggiessanlage zum automatischen Stranggiessen von Aluminiumlegierungen, enthaltend wenigstens eine Kokille (10) mit auf einem absenkbaren Giesstisch (16) angeordnetem Anfahrboden (14), ein Giessrinnensystem (20) zum Transport einer Metallschmelze von einem Ofen in die einzelnen Kokillen (10), für jede Kokille (10) eine Messvorrichtung zur Bestimmung des zeitabhängigen Metallschmelzenniveaus N(t) und eine Durchflussregelungsvorrichtung (30) zur Steuerung der Metallzufuhr in die einzelnen Kokillen (10) in Abhängigkeit der Differenz eines vorgegebenen Sollwertverlaufes Nsoll(t) und des gemessenen zeitabhängigen Metallschmelzenniveaus N(t),
    dadurch gekennzeichnet, dass die Messvorrichtung aus zwei physikalisch unterschiedlich arbeitenden Messsystemen (22, 26) mit je einem Sensor (24, 28) besteht, die Sensoren (24, 28) jeder Messvorrichtung bezüglich der Kokille (10) in einem vorbestimmten und festbleibenden Abstand fixiert sind, und das erste Messsystem (22) in einem Messbereich von wenigstens 200 mm eine Messgenaugkeit von mindestens ± 2 mm aufweist, und das zweite Messsystem (26) in einem Messbereich von wenigstens 20 mm eine Messgenauigkeit von mindestens ± 0.1 mm aufweist.
    Vertical casting machine, in particular vertical continuous casting machine for the automatic continuous casting of aluminum alloys, comprising at least one mold (10) with a start-up base (14) arranged on a lowerable casting table (16), a pouring channel system (20) for transporting a molten metal from a furnace into the individual molds (10) , For each mold (10), a measuring device for determining the time-dependent molten metal level N (t) and a flow control device (30) for controlling the metal supply into the individual molds (10) depending on the difference between a predetermined setpoint curve N Soll (t) and the measured time-dependent molten metal level N (t),
    characterized in that the measuring device consists of two physically different working measuring systems (22, 26) each with a sensor (24, 28), the sensors (24, 28) of each measuring device are fixed with respect to the mold (10) at a predetermined and fixed distance, and that the first measuring system (22) has a measuring accuracy of at least ± 2 mm in a measuring range of at least 200 mm, and the second measuring system (26) has a measuring accuracy of at least ± 0.1 mm in a measuring range of at least 20 mm.
    Vertikalstranggiessanlage nach Anspruch 1, dadurch gekennzeichnet, dass das erste Messsystem (22) auf einem optischen, kapazitiven, Ultraschall- oder Mikrowellen-Verfahren, und das zweite Messsystem (26) auf einem induktiven, kapazitiven oder optischen Verfahren basiert.Vertical continuous caster according to claim 1, characterized in that the first Measuring system (22) on an optical, capacitive, ultrasonic or microwave method, and the second measuring system (26) on an inductive, capacitive or optical Process based. Vertikalstranggiessanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erste Messsystem (22) auf einem optischen oder einem Ultraschall- oder Mikrowellen-Verfahren, und das zweite Messsystem (26) auf einem induktiven oder kapazitiven Verfahren basiert.Vertical continuous caster according to claim 1 or 2, characterized in that the first measuring system (22) on an optical or an ultrasound or microwave method, and the second measuring system (26) on an inductive or capacitive Process based. Vertikalstranggiessanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste Messsystem (22) auf einem optischen Verfahren, insbesondere auf einem Triangulationsverfahren, und das zweite Messsystem (26) auf einem induktiven Verfahren basiert. Vertical continuous caster according to one of claims 1 to 3, characterized in that the first measuring system (22) is based on an optical method, in particular on a Triangulation method, and the second measuring system (26) on an inductive method based. Vertikalstranggiessanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das erste Messsystem (22) jeder Messvorrichtung in Bezug auf die Metallschmelze (18) berührungslos arbeitet.Vertical continuous caster according to one of claims 1 to 4, characterized in that the first measuring system (22) of each measuring device in relation to the molten metal (18) works without contact. Verfahren zum Vertikalstranggiessen von Metallen, insbesondere von Aluminiumlegierungen, in einer wenigstens eine Kokille (10) umfassenden Giessanlage, bei welchem Verfahren das flüssige Metall von einem Ofen über ein Giessrinnensystem (20) an die einzelnen Kokillen (10) herangeführt und über eine Durchflussregelungsvorrichtung (30) in die von auf einem absenkbaren Giesstisch (16) angeordneten Anfahrböden (14) während einer Füllphase zunächst geschlossenen Kokillen (10) geleitet wird, wobei ausgehend von einem Anfangsniveau (Na) der Metallschmelze (18), bei der eine Metallschmelzen-Niveauregelung beginnt, bis zu einem vorbestimmten Startniveau (Ns), bei dem das Absenken des Giesstisches (16) zur Erzeugung der Metallstränge beginnt, und während der gesamten Absenkphase das zeitabhängige Metallniveau N(t) in jeder Kokille (10) mit einer Messvorrichtung gemessen und mit einer zeitabhängigen Sollwertvorgabe Nsoll(t) verglichen wird, und die Metallzufuhr in die einzelnen Kokillen (10) mittels einer Durchflussregelungsvorrichtung (30) gemäss der zeitabhängigen Differenz zwischen Ist- und Sollwert des Metallniveaus geregelt wird,
    dadurch gekennzeichnet, dass die Messung des zeitabhängigen Metallniveaus N(t) mit einer Messvorrichtung bestehend aus zwei physikalisch unterschiedlich arbeitenden Messsystemen (22, 26) durchgeführt wird, wobei ausgehend vom Anfangsniveau (Na) bis zur Erreichung eines vorbestimmten Schmelzenniveaus (Nw) durch ein erstes Messsystem (22) mit einem ersten Sensor (24) geschieht, und für die weitere Messung des zeitabhängigen Metallniveau-Verlaufes N(t) während der daran anschliessenden Füll-und Absenkphasen ein zweites Messsystem (26) mit einem zweiten Sensor (28) verwendet wird, und die Sensoren (24, 28) der beiden Messsysteme (22, 26) bezüglich der Kokille (10) eine feste und während dem ganzen Stranggiessprozess konstante Position einnehmen.
    Method for vertical continuous casting of metals, in particular aluminum alloys, in a casting plant comprising at least one mold (10), in which method the liquid metal is fed from an oven via a trough system (20) to the individual molds (10) and via a flow control device (30 ) into the molds (10), which are initially closed on a lowerable casting table (16) arranged during a filling phase, starting from an initial level (N a ) of the molten metal (18) at which a molten metal level control begins , up to a predetermined starting level (N s ), at which the lowering of the casting table (16) for the production of the metal strands begins, and during the entire lowering phase the time-dependent metal level N (t) in each mold (10) is measured with and with a time-dependent setpoint specification N soll (t) is compared, and the metal feed into the individual K okillen (10) is controlled by means of a flow control device (30) according to the time-dependent difference between the actual value and the target value of the metal level,
    characterized in that the measurement of the time-dependent metal level N (t) is carried out with a measuring device consisting of two physically different measuring systems (22, 26), starting from the initial level (N a ) until reaching a predetermined melt level (N w ) by a first measuring system ( 22) with a first sensor (24), and a second measuring system (26) with a second sensor (28) is used for the further measurement of the time-dependent metal level curve N (t) during the subsequent filling and lowering phases, and the sensors (24, 28) of the two measuring systems (22, 26) occupy a fixed position with respect to the mold (10) and are constant during the entire continuous casting process.
    Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das erste Messsystem (22) auf einem optischen, kapazitiven, Ultraschall- oder Mikrowellen-Verfahren, und das zweite Messsystem (26) auf einem induktiven, kapazitiven oder optischen Verfahren basiert. A method according to claim 6, characterized in that the first measuring system (22) on an optical, capacitive, ultrasonic or microwave process, and the second measuring system (26) on an inductive, capacitive or optical method based. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das erste Messsystem (22) auf einem optischen Verfahren, insbesondere auf einem Triangulationsverfahren, und das zweite Messsystem (26) auf einem induktiven Verfahren basiert.A method according to claim 6 or 7, characterized in that the first measuring system (22) on an optical method, in particular on a triangulation method, and the second measuring system (26) is based on an inductive method. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das vorbestimmte Schmelzenniveau (Nw), bei dem der Messsystem-Wechsel stattfindet, durch die vertikale Position der unteren Öffnung eines von einer induktiv arbeitenden Messspule gebildeten, zylinderförmigen Hohlraumes bestimmt wird, wobei die Längsachse der Messspule im wesentlichen senkrecht zur Oberfläche der Metallschmelze liegt.Method according to one of claims 6 to 8, characterized in that the predetermined melt level (N w ), at which the measuring system change takes place, is determined by the vertical position of the lower opening of a cylindrical cavity formed by an inductively working measuring coil, wherein the longitudinal axis of the measuring coil is essentially perpendicular to the surface of the molten metal. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Messung des Metallniveaus N(t) mit dem ersten Messsystem (22) zu diskreten Zeitpunkten erfolgt, und die Metall-Niveaumessung N(t) mit dem zweiten Messsystem (26) kontinuierlich geschieht.Method according to one of claims 6 to 9, characterized in that the measurement of the metal level N (t) with the first measuring system (22) at discrete times takes place, and the metal level measurement N (t) with the second measuring system (26) continuously happens. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Metallzufuhr in die Kokillen (10) aufgrund der entsprechenden Differenz zwischen Sollwertkurve Nsoll(t) und Metallniveau-Messwert N(t) PID-geregelt erfolgt.Method according to one of claims 6 to 10, characterized in that the metal supply to the mold (10) is to due to the corresponding difference between the setpoint curve N (t) and metal level measurement value N (t) PID-controlled takes place.
    EP98811066A 1998-10-23 1998-10-23 Vertical continuous casting plant with optimised molten metal level measuring Withdrawn EP0995523A1 (en)

    Priority Applications (8)

    Application Number Priority Date Filing Date Title
    EP98811066A EP0995523A1 (en) 1998-10-23 1998-10-23 Vertical continuous casting plant with optimised molten metal level measuring
    PCT/EP1999/007868 WO2000024535A1 (en) 1998-10-23 1999-10-16 Vertical continuous casting installation with optimized measurement of the metal level
    AU63407/99A AU749027B2 (en) 1998-10-23 1999-10-16 Vertical continuous casting installation with optimized measurement of the metal level
    CA002348613A CA2348613A1 (en) 1998-10-23 1999-10-16 Vertical continuous casting installation with optimized measurement of the metal level
    EP99950752A EP1133371A1 (en) 1998-10-23 1999-10-16 Vertical continuous casting installation with optimized measurement of the metal level
    ZA200102812A ZA200102812B (en) 1998-10-23 2001-04-05 Verticle continuous casting installation with optimized measurement of the metal level.
    IS5920A IS5920A (en) 1998-10-23 2001-04-18 Vertical continuous casting equipment with metal height measurement
    NO20011978A NO20011978L (en) 1998-10-23 2001-04-20 Vertical string casting system with optimized metal level measurement

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP98811066A EP0995523A1 (en) 1998-10-23 1998-10-23 Vertical continuous casting plant with optimised molten metal level measuring

    Publications (1)

    Publication Number Publication Date
    EP0995523A1 true EP0995523A1 (en) 2000-04-26

    Family

    ID=8236404

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP98811066A Withdrawn EP0995523A1 (en) 1998-10-23 1998-10-23 Vertical continuous casting plant with optimised molten metal level measuring
    EP99950752A Withdrawn EP1133371A1 (en) 1998-10-23 1999-10-16 Vertical continuous casting installation with optimized measurement of the metal level

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP99950752A Withdrawn EP1133371A1 (en) 1998-10-23 1999-10-16 Vertical continuous casting installation with optimized measurement of the metal level

    Country Status (7)

    Country Link
    EP (2) EP0995523A1 (en)
    AU (1) AU749027B2 (en)
    CA (1) CA2348613A1 (en)
    IS (1) IS5920A (en)
    NO (1) NO20011978L (en)
    WO (1) WO2000024535A1 (en)
    ZA (1) ZA200102812B (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN100364696C (en) * 2003-06-13 2008-01-30 瓦格斯塔夫公司 Mold table sensing and automation system
    WO2010078201A1 (en) * 2008-12-31 2010-07-08 Tenedora Nemak, S.A. De C.V. Low-pressure sand casting of aluminum alloy cylinder engine parts
    EP2386366A3 (en) * 2010-05-14 2012-10-10 Inteco special melting technologies GmbH Method and device for continuous detection of the slag level in electroslag melting assemblies with short slide moulds
    CN110508764A (en) * 2019-09-20 2019-11-29 哈尔滨工业大学 A kind of the D.C.casting equipment and its D.C.casting method of equal outer diameters thin wall alloy casting travelling-magnetic-field/ultrasonic synergistic optimization

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102017111722A1 (en) 2017-05-30 2018-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. METHOD AND DEVICE FOR CHARACTERIZING AN OBJECT, METHOD AND DEVICE FOR DETERMINING A COMPOSITION OF AN OBJECT, AND METHOD AND DEVICE FOR DETECTING AN ELECTRICALLY CONDUCTIVE AND / OR MAGNETIC PERMEABLE OBJECT

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3205480A1 (en) * 1981-05-26 1982-12-16 Kaiser Aluminum & Chemical Corp., 94643 Oakland, Calif. METHOD AND DEVICE FOR REGULATING THE METAL BATH LEVEL IN A MULTIPLE NUMBER OF VERTICAL CONTINUOUS OR SEMI-CONTINUOUS CASTING UNITS
    JPH0819844A (en) * 1994-07-05 1996-01-23 Sumitomo Metal Ind Ltd Method for controlling casting in continuous casting machine
    EP0776715A1 (en) * 1995-02-28 1997-06-04 Nkk Corporation Method of controlling continuous casting and apparatus therefor
    WO1998032559A1 (en) * 1997-01-24 1998-07-30 Alusuisse Technology & Management Ag Method for vertical continuous casting of metals

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3205480A1 (en) * 1981-05-26 1982-12-16 Kaiser Aluminum & Chemical Corp., 94643 Oakland, Calif. METHOD AND DEVICE FOR REGULATING THE METAL BATH LEVEL IN A MULTIPLE NUMBER OF VERTICAL CONTINUOUS OR SEMI-CONTINUOUS CASTING UNITS
    JPH0819844A (en) * 1994-07-05 1996-01-23 Sumitomo Metal Ind Ltd Method for controlling casting in continuous casting machine
    EP0776715A1 (en) * 1995-02-28 1997-06-04 Nkk Corporation Method of controlling continuous casting and apparatus therefor
    WO1998032559A1 (en) * 1997-01-24 1998-07-30 Alusuisse Technology & Management Ag Method for vertical continuous casting of metals

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 096, no. 005 31 May 1996 (1996-05-31) *

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN100364696C (en) * 2003-06-13 2008-01-30 瓦格斯塔夫公司 Mold table sensing and automation system
    WO2010078201A1 (en) * 2008-12-31 2010-07-08 Tenedora Nemak, S.A. De C.V. Low-pressure sand casting of aluminum alloy cylinder engine parts
    EP2386366A3 (en) * 2010-05-14 2012-10-10 Inteco special melting technologies GmbH Method and device for continuous detection of the slag level in electroslag melting assemblies with short slide moulds
    CN110508764A (en) * 2019-09-20 2019-11-29 哈尔滨工业大学 A kind of the D.C.casting equipment and its D.C.casting method of equal outer diameters thin wall alloy casting travelling-magnetic-field/ultrasonic synergistic optimization

    Also Published As

    Publication number Publication date
    NO20011978D0 (en) 2001-04-20
    CA2348613A1 (en) 2000-05-04
    ZA200102812B (en) 2001-11-15
    EP1133371A1 (en) 2001-09-19
    IS5920A (en) 2001-04-18
    AU749027B2 (en) 2002-06-13
    AU6340799A (en) 2000-05-15
    NO20011978L (en) 2001-06-08
    WO2000024535A1 (en) 2000-05-04

    Similar Documents

    Publication Publication Date Title
    EP3049755B1 (en) Method for measuring the depth of penetration of a laser beam into a workpiece, and laser machining device
    DE2839953C3 (en) Device and method for measuring the bath level in a continuous casting mold
    EP0581786B1 (en) Method of controlling the casting parameters in a die-casting machine
    AT504145B1 (en) MEASURING DEVICE AND MEASURING HEAD FOR TOUCH-FREE SCANNING OF AN OBJECT IN THREE DIMENSIONS
    WO1999011844A1 (en) Method and device for monitoring a melt for producing crystals
    DE3151384A1 (en) METHOD FOR MEASURING THE WIDTH, IN PARTICULAR OF THE HEAD, OF SELF-LUMINOUS ROLLING MATERIAL AND METHOD FOR SCOOPING THE HEAD OF SELF-LUMINOUS ROLLING MATERIAL
    DE1297827B (en) Method and device for regulating the amount of metal flowing out of a pouring ladle
    DD297703A5 (en) METHOD FOR CONTINUOUSLY DETERMINING THE THICKNESS OF A LIQUID SLAG LAYER ON THE SURFACE OF METAL SCRAP
    EP0995523A1 (en) Vertical continuous casting plant with optimised molten metal level measuring
    EP0398455B1 (en) Method and apparatus for the production of a rotationally symmetric body
    EP0131979B1 (en) Method of regulating a molten metal bath level
    DE2851256A1 (en) AUTOMATIC METAL MELT SURFACE LEVEL CONTROL SYSTEM FOR CONTINUOUS CASTING MACHINES
    DE3346650A1 (en) Process and apparatus for the determination and control of a level of a metal melt
    WO2000038858A1 (en) Method for detecting and controlling the level of liquid metal in an ingot mold
    DE2906641A1 (en) METHOD FOR THE OPTICAL-ELECTRICAL MEASUREMENT OF THE DISTANCE BETWEEN A MEASURING DEVICE AND A TESTING PART
    EP3464654A1 (en) Device and method for sensing a conveying rate of a liquid material
    DE3307393A1 (en) METHOD AND DEVICE FOR DETERMINING THE SURFACE LEVEL OF LIQUID METAL
    EP0451929B1 (en) Method for determination and regulating the level of a metal melting bath
    DE3937752A1 (en) Automatically starting continuous casting appts.
    DE2529329C3 (en) Process for crucible zone melting
    EP0331612A2 (en) Method upon a casting plant for producing strands
    DE3934975A1 (en) Method and appts. to control molten metal level in continuous casting - has output signal from eddy-current liq. level sensor connected w.r.t. output of resistance level probe
    EP2649407B1 (en) Method for determining the height profile of a melt
    DE19604983C2 (en) Device for the stereolithographic layer-by-layer production of an object and use of a capacitive distance sensor for monitoring the distance to a surface of a dielectric object
    EP0249573A2 (en) Method and apparatus for the slag-free emptying of ladles

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20001026

    AKX Designation fees paid

    Free format text: DE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

    17Q First examination report despatched

    Effective date: 20020618

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20030925