EP0986702A1 - Method for controlling at least one capacitive actuating element - Google Patents

Method for controlling at least one capacitive actuating element

Info

Publication number
EP0986702A1
EP0986702A1 EP98932003A EP98932003A EP0986702A1 EP 0986702 A1 EP0986702 A1 EP 0986702A1 EP 98932003 A EP98932003 A EP 98932003A EP 98932003 A EP98932003 A EP 98932003A EP 0986702 A1 EP0986702 A1 EP 0986702A1
Authority
EP
European Patent Office
Prior art keywords
actuator
voltage
charging
amount
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98932003A
Other languages
German (de)
French (fr)
Other versions
EP0986702B1 (en
Inventor
Christian Hoffmann
Hellmut Freudenberg
Hartmut Gerken
Martin Hecker
Richard Pirkl
Manfred Weigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0986702A1 publication Critical patent/EP0986702A1/en
Application granted granted Critical
Publication of EP0986702B1 publication Critical patent/EP0986702B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/062Small signal circuits; Means for controlling position or derived quantities, e.g. for removing hysteresis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/201Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2082Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit being adapted to distribute current between different actuators or recuperate energy from actuators

Definitions

  • the invention relates to a method for controlling at least one capacitive actuator according to the preamble of claim 1.
  • a piezo actuator consists of a large number of piezoceramic layers and forms a so-called “stack”, which changes its dimensions, in particular its length, when a voltage is applied, or generates an electrical voltage when subjected to mechanical pressure or tension.
  • a drive circuit for a capacitive actuator is known from US Pat. No. 5,387,834, which is driven with a constant charging voltage and a charging time determined as a function of the actuator temperature measured by means of a sensor.
  • the object of the invention is to provide a method for controlling at least one capacitive actuator, which works with sufficient accuracy even when the boundary conditions change without using a temperature sensor.
  • the amount of charge ⁇ Q applied is determined by integrating the current I p flowing through the actuator during the charging process. Then
  • E 0.5 * C2 (U before - U after ) * U p .
  • This value is, as already described above, so compared ⁇ with a predetermined reference value E, and the result adjusted according to the charge voltage U L for the next drive.
  • the inventive method is based on one of the
  • a charging capacitor C1 is connected via a diode D1 between the positive pole + U SNT and the negative pole GND of a regulated voltage source SNT, preferably a switching power supply.
  • a series circuit comprising a charging switch Ta, two further diodes D2 and D3 and a discharging switch Tb connected to the negative pole GND is arranged in parallel with the charging capacitor C1.
  • connection point of the two diodes D2 and D3 and the ground connection GND there is a series circuit consisting of a recharging capacitor C2, a ring coil L, a first one Actuator Pl and a first, controlled selection switch Tl.
  • a series circuit comprising this actuator and a further selection switch T2 to Tn of the series circuit comprising the first actuator P1 and the first selection switch T1 is connected in parallel.
  • the selection switches, the discharge switches Tb and the bypass switch Tc mentioned below are N-power MOSFET switches, which usually contain inverse diodes.
  • the charging switch Ta is designed as a P-power MOSFET switch.
  • bypass switch Tc is provided, the drain connection of which is connected to the connection point between the ring coil L and the actuators Pl to Pn, and the source connection of which is connected to the source connection of at least the selection switch Tl. All switches are controlled by their output connections from the output signals of the control circuit ST.
  • the bypass switch Tc arranged in parallel with the actuators Pl to Pn is controlled by the control circuit ST when the actuator voltage exceeds a predetermined limit value or when an error is detected in the internal combustion engine up to the power output stages of the injection valves, and discharges the capacitive actuators Pl to Pn in the form of a short circuit via the inverse diodes of the selection switches Tl to Tn.
  • the bypass switch Tc is also required for charging the discharge capacitor C2 before the first actuation of the actuator or for recharging it between two actuations of the actuator that are at different times.
  • a diode or zener diode with the same polarity as the inverse diode of the bypass switch can also be provided, but then charging the discharge capacitor C2 via an actuator actuation at one Fuel injection valve, preferably without fuel pressure, must be made.
  • the switches Ta, Tb, Tc and Tl to Tn are controlled by the control circuit ST depending on control signals st of an engine control unit, not shown.
  • the charging capacitor C1 can be regarded as the output capacitor of the switched-mode power supply SNT.
  • the charging capacitor C1 is charged to an output voltage + U SNT of the switching power supply SNT determined by the control circuit ST. The determination of this voltage + U SNT is explained below.
  • the charging capacitor Cl is charged to + U SNT and the discharging capacitor C2 is discharged and the ring coil L is de-energized. So that the capacitor C2 is also charged before the first actuation of the actuator, the bypass switch Tc is first controlled to be conductive. Cl discharges through C2, L and Tc. Then Tc is again controlled in a non-conductive manner and now the discharge switch Tb is controlled in a conductive manner.
  • the voltage U c2 across the capacitor C2 is communicated to the control circuit ST via a measuring circuit in this exemplary embodiment, which is designed as a sample-and-hold circuit S&H and which outputs the output voltage + U SNT «U C1 of the switching power supply SNT so that a predetermined initial voltage is applied to the series connection of Cl and C2.
  • a measuring circuit in this exemplary embodiment, which is designed as a sample-and-hold circuit S&H and which outputs the output voltage + U SNT «U C1 of the switching power supply SNT so that a predetermined initial voltage is applied to the series connection of Cl and C2.
  • the current I p flowing in the charging circuit is measured using a measuring circuit M, which in the simplest case can consist of a shunt resistor, and is integrated in an integrator located in the control circuit. Since the
  • Measuring circuit M is only required for this method, it is framed in dashed lines in the drawing and the reference symbol for the current I p is placed in brackets. This method is carried out further as in the second method described below.
  • the required charging voltage U L is determined for the next control process. If E is ⁇ E so n, the charging voltage U L is increased, for example, step by step from the previously valid value; if Ei st > Eg o n, it is reduced by one step.
  • the next charging process of the actuator P1 or the charging process of the next actuator P2 can then take place with this charging voltage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Magnetically Actuated Valves (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The invention relates to a method for controlling at least one capacitive actuating element. The capacity of the actuating element Cp= DELTA Q/Up is calculated from the charge quantity ( DELTA Q) supplied to said actuating element and the voltage (Up) applied to the actuating element once the charging process is complete and the energy (Eist) = 0.5*Cp*Up<2> = 0.5* DELTA Q*Up supplied to the actuating element during the charging process is calculated from the capacity (Cp) and the voltage (Up) of the actuating element. The charging voltage (UL = UC1 + UC2) is regulated in such a way that the energy (Eist) supplied corresponds to a predetermined set value (Esoll).

Description

Beschreibungdescription
Verfahren zum Ansteuern wenigstens eines kapazitiven StellgliedesMethod for controlling at least one capacitive actuator
Die Erfindung betrifft ein Verfahren zum Ansteuern wenigstens eines kapazitiven Stellgliedes nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for controlling at least one capacitive actuator according to the preamble of claim 1.
Aus der DE 36 21 541 AI ist ein Verfahren zum Ansteuern kapazitiver Stellglieder, insbesondere piezoelektrisch betriebener Kraftstoffeinspritzventile einer Brennkraftmaschine, bekannt, nach welchem die Stellglieder mit konstanter Spannung geladen werden.From DE 36 21 541 AI, a method for controlling capacitive actuators, in particular piezoelectrically operated fuel injection valves of an internal combustion engine, is known, according to which the actuators are charged with constant voltage.
Ein Piezo-Stellglied besteht aus einer Vielzahl piezokerami- scher Schichten und bildet einen sog. „Stack", der bei Anlegen einer Spannung seine Abmessungen, insbesondere seine Länge, verändert, oder bei mechanischem Druck oder Zug eine elektrische Spannung erzeugt.A piezo actuator consists of a large number of piezoceramic layers and forms a so-called “stack”, which changes its dimensions, in particular its length, when a voltage is applied, or generates an electrical voltage when subjected to mechanical pressure or tension.
Die elektrischen Eigenschaften eines derartigen Piezostacks ändern sich mit der Temperatur, der er ausgesetzt ist. Mit steigender Temperatur vergrößert sich seine Kapazität, aber auch der Hub nimmt zu. Bei den für automotive Anwendungen zu berücksichtigenden Temperaturen von etwa -40°C bis +150°C sind dabei Kapazitätsänderungen bis zu einem Faktor 2 zu beobachten.The electrical properties of such a piezo stack change with the temperature to which it is exposed. Its capacity increases with increasing temperature, but the stroke also increases. At the temperatures of approximately -40 ° C to + 150 ° C to be taken into account for automotive applications, changes in capacity up to a factor of 2 can be observed.
Wird ein Piezo-Stellglied in allen Betriebspunkten beispielsweise mit konstanter Spannung geladen, die bei niedrigen Temperaturen den benötigten Hub erbringt, so erhält man bei hohen Temperaturen einen Hub, der deutlich größer ist als erforderlich - was bei Kraftstoffeinspritzventilen mit konstan- tem Kraftstoffdruck eine zu große Kraftstoffeinspritzmenge bedeutet. Da bei hohen Temperaturen die Kapazität des Piezo- stacks ebenfalls größer ist, wird sehr viel mehr Ladung und Energie benötigt, als erforderlich.If a piezo actuator is charged at all operating points with constant voltage, for example, which produces the required stroke at low temperatures, a stroke is obtained at high temperatures that is significantly greater than required - which is too great for fuel injection valves with constant fuel pressure Fuel injection quantity means. Since the capacity of the piezo stack is also larger at high temperatures, much more charge and energy is required than is required.
Das aus der DE 36 21 541 AI bekannte Verfahren arbeitet deshalb nur bei vollständig unveränderten Randbedingungen (keine Toleranzen der verwendeten Bauteile, keine Veränderungen der elektrischen Eigenschaften, konstante Temperatur) hinreichend genau.The method known from DE 36 21 541 AI therefore only works with sufficient accuracy under completely unchanged boundary conditions (no tolerances of the components used, no changes in the electrical properties, constant temperature).
Aus der US 5,387,834 ist eine Ansteuerschaltung für ein kapazitives Stellglied bekannt, welches mit einer konstanten Ladespannung und einer in Abhängigkeit von der mittels eines Sensors gemessenen Stellgliedtemperatur bestimmten Auflade- dauer angesteuert wird.A drive circuit for a capacitive actuator is known from US Pat. No. 5,387,834, which is driven with a constant charging voltage and a charging time determined as a function of the actuator temperature measured by means of a sensor.
Aufgabe der Erfindung ist es, ein Verfahren zum Ansteuern wenigstens eines kapazitiven Stellgliedes anzugeben, welches auch bei Veränderung der Randbedingungen ohne Verwendung ei- nes Temperatursensors hinreichend genau arbeitet.The object of the invention is to provide a method for controlling at least one capacitive actuator, which works with sufficient accuracy even when the boundary conditions change without using a temperature sensor.
Diese Aufgabe wird erfindungsgemäß durch die im Anspruch 1 genannten Merkmale gelöst. In den Unteransprüchen sind vorteilhafte Weiterbildungen der Erfindung angegeben.This object is achieved by the features mentioned in claim 1. Advantageous developments of the invention are specified in the subclaims.
Untersuchungen haben gezeigt, daß die einem kapazitiven Stellglied zugeführte Energie ein sehr viel präziseres Maß für den Hub ds darstellt als die angelegte Spannung, und daß eine Aufladung mit konstanter Energie über den benötigten Temperaturbereich einen wesentlich konstanteren Hub erbringt. Der Hub ändert sich etwa linear mit der angelegten Spannung bei konstanter Temperatur. Ändert sich die Temperatur, so ändert sich auch der Hub bei gleichbleibender Spannung. Hingegen ändert sich der Hub proportional zum Quadrat der aufge- brachten Energie, jedoch unabhängig von der Temperatur. Dazu wird aus der dem Stellglied zugeführten Ladung ΔQ und der nach Beendigung des Aufladevorgangs am Stellglied, beispielsweise Pl, gemessenen Spannung Up die Kapazität Cp = ΔQ/Up des Stellgliedes und dann aus ΔQ und Cp die dem Stellglied zugeführte Energie Eist = 0,5*Cp*Up 2 = 0,5*ΔQ*Up ermittelt. Dieser Wert Ej_st wird mit einem vorgegebenen Wert E soiι verglichen und dem Vergleichsergebnis entsprechend die Ladespannung UL für den nächsten Ansteuervorgang nachgeregelt (UL wird vergrößert, wenn Eist < Esoll, und verkleinert, wenn E st > Esoιι) .Studies have shown that the energy supplied to a capacitive actuator is a much more precise measure of the stroke ds than the applied voltage, and that charging with constant energy over the required temperature range produces a much more constant stroke. The stroke changes approximately linearly with the applied voltage at constant temperature. If the temperature changes, the stroke also changes while the voltage remains the same. On the other hand, the stroke changes proportionally to the square of the energy applied, but regardless of the temperature. For this purpose, from the actuator charge supplied .DELTA.Q and after completion of the charge on the actuator, for example, Pl, measured voltage U p, the capacitance C p = .DELTA.Q / U p of the actuator, and then from .DELTA.Q and C p is the power supplied to the actuator energy E = 0.5 * C p * U p 2 = 0.5 * ΔQ * U p determined. This value Ej_ st is compared with a predetermined value E so iι and readjusted to the comparison result in accordance with the charge voltage U L for the next driving operation (U L is increased when E is <E to, and decreased if E st> E so ιι) .
In einem für beliebige Ansteuerschaltungen verwendbaren Verfahren wird die aufgebrachte Ladungsmenge ΔQ durch Integration des durch das Stellglied während des Aufladevorgangs flie- ßenden Stroms Ip ermittelt. Dann istIn a method that can be used for any control circuits, the amount of charge ΔQ applied is determined by integrating the current I p flowing through the actuator during the charging process. Then
ΔQ = Jlpdt → Cp = Jlpdt/Up → Eist = 0,5* j"lpdt*Up.ΔQ = Jl p dt → C p = Jl p dt / U p → Ei st = 0.5 * j " l p dt * U p .
Für Schaltungen mit Lade- und Entladekondensator in Reihen- Schaltung, wie in der Zeichnung dargestellt, wird erfindungsgemäß ein einfacheres Verfahren für die Ermittlung der dem Stellglied zugeführten Ladungsmenge ΔQ angegeben, bei dem keine Integration erforderlich ist. Bei diesem Verfahren wird die am Entladekondensator C2 anliegende Spannung einmal vor dem Ladevorgang und dann nach Beendigung des Ladevorgangs gemessen und die Differenz ΔU = Uvor - Unac gebildet und daraus die Ladungsmenge ΔQ = C2*ΔU = C2* (Uvor - Unach) errechnet; mit der am Stellglied nach Beendigung des Ladevorgangs anliegenden Spannung Up wird analog zu dem oben angegebenen Verfahren die Stellgliedkapazität Cp und die dem Stellglied zugeführte Energie Energie Eist ermittelt: ΔQ = C2 * ( Uvor - Unach) → Cp = C2 * (Uvor - Unach) /UpFor circuits with charging and discharging capacitors in series, as shown in the drawing, a simpler method for determining the amount of charge ΔQ fed to the actuator is specified according to the invention, in which no integration is required. In this method, the voltage applied to the discharge capacitor C2 is measured once before the charging process and then after the charging process has ended, and the difference ΔU = U before - U nac is formed and from this the charge quantity ΔQ = C2 * ΔU = C2 * (U before - U after ) calculated; With the voltage U p present at the actuator after the charging process has ended, the actuator capacitance C p and the energy energy Ei st supplied to the actuator are determined analogously to the method specified above: ΔQ = C2 * (U before - U after ) → C p = C2 * (U before - U after ) / U p
Eist = 0 , 5 *C2 ( Uvor - Unach) *Up .E is = 0.5 * C2 (U before - U after ) * U p .
Dieser Wert wird, wie bereits oben beschrieben, mit einem vorgegebenen Sollwert Esoιι verglichen und dem Ergebnis entsprechend die Ladespannung UL für den nächsten Ansteuervorgang nachgeregelt.This value is, as already described above, so compared ιι with a predetermined reference value E, and the result adjusted according to the charge voltage U L for the next drive.
Da die Stellgliedkapazität Cp etwa proportional zur Stell- gliedtemperatur Tp ist, kann die berechnete Stellgliedkapazität Cp gemäß der Formel Cp = ΔQ/Up « Tp zur Bestimmung der Stellgliedtemperatur Tp herangezogen werden und ggf. ein Temperatursensor eingespart werden.Since the actuator capacity C p is approximately proportional to the actuator temperature T p , the calculated actuator capacity C p can be used according to the formula C p = ΔQ / U p «T p to determine the actuator temperature T p and, if necessary, a temperature sensor can be saved.
Das erfindungsgemäße Verfahren wird anhand einer aus derThe inventive method is based on one of the
Zeichnung ersichtlichen Schaltung zum Ansteuern wenigstens eines kapazitiven Stellgliedes Pl bis Pn für die Betätigung wenigstens eines nicht dargestellten Kraftstoffeinspritzven- tils mittels einer Steuerschaltung ST, die Teil eines weiter nicht dargestellten mikroprozessorgesteuerten Motorsteuergerätes ist, erläutert.Drawing visible circuit for driving at least one capacitive actuator Pl to Pn for actuating at least one fuel injection valve, not shown, by means of a control circuit ST, which is part of a microprocessor-controlled engine control unit, not shown, explained.
Zwischen dem Pluspol +USNT und dem Minuspol GND einer geregelten Spannungsquelle SNT, vorzugsweise eines Schaltnetz- teils, ist über eine Diode Dl ein Ladekondensator Cl angeschlossen. Parallel zum Ladekondensator Cl ist eine Reihenschaltung aus einem Ladeschalter Ta, zwei weiteren Dioden D2 und D3 und einem mit dem Minuspol GND verbundenen Entladeschalter Tb angeordnet.A charging capacitor C1 is connected via a diode D1 between the positive pole + U SNT and the negative pole GND of a regulated voltage source SNT, preferably a switching power supply. A series circuit comprising a charging switch Ta, two further diodes D2 and D3 and a discharging switch Tb connected to the negative pole GND is arranged in parallel with the charging capacitor C1.
Zwischen dem Verbindungspunkt der beiden Dioden D2 und D3 und dem Masseanschluß GND liegt eine Reihenschaltung aus einem Umladekondensator C2, einer Umschwingspule L, einem ersten Stellglied Pl und einem ersten, gesteuerten Auswahlschalter Tl.Between the connection point of the two diodes D2 and D3 and the ground connection GND, there is a series circuit consisting of a recharging capacitor C2, a ring coil L, a first one Actuator Pl and a first, controlled selection switch Tl.
Für jedes weitere Stellglied P2 bis Pn ist eine Reihenschal- tung aus diesem Stellglied und einem weiteren Auswahlschalter T2 bis Tn der Reihenschaltung aus dem ersten Stellglied Pl und dem ersten Auswahlschalter Tl parallel geschaltet. Die Auswahlschalter, der Entladeschalter Tb und der nachstehend erwähnte Bypaßschalter Tc sind in diesem Ausführungsbeispiel N-Power-MOSFET-Schalter, welche üblicherweise Inversdioden enthalten. Der Ladeschalter Ta ist in diesem Ausführungsbeispiel als P-Power-MOSFET-Schalter ausgebildet.For each additional actuator P2 to Pn, a series circuit comprising this actuator and a further selection switch T2 to Tn of the series circuit comprising the first actuator P1 and the first selection switch T1 is connected in parallel. In this exemplary embodiment, the selection switches, the discharge switches Tb and the bypass switch Tc mentioned below are N-power MOSFET switches, which usually contain inverse diodes. In this exemplary embodiment, the charging switch Ta is designed as a P-power MOSFET switch.
Außerdem ist ein bereits erwähnter Bypaßschalter Tc vorgese- hen, dessen Drainanschluß mit dem Verbindungspunkt zwischen der Umschwingspule L und den Stellgliedern Pl bis Pn verbunden ist, und dessen Sourceanschluß mit dem Sourceanschluß wenigstens des Auswahlschalters Tl verbunden ist. Sämtliche Schalter werden über ihre Gateanschlüsse von den Ausgangs- Signalen der Steuerschaltung ST gesteuert.In addition, an already mentioned bypass switch Tc is provided, the drain connection of which is connected to the connection point between the ring coil L and the actuators Pl to Pn, and the source connection of which is connected to the source connection of at least the selection switch Tl. All switches are controlled by their output connections from the output signals of the control circuit ST.
Der parallel zu den Stellgliedern Pl bis Pn angeordnete Bypaßschalter Tc wird von der Steuerschaltung ST angesteuert, wenn die Stellgliedspannung einen vorgegebenen Grenzwert überschreitet oder wenn ein in der Brennkraftmaschine bis hin zu den Leistungsendstufen der Einspritzventile auftretender Fehler erkannt wird, und entlädt die kapazitiven Stellglieder Pl bis Pn kurzschlußartig über die Inversdioden der Auswahlschalter Tl bis Tn. Der Bypaßschalter Tc wird auch zum Aufla- den des Entladekondensators C2 vor der ersten Stellgliedbetätigung oder zu dessen Nachladen zwischen zwei zeitlich auseinanderliegenden Stellgliedbetätigungen benötigt. Anstelle des Bypaßschalters Tc kann auch eine Diode oder Zenerdiode mit gleicher Polung wie die Inversdiode des Bypaßschalters vorgesehen sein, wobei dann aber die Aufladung des Entladekondensators C2 über eine Stellgliedbetätigung, bei einem Kraftstoffeinspritzventil vorzugsweise ohne Kraftstoffdruck, vorgenommen werden muß.The bypass switch Tc arranged in parallel with the actuators Pl to Pn is controlled by the control circuit ST when the actuator voltage exceeds a predetermined limit value or when an error is detected in the internal combustion engine up to the power output stages of the injection valves, and discharges the capacitive actuators Pl to Pn in the form of a short circuit via the inverse diodes of the selection switches Tl to Tn. The bypass switch Tc is also required for charging the discharge capacitor C2 before the first actuation of the actuator or for recharging it between two actuations of the actuator that are at different times. Instead of the bypass switch Tc, a diode or zener diode with the same polarity as the inverse diode of the bypass switch can also be provided, but then charging the discharge capacitor C2 via an actuator actuation at one Fuel injection valve, preferably without fuel pressure, must be made.
Die Schalter Ta, Tb, Tc und Tl bis Tn werden von der Steuer- Schaltung ST abhängig von Steuersignalen st eines nicht dargestellten Motorsteuergerätes gesteuert. Der Ladekondensator Cl kann als Ausgangskondensator des Schaltnetzteils SNT betrachtet werden.The switches Ta, Tb, Tc and Tl to Tn are controlled by the control circuit ST depending on control signals st of an engine control unit, not shown. The charging capacitor C1 can be regarded as the output capacitor of the switched-mode power supply SNT.
Nachstehend wird das Ansteuerverfahren für diese Schaltung beschrieben. Während des Betriebes der Schaltung ist der Ladekondensator Cl auf eine von der Steuerschaltung ST bestimmte Ausgangsspannung +USNT des Schaltnetzteils SNT aufgeladen. Die Bestimmung dieser Spannung +USNT wird weiter unten erläu- tert.The driving method for this circuit is described below. During operation of the circuit, the charging capacitor C1 is charged to an output voltage + U SNT of the switching power supply SNT determined by the control circuit ST. The determination of this voltage + U SNT is explained below.
Bei Betriebsbeginn wird der Ladekondensator Cl auf +USNT aufgeladen und ist der Entladekondensator C2 entladen und die Umschwingspule L stromlos. Damit auch der Kondensator C2 vor der ersten Stellgliedbetätigung aufgeladen wird, wird zunächst der Bypaßschalter Tc leitend gesteuert. Dadurch entlädt sich Cl über C2, L und Tc. Sodann wird Tc wieder nichtleitend gesteuert und nun der Entladeschalter Tb leitend gesteuert. Dadurch fließt ein Strom in Gegenrichtung durch L, C2, Tb und die Inversdiode des Bypaßschalters Tc, wodurch C2 aufgeladen und so gepolt wird, daß nach einem oder mehreren Lade- und Entladezyklen an der Reihenschaltung von Cl und C2 die Ladespannung UL = Ucl + Uc2 anliegt.At the start of operation, the charging capacitor Cl is charged to + U SNT and the discharging capacitor C2 is discharged and the ring coil L is de-energized. So that the capacitor C2 is also charged before the first actuation of the actuator, the bypass switch Tc is first controlled to be conductive. Cl discharges through C2, L and Tc. Then Tc is again controlled in a non-conductive manner and now the discharge switch Tb is controlled in a conductive manner. As a result, a current flows in the opposite direction through L, C2, Tb and the inverse diode of the bypass switch Tc, whereby C2 is charged and polarized so that after one or more charging and discharging cycles at the series connection of Cl and C2, the charging voltage U L = U cl + U c2 is present.
Die Spannung Uc2 am Kondensator C2 wird über eine in diesem Ausführungsbeispiel als Sample-and-Hold-Schaltung S&H ausgebildete Meßschaltung der Steuerschaltung ST mitgeteilt, welche die Ausgangsspannung +USNT « UC1 des Schaltnetzteils SNT so einstellt, daß an der Reihenschaltung von Cl und C2 eine vorgegebene Anfangsspannung anliegt.The voltage U c2 across the capacitor C2 is communicated to the control circuit ST via a measuring circuit in this exemplary embodiment, which is designed as a sample-and-hold circuit S&H and which outputs the output voltage + U SNT «U C1 of the switching power supply SNT so that a predetermined initial voltage is applied to the series connection of Cl and C2.
Da die Spannung Uc2 am Kondensator C2 bei Nichtbetätigung langsam abfällt, werden auch während des Betriebes, beispielsweise während des Ladevorgangs bei niedrigen Drehzahlen (d.h., bei zeitlich weiter auseinanderliegenden Stellgliedbetätigungen) oder im Schiebebetrieb, solche Nachladungen des Entladekondensators C2 vorgenommen.Since the voltage U c2 on the capacitor C2 drops slowly when not actuated, such recharging of the discharge capacitor C2 is also carried out during operation, for example during the charging process at low speeds (ie, when actuating actuators are further apart in time) or in overrun mode.
Soll eine Stellgliedbetätigung stattfinden, so wird nach dem ersten Verfahren der im Ladekreis fließende Strom Ip mittels einer Meßschaltung M, die im einfachsten Fall aus einem Shuntwiderstand bestehen kann, gemessen und in einem in der Steuerschaltung befindlichen Integrator integriert. Da dieIf an actuator is to be actuated, the current I p flowing in the charging circuit is measured using a measuring circuit M, which in the simplest case can consist of a shunt resistor, and is integrated in an integrator located in the control circuit. Since the
Meßschaltung M nur für dieses Verfahren erforderlich ist, ist sie in der Zeichnung strichliert eingerahmt und das Bezugszeichen für den Strom Ip in Klammern gesetzt. Die weitere Durchführung dieses Verfahrens erfolgt wie bei dem nachste- hend beschriebenen zweiten Verfahren.Measuring circuit M is only required for this method, it is framed in dashed lines in the drawing and the reference symbol for the current I p is placed in brackets. This method is carried out further as in the second method described below.
Nach diesem zweiten, einfacheren Verfahren wird vor der Stellgliedaufladung die Spannung Uc2 - Uvor am Entladekondensator C2 gemessen und der Steuerschaltung ST mitgeteilt. An- schließend werden der Ladeschalter Ta und der dem entsprechenden Stellglied, beispielsweise Pl, zugeordnete Auswahlschalter Tl leitend gesteuert. Es fließt Strom von SNT und Cl über Ta, C2, L, Pl und Tl nach GND, bis das Stellglied geladen ist. Anschließend werden Ta und Tl nichtleite.nd gesteu- ert, das Stellglied ist weiterhin geladen. Nun werden die Spannung Uc2 = Unac am Entladekondensator C2 und die am Stellglied Pl anliegende Spannung Up gemessen und der Steuerschaltung ST mitgeteilt. Diese errechnet gemäß den oben erläuterten Formeln die dem Stellglied zugeführte Energie Eist und vergleicht diesen Wert mit einem vorgegebenen Sollwert Esoιι . Dementsprechend wird für den nächsten Ansteuervorgang die erforderliche Ladespannung UL ermittelt. Ist Eist < Eson, so wird die Ladespannung UL gegenüber dem zuvor gültigen Wert beispielsweise schrittweise um einen Schritt erhöht; ist Eist > Egon, so wird sie um einen Schritt verkleinert. Die Ladespannung UL wird auf Eist = Esoll geregelt.According to this second, simpler method, the voltage U c2 -U before the discharge capacitor C2 is measured before the actuator charging and communicated to the control circuit ST. Subsequently, the charging switch Ta and the selection switch Tl assigned to the corresponding actuator, for example Pl, are turned on. Current flows from SNT and Cl via Ta, C2, L, Pl and Tl to GND until the actuator is charged. Then Ta and Tl are not controlled. The actuator is still loaded. Now the voltage U c2 = U nac at the discharge capacitor C2 and the voltage Up applied to the actuator P1 are measured and communicated to the control circuit ST. This calculates the energy Ei st supplied to the actuator according to the formulas explained above and compares this value with a predetermined target value E so . Accordingly, the required charging voltage U L is determined for the next control process. If E is <E so n, the charging voltage U L is increased, for example, step by step from the previously valid value; if Ei st > Eg o n, it is reduced by one step. The charging voltage U L is regulated to E ist = E should .
Der Ladezustand des Stellgliedes Pl bleibt erhalten, bis nach Verschwinden des Steuersignals st der Entladeschalter Tb leitend gesteuert wird. Bei leitendem Entladeschalter Tb werden alle Stellglieder Pl bis Pn über die Spule L in den Entladekondensator C2 entladen.The state of charge of the actuator Pl remains until the discharge switch Tb is turned on after the control signal st has disappeared. When the discharge switch Tb is conductive, all actuators Pl to Pn are discharged via the coil L into the discharge capacitor C2.
Die am Entladekondensator C2 nach dem Entladen des Stellgliedes anliegende Spannung Uc2 wird über die Sample-and-Hold- Schaltung S&H der Steuerschaltung ST mitgeteilt, welche die Ausgangsspannung +USNT des Schaltnetzteils SNT so nachsteuert, daß die vorher ermittelte Ladespannung UL = U 1 + U 2 beim nächsten Ansteuervorgang erreicht wird. Mit dieser Ladespannung kann dann der nächste Ladevorgang des Stellgliedes Pl bzw. der Ladevorgang des nächsten Stellgliedes P2 erfolgen u.s.w.. The voltage U c2 present at the discharge capacitor C2 after the actuator has been discharged is communicated via the sample-and-hold circuit S&H to the control circuit ST, which adjusts the output voltage + U SNT of the switched-mode power supply SNT in such a way that the previously determined charging voltage U L = U 1 + U 2 is reached during the next activation process. The next charging process of the actuator P1 or the charging process of the next actuator P2 can then take place with this charging voltage, etc.

Claims

Patentansprüche claims
1. Verfahren zum Ansteuern wenigstens eines kapazitiven1. Method for driving at least one capacitive
Stellgliedes (Pl bis Pn) mittels einer Ladespannung (UL) ,Actuator (Pl to Pn) by means of a charging voltage (U L ),
d a d u r c h g e k e n n z e i c h n e t ,characterized ,
daß aus der dem Stellglied (Pl bis Pn) zugeführt.en Ladungsmenge ΔQ und der nach Beendigung des Ladevorgangs am Stellglied anliegenden Stellgliedspannung Up die Stellgliedkapazität nach der Gleichung Cp = ΔQ/Up berechnet wird, daß aus den Werten Stellgliedkapazität Cp und Stellgliedspannung Up die dem Stellglied während des Ladevorgangs zuge- führte Energie EiSt nach der Gleichungthat from the actuator (Pl to Pn). The amount of charge .DELTA.Q and the actuator voltage U p present after the end of the charging process, the actuator capacity is calculated according to the equation C p = .DELTA.Q / U p , that from the values actuator capacity C p and Actuator voltage Up is the energy Ei St supplied to the actuator during the charging process according to the equation
Eis = 0,5*Cp*Up 2 = 0,5*ΔQ*Up berechnet wird, daß der zugeführte Energiebetrag Eist mit einem vorgegebenen Sollwert Eson verglichen wird, und daß die Ladespannung UL = UC1 + Uc2 für den nächsten Ansteuer- Vorgang um einen vorgegebenen Betrag erhöht wird, wenn der zugeführte Energiebetrag Eist kleiner als der Sollwert Eson ist, oder verkleinert wird, wenn der zugeführte Energiebetrag Eist größer als der Sollwert Esoιι ist.Ei s = 0.5 * C p * U p 2 = 0.5 * .DELTA.Q * U is calculated p, that the amount of energy supplied egg st is compared with a predetermined reference value E so n, and that the charge voltage U L = U C1 + U C2 is increased for the next actuation operation by a predetermined amount when the amount of energy supplied egg st smaller than the target value e soll, or is decreased if the amount of energy supplied e is greater than the target value e is ιι.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die dem Stellglied (Pl bis Pn) zugeführte Ladungsmenge ΔQ durch Integration des während eines Ladevorgangs durch das Stellglied fließenden Stroms Ip nach der Gleichung ΔQ = J Ipdt ermittelt wird. 2. The method according to claim 1, characterized in that the amount of charge ΔQ supplied to the actuator (Pl to Pn) is determined by integrating the current I p flowing through the actuator during a charging operation according to the equation ΔQ = JI p dt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei Schaltungen mit Lade- und Entladekondensator (Cl, C2) in Reihenschaltung, bei welchen an den Ladekondensator (Cl) eine regelbare Spannung (+USNT) anlegbar ist, die dem Stellglied (Pl bis Pn) zugeführte Ladungsmenge ΔQ über die Differenz ΔU = Uvor - Unach der am Entladekondensator (C2) vor und nach dem Ladevorgang liegenden Spannungen Uvor und Unach uncl die Kapazität C2 des Entladekondensators nach der Gleichung ΔQ = C2*ΔU = C2* (Uvor - Unach) ermittelt wird.3. The method according to claim 1, characterized in that in circuits with a charging and discharging capacitor (Cl, C2) in series, in which a controllable voltage (+ U SNT ) can be applied to the charging capacitor (Cl), which the actuator (Pl to Pn) the amount of charge ΔQ supplied via the difference ΔU = U before - U after the voltages across the discharge capacitor (C2) before and after the charging process U before and U after uncl the capacitance C2 of the discharge capacitor according to the equation ΔQ = C2 * ΔU = C2 * (U before - U after ) is determined.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die berechnete Stellgliedkapazität Cp zur Bestimmung der Stellgliedtemperatur Tp herangezogen wird. 4. The method according to claim 1, characterized in that the calculated actuator capacity C p is used to determine the actuator temperature T p .
EP98932003A 1997-06-06 1998-04-24 Method for controlling at least one capacitive actuating element Expired - Lifetime EP0986702B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19723932 1997-06-06
DE19723932A DE19723932C1 (en) 1997-06-06 1997-06-06 Method for controlling at least one capacitive actuator
PCT/DE1998/001155 WO1998055750A1 (en) 1997-06-06 1998-04-24 Method for controlling at least one capacitive actuating element

Publications (2)

Publication Number Publication Date
EP0986702A1 true EP0986702A1 (en) 2000-03-22
EP0986702B1 EP0986702B1 (en) 2002-07-03

Family

ID=7831703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98932003A Expired - Lifetime EP0986702B1 (en) 1997-06-06 1998-04-24 Method for controlling at least one capacitive actuating element

Country Status (11)

Country Link
US (1) US6133714A (en)
EP (1) EP0986702B1 (en)
JP (1) JP3711148B2 (en)
KR (1) KR100340813B1 (en)
CN (1) CN1096554C (en)
AR (1) AR010172A4 (en)
BR (1) BR9810086A (en)
CA (1) CA2292518A1 (en)
DE (1) DE19723932C1 (en)
ES (1) ES2180185T3 (en)
WO (1) WO1998055750A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652801C1 (en) * 1996-12-18 1998-04-23 Siemens Ag Driving at least one capacitive positioning element esp. piezoelectrically driven fuel injection valve for IC engine
DE19831599A1 (en) * 1998-07-14 2000-01-20 Siemens Ag Control method for controlling capacitive actuator esp. piezo-actuator for fuel injection valve of combustion (IC) engine
DE19841460B4 (en) * 1998-09-10 2007-01-25 Siemens Ag Method and device for driving a capacitive actuator
DE19845037C2 (en) * 1998-09-30 2000-11-30 Siemens Ag Method and arrangement for controlling a capacitive actuator
DE19944249B4 (en) * 1999-09-15 2007-01-04 Siemens Ag Device for controlling at least one capacitive actuator
DE19944734B4 (en) * 1999-09-17 2007-02-15 Siemens Ag Method and device for charging at least one capacitive actuator
EP1138915B1 (en) * 2000-04-01 2005-10-26 Robert Bosch GmbH Method and apparatus for determining charge quantity during charging and discharging of piezoelectric elements
DE60037104T2 (en) * 2000-04-01 2008-03-20 Robert Bosch Gmbh Determining the temperature of a piezoelectric element and using it to correct the control voltage
EP1138903B1 (en) * 2000-04-01 2004-05-26 Robert Bosch GmbH Time- and event-controlled activation system for charging and discharging piezoelectric elements
US6661285B1 (en) * 2000-10-02 2003-12-09 Holosonic Research Labs Power efficient capacitive load driving device
JP4604356B2 (en) * 2001-01-23 2011-01-05 株式会社デンソー Piezo actuator driving circuit and fuel injection device
DE10063080B4 (en) 2000-12-18 2006-12-28 Siemens Ag Actuator control and associated method
DE10155389A1 (en) * 2001-11-10 2003-05-22 Bosch Gmbh Robert Method for voltage setpoint calculation of a piezoelectric element
DE10226506A1 (en) * 2002-06-14 2004-01-08 Robert Bosch Gmbh Method, computer program, and control and / or regulating device for operating an internal combustion engine, and internal combustion engine
DE10229394A1 (en) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Method, computer program, control and / or regulating device for operating an internal combustion engine, and internal combustion engine
US6979933B2 (en) * 2002-09-05 2005-12-27 Viking Technologies, L.C. Apparatus and method for charging and discharging a capacitor
US7190102B2 (en) * 2002-09-05 2007-03-13 Viking Technologies, L.C. Apparatus and method for charging and discharging a capacitor to a predetermined setpoint
JP3847241B2 (en) * 2002-10-01 2006-11-22 Necエレクトロニクス株式会社 Operational amplifier
FR2846485B1 (en) * 2002-10-23 2005-01-28 Renault Sa DEVICE FOR ELECTRONICALLY CONTROLLING AN ULTRASONIC PIEZOELECTRIC ACTUATOR
DE10315815A1 (en) * 2003-04-07 2004-10-21 Robert Bosch Gmbh Method for determining the individual drive voltage of a piezoelectric element
DE10329617B4 (en) * 2003-06-24 2015-01-22 Robert Bosch Gmbh Method for driving a piezoelectric actuator of a device, in particular a fuel injection device of an internal combustion engine
US7023163B2 (en) * 2003-11-20 2006-04-04 Siemens Building Technologies Fail-safe electric actuator using high voltage capacitors
DE10359675B3 (en) 2003-12-18 2005-07-07 Volkswagen Mechatronic Gmbh & Co. Kg Method and device for controlling a valve and method and device for controlling a pump-nozzle device with the valve
JP4378224B2 (en) * 2004-06-04 2009-12-02 株式会社ミクニ Power supply
DE102004040073B4 (en) * 2004-08-18 2008-04-30 Siemens Ag Method and circuit arrangement for operating a piezoelectric actuator
JP4624134B2 (en) * 2005-02-25 2011-02-02 株式会社デンソー Piezo actuator drive circuit
JP4984018B2 (en) 2005-03-30 2012-07-25 セイコーエプソン株式会社 Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus
DE102006004766B4 (en) * 2006-02-02 2015-05-21 Robert Bosch Gmbh Electric circuit for operating a piezoelectric actuator of a fuel injector of an internal combustion engine
JP2008005649A (en) * 2006-06-23 2008-01-10 Denso Corp Driving apparatus for piezo-actuator
DE102007008201B3 (en) 2007-02-19 2008-08-14 Siemens Ag Method for controlling an injection quantity of an injector of an internal combustion engine
DE102007011693B4 (en) * 2007-03-09 2008-11-13 Continental Automotive Gmbh Method and device for controlling an internal combustion engine
DE102008045955A1 (en) * 2008-09-04 2010-03-11 Continental Automotive Gmbh Method and device for correcting a temperature-induced change in length of an actuator unit, which is arranged in the housing of a fuel injector
DE102008060519A1 (en) * 2008-12-04 2010-06-17 Continental Automotive Gmbh Method for operating control element utilized in injection valve of cylinder of internal-combustion engine of motor vehicle, involves varying amount of electricity supplied to drive depending on actual and desired values
US8294539B2 (en) 2008-12-18 2012-10-23 Analog Devices, Inc. Micro-electro-mechanical switch beam construction with minimized beam distortion and method for constructing
DE102009003977B3 (en) * 2009-01-07 2010-07-29 Continental Automotive Gmbh Controlling the flow of current through a coil drive of a valve using a current integral
US8587328B2 (en) * 2009-08-25 2013-11-19 Analog Devices, Inc. Automatic characterization of an actuator based on capacitance measurement
DE102010004299B3 (en) * 2010-01-11 2011-01-27 Continental Automotive Gmbh Method for operating fuel injector for injecting fuel into internal-combustion engine of motor vehicle, involves measuring coolant water temperature of internal combustion engine for determining temperature threshold
US8963400B2 (en) * 2012-09-11 2015-02-24 Maxim Integrated Products, Inc. Piezo driver having recharging capability
US9652013B2 (en) 2012-09-11 2017-05-16 Maxim Integrated Products, Inc. Piezo driver having passive energy storage component recharging capability
US10450995B2 (en) * 2015-02-05 2019-10-22 Hitachi Automotive Systems, Ltd. Control device for internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841936A (en) * 1985-06-27 1989-06-27 Toyota Jidosha Kabushiki Kaisha Fuel injection control device of an internal combustion engine
US4688536A (en) * 1985-06-28 1987-08-25 Toyota Jidosha Kabushiki Kaisha Drive circuit for an electrostrictive actuator in a fuel injection valve
US5387834A (en) * 1990-07-11 1995-02-07 Brother Kogyo Kabushiki Kaisha Piezoelectric element driving circuit
JPH0529676A (en) * 1991-07-23 1993-02-05 Nippondenso Co Ltd Piezo-actuator device
JPH05344755A (en) * 1992-06-04 1993-12-24 Toyota Motor Corp Driving circuit for piezoelectric element
JP3053149B2 (en) * 1993-01-19 2000-06-19 アイシン精機株式会社 Fuel injection control device for internal combustion engine
JP3214961B2 (en) * 1993-08-31 2001-10-02 株式会社デンソー Piezoelectric element driving device
DE19632837A1 (en) * 1996-08-14 1998-02-19 Siemens Ag Device and method for controlling at least one capacitive actuator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9855750A1 *

Also Published As

Publication number Publication date
ES2180185T3 (en) 2003-02-01
KR20010013469A (en) 2001-02-26
JP3711148B2 (en) 2005-10-26
BR9810086A (en) 2000-08-08
AR010172A4 (en) 2000-05-17
EP0986702B1 (en) 2002-07-03
WO1998055750A1 (en) 1998-12-10
CA2292518A1 (en) 1998-12-10
DE19723932C1 (en) 1998-12-24
KR100340813B1 (en) 2002-06-20
CN1259191A (en) 2000-07-05
US6133714A (en) 2000-10-17
JP2000514253A (en) 2000-10-24
CN1096554C (en) 2002-12-18

Similar Documents

Publication Publication Date Title
EP0986702B1 (en) Method for controlling at least one capacitive actuating element
EP0934605B1 (en) Method and device for controlling a capacitative actuator
EP0947001B1 (en) Method and device for controlling at least one capacitive actuator
EP0946999B1 (en) Method and device for activating a capacitive actuator
EP1381764B1 (en) Method and device for controlling a piezo-actuator
WO1999007026A1 (en) Method and device for charging and discharging a piezoelectric element
DE19944733A1 (en) Device for controlling at least one capacitive actuator
EP1999359B1 (en) Method of determining an opening voltage of a piezoelectric injector
DE60018549T2 (en) fuel injection system
EP1099260B1 (en) Method and device for controlling at least one capacitive actuator
WO1998007198A1 (en) Device and process for controlling at least one capacitive actuator
DE19848950C2 (en) Constant control device for piezoelectric actuators for fuel injection systems
DE19652809C1 (en) Method and device for controlling at least one capacitive actuator
DE102004026250B4 (en) Control circuit for piezo actuators
DE102004030249A1 (en) Drive circuit for piezoelectric actuator, e.g. for fuel injector in internal combustion engine, measures electric power of actuator and sets currents so that power becomes target value
DE102004009614B4 (en) Method and device for driving a capacitive actuator
DE19841460B4 (en) Method and device for driving a capacitive actuator
DE10307000B4 (en) Power output stage for capacitive loads and method for their operation
DE60007836T2 (en) Compensation of the play tolerances in different lots due to the fluctuations in the layer thickness or the number of layers in multilayer piezoelectric elements
DE102007058540B4 (en) Method and apparatus for charging and discharging a piezoelectric element
DE10323488B4 (en) Method and device for operating point-dependent control of injectors of a fuel metering system of an internal combustion engine
DE102006004765A1 (en) Piezoactuator operating method for fuel injecting device of internal-combustion engine, involves predetermining reference current, holding actual current using on-off control and parameters of reference current are changed in defined times
DE102006055266A1 (en) Piezoelectric unit operating method for actuator of fuel injecting valve, involves reloading piezoelectric unit by inductive unit, and considering energy stored in magnetic field of inductive unit during activation of piezoelectric unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010924

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020703

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2180185

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090422

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090428

Year of fee payment: 12

Ref country code: FR

Payment date: 20090414

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090421

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100424

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100424

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100424

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430