EP0986702A1 - Method for controlling at least one capacitive actuating element - Google Patents
Method for controlling at least one capacitive actuating elementInfo
- Publication number
- EP0986702A1 EP0986702A1 EP98932003A EP98932003A EP0986702A1 EP 0986702 A1 EP0986702 A1 EP 0986702A1 EP 98932003 A EP98932003 A EP 98932003A EP 98932003 A EP98932003 A EP 98932003A EP 0986702 A1 EP0986702 A1 EP 0986702A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- actuator
- voltage
- charging
- amount
- supplied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000003990 capacitor Substances 0.000 claims description 24
- 238000007599 discharging Methods 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 101100316117 Rattus norvegicus Unc50 gene Proteins 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 239000000446 fuel Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001994 activation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3005—Details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D41/2096—Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/06—Drive circuits; Control arrangements or methods
- H02N2/062—Small signal circuits; Means for controlling position or derived quantities, e.g. for removing hysteresis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/2003—Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/2003—Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
- F02D2041/2006—Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/2003—Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
- F02D2041/201—Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
- F02D2041/2051—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/2068—Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
- F02D2041/2075—Type of transistors or particular use thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/2068—Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
- F02D2041/2082—Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit being adapted to distribute current between different actuators or recuperate energy from actuators
Definitions
- the invention relates to a method for controlling at least one capacitive actuator according to the preamble of claim 1.
- a piezo actuator consists of a large number of piezoceramic layers and forms a so-called “stack”, which changes its dimensions, in particular its length, when a voltage is applied, or generates an electrical voltage when subjected to mechanical pressure or tension.
- a drive circuit for a capacitive actuator is known from US Pat. No. 5,387,834, which is driven with a constant charging voltage and a charging time determined as a function of the actuator temperature measured by means of a sensor.
- the object of the invention is to provide a method for controlling at least one capacitive actuator, which works with sufficient accuracy even when the boundary conditions change without using a temperature sensor.
- the amount of charge ⁇ Q applied is determined by integrating the current I p flowing through the actuator during the charging process. Then
- E 0.5 * C2 (U before - U after ) * U p .
- This value is, as already described above, so compared ⁇ with a predetermined reference value E, and the result adjusted according to the charge voltage U L for the next drive.
- the inventive method is based on one of the
- a charging capacitor C1 is connected via a diode D1 between the positive pole + U SNT and the negative pole GND of a regulated voltage source SNT, preferably a switching power supply.
- a series circuit comprising a charging switch Ta, two further diodes D2 and D3 and a discharging switch Tb connected to the negative pole GND is arranged in parallel with the charging capacitor C1.
- connection point of the two diodes D2 and D3 and the ground connection GND there is a series circuit consisting of a recharging capacitor C2, a ring coil L, a first one Actuator Pl and a first, controlled selection switch Tl.
- a series circuit comprising this actuator and a further selection switch T2 to Tn of the series circuit comprising the first actuator P1 and the first selection switch T1 is connected in parallel.
- the selection switches, the discharge switches Tb and the bypass switch Tc mentioned below are N-power MOSFET switches, which usually contain inverse diodes.
- the charging switch Ta is designed as a P-power MOSFET switch.
- bypass switch Tc is provided, the drain connection of which is connected to the connection point between the ring coil L and the actuators Pl to Pn, and the source connection of which is connected to the source connection of at least the selection switch Tl. All switches are controlled by their output connections from the output signals of the control circuit ST.
- the bypass switch Tc arranged in parallel with the actuators Pl to Pn is controlled by the control circuit ST when the actuator voltage exceeds a predetermined limit value or when an error is detected in the internal combustion engine up to the power output stages of the injection valves, and discharges the capacitive actuators Pl to Pn in the form of a short circuit via the inverse diodes of the selection switches Tl to Tn.
- the bypass switch Tc is also required for charging the discharge capacitor C2 before the first actuation of the actuator or for recharging it between two actuations of the actuator that are at different times.
- a diode or zener diode with the same polarity as the inverse diode of the bypass switch can also be provided, but then charging the discharge capacitor C2 via an actuator actuation at one Fuel injection valve, preferably without fuel pressure, must be made.
- the switches Ta, Tb, Tc and Tl to Tn are controlled by the control circuit ST depending on control signals st of an engine control unit, not shown.
- the charging capacitor C1 can be regarded as the output capacitor of the switched-mode power supply SNT.
- the charging capacitor C1 is charged to an output voltage + U SNT of the switching power supply SNT determined by the control circuit ST. The determination of this voltage + U SNT is explained below.
- the charging capacitor Cl is charged to + U SNT and the discharging capacitor C2 is discharged and the ring coil L is de-energized. So that the capacitor C2 is also charged before the first actuation of the actuator, the bypass switch Tc is first controlled to be conductive. Cl discharges through C2, L and Tc. Then Tc is again controlled in a non-conductive manner and now the discharge switch Tb is controlled in a conductive manner.
- the voltage U c2 across the capacitor C2 is communicated to the control circuit ST via a measuring circuit in this exemplary embodiment, which is designed as a sample-and-hold circuit S&H and which outputs the output voltage + U SNT «U C1 of the switching power supply SNT so that a predetermined initial voltage is applied to the series connection of Cl and C2.
- a measuring circuit in this exemplary embodiment, which is designed as a sample-and-hold circuit S&H and which outputs the output voltage + U SNT «U C1 of the switching power supply SNT so that a predetermined initial voltage is applied to the series connection of Cl and C2.
- the current I p flowing in the charging circuit is measured using a measuring circuit M, which in the simplest case can consist of a shunt resistor, and is integrated in an integrator located in the control circuit. Since the
- Measuring circuit M is only required for this method, it is framed in dashed lines in the drawing and the reference symbol for the current I p is placed in brackets. This method is carried out further as in the second method described below.
- the required charging voltage U L is determined for the next control process. If E is ⁇ E so n, the charging voltage U L is increased, for example, step by step from the previously valid value; if Ei st > Eg o n, it is reduced by one step.
- the next charging process of the actuator P1 or the charging process of the next actuator P2 can then take place with this charging voltage, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Fuel-Injection Apparatus (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Magnetically Actuated Valves (AREA)
- Direct Current Feeding And Distribution (AREA)
- Electrostatic Spraying Apparatus (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19723932 | 1997-06-06 | ||
DE19723932A DE19723932C1 (en) | 1997-06-06 | 1997-06-06 | Method for controlling at least one capacitive actuator |
PCT/DE1998/001155 WO1998055750A1 (en) | 1997-06-06 | 1998-04-24 | Method for controlling at least one capacitive actuating element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0986702A1 true EP0986702A1 (en) | 2000-03-22 |
EP0986702B1 EP0986702B1 (en) | 2002-07-03 |
Family
ID=7831703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98932003A Expired - Lifetime EP0986702B1 (en) | 1997-06-06 | 1998-04-24 | Method for controlling at least one capacitive actuating element |
Country Status (11)
Country | Link |
---|---|
US (1) | US6133714A (en) |
EP (1) | EP0986702B1 (en) |
JP (1) | JP3711148B2 (en) |
KR (1) | KR100340813B1 (en) |
CN (1) | CN1096554C (en) |
AR (1) | AR010172A4 (en) |
BR (1) | BR9810086A (en) |
CA (1) | CA2292518A1 (en) |
DE (1) | DE19723932C1 (en) |
ES (1) | ES2180185T3 (en) |
WO (1) | WO1998055750A1 (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19652801C1 (en) * | 1996-12-18 | 1998-04-23 | Siemens Ag | Driving at least one capacitive positioning element esp. piezoelectrically driven fuel injection valve for IC engine |
DE19831599A1 (en) * | 1998-07-14 | 2000-01-20 | Siemens Ag | Control method for controlling capacitive actuator esp. piezo-actuator for fuel injection valve of combustion (IC) engine |
DE19841460B4 (en) * | 1998-09-10 | 2007-01-25 | Siemens Ag | Method and device for driving a capacitive actuator |
DE19845037C2 (en) * | 1998-09-30 | 2000-11-30 | Siemens Ag | Method and arrangement for controlling a capacitive actuator |
DE19944249B4 (en) * | 1999-09-15 | 2007-01-04 | Siemens Ag | Device for controlling at least one capacitive actuator |
DE19944734B4 (en) * | 1999-09-17 | 2007-02-15 | Siemens Ag | Method and device for charging at least one capacitive actuator |
EP1138915B1 (en) * | 2000-04-01 | 2005-10-26 | Robert Bosch GmbH | Method and apparatus for determining charge quantity during charging and discharging of piezoelectric elements |
DE60037104T2 (en) * | 2000-04-01 | 2008-03-20 | Robert Bosch Gmbh | Determining the temperature of a piezoelectric element and using it to correct the control voltage |
EP1138903B1 (en) * | 2000-04-01 | 2004-05-26 | Robert Bosch GmbH | Time- and event-controlled activation system for charging and discharging piezoelectric elements |
US6661285B1 (en) * | 2000-10-02 | 2003-12-09 | Holosonic Research Labs | Power efficient capacitive load driving device |
JP4604356B2 (en) * | 2001-01-23 | 2011-01-05 | 株式会社デンソー | Piezo actuator driving circuit and fuel injection device |
DE10063080B4 (en) | 2000-12-18 | 2006-12-28 | Siemens Ag | Actuator control and associated method |
DE10155389A1 (en) * | 2001-11-10 | 2003-05-22 | Bosch Gmbh Robert | Method for voltage setpoint calculation of a piezoelectric element |
DE10226506A1 (en) * | 2002-06-14 | 2004-01-08 | Robert Bosch Gmbh | Method, computer program, and control and / or regulating device for operating an internal combustion engine, and internal combustion engine |
DE10229394A1 (en) * | 2002-06-29 | 2004-01-29 | Robert Bosch Gmbh | Method, computer program, control and / or regulating device for operating an internal combustion engine, and internal combustion engine |
US6979933B2 (en) * | 2002-09-05 | 2005-12-27 | Viking Technologies, L.C. | Apparatus and method for charging and discharging a capacitor |
US7190102B2 (en) * | 2002-09-05 | 2007-03-13 | Viking Technologies, L.C. | Apparatus and method for charging and discharging a capacitor to a predetermined setpoint |
JP3847241B2 (en) * | 2002-10-01 | 2006-11-22 | Necエレクトロニクス株式会社 | Operational amplifier |
FR2846485B1 (en) * | 2002-10-23 | 2005-01-28 | Renault Sa | DEVICE FOR ELECTRONICALLY CONTROLLING AN ULTRASONIC PIEZOELECTRIC ACTUATOR |
DE10315815A1 (en) * | 2003-04-07 | 2004-10-21 | Robert Bosch Gmbh | Method for determining the individual drive voltage of a piezoelectric element |
DE10329617B4 (en) * | 2003-06-24 | 2015-01-22 | Robert Bosch Gmbh | Method for driving a piezoelectric actuator of a device, in particular a fuel injection device of an internal combustion engine |
US7023163B2 (en) * | 2003-11-20 | 2006-04-04 | Siemens Building Technologies | Fail-safe electric actuator using high voltage capacitors |
DE10359675B3 (en) | 2003-12-18 | 2005-07-07 | Volkswagen Mechatronic Gmbh & Co. Kg | Method and device for controlling a valve and method and device for controlling a pump-nozzle device with the valve |
JP4378224B2 (en) * | 2004-06-04 | 2009-12-02 | 株式会社ミクニ | Power supply |
DE102004040073B4 (en) * | 2004-08-18 | 2008-04-30 | Siemens Ag | Method and circuit arrangement for operating a piezoelectric actuator |
JP4624134B2 (en) * | 2005-02-25 | 2011-02-02 | 株式会社デンソー | Piezo actuator drive circuit |
JP4984018B2 (en) | 2005-03-30 | 2012-07-25 | セイコーエプソン株式会社 | Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus |
DE102006004766B4 (en) * | 2006-02-02 | 2015-05-21 | Robert Bosch Gmbh | Electric circuit for operating a piezoelectric actuator of a fuel injector of an internal combustion engine |
JP2008005649A (en) * | 2006-06-23 | 2008-01-10 | Denso Corp | Driving apparatus for piezo-actuator |
DE102007008201B3 (en) | 2007-02-19 | 2008-08-14 | Siemens Ag | Method for controlling an injection quantity of an injector of an internal combustion engine |
DE102007011693B4 (en) * | 2007-03-09 | 2008-11-13 | Continental Automotive Gmbh | Method and device for controlling an internal combustion engine |
DE102008045955A1 (en) * | 2008-09-04 | 2010-03-11 | Continental Automotive Gmbh | Method and device for correcting a temperature-induced change in length of an actuator unit, which is arranged in the housing of a fuel injector |
DE102008060519A1 (en) * | 2008-12-04 | 2010-06-17 | Continental Automotive Gmbh | Method for operating control element utilized in injection valve of cylinder of internal-combustion engine of motor vehicle, involves varying amount of electricity supplied to drive depending on actual and desired values |
US8294539B2 (en) | 2008-12-18 | 2012-10-23 | Analog Devices, Inc. | Micro-electro-mechanical switch beam construction with minimized beam distortion and method for constructing |
DE102009003977B3 (en) * | 2009-01-07 | 2010-07-29 | Continental Automotive Gmbh | Controlling the flow of current through a coil drive of a valve using a current integral |
US8587328B2 (en) * | 2009-08-25 | 2013-11-19 | Analog Devices, Inc. | Automatic characterization of an actuator based on capacitance measurement |
DE102010004299B3 (en) * | 2010-01-11 | 2011-01-27 | Continental Automotive Gmbh | Method for operating fuel injector for injecting fuel into internal-combustion engine of motor vehicle, involves measuring coolant water temperature of internal combustion engine for determining temperature threshold |
US8963400B2 (en) * | 2012-09-11 | 2015-02-24 | Maxim Integrated Products, Inc. | Piezo driver having recharging capability |
US9652013B2 (en) | 2012-09-11 | 2017-05-16 | Maxim Integrated Products, Inc. | Piezo driver having passive energy storage component recharging capability |
US10450995B2 (en) * | 2015-02-05 | 2019-10-22 | Hitachi Automotive Systems, Ltd. | Control device for internal combustion engine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841936A (en) * | 1985-06-27 | 1989-06-27 | Toyota Jidosha Kabushiki Kaisha | Fuel injection control device of an internal combustion engine |
US4688536A (en) * | 1985-06-28 | 1987-08-25 | Toyota Jidosha Kabushiki Kaisha | Drive circuit for an electrostrictive actuator in a fuel injection valve |
US5387834A (en) * | 1990-07-11 | 1995-02-07 | Brother Kogyo Kabushiki Kaisha | Piezoelectric element driving circuit |
JPH0529676A (en) * | 1991-07-23 | 1993-02-05 | Nippondenso Co Ltd | Piezo-actuator device |
JPH05344755A (en) * | 1992-06-04 | 1993-12-24 | Toyota Motor Corp | Driving circuit for piezoelectric element |
JP3053149B2 (en) * | 1993-01-19 | 2000-06-19 | アイシン精機株式会社 | Fuel injection control device for internal combustion engine |
JP3214961B2 (en) * | 1993-08-31 | 2001-10-02 | 株式会社デンソー | Piezoelectric element driving device |
DE19632837A1 (en) * | 1996-08-14 | 1998-02-19 | Siemens Ag | Device and method for controlling at least one capacitive actuator |
-
1997
- 1997-06-06 DE DE19723932A patent/DE19723932C1/en not_active Expired - Lifetime
-
1998
- 1998-04-24 CA CA002292518A patent/CA2292518A1/en not_active Abandoned
- 1998-04-24 JP JP50124599A patent/JP3711148B2/en not_active Expired - Fee Related
- 1998-04-24 BR BR9810086-6A patent/BR9810086A/en not_active Application Discontinuation
- 1998-04-24 EP EP98932003A patent/EP0986702B1/en not_active Expired - Lifetime
- 1998-04-24 WO PCT/DE1998/001155 patent/WO1998055750A1/en active IP Right Grant
- 1998-04-24 ES ES98932003T patent/ES2180185T3/en not_active Expired - Lifetime
- 1998-04-24 KR KR1019997011473A patent/KR100340813B1/en not_active IP Right Cessation
- 1998-04-24 CN CN98805867A patent/CN1096554C/en not_active Expired - Lifetime
- 1998-06-03 AR ARM980102598U patent/AR010172A4/en unknown
-
1999
- 1999-12-06 US US09/455,604 patent/US6133714A/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9855750A1 * |
Also Published As
Publication number | Publication date |
---|---|
ES2180185T3 (en) | 2003-02-01 |
KR20010013469A (en) | 2001-02-26 |
JP3711148B2 (en) | 2005-10-26 |
BR9810086A (en) | 2000-08-08 |
AR010172A4 (en) | 2000-05-17 |
EP0986702B1 (en) | 2002-07-03 |
WO1998055750A1 (en) | 1998-12-10 |
CA2292518A1 (en) | 1998-12-10 |
DE19723932C1 (en) | 1998-12-24 |
KR100340813B1 (en) | 2002-06-20 |
CN1259191A (en) | 2000-07-05 |
US6133714A (en) | 2000-10-17 |
JP2000514253A (en) | 2000-10-24 |
CN1096554C (en) | 2002-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0986702B1 (en) | Method for controlling at least one capacitive actuating element | |
EP0934605B1 (en) | Method and device for controlling a capacitative actuator | |
EP0947001B1 (en) | Method and device for controlling at least one capacitive actuator | |
EP0946999B1 (en) | Method and device for activating a capacitive actuator | |
EP1381764B1 (en) | Method and device for controlling a piezo-actuator | |
WO1999007026A1 (en) | Method and device for charging and discharging a piezoelectric element | |
DE19944733A1 (en) | Device for controlling at least one capacitive actuator | |
EP1999359B1 (en) | Method of determining an opening voltage of a piezoelectric injector | |
DE60018549T2 (en) | fuel injection system | |
EP1099260B1 (en) | Method and device for controlling at least one capacitive actuator | |
WO1998007198A1 (en) | Device and process for controlling at least one capacitive actuator | |
DE19848950C2 (en) | Constant control device for piezoelectric actuators for fuel injection systems | |
DE19652809C1 (en) | Method and device for controlling at least one capacitive actuator | |
DE102004026250B4 (en) | Control circuit for piezo actuators | |
DE102004030249A1 (en) | Drive circuit for piezoelectric actuator, e.g. for fuel injector in internal combustion engine, measures electric power of actuator and sets currents so that power becomes target value | |
DE102004009614B4 (en) | Method and device for driving a capacitive actuator | |
DE19841460B4 (en) | Method and device for driving a capacitive actuator | |
DE10307000B4 (en) | Power output stage for capacitive loads and method for their operation | |
DE60007836T2 (en) | Compensation of the play tolerances in different lots due to the fluctuations in the layer thickness or the number of layers in multilayer piezoelectric elements | |
DE102007058540B4 (en) | Method and apparatus for charging and discharging a piezoelectric element | |
DE10323488B4 (en) | Method and device for operating point-dependent control of injectors of a fuel metering system of an internal combustion engine | |
DE102006004765A1 (en) | Piezoactuator operating method for fuel injecting device of internal-combustion engine, involves predetermining reference current, holding actual current using on-off control and parameters of reference current are changed in defined times | |
DE102006055266A1 (en) | Piezoelectric unit operating method for actuator of fuel injecting valve, involves reloading piezoelectric unit by inductive unit, and considering energy stored in magnetic field of inductive unit during activation of piezoelectric unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): ES FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010924 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): ES FR GB IT |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020703 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2180185 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030404 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090422 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090428 Year of fee payment: 12 Ref country code: FR Payment date: 20090414 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090421 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100424 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100424 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100424 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |